MATHEMATICS
(LOGIC AND FOUNDATIONS)

Representation Theorem for Semi-Boolean Algebras. II

by

C. RAUSZER

Presented by R. SIKORSKI on June 16, 1971

Summary. The present paper is a continuation of [2]. In this paper a new kind of semi-Boolean algebras — which are here called semi-field of sets — are introduced and investigated. The next theorem is proved: Every semi-Boolean algebra is isomorphic to a semi-field of sets. Following semi-Boolean algebras with infinite joins and meets are considered. For these algebras the representation theorem analogue to the Rasiowa—Sikorski lemma is formulated and proved.

The present paper is a continuation of [2] the knowledge of which is here assumed. The terminology and notation in this paper are the same as in [2].

Let $(\mathfrak{B}(X), \cup, \cap, -, I, C)$ be a bi-topological field of sets i.e. $\mathfrak{B}(X)$ is a field of subsets of a bi-topological space $\langle X, I, C \rangle$ such that for every $Y \in \mathfrak{B}(X)$ the following condition is fulfilled:

$$(**) IY = CIY$$

$$CI = ICY.$$

The algebra $\mathfrak{B} = (G_I(\mathfrak{P}(X)), \cup, \cap, \Rightarrow, \dot{-})$ and every its subalgebra will be called a semi-field of sets (more exactly: a semi-field of subsets of $\langle X, I, C \rangle$). On account of [2] $G_I(\mathfrak{P}(X))$ denotes the class of *I*-open sets in $\mathfrak{P}(X)$ the operations \Rightarrow , $\dot{-}$ are defined as follows: for every $Y, Z \in G_I(\mathfrak{P}(X))$

$$(1) Y \Rightarrow Z = I((X - Y) \cup Z)$$

$$(2) Y \dot{-} Z = C \left(Y \cap (X - Z) \right).$$

The following Theorem explains the connection between semi-Boolean algebras and semi-field of sets.

Theorem 1. For every semi-Boolean algebra $\mathfrak A$ there exists a semi-field of sets $\mathfrak B$ and an isomorphism of $\mathfrak A$ onto $\mathfrak B$.

Let $\mathfrak{A} = (A, \cup, \cap, \Rightarrow, \dot{-})$ be an arbitrary semi-Boolean algebra. Let us denote by X the set of all prime filters ∇ of the lattice (A, \cup, \cap) and for every $a \in A$ let h(a) denote the set of all $\nabla \in X$ such that $a \in \nabla$. Let \mathcal{R} be the class of all h(a), $a \in A$ i.e. $\mathcal{R} = \{h(a)\}_{a \in A}$.

Let us define an interior operation I and a closure operation C in X in the following way: for every $Y \subseteq X$

$$IY = \bigcup_{\substack{h \ (a) \in \mathcal{R} \\ h \ (a) \subseteq Y}} h \ (a)$$
$$CY = \bigcap_{\substack{h \ (b) \in \mathcal{R} \\ Y \subseteq h \ (b)}} h \ (b).$$

Let $\mathcal{B}(X)$ be the field of subsets of X generated by \mathcal{R} such that the following condition is satisfied

if
$$Y \in \mathcal{B}(X)$$
 then $IY \in R$ and $CY \in R$.

It is easy to see that the operations I and C are conjugate over $\mathfrak{B}(X)$ i.e. for every $Y \in \mathfrak{B}(X)$ the condition (**) is satisfied. Thus the algebra $(\mathfrak{B}(X), \cup, \cap, -, I, C)$ is a bi-topological field of subsets of the bi-topological space $\langle X, I, C \rangle$. The class of all I-open elements in $\mathfrak{B}(X)$ coincides with \mathfrak{R} , i.e. $G_I(\mathfrak{B}(X)) = \mathfrak{R}$. In consequence, the algebra $\mathfrak{B} = (\mathfrak{R}, \cup, \cap, \Rightarrow, \dot{-})$ where the operations \cup, \cap are the set-theoretical union and intersection respectively, and $\Rightarrow, \dot{-}$ are defined by (1) and (2) is a semi-field of sets. It will be proved that the mapping h is the required isomorphism of the semi-Boolean algebra \mathfrak{A} onto the semi-field of sets \mathfrak{B} . It is known that the mapping h is one-to-one and

(2)
$$h(a \cup b) = h(a) \cup h(b)$$

(3)
$$h(a \cap b) = h(a) \cap h(b).$$

It is sufficient to prove that the following conditions are satisfied

$$(4) h(a \Rightarrow b) = h(a) \Rightarrow h(b)$$

(5)
$$h(a - b) = h(a) - h(b)$$

for $a, b \in A$.

On account of (1) and (2) we have to show that

(6)
$$h(a \Rightarrow b) = I((X - h(a)) \cup h(b))$$

(7)
$$h(a - b) = C(h(a) \cap (X - h(b))).$$

The condition (6) follows from [3].

Clearly the condition (7) is equivalent to the following two conditions:

(8)
$$h(a) \cap (X - h(b)) \subset h(a - b)$$

(9) if
$$h(a) \cap (X-h(b)) \subset h(c)$$
 then $h(a-b) \subset h(c)$.

It is easy to verify that for $a, b \in A$, $a \cup b = b \cup (a - b)$. Hence $h(a) \cup h(b) = h(b) \cup h(a - b)$. This implies that $h(a) \cap X - h(a) \cap h(a - b)$ which proves (8). Let us suppose that for some $c \in A$, $h(a) \cap X - h(b) \cap h(c)$. Thus $h(a) \cap h(c) \cup h(b) = h(b \cup c)$. It is easy to show that

$$h(x) \subseteq h(y)$$
 if and only if $h(x - y) = \emptyset$

and

$$x \dot{-} (y \cup z) = (x \dot{-} y) \dot{-} z$$

for any $x, y, z \in A$.

Hence we obtain $h(a-b) \subset h(c)$, and the condition (9) is fulfilled. We infer from (2), (3), (4) and (5) that h is the required isomorphism of $\mathfrak A$ onto $\mathfrak B$, which completes the proof of Theorem 1.

In the sequel, we will consider the semi-Boolean algebras with infinite joins and meets. Our aim is to give a representation theorem for these algebras.

Theorem 2. Let $\mathfrak{B} = (B, \cup, \cap, \rightarrow, -, I, C)$ be a bi-topological Boolean algebra. Denote by $\mathfrak{A}=(A,\cup,\cap,\Rightarrow,\dot{-})$ the semi-Boolean algebra such that $A=G_I(B)$. For every $t \in T$ let $a_t \in A$. Then the join $\bigcup_{t \in T}^{\mathfrak{A}} a_t$ exists if and only if the join $\bigcup_{t \in T}^{\mathfrak{B}} a_t$ exists and

$$\bigcup_{t\in T}^{\mathfrak{A}} a_t = \bigcup_{t\in T}^{\mathfrak{B}} a_t.$$

Similary the meet $\bigcap_{t \in T}^{\mathfrak{A}} a_t$ exists if and only if the meet $\bigcap_{t \in T}^{\mathfrak{B}} a_t$ exists and

$$\bigcap_{t\in T}^{\mathfrak{A}} a_t = \bigcap_{t\in T}^{\mathfrak{B}} a_t.$$

The proof of this theorem is omitted.

Let $\mathfrak{A}=(A,\cup,\cap,\Rightarrow,\dot{-})$ be a semi-Boolean algebra and let Q be a set of infinite joins and meets in A i.e. elements of the form

$$a_{s} = \bigcup_{t \in T_{s}}^{\mathfrak{A}} a_{s,t} \quad (s \in S)$$

$$b_{s} = \bigcap_{t \in T_{s}}^{\mathfrak{A}} b_{s,t} \quad (s \in S').$$

We will say that an isomorphism h from a semi-Boolean algebra $\mathfrak A$ into a semi-Boolean algebra $\mathfrak{B}' = (B, \cup, \cap, \Rightarrow, \dot{-})$ is a *Q*-isomorphism of \mathfrak{A} into \mathfrak{B}' provided it preserves all the infinite joins and meets in Q i.e. if

(9)
$$h(a_s) = \bigcup_{t \in T_s} \mathfrak{A}' h(a_{s,t}) \quad (s \in S)$$

$$h(b_s) = \bigcap_{t \in T_s'} \mathfrak{B}' h(b_{s,t}) \quad (s \in S').$$

Theorem 3. For every semi-Boolean algebra $\mathfrak{A}=(A,\cup,\cap,\Rightarrow,\dot{-})$, if the set Q is at most enumerable, (i.e. if the sets S and S' are at most enumerable) then there exists a semi-field of sets B and a Q-isomorphism h from A onto B such that the infinite joins and meets on the right-hand sides of the equations (9) and (10) coincide with the set-theoretical unions and intersections respectively.

Let $\mathfrak{A}=(A,\cup,\cap,\Rightarrow,\dot{-})$ be a semi-Boolean algebra. On account of theorem 2 [2] we can assume that $A = G_{I*}(B)$ where B is the set of all elements of a bitopological Boolean algebra $\mathfrak{B}=(B,\cup,\cap,\Rightarrow,-,I^*,C^*)$. Denote by $\mathfrak{B}_0=$ $=(B, \cup, \cap, \rightarrow, -)$ the Boolean algebra of \mathfrak{B} . It is known [1] that there exists a Boolean Q-isomorphism h of the Boolean algebra \mathfrak{B}_0 into the field B(X) of all subsets of space X. We define an interior operation I in X and a closure operation C in X as follows:

$$IY = \bigcup_{\substack{h \ (a) \subseteq Y \\ a = 1 * a}} h \ (a)$$

$$CY = \bigcup_{\substack{h \ (b) \supseteq Y \\ b = C * b}} h \ (b).$$

It is easy to verify that these operations are conjugate over h(B). Thus the algebra $(h(B), \cup, \cap, -, I, C)$ is a bi-topological field of subsets of the bi-topological space $\langle X, I, C \rangle$. Let $G_I(h(B))$ denotes the class of all *I*-open elements of h(B). The algebra $\mathfrak{B} = (G_I(h(B)), \cup, \cap, \Rightarrow, \dot{-})$ where the operations $\Rightarrow, \dot{-}$ are defined by (1) and (2) is a semi-field of sets of the bi-topological space $\langle X, I, C \rangle$. We will prove that the mapping h is the required Q-isomorphism of the semi-Boolean algebra A onto the semi-field of sets B. It is sufficient to prove that the equations corresponding to (9) and (10) — where the sets S and S' are at most enumerable and the infinite joins $\bigcup_{t \in T_s}^{\mathfrak{B}'} h(a_{s,t})$ and meets $\bigcap_{t \in T_s'}^{\mathfrak{B}'} h(b_{s,t})$ on the right-hand sides of equations coincide with the set-theoretical unions and intersections, respectively are satisfied. Suppose that $a_s = \bigcup_{t \in T_s}^{\mathfrak{A}} a_{s,t}$ for every $t \in T_s$, $a_{s,t} \in A$. By Theorem 2 we can write that $a_s = \bigcup_{t=0}^{\mathfrak{B}} a_{s,t}$. Since h is a Boolean Q-isomorphism of the Boolean algebra $\mathfrak{B}_0 = (B, \cup, \cap, \rightarrow, -)$ into the field B(X) of all subsets of X we infer that $h(a_s) = \bigcup_{t \in T_s} h(a_{s,t})$, where $\bigcup_{t \in T_s} h(a_{s,t})$ denotes the set-theoretical union. It remains to show that $\bigcup_{t \in T_s} h(a_{s,t})$ is an *I*-open element in h(B) i.e. $\bigcup_{t \in T_s} h(a_{s,t}) \in G_I(h(B))$. This follows immediately from the fact that for every $s \in S$ and $t \in T_s$ $h(a_{s,t})$ is an I-open set. Thus the condition (9) is satisfied. The condition (10) can be proved in a similar way.

INSTITUTE OF MATHEMATICS, UNIVERSITY, WARSAW (INSTYTUT MATEMATYCZNY, UNIWERSYTET, WARSZAWA)

REFERENCES

- [1] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warsaw, 1968.
- [2] C. Rauszer, Representation theorems for semi-Boolean algebras, I [preceding paper in this issue].
- [3] M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Čas. Mat. Fyz., 67 (1937), 1—25.

Ц. Раушэр, Теорема о представлении для полу-Булевых алгебр. ІІ часть

Содержание. Представленная работа является продолжением работы [2]. В этой работе рассматривается специальный тип алгебр, так называемых полу-поля множеств. Показано также что каждая полу-Булева алгебра изоморфна с некоторым полу-полем множеств. Кроме того, исследованы также полу-Булевы алгебры с операциями бесконечной суммы и бесконечного частного. Для алгебр такого типа сформулирована и доказана теорема о представлении, которая аналогична лемме Расева—Сикорски.