Larisa Maksimowa

A SEMANTICS FOR THE CALCULUS E OF ENTAILMENT

In this paper a semantics for the calculus E of entailment is constructed. This semantics is based on a notion of E-structure which is a generalization of Kripke S4 models.

We use this semantics to prove that a hypothesis of D. Prawitz

[3] and R.K.Meyer [5] on the equivalence of calculus E and

NR-theory of entailment is false.

We begin from the definition of $E_{\rm ICD}$ -structure which gives a semantics for the calculus $E_{\rm ICD}$ - the positive fragment of E. Axioms for E and $E_{\rm ICD}$ can be found for example in [1].

Let S be a set, P be a non-empty subset of S, R be a ternary relation on S. The system < S,P,R > is called an $E_{\rm TCD}$ - structure, if it satisfies the following conditions for all U,V,W,X,Y in S.

- E 1. (∃t∈P) R(t,v,v)
- E 2. $x \in P \land R(x,u,v) \implies (\exists t \in P) R(u,t,v)$
- E 3. $R(u, w, x) \wedge R(x, v, y) \Longrightarrow (\exists z)(R(w, z, y) \wedge R(u, v, z))$
- \mathbb{E} 4. $\mathbb{R}(u,v,x) \Longrightarrow (\exists z)(\mathbb{R}(u,v,z) \land \mathbb{R}(z,v,x))$
- E 5. $x \in P \land R(x,v,u) \land R(u,w,y) \Rightarrow R(v,w,y)$
- E 6. $x \in P \land R(x,v,u) \land R(w,u,y) \Longrightarrow R(w,v,y)$

Let $\underline{S} = \langle S, P, R \rangle$ be an E_{ICD} - structure. By forcing on \underline{S} we mean a relation \models between elements of S and formulas

of EICD with the following properties:

- (1) u∈P∧R(u,v,w) ⇒ (v | p ⇒ w | p) for every propositional variable p,
- (ii) $v = (\alpha \& \beta) \Leftrightarrow v = \alpha \text{ and } v = \beta$,
 - (111) $v \models (\alpha v \beta) \iff v \models \alpha \text{ or } v \models \beta$,
 - (iv) $v \models (\alpha \rightarrow \beta) \iff (\forall u, w) (R(v, u, w) \land u \models \alpha \implies w \models \beta)$

(where α and β are arbitrary formulae and v,u,w are elements of S).

We say that a formula α is true in the E_{ICD} - structure $\underline{S} = \langle S, P, R \rangle$ by forcing |= on \underline{S} , if $x \not= \alpha$ for every $x \not= P$. A formula α is valid in \underline{S} if α is true in \underline{S} by every relation of forcing on \underline{S} .

THE COMPLETENESS THEOREM FOR $E_{\rm ICD}$. For any formula α of the calculus $E_{\rm ICD}$, α is a theorem of $E_{\rm ICD}$ iff α is valid in all $E_{\rm ICD}$ - structures.

Recall that the calculus NR [5] is defined as the result of adding S4-style theory of necessity to the calculus R of relevant implication. Let us introduce an entailment connective on the definition $\alpha \Longrightarrow \beta = N(\alpha \gg \beta)$, where \Longrightarrow is relevant implication and N is necessity. D.Prawitz and R.K.Meyer conjectured that NR-theory of entailment coincides exactly with that of E.

Let us consider the formula: $(p \Rightarrow (q \Rightarrow r)) \& (q \Rightarrow pvr) \Rightarrow (q \Rightarrow r)$ G.E.Minc showed that this formula is a theorem of NR and conjectured that it is not provable in E. We prove this conjecture by using of our semantics. The following system $\underline{S} = \langle S,P,R \rangle$ is an E_{IGD} - structure, where $S = \{e,a,b,c\}$, $P = \{e\}$, R contains all the triples $\langle e,x,x \rangle$, $\langle x,e,x \rangle$, $\langle x,x,x \rangle$, as well as $\langle a,b,c \rangle$, $\langle b,c,c, \rangle$, $\langle a,c,c \rangle$, $\langle a,b,b \rangle$, $\langle b,b,c \rangle$, $\langle a,e,b \rangle$, $\langle a,e,c \rangle$, $\langle a,e,c \rangle$, Then the formula $(p \longrightarrow (q \longrightarrow r))$ & $(q \longrightarrow pvr) \longrightarrow (q \longrightarrow r)$ is not true in \underline{S} by \models , where \models is the least relation of forcing on \underline{S} such that $c \models p$, $b \models g$, $b \models r$. Therefore this formula is not a theorem of E_{IGD} . It follows from [2], that this formula is not provable also in \underline{E} .

Now we extend the semantics for the whole E. The system $\underline{S} = \langle S, P, R, g \rangle$ is called an \underline{E} - structure, if $\langle S, P, R \rangle$ is an \underline{E}_{ICD} - structure, g is an involution on S (i.e. a function such that g(g(x)) = x) and the following conditions are fulfilled:

E 7. $R(u,v,w) \Rightarrow R(u,g(w),g(v))$

E 8. R(u,g(u),u).

The forcing on the E - structure \underline{S} = < S,P,R,g > is to satisfy the requirements (i) - (iv) of the definition of forcing on the E_{TCD} - structure and moreover.

(v) $v = \alpha \Leftrightarrow g(v) \not\models \alpha$.

The notion of validity is analogous to the corresponding notion for $E_{\rm TCD}$ - structures. We have then

THE COMPLETENESS THEOREM FOR E. For any formula α of the calculus E, α is a theorem of E iff α is valid in all E - structures.

REMARK. R.Routley and R.K.Meyer proved [4], that it is enough to consider $E_{\rm ICD}$ - structures in which the set P contains only one element. It does not hold for E - structures. If $\underline{S} = \langle S,P,R,g \rangle$ is an E - structure and P contains the only element, then the formula $pv((p \rightarrow p) \rightarrow p)$ underivable in E is valid in S.

We note also, that there is a direct connection between Kripke S4 models and E structures. Recall that S4 model is a system $\langle S, \leq \rangle$ where \leq is a transitive, reflexive relation on S. Set P = S, g(x) = x, and $R(x,y,z) \equiv x \leq y = z$. Then $\langle S,P,R,g \rangle$ is an E - structure.

REFERENCES

- [1] L.L.Maksimowa: Intérprétaciá i téorémy otdéléniá dlá insislénij E i R. Algébra i logika, 10 No 4 (1971), pp.376-392.
- [2] R.K.Meyer: Some problems no longer open for B and related logics. Journal of Symbolic Logic 35, No 2 (1970),pp.353.
- [3] D.Prawitz: Natural deduction, a proof-theoretical study. Stockholm 1965.
- [4] R.Routley, R.K.Meyer: The semantics of entailment II.

 Journal of Philosophical Logic, 1, No 1 (1972),pp.53-73.
- [5] R.Routley, R.K.Meyer: The semantics of entailment III.
 Journal of Philosophical Logic, 1, No 2 (1972),pp.192-208.

Institute of Mathematics, The Siberian Branch of Academy of Sciences of the U.S.S.R, Novosibirsk.