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Intrinsic Boundaries in Certain Mathematical Toposes exemplify

"logical" operators not passively preserved by Substitution

F. William Lawvere

In a co-Heyting algebra where ~A  denotes the smalleskt

element for which Av~A = 1, the fact that the boundary

OAgss AANA

may be non-zero is not a mere logical curiosity, but often a

,

geometrical (or dynamical) reality. Imagery such as

A directly suggests such formulas as

2 (AAB) (d2)A BV AA(QB)

A Q Ay ~Aa

which in fact can be formally proved to hold in any co-Heyting
algebra. Better than mere formal dualization, the ubiguity of
naturzlly-arising mathematical examples which have this structure
demands its study. Beyond some degree of completeness, it is
crucially certain distributive laws thch make it possible.

Locic should aim at comprehending not only Hevting algebra, but
also this companion refinement of the "classical" first approxi-

mation

regular open ——> regular closed



and also the larger framework within which the two interact.
Any lex category with exponentiation and a subobject-
classifier )L is a topos; in particular one can algebraically

define outright the pPropositional operations flx {L — Q=

and prove that any (X s naturally a Heyting algebra. This

may be interpreted to mean that the natural logic which is

passively conserved bv substitution along all X ——> Y is

indeed the Heyting one. Mere tricks with formal duality do not

lead to anything of mathemataical substance. However, it has
been known for centuries that interesting logical operators such

(1§
are often not passively conserved by substitution;
Vnec essi

as"
from the vantage of modern 2-category theory we may say that
they involve "lax" functors and natural transfornatlons rather
than mere functors, but we mav also observe that in the cases
of interest one nonetheless can maintain considerable control

in that the lax operators are often adjoint to other operators

which do behave conservatively under substitution. For example,
as we'll see below

(AVB) (f) -§ A(f)VB(f)

for X ——2—9 Y with A,B attributes of tvpe Y, but merely

~af) § (~n (D),

while at both X and Y , ~ is adjoint to v

There are at least two ways in toposes where co-Heyting
algebras arise. By a theorem of Isbell-Mikkelsen, the lattice
of all subtoposes of any topos naturally has such structure; as

<

I pointed out in 1974, there is thus a boundary operator,



assigning to every subtopos another subtopos, which needs to

be computed in some concrete examples in order to illuminate
the model theory of positive theories (for via the "classifying
topos" construction, the classes of models of positive theories
also have the éb-Heyting property) and in order to reciorocally
provide actual mathematical tempering of speculations'about
"paraconsistency". Not very many examples have actually been

calculated so far, but see the appendix. The second way, upon

which we mostly concentrate below, is that in certain toposes
(notably presheaf toposes and somewhat more generally semi-
continuous sheaves) the lattice of all subobjects of any object
has the reguisite stronger distributive property so that it is
both Hevting and co-Heyting. A third possibility, not yet
investigated, is that a éublattice cf "closed" subobjects could
be defined in a spirit partly dual to that of Penon's powerful
intrinsic notion of "open" subobjects.

1f C is any small category and X any object in the

Cop

tooos S; of "presheafes" (=right actions on abstract sets),

then the lattice of all subobjects of X in this topos is

isomorphic to the poset of functors to =
¢ P

2

and hence satisfies both infinite distributive laws since.ladoes:

since it is also complete, it therefore has not only =

right adjoint to A (with the special case 7A = (A 0)) as in any

topos, but also "logical subtraction" left adjoint to v (with



the special case ~A = (1\2)). Since ~AVA = 1 must hold and
unions in presheaves are computed as in S for each ce C,
while ~2a must- also be é subfunctor of X , it is easily seen
that
Proposition The elements of ~A of type C are given in
terms of the base topos S by

(~1)(C) ={x£x<c>[ g o My i Cd zexm

§$A(D) and X = X u

For example, if C is the three-element monoid consisting of the
identity and two "constants" u = Qo, u = 31', then X is an
arbitrary reflexive directed graph and A an arbitz;ary subgraph;
the above implies that 9 A is the discrete subgrach of A con-
sisting of those points x for which there exist "arrows" x é;!:_
connecting x in one or the other of the two possible (in/out)
directiqns with another-point of X not in a . Similarly, if
C is the monoid of non-negative time durations so that X is

a (not—nécessarily reversible) dynamical system and A is a
broverty of states which is stable under evolution, then Ac a

consists of those states which can arise from histories which were

not always in A in the past.

While for the Heyting negation we always' have (for arbitrary
subobjects) the passive compatability 1 B(f) = (TAB)f for any
substitgtion X hf> YOB, for the co-Heyting negation~B we
only have the lax inequality.

More precisely



Zobosition If~B(f) = (~B)f for all x —f sy>s in

7" 0D , \
§§ < + then C:. is a groupoid. (Hence the logic is in fact

Boolean and the two negations agree).
Thus, except in the case where all operators in T are

invértible, the co-Heyting negation is not induced by a single

map £ ---3) on the truth-value object ; rather for each

object X ‘there is a map. 8 (x,2) ﬁg(x'ﬂ)

. op
in the base topos é§ (where in our examples é? ==§3Q: )

but for a map X -ilﬁb Y the square

~
S, ) —¥ s Syv,n)
-f -f

does not commute but only lax-commutes in the sense that there

is an inequality.
However, in some cases there are special f£f's, namely

the projection maps of cartesian products, for which such

diagrams do commute. Thoughreven this is not true for our

directed graph example, it does hold in some bresheaf categories

of the "gros topos" (=category of "all spaces" of a certain

kind). The intuition pointing toward these cases is the one

fundamental to the computation of the tin required to make a

tin can, namely
D(AxB) = (JA) x BUA x (9 B)

D

B>



where in the case pictured the boundary of the altitude is

OA =2 while the boundary of the base is the closed curve o B.
This Leibniz rule for (boundaries of) cartesian products will
follow from the generally-valid (in co-Heyting algebras) Leibniz
rule for intersections via such facts as A X B = AxYMN X xB
(where A C X, YC B) provided only that ~(A xY) = (~2)xY

and~ (XX B) = XX (a~’B) (where the left-hand~= in both

"/
XxY
cases), in other words, provided the two special projection f's
XY —=> "R, "X ¥ =y go passively substitute into

NX' fvy.

Theorem Suppose C has the property that every map C — T

can be factored into a split mono followed by a split epi

~ D' g u = pi
g, .S .= qi
/ 13 N C
L, lD = ps
>~
c = > D
Cop —
Then in s » substitution along any projection map commutes

with the co-Heyting negation, so in particular the Leibniz rule

for the boundary of a cartesian product holds.

Proof: Supoose (x,y> E~(R)XY. We must show (x,y>£~(A XY),
i.e. that there exist u', ?(,; with ;éA but x = x u', v = ;
We are given u, X with ;cd;A and Xu = x so consider a

factorization of as stated above and let u' = 1

X
]
bt
o

= yg. Then

<u



(R, ypu ={Xpu',ygq D (% v, y) =dx,yD

but we still have §$A: for if §EA were true then X = xs

would also be in A contrary to hypothesis.

Corollary = 1If C has binary cartesian products and if every set

. oR
C 0.p") is non empty, then 534: satisfies the Leibniz rule

for the boundary of cartesian products of presheaves.

For then we can verify the hypothesis of the theorem by

setting D' = CxD and letting i be the graph of u and

letting s be the graph of any convenient D -->C (p,q being

the product projections). Since the hypothesis of the theorem

is self-dual, another corollary would have binary coproducts
andEnon-empty hom-sets as sufficient condition on Q: . A special
case of the corollary as stated applies to categories G: with

finite cartesian products and non-empty objects in the sense

that for each C there is a point 1l---> C. But the theorem

also applies to at least one very important example which has

neithér products nor coproducts, as follows

op
Corollary In the topos of simplicial sets ésé& , the Leibniz

rule for the co-Heyting boundary of a cartesian oroduct is valid.

For the category AZS of finite totally-crdered sets and order-
preserving maps can be shown to have the property that every map
c ——Ef> D factors as a split mono followed by a split epi,
namely the third object can be tigen as the ordered sum
| D'=Z C,d
d€D

whare Cq ™ d4 (d) if the latter is non empty

ﬂ otherwise



APPENDTIX

'S
The lattice of actual subtoposes of a given topos well-

known to be a co-Heyting algebra (dual to the Heyting algebra
of Grothendieck topologies); it corresponds to classes of
models of positive extensions of the theory for which the
given topos is classifying. In the very special case.of a
presheaf topos g)q:op in which ([: is a locally finite category

with idempotents split, this lattice can be identified with

2°7
where G is the poset of objects of ([, ordered by the
existence of a retract, in other words, with the lattice of those
classes A of objects of C[; such that Cé'l')_—_; A, pi-= lc,
A EA imply C E,_[A_. Thus in this speciallcase the lattice of
subtoposes is not only co-Heyting, but also Heyting. However;
we want to note the
Provosition If CL is locally finite and AC T £ull, then
the boundary of the subtopos 5@\‘3? Legq: op is S(QA) °F
where M is the set of all objects of q: which are both

retracts of objects ofA but also retracts of objects of C“_/A

For example, any positive extension of the theory of
distributive lattices (such as the theory of éoolean algebras,
the theory of totally ordered sets with endpoints, etc.) can be
correlated with a subcategory éa\ of the category G:; of finite

posets, and as such has a "boundary" which is another theory.



ADDENDUM 20 March 1990

Three further remarks about the intrinsic boundaries in
Presheaf toposes

It was pointed out that in the category of reflexive graphs, any
object arising as a boundary is discrete (i.e. O-dimensional, agreeinc
with the intuition that graphs are one-dimensional and that o should
decrease dimension by one! perhaps a general result of that kind
.could be proved, using the definition of "dimension" as the Hegelian
negation of an essential subtopos). Similarly, in the petit topos
for any AC X one has (1, 92) = #, i.e. boundaries as objects are
special objects. By contrast, Schanuel observed that in the petit
topos §3°3°P + @8ny objéct A  can pe embedded in a suitable X so
that 2 = Q32 for the boundary within x; namely define

*n der P, ¢ Bn-1 (A~l = 9

with X —> X taking everything into 2 . Then using the
n+l n op n

explicit formula for 32 in any Sc one sees that ~a = x so

that ~a 2 = g ang hence 2 =3Au~~A=aA.

P
The second remark concerns the ITeépresentable functors in §§q: .
The intuition that the sphere is the boundary of the ball inside a
suizfsge X can 1n§eed be reélized, for example in simplic;al sets
gs (which as Pointed out in the baper is one of those where

the good Leibniz rule holds) by taking x to be

But boundaries of subobjects of Ieépresentable x (and more generally
of quotients of Ieépresentables, i.e. those objects X having a
bigcest Provoer subobject Xo (= all elements of x whose corresponding

Yoneda map is not surjective)) are eéspecially transparent (as Pointed
out by Gustavo Arenas): if p g then g a = a.




Addendum 2

Perhaps not sufficiently explicit in the paper is the following:
The fact that the de dicto/de re distinction is a serious one even
for substitution along projections xn+1 — Iy underlines the
obligatory nature of the formal precision which I have advocated for
over 25 years but which most logicians still blithely ignore even
when it leads to absurdities such as. the alleged "non-transitivity
of entailment": I refer to the precision which Lambek calls the--
"declaration of variables" in order to have meaningful formulas.
I do not know whether the sufficient condition given in my theorem
(namely that every map in Q:'factors as a.map having a retraction
followed by a map having a section) is necessary for conservation of
~> along projections. ;



