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CHAPTER I

EXISTENCE QF FIXED POINTS FOR NONEXPANSIVE

MAPPINGS IN BANACH SPACES

I. INTRODUCTION

Let E be a Banach space with norm

» C a subset

of E . A mapping T : C > E is said to be nonexpansive if

liTx - Ty]|

A

|x - vl  for al1 Xy, vy € E . Isometries (i.e.,
IlTx - Ty]l = ||x - yl| for al1 X,y € C) and contractions (i.e.,
Tx - Ty|l < k [|x - y||  for ali X,y € C and some fixed k, 0 « k < 1)

are examples of nonexpansive mappings.

It is of great importance in the applications (see Browder
[5] or section 11 beloﬁ) to find out if nonexpansive mappings have
fixed points, that’is, points x € C such that Tx = X . Of course,
this is too general a question to have some reasonable answer; see
examples below, section 2 . In order to obtain existence of fixed
points for such mappings some restrictions have to be made on the
Banach space E and on the subset ¢ .

At this point we should remark that if T is a contraction
in any closed subset C of a (general) Banach space with T(C) —cC ,
then T has a unique fixed point in C . This is a particular case
of the well known principle of contraction mappings: "Let (M,d) be
a complete metric space and T : M + M a contraction mapping, i.e.,
d(Tx, Ty) < kd(x,y) for all x,y € M and some fixed k, 0 < k <1
Then T has a unique fixed point. For a proof see, for example,
Kolmogorov and Fomin, "Elements of Functional Analysis", vol, I.

Coming back to the general nonexpansive mappings we realize



that, in view of the examples in section 2, we should consider subsets

C of E. that are bounded, closed and convex. Moreover, we consider

mappings T from C ;gsg‘ C . The more general situation of non-
expansive mappings T from C to E has been considered by Petryshyn
[28] for the Hilbert space case; see also Browder and Petryshyn [10].
The Banach space E should also be restricted somehow, as example 4
indicates. Brodsky and Milman [4] have considered isometries T of
a bounded closed convex set C of a Banach space E 1into itself.
They were able to prove existence of a fixed point for T provided E
is reflexive and C has normal structure (see definition immediately
below). Moreover [4] contains a theorem about existence of a common
fixed point for all continuous mapping of C into itself which do

not decrease distances.

Definitions. Let B be a bounded set in a Banach space E and let

6(B) be its diameter. A point x € B 1is said to be a diametral point

of B 1if SuPy’EBp”x - Y” = §(B) . A convex set S of E 1is said

to have normal structure if every bounded convex subset S1 of S,

which contains more than one point, has a point that is not a diametral
point of S1 .

An argument similar to the one in Brodsky and Milman [4]
was used by Kirk [24] to obtain a proof for the following theorem.

Theorem I.1 (Kirk). Let E be a reflexive Banach space, and C

a bounded closed convex gubset of E. Furthermore suppose that C

has normal structure. Then a nonexpansive mapping T of C into

itself has a fixed point.




Theorem I.1 4in .the case of a uniformly convex Banach space
was also discovered independently by Browder [6&] and Gthde [18]
Corollary 1I.1 below establishesltheir result as a consequence of
Theorem 1I.1. And in the remark after that corollary we show why
Theorem 7T.1 1is more general. We should also remark that the proof
in Browder [6] involves an argument similar to the one in Brodsky
and Milman. However Gohde's proof works through a specially chosen
sequence of fixed points for the contractions Tr = rT

s, O0<r<1,

2. [EXAMPLES

We present now three examples to show that the restrictions
put on C 1in theorem I.1 are necessary. The fourth example indicates
that one cannot expect existence of fixed points for nonexpansive

mappings in the most general class of Banach spaces.

Example 1. (Necessity for boundedness of C) . A translation in a

Banach space is an isometry and obviously has no fixed points.

Example 2. (Necessity for closedness of C). Let E be a
Hilbert space (E = R will suffice) . Let C be the interior of the
unit ball, i.e., C = {x : HXII < 1} . Consider T the mapping of

C idinto itself defined by
Tx = x/2 + a/2

where a is any vector in E with unit norm. It is easy to see that

T has no fixed point in C .



Example 3. (Necessity for convexity of C). Let E be a Hilbert

space (E = R will suffice again). Let C be the set containing

- —

Just two distinct points a and b . Define T : C » C as Ta = b

and Tb = a . Clearly T is an isometry and has no fixed point.

Example 4. (Kirk) Let E be the space C[0,1] of real-valued
continuous functions defined in [0;1] with the maximum norm. It is
well known that C[0,1] is not a reflexive Banach space. Now consider
C as the unit ball about the origin in C[0,1] , and let T be the

mapping defined as follows:

f(x) » xf(x)
It is‘easy to verify that T(C) CC and T has no fixed point.

3. PROOF OF THEOREM 1I.1l.

Theorem I.1 will be proved using Theorem I.2 below.
The proof presented here is essentially the one given by Kirk [24] .
Let C be a bounded closed convex set in a Banach space E , and
T a nonexpansive mapping of C into itself. Let us denote by C the
the collection of all closed convex subsets C1 of C which are

invariant under T , 1i.e., T(Cl) C:’Cl .

Theorem I.2. Let E be a reflexive Banach space, C a bounded closed

convex subset of E and T a nonexpansive mapping of C into itself.




C is the collection defined above. Suppose that given C, < ¢,

either C, consists precisely of one point or there exists C, ¢ ¢

such that C2 C:Ci and 'C2,+_Ci . Then T has a fixed point in C .

Proof of theorem 1I.2. Let us consider the collection ( preordered

by inclusion, and let C1 :3C2.t3... be a chain in (C . We prove

that this chain has a lower bound. In fact, 1let C =N N , C. . C
o =L 3 0

is closed and convex. Since the sets Cj are bounded closed convex

subsets of a reflexive Banach space, they are weakly compact. Moreover
they have the finite intersection property. Hence CO is non-empty.
It is also immediate that Co is invariant under T . So CO € C and
it is a lower bound for the given chain. Now by Zorn's lemma (see,
for example, Dugundji, "'Topology'), it follows that C has a minimal
element € . If C has just one point the proof is finished. Other-
wise, it follows by assumption that there exists a proper subset of <
in C . But this contradicts the minimality of C. So & must have
only one point, which will be fixed by T . This completes the proof
of theorem I.2.

Before proving Theorem I.1 we introduce the notion of

kernel of a set.

Definitions. Let B be a bounded set in a Banach space E . Let

r (B) = SUP, ¢ g |x - y|| and r(B) = inf pr (B) . The kernel of B
is the set K(B) = {x €B : rx(B) = r(B)} . Let us remark that in
general K(B) could be either empty, or a proper part of B , or the

whole of B . The next two lemmas show that both of the extreme cases

above will not occur in important cases.



Lemma T.1. Let E be a reflexive Banach space and C a bounded

closed convex subset. Then the kernel K(C) of C 1is closed convex

and non-empty.

Proof. From the definition of kernel we can write immediately
K(C) = ﬂn-—-lKn('C) >

R (C) = {x €C: r (C) s r(C) +

where each set Kn(C) is non-empty by definition. It is closed and

conveX because

. 1
Kn(C) = F\y,ec{x €Cc: ||x-y||] 5 r© +'H}

Using reflexivity, it follows that K(C) is non-empty.

Lemma I.2. Let E be a Banach space. Let B be a bounded set which

contains a point which is not diametral of B. Then if the kernel K(B)

is non-empty, its diameter is strictly less than the diameter of B .

In particular this is true if B has normal structure and E is reflexive.

Proof. Since B has a point x , which is not diametral of B it

follows that rX(B) < diam (B) . So
i = - < B) < di B) |,
diam[K(B)] supy’sz(B) Iy zl| < r(B) < rx( ) < diam (B)

which proves the lemma.



Proof of theorem I.1. The proof makes use of Theorem TI.2. Let

Cl €C . 1f Cl consists of precisely one point, this point will be

fixed under T and the theorem will be proved. Let us assume then that

Cl has more than one point and let us prove that C1 contains a proper

subset C2 ©C . 1If we do that, Theorem I.1 is proved using Theorem
I.2. By Lemmas I.1 and I.2 the kernel K(Cl) of C, 1is a proper
closed convex non-empty subset of C1 . If K(Cl) is invariant under
T, take C2 = K(Cl) . Otherwise there exists x E.K(Cl) such that

Tx ¢.K(C1) . On the other hand

[|Tx - Ty“ g ||x - yll N r(Cl) ’ for all vy ¢ Cl .

This shows that T(C,) C B (Tx) , i.e. T(C,) 1is contained in the
“1 r(Cl) 1

ball of radius r(Cl) about Tx . This together with the fact that C,

is invariant under T implies

T(C; N Br(Cl) (Tx)) C C, N Br(cl)(TX)

Since Tx:q:K(Cl) it follows that lew Br(Cl)(Tx) # C1 . So in the

case that K(Cl) is not invariant under T we take C2 = C1 F‘Br(C])(Tx).

We have just seen that such a set is in C and is a proper subset of

Cl . The theorem is proved.

4. THEQOREM I.1 FOR UNIFORMLY CONVEX SPACES.

A Banach space is said to be uniformly convex (or uniformly

rotund) if given € > 0 there exists 6{(e) such that lx - y|| 2 €
7



for x| s 1 and |yl s 1 implies ||(x+ y)/2| < 1 - ace)

This notion'was introduced By Clarkson [13]. In that paper he proved
that LP spaces, 1 < P<w ; are uniformly convex. Later Milman [26],
Pettis [27] and Kakutani [20] proved that every uniformly convex Banach
space 1s reflexive. Of course the converse is not true, i.e., there

are reflexive Banach spaces that are not uniformly convex. Indeed,
consider a finite dimensional Banach space E 1in which the surface of
the unit ball has a "flat" part. Such a Banach space E 1is reflexive
because of finite dimensionality. But the flat portion in the surface
of the ball destroys uniform convexity.

The following result is useful in the applications.

Proposition I.1. Let E be a uniformly convex Banach space. Suppose

that there are given two sequences '{xn} and '{yn} such that

e 1l > 1, lly I s llx I and [l 4y /2] 1 as no= .

Then Hxn -’yn|| >0 as n >,

Proof. Construct two new sequences

X _ y

n n
z = ——— and w,o=
" x| eI
It is easy to see that Hzn|| =1, “wnlf £ 1 and H(zn + wn)/ZII-*l.
So by uniform convexity it follows that ”zn - wnll + 0, which implies

readily that Hxn - ynll +0 as n»=» ,

Remark. In the preceding proposition the condition on (xn + yn)/Z



could be replaced by the analogous one on ax  + a - a)yn where

0<g < 1.

Corollary I.1 (Browder [6], Gohde [18]). Let E be a uniformly convex

Banach space and C a bounded closed convex set in E . Let T be a

nonexpansive mapping of C into itself. Then T has a fixed point.

This corollary is a consequence of Theorem I.1 and the following

lemma.

Lemma 1.3.In a uniformly convex Banach space E , every bounded closed

convex set has normal structure.

Proof. All we have to do is to prove that a bounded closed convex set

C in E which consists of more than one point has a point which is not
diametral. Let X,y € C such that [l - y” > 1/2 diam (C) , and let
u = (x + y)/2 . We claim that u 1is not a diametral point. Indeed,
suppose that there exists a sequence of points v € C such that

lu - vnll + diam (C) . Clearly |[|x - vnlland lly - vn,| are ¢ diam (C).

So by uniform convexity it follows that ||x - y|| = ||(x - v) - (y - vl » o,

which contradicts the assumption that ||x - y|| 3 1/2 diam C > 0

Remark. A Banach space is said to be strictly convex (or rotund) if

IAx + (@ - Myll <1 forall A, 0 <A <1, andall x,y € E such
that ||x|| =||y]| =1 . 1t is easy to see that every uniformly convex
Banach space is strictly convex. The converse is not true.

Brodsky and Milman [4] have obtained a sufficient condi-
tion for a convex set C to have normal structure, To describe it we

need the following quantity. Let p(E) be the supremum of the numbers



p defined as follows. Given an integer n and positive numbers ¢
and n , there exists a n-dimensional simplex S(m,e,n) such that

|p-(length of any edge of S(n,eyn))| < n and x| - 1| < ¢ for

all x € S(n,e,n) . Brodsky and Milman sufficient condition for normal
structure can he stated as fﬁllows: "If p(E) < 1 » then every convex
set C in E has normal structure". As this result shows E might
not be strictly convex but Theorem I;l holds as long as the '"'flat
parts' of the surface of the unit ball are "small". This shows the
distinction between Theorem I.1 and Corollary TI.l. Namely Theorem

I.1 holds for some class of Banach spaces which are not strictly

convex.

5. NONEXPANSIVE MAPPINGS WHOSE SEQUENCE

OF ITERATES T x HAS A SMALL DIAMETER

In this section we consider nonexpansive mappings acting in a
general reflexive Banach space E . Let C be a bounded closed convex
subget of E and T a nonexpansive mapping of C into itself. We
remark that the set C 1is not required to have normal structure.

As in Section 3 1let us denote by C the collection of all closed
convex subsets of C , which are invariant under T . The following
basic assumption is made:

(A) For every C, € C, which consists of more than one point,

there exists a point x €'C1 such that

o e
diam dr X}nﬂl) < 1/2 diam (C1) .

10



Theorem TI.1. Let C be a bounded closed convex set in a reflexive

Banach space and let T be a nonexpansive mapping of C into itself.

If (A) holds, then T has a fixéd point.

Proof. The proof uses Theorem I.2. Let C, € C. 1If the set C, con-

tains just one point, this point will be fixed and the theorem is proved.

Suppose that Cl consists of more than one point; we claim that Cl has

a proper subset 02 € C . By hypothesis (A) there exists x € C, such

that d = diam ({T%}) < 1/2 diam (C) . The set F_=N7 Bd(zj) N c,

J ::n
is closed, convex and non-empty (because Tnx, Tn+1x s e all are in

Fn) . Moreover FlC:fFZCZ'... and T(Fn)CZ Fn+l . Consequently

C2 = LJ:;l Fn is a closed convex subset of Cl which is invariant under

T . Moreover c, % C, because diam (Cz) £ 2d < diam C The proof

1
is finished.

6. THE KAKUTANI-YOSIDA ERGODIC THEOREM

AND CONSEQUENCES

The basic result in this section is the classical mean ergodic
theorem (Theorem I.4) of Kakutani and Yosida for continuous linear
mappings in Banach spaces. This theorem will be used to establish an
ergodic theorem (Theorem I.5) for continuocus affine mappings in Banach
spaces. For later use, in section 8, we shall prove corollaries to
theorems I.4 and I.5, which are due to Edelstein {16]. Theorem I.5 will
be used in the proof of Theorem I.6, which strengthens results of
Browder [7] and Browder and Petryshyn [11]. See deFigueiredo and

Karlovitz [30].

11



Theorem I.4 (Kakutani-Yosida). Let A be a linear operator mapping a

Banach space E into itself. Suppose that

(a) there exists a constant C such that |aA"l g c for all n = 1, 2,

(b) for gsome point x € E , the gequence X --% 2§=1 Ax  contains

a subsequence b{xn(j)} that converges weakly to some point x € E .

Then the whole sequence ‘{xn} converges in the norm to x .

Proof. 1°) First we prove that x 1is a fixed point for A , i.e.
AX = x . Since every continuous linear mapping in a Banach space is

also weakly continuous we have

X = Ax -~ Ax .

(1) xn(j) - X

n(j)

n o_.n

(We use to denote weak convergence and " -+ " to denote strong
convergence, i.e. convergence in the norm). On the other hand, using
hypothesis (a) we have the following estimate:

1
1L @

2
lax, - = || = x - a)|l <

Using this in (1) we conclude that X = AX .

2°) Now let us prove that x > X . Since x 1is a fixed point for A

we have

So we have only to prove that

12



1 n j -
(*) = Zj=1 A'(x - x)>0 , as n > o ,
On the other hand, since a subsequence of
' _1¢n | _ n-1 n-§ ,j
- = ijl Allx = {(I - A) Z — Allx

converges weakly to x - x , it follows that x - x € R where R is

the closure of the range R of I - A . (Observe that, since R 1is
a subspace, the weak closure and the strong closure are the same). So

given ¢ > 0 there exist z €E and h € E with lIh]] < e such

that x - x = (I - Az + h . Then

I3-1 A -

=R [

1 Je1 - Lyn 3
= Zj P AT -z + S Yo . Aln

I
=[S

1
a- A", 4 = 1

Using hypothesis (a) we see that

1 2¢c -
|L% (A - An+l)z + Y Z?=l Ajhll g jf llzll + ce

From this relation, (*) follows immediately and the proof is finished.

Corollary I.2 (Edelstein). Let A be a linear operator mapping a

Banach space E into itself. Suppose that -

n
(a) There exists 3 constant ¢ >0 such that ﬂA l[ £ ¢, n=1, 2,

(b) There exists a point x € E such that E is the closure of the

affine manifold generated by {Apx}zzo that is, the closure of the set
' 13



y y ZJO j ’zj=0Aj 1, m 0, 1, 2, -..}

(c) for the element x of hypothesis (b) the sequence

l I3
xn = = zj=l Alx contains a subsequence that converges weakly

to some point X .

Then,for all vy € E, the sequence Y, = '%'Z?=1 Ajy converges in the

norm to O . Moreover _i_= 0 and Ay + y for all v + 0 .

Proof of Corollary I.2. By theorem I.4 we conclude that x ~ converges
in the norm te x and X is a fixed point for A . If we prove that

for any y € E the sequence {yn} converges strongly to X , then the
result follows; for (y - x)n =y, " X by the linearity of A . So

let us prove that Y, > X . Given e > 0 there exists h € E , with

“h|| < & , and real numbers A , A A, with z =1,
o m

1> - 3=0 j

such that y = Z?=O Aj ij + h . Then
_ 1 i,em b 1l i
y. = o Zi=1 A (zj=o Ay A x) + Zi=l A"h
- Jelyn 4t 1 yn
= U0 2 A L A0+ T4

by the linearity of A . From this we obtain the following estimate

using the fact that x is a fixed point of A

Iy = %Il ¢ 1150 2y AlGey = O +ee

Taking limits it follows

14



Tm |y, - %] < ee

n-—+>o
Since € 1isg arbitrary we obtain Y, X, as we have claimed.

Theorem 1I.5. Let T be an affine mapping of a Banach space E

into

itgself. Assume that

(a) There exists a constant c > 0 such that T ~ %] < ¢ lx - ]|

" for all x,v in E, and all integers n > 0

3

(b) For some point vy € E , the sequence y_ = '% ?=l T"y contagins

n

a subsequence {yn(i)} that converges weakly to a point v .

(c) For some point z € E, the sequence {Tn(j)z} is bounded, where

{n(3)} is the subseduence of hypothesis (b).

Then the whole sequence {yn} converges strongly to y and y 1is a

fixed point of T .

Remark. 1In view of (a) , hypothesis (c) implies that for every

w € E the sequence 3y s bounded.

Proof. 1°) First we prove that § is a fixed point for T . By
definition, the mapping T being affine, it implies that there exist
a linear mapping A and a vector a € E such that Tx = Ax + a .

It then follows that a = TO . By induction we obtain that

T'x = A"x + T70 . Combining this with hypothesis (a) we get

”An|| £ C . Since an affine continuous mapping is also weakly contin-

ucus we obtain

3 Yn@g) YT Tag) T

15



On the other hand since T 1is affine and satisfies hypothesis (a) :

1 n+1

1Ty, = yoll = I3 @™y -] < L7 - y)
Using hypothesis (c¢) we obtain
- £ __
(3) ”Tyn(j) yn(j)” £ n(3) (K + ”Y”)

where K 1is such that ||Tn(j)y” ¢ K for all n(j) . Finally (2)

and (3) together imply T; =y .

2°) We have
1o j, . 1gm h| 1l en
@) o D 4y = gty - oI o,
and
) o |
(5) 3 a1 dy-5- 1 Ia1 tdo ,

where we have used the fact that § is a fixed point. From (4) and

(5) we obtain, by subtraction,

Using hypothesis (b) we have that a subsequehce of %-Z§=l Aj(y - y)

converges weakly to O . Since the operator A satisfies all the

hypotheses of theorem I.4, we can apply that theorem and conclude that
16



the whole sequence '% Z?=l Aj(y - ;) converges strongly to 0O , It

then follows that the whole sequence -% ?-l ij converges strongly‘

to y . The proof of the theorem is complete.

Corollary 1.3 (Edelstein) . Let T be an affine mapping in a Banach

space E . Assume that

(a) There exists ¢ > 0 s.t. ”Tnx —,Tny|| £c ”x - y|! for all

X,y in E and all integers n > 0 .

(b) There exists a point x € E_ such that E 1is the closure of the

affine manifold generated by {Tnx}:=0 . (See Corollary 1I.2).

(c) For the point x of hypothesis (b).the sequence x = i zj

n tj=1

} that converges weakly to = .

contains a subsequence {x

n(j)
(d) For some point w € E the sequence {Tn(j)w} is bounded.

Then the whole sequence {xn} converges strongly to X . Moreover

1
for every y € E the sequence Yn = & Z§=l ij converges strongly -

to x .

Remark. This corollary has been stated by Edelstein [16] without
hypothesis (d) . We believe that this hypothesis 1s essential for the
validity of this result. Hypotheses (a), (b) and (c) do not imply

(d) as it can be shown by means of a counterexample.

Proof. By the previous theorem it follows that the whole sequence {xn}
converges strongly to x . To prove that yn-+§ s for every y €E ,
we will apply Corollary I.2. Let 2z be a point in the affine manifold

L generated by {T'x} , i.e.

= (o 3 m = .
2 = Zj=o AjT X Zjnokj 1
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Since x 1is a fixed point of T we obtain

(6) z-;{::zm

Y (tdx - %) = {‘j“ M -5

=0 Aj
where A is the linear operator such that Tx = Ax + TO . (Cf. proof
of Theorem 1I.5). From (6) we see that the affine manifold generated
by (A" (x - i)}:go is precisely L - x . Since L 1is dense in E it
‘follows that L - x 1is also dense in E . So hypothesis (b) of
Corollary I.2 is satisfied for the point x - x . Hypothesis (a) is
also satisfied (cf. probf.of Theorem I.5) . And finally as in the
proof of Theorem I.5 we have

1 - 1 -
(7) oy Z?=l Aj(x - x) = 3 Z;=1 zj - X

from what follows that hypothesis (c) of Corollary I.2 is also verified.

So applying Corollary I.2 it follows that -% zn=l Aju converges strongly

to 0 for any u € E . Then '% XAj(y -x) >0 . Using this result in
(7) we conclude that %- ?=1 ij + x » which completes the proof of
the corollary.

7. AN ITERATIVE METHOD OF SOLUTION OF LINEAR

FUNCTIONAL EQUATIONS IN BANACH SPACES

This section contains an iterative method of solution of the

functional equation

(1) Xx=Ax +a
18



where A is a linear operator in a Banach space E and a is a given

vector in E . The iteration method of Picard-Poincaré-Neumann

where the initial value X is given, has been recently studied by

Browder and Petryshyn [11] . The method presented here works for a

wider class of operators than the one considered in [11]

The following method is considered
n 1
(2) = — Ay + — Ayo + a
where Yo is a given initial value.

Let T be the affine mapping in E defined by Tx = Ax + a .

Finding a solution of (1) is equivalent to finding a fixed point of

T . It is easy to see that y, as defined in (2) can be expressed as
1l cn |
(3 In T ;sz=l T Yo

Indeed, let us denote this arithmetic mean by Z s i.e.
Y S
Zn" Zj=1 Ty, o

Since T 1is affine it follows

=

n Tj+l
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This together with the definition of Z 1 glves

z =—-n—Tz+lT 2 az o+ L

ntl © o+l ntl Yo T I A%t ST AV, ta .
From this expression for Z 41 we obtain first Z; =y, and then
z = Y, by induction.

It is also useful to observe that
(4) ™x = Aﬁx + Ap-la + ... + Aa + a

Now we can state our theorems.

Theorem 1.6. Let E be a (general) Banach space and A a linear

mapping in E satisfying the following conditions

(a) _la"| s ¢ forall n=1, 2. ... .

(b) A"x converges weakly, as n - y for all x € E ,

(¢) The equation x = Ax + a has a solution.

Then, for each given Yo 0 the sequence {yn} defined in (2) converges

strongly to a solution of equation (1) .

Remark. This theorem extends Theorem l, part a , of Browder and
Petryshyn [11] . Observe that here we are working with the arithmetic
means of the sequence of the iterates comsidered in [11] . So it is
reasonable to expect convergence in some cases where the original

sequence of iterates fail to converge.

Proof of theorem I.6. The idea is to apply the ergodic theorem of

affine mappings (Theorem I.5) proved in section 6. First we observe
20



that hypothesis (a) here implies hypothesis (a) of Theorem 1I.5.

Since (1) has a solution x » this solution is a fixed

point for T . So by (4)
S _ \0= n-1 j
X =AXx + Xj=0 AYa

from which follows, by virtue of hypothesis (b), that the sequence
{Z?;é Aja} converges weakly. This together with hypothesis (b)

in (4) gives that Tnyo converges weakly. Thus {Tnyo} is bounded
and hypothesis (c) of Theorem I.5 1s satisfied. Also the sequence of
the arithmetic means of Tnyo y (L.e., yn) converges weakly, which
gives hypothesis (b) of Theorem I.5. Using that theorem we conclude
that the sequence {yn} converges strongly to a fixed point of T ,

i.e. to a solution of equation (1). The theorem is proved.

Theorem I.7. Let E be a reflexive Banach space and A a linear

mapping in E satisfying the following conditions.

(a) ”Anll £ C forall n=1, 2, ... .

() _JJat+Aa+ ...+ Ana!! sk for all n=1, 2, ..., where k is

some constant.

Then, for each given Y, the sequence {yn} defined in (2) converges

strongly to a solution of equation (1) .

Remark. This result strengthens theorem 1(c) of Browder and Petryshyn
[11] , where they assumed instead of hypothesis (a) the convergence
of A"x for every x . (This last hypothesis implies (a) by the Uniform

Boundedness Principle) . Cf also a previous result of Browder [7]
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Proof. Hypotheses (a) and (b) used in (4) imply that {Tnyo} is
bounded, which implies hypothesis (c¢) of Theorem I.5. Hypothesis (a)
of Theorem 1.5 is obviously a consequence of hypothesis (a) of this
theorem. Finally '{yn} being a bounded sequence in a reflexive Banach
space contains a weakly convergent subsequence. This gives hypothesis
(b) of Theorem I.5 . Applying this theorem we obtain the strong
convergence of the sequence '{yn} to a fixed point of T , that is,

to a solution of equation (1)

Theorem I.8. Let E be a Banach space and A a linear mapping in E

satisfying the following conditions.

(&) A"l s ¢ for all n =1, 2, ...,

(b) la + Aa + ... + Ana|| < k forall n=1, 2, ...; k is some constant.

In addition, suppose that, for a given y_, the sequence {yn} defined

in (2) contains a subsequence that converges weakly. Then the whole

gequence {ynl converges strongly to a solution of equation (1)

Remark. Hypothesis (b) can be relaxed by assuming only that

at+tAa+ ... + A (j)a is uniformly bounded for the sequence n(j) such
that vy (j) converges weakly. This theorem is an improvement over
theorem l(b) of Browder and Petryshyn [11}] in the sense that hypothesis
(a) and (b) here are weaker than the ones in [11], and the weak conver-
gence of a subsequence of {yn} ig far less restrictive than the strong

n
convergence of a subsequence of T x .

Proof of theorem I.8. Hypotheses (a) and (b) when used in (4) give that

the sequence {T"x} 4is bounded for every x € E . So condition (c) of

theorem 1.5 is satisfied. Condition (a) of theorem I.5 is also satisfied.
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Our assumption about the weak convergence of a subsequence of {y }ois
n

precisely condition (b) of theorem I.5. So using that theorem we con-

clude that the whole sequence {yn} converges to a solution of (1),

which proves the theorem.

8. EDELSTEIN'S RESULTS ON FIXED POINTS OF

NONEXPANSIVE MAPPINGS

In previous sections we have considered nonexpansive mappings
on reflexive Banach spaces. Now we relax this restriction on the space,
but as a counterpart somewhat stronger conditions are required on the
mapping. The results of the present section are due to Edelstein [16].

Let E be a striétly conveX Banach space, and T a nonexpan-
sive mapping in E . The following basic assumption is made:

(A) There exists a point x € E such that the sequence {Tnx}:=l has
a convergent subsequence.
Lemma I.4. Suppose (A) is satisfied. Then there exists v € E and a

n

sequence of integers ny <m, < ... such that T jy >y .

Proof. By (A) there exists y € E and a sequence of integers

m
m < my < ... such that T Ix » y . We may assume that My T
i
increases as j > ® . Let nj = mj+l - mj . Claim T Yy >y . 1In
fact

n, m m, n,
Iy - T3yl < lly - T 7%l + T 3 - 1 dy))

m m
s |ly-1 j+1X“ + T dx -yl
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where nonexpansiveness was used to get the last inequality.

From the
above inequality the result follows immediately.

In basis of this lemma, a nonexpansive mapping T satisfies
(A) if and only if it satisfies the following condition:
(A”) There exists a y € E and a sequence of integers ny < n, < ..

n
such that T jy Ty .

Now let us state the main theorem of this section.

Theorem I.9. Let E be a strictly convex Banach gpace, and T a

nonexpansivenesg mapping in E . Let us assume QA') above. Suppose

also that the sequence

1
Yo = w ay TV

has a subsequence yn(j) that converges weakly to a point v .

Assume
further that In(j)g is bounded. Then i 1s a fixed point of T .

Remark. This theorem has been stated by Edelstein without the assump-
tion that ‘{Tn(j)y} is bounded. We believe that this theorem is not

true without this hypothesis. See remark after Corollary I.3 in section

6.
The proof of Theorem I.9 will be preceded by a gseries of
lemmas.
Lemma I.5. Let E be a strictl e n -
n
sive mapping in E . Let ys assuyme (A°) above. Let S = {x €E:Tx *xl

Then T 1is an affine isometry of S into itself. Moreover S is a

closed and convex subset of E .
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n
Proof 1°) T(8)XC S . For T j(Tx) - Tx .

2°) T is an isometry in S . By nonexpansiveness

”Tx1 - Tx2|| g ”xl - x2|| . On the other hand
° 3
'le - x2|| = 1lim ”T X, - T lef < HTxl - szl

3°) T 1is affine. Let X1s X,y € S and let x = Axl + (1 - )\)x2 .

Then using 2°) and the nonexpansiveness of T we obtain
2y = Il = 1%y = Txyll € fl7x - Tl + 7 - 7,
¢ dxg = xll + llx = x,ll = llx, - x|

Since E is strictly convex, the inequality above implies

Tx - Tx1 = a(Tx1 - tx2) where o 18 some real number. So Tx 1is on

the line through Tx, and Tx, . Finally we observe that

| Tx - ijll < Jx - lel » 3 =1, 2, and conclude that
Tx = ATx1 + (1 -2) sz . This proves that T 1is affine in S .

4°) S 1s convex. Let X;» X, € § . We want to prove that

X = Axl + (1 - A)x2 € S. From 3°) we have

nj n nj
T Ix = AT jxl +(1-0Tx, . Taking limits we obtain

n

n nj
limzj=Alimzjl+(l-A) Lim T dx, = ax; + (1 - Mx, = x

5°) S 1is closed. Let X € § such that x > x . From the
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estimate

n n n n
It 3% - || ¢ ITdx - |+ T - x |l + |x_ - x|

N

"
£ 2x - xn” + T x - x_||

n
We conclude that T jx + x . This proves that x € S, and so S 1is

closed.

The proof of Lemma I.5 1s complete.

Lemma I.6. Let C be a convex set in a normed space E , and let T

be an affine isometry of C into E . Let L(C) be the affine manifold

gspanned by C, 1i.e.,

= e : - o m A =
L(C) = {y €E: y Zj*lxjxj, a1ty =1, % €0

Then there exists an affine isometry T : L(C) -+ L{C) such that T\C =T,

We omit the proof of Lemma I1.6. See [16] .

Proof of theorem I.9. Let L(y) be the affine manifold spanned by

'{Tny}:=1 . Let Z be the (possibly empty) set of all fixed points of T
in the closure i?;? of L(y) . It is easy to see that the set

K = convex closure of 2 LJ{Tny}:=l is invariant under T , on account
of the fact that T is affine. Since K 1is contained in S (see

Lemma I.5) , it follows that T 1is an affine isometry of K into

itself. By Lemma I.6 there exists an extension T of T to L(y)

Without loss of generality we may assume that 0 € L(y) , and so we
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consider L(y) as a Banach space. Now T satisfies the hypothesis of
the Theorem I.5. So the sequence '{yn} converges to a fixed point y

of T . Since K 18 closed it follows that y € K and so y is a

fixed point of T . The proof is complete.

Remark. Using Corollary I.3 we conclude that y is the unique fixed

point of T in the manifold L(K) .

9. A THEOREM OF GOHDE

In this section we present a theorem about the existence of
fixed points for a nonexpansive mapping T in a general Banach space
E . As one should expect, some drastic restriction has to be put on
the mapping T. The following basic assumption on T 1s made.

(G) There exists a compact set M 1in E such that, for every x € E ,
the closure of the sequence of iterates ‘{Tnx}:_l contains a
point of M .

Before stating the main result of this section we need the
following definition. A set C in avlinear space 1s sald to be star-
shaped about a point y € C 1if for every 2z € C there exists a
nonnegative number tz » 0 ¢ tz ¢ + » such that the set
{y+tz:0gtc< tz} is in C and the set {y + tz : t, < t} 1is

outside of C . It is clear that every convex set 1s star-shaped about

any of its points.

Theorem I.10. Let E be a Banach gpace and T a nonexpansive mapping

- of a bounded closed star-shaped subset C into itself. Suppose that

assumption (G) 1is satisfied. Then T has a fixed point.
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Remark. This theorem is also valid in an incomplete normed space.
Theorem I.10 for general normed spaces under the assumption that C
1s a convex set has been proved by Gbhde [17]. His proof works equally

well for the case when C 1is only assumed to be star-shaped.

Proof. We may suppose without loss of generality that the origin 0 1is

in C, and that C 1is star-shaped about 0 . Then the mapping Tr =
0<r<1l, i1is a contraction in C , and consequently it has a fixed
point X € C . We have the following estimate
“xr - Ter = ||r'l?xr - Txrll s (1 - r)||T.xr|| £ d(1 - r)
where d 1s the diameter of C .
On the other hand, by (G) , there exists an integer n(r)
and a point Ve € M such that ”Yr - Tn(r)xr” <1l-r.
Then
n(r) n(r) n(r)+l n(r)+l
Ny, = Tyl s lly, - T =l + IT =, -1 x |+ it X

x || + llx, - = ||

rT

- Tyri

by the nonexpansiveness of T . Using the estimates above this inequality

yields
(1) Iy, - Tyl s @+220-1) .

Let now {r} be a sequence converging to 1 . Using the compactness
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of M 41t follows that there exists a subsequence of {yr} (denote 1t
again by '{yr}) that converges to y € M, as r +1 . From (1) it

follows immeditately that y 4is a fixed point of T .

Remark. Assumption (G) 18 stronger than Edelstein's condition (A) of

section 8 . That is the following proposition holds.

Proposition 1.2. Let E be a Banach space and T a mapping of E into

itself satisfying the following condition:

(Gx) There exist a compact set M and a point x such that the closure

of the sequence of iterates {T“x}:=1 contains a point of 1 .

Then '{Tnx}zzl contains a subsequence that converges strongly.

Proof. By (Gx) there exist an integer m(n) and Y, € M such that
!le(n)x - ynll < 1l/n . Using the fact that M 1is compact, it follows
that there exists a subsequence '{yn } that converges strongly to
y €EM . 1t ié then immediate that Tm(nj)x converges to y . Q.E;D.
This shows that Theorem I.10 is a special case of theorem I.9

in the case of strictly convex Banach spaces and a weakly compact C .

10. COMMON FIXED POINTS FOR COMMUTING

NONEXPANSIVE MAPPINGS.

In this section we consider a family T of commuting nonexpan-
sive mappings in a Banach space E , (i.e., TaTB = TBTa for all Ta’TB
in 1), and we will establish conditions under which these mappings
have a common fixed point, (i.e., a point x € E such that Tax = X

for a11 T 1in 1 ) . Before looking at the case of nonexpansive mappings
a

we gtate, without proof, the following theorem due to Kakutani [21] ,ng
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Markov [25] . A proof of it can be found in Bourbaki ["Espaces

Vectoriels Topologiques", Chap. II, Appendice] .

Theorem I.11. Let E be g Hausdorff topological vector space over the

reals, and K a convex compact subset of E . Let T be a family of

commuting continuous affine mappings in E . Suppose that T(K) CK

for all T d4in I . Then there exists a point X € K which is fixed

for all T 4n T .

Now let us come back to the case of nonexpansive mappings.
First let us consider the case of strictly convex Banach spaces, and
afterwards the general caée; The case of a strictly convex Banach
space is much easier to handle than the general case because of the

following proposition.

Proposition I.3. Let E be a strictly convex Banach gpace and T a

nonexpansive mapping in E . Then the set F of fixed points of T is

convex.

Proof. We may assume that F consist of more than one point; otherwise
the result is proved. Suppose that x, and x, are in F and let us
prove that x = Axl + (1 - A)x2 y, O0<Ax<1, 18 also in F . 1In fact,

by nonexpansiveness we obtain
“xl = xz” = “Txl = sz” £ ”Txl - Tx|| + [Tx - sz”

¢ =g =%l + == %0l = llxy - =l -

Since E 1s strictly convex it follows that the vectors Txl - Tx and
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Tx - sz are linearly dependent. But this implies that the vector Tx

is in the straight line through Tx1(=x1) and Tx2(=x2) - On the other

hand ||Tx - ijll s |lx - xj|| s 3 =1, 2 . Thus Tx must coincide

with x . The proposition is proved.

Remark. This proposition is not true in the most general class of Banach
spaces, as the following example shows. Let E = §°(2) y 1.e., the
spaces of pairs x = (a,b) with the max-norm ||x|| = max (|a] ,|b])

Let T be the mapping defined as follows
Tx = T{(a,b)} = (|b],b)

It is easy to see that T 1is nonexpansive and that (1,1) and 1,-1)
are fixed points of T . However no other point in the segment joining
these two points is a fixed point of T . This example is due to deMarr [15].

This proposition will be used to prove the following theorem.

Theorem I.12. Let E be a strictly convex Banach space. Let T be a

T

family of commuting nonexpansive mappings T , from a weakly compact

subget C of E into E . We assume that each T has a nonempty

set F(T) of fixed points. Then there exists a point x, € E such

that Tx = x for all T €T .
—_— o o

Remark. This theorem 1s essentially theorem 2 of Belluce and Kirk [2].
It includes theorem 2 of Browder [6] and theorem 1 of Kasghara [23].
The pr;of presented here is due to Belluce and Kirk [2].

We shall need the following two lemmas in the proof of

Theorem I.12.
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"~ Lemma I.7. Let E be a Banach gpace and K a weakly compact subset of
lt. Let ¢ : E » R _be a weaklx lower gsemicontinuous  function in E .

Then the infimum of is achieved in K , i.e., there exists X, €K

such that ¢(xo) = infxe K¢(x) .

This lemma is a particular case of the following.

Proposition I.4. Let E be a topological space and K a compact subset

of it. Let ¢ : E » R1 be a lower semicontinuous function in E . Then

there exists X € K such that ¢(xo) = infx ¢ Kq: x) .

Proof. First we show that ¢ 1s bounded from below in K . Suppose by
contradiction that this is not so. That is, let ’{xn} be a sequence in
K such that ¢(xn) £ -n . By compactness of K there exists a subsequenc?
{xn(j)} converging to some point x € K . By the definition of lower

semicontinuous function it then follows

¢(x) 1im inf ¢(x (j)) .
However this contradicts the assumption ¢(xn) £-n. So ¢ 1s bounded
from below in K. Let a = infx EK¢(x) . Then there exists a sequence
’{yn} CK such that ¢(yn) + a . Agailn by compactness we have

v y = a . Thus it
yn(j) +y , which implies ¢(y) ¢ 1lim inf ¢(yn(j)) a us

follows ¢(y) = a . The proposition is proved.

Leﬁma I.8. Let E be a strictly convex Banach space and K a weakly

compact convex subset of it. Then,for every y € K, there exists a

unique x_ €K such that ”xo - ¥|| -infxexllx -yl -
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Proof. Applying Lemma 1.7 with ¢(x) = [x - y|| sy 1t follows that
there exists at least one point in K which minimizes ”x - y” over
K . Suppose that there are two such points, 3 and X, . Denoting
by d= infx:éK.“x - yllwe have ”xl - y” = ”x2 - y|| = d . By the
convexity of K 1t follows that Axl + (1 - A)x2 € K. So

which implies that ||Ax1 + (1 - ?\)x2 - y|| =d forall 0 ¢ XA 51,

This however contradicts the fact that the Banach space 1s strictly

convex. So X =X, , and the lemma is proved.

Proof of Theorem I.12. By Proposition I.3 it follows that the set

BP(T) of fixed pointé of the mapping T 1is convex. The continuity
of T implies immediately that F(T) 1s closed. So F(T) 1is a
closed and convex subset of E . Since every closed convex set in a
Banach space is also weakly closed, it follows that F(T) 1is weakly
closed. On the other hand F(T) 1is a subset of a weakly compact
set C. So F(T) 1is also weakly compact, for every T €T . Thus
we need only to prove now that the collection of sets F(T) , T €T ,
has the property of finite intersection. Once this is done 1t will
follow that [ F(T) 1s a non-empty closed convex subset of C , and
the theorem will be proved.
The remaining part of the proof is by induction. Let

n

T be mappings of T , such that  F = [ F(T,) $ ¢ .

T n i=1

1>t

Let T be any other element of I . It is easy to see that

T(Fn)(ZIFn . (Indeed let x € Fn , then Tj(Tx) = T(zj) = Tx for
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J=1, ..., n. This shows that Ix € Fn) - Now let y € F(T) and let
2 Eth be the unique point in Fn which is closest to y(cf. Lemma 1.8).
Since Tz € Foand [Tz - y|| ¢ Iz - y|| 1t follows that Tz = z ,

The proof ig complete.

The next theorem is an extension of a result of DeMarr [15]

It is due to Belluce and Kirk [2].

Theorem I.13. Let C _be a bounded closed convex set in a Banach space

E, and 1 =& familx of commuting Donexpansive mappings of ¢ into

itself. Let M be a compact gubset of C with the property that

M r]{T?x tn=1, 2, ...} = ¢ for some T1 €r and all x € C . Then

there exists X € C such that Txo =x_ forall T er .

Remark. This final observation has some interest in itself, although
it 1is not concerned with nonexpansive mappings. For some years the
following question remained unanswered. If f and g are two commuting
continuous functions of interval ([0,1] into itself, do they have a
common fixed point X, t.e., f(xo) = g(xo) =X ? This problem was
treated by some authors. Cohen [12] answered the question in the
affirmative for certain special classes of functions. See also Baxter [1]-
Shields [29] considered commuting continuous funcfions of the closed unit
disc into itself which are analytic in the open disc. He then proved
the existence of a common fixed point.

Recently Boyce [3] and Huneke [19] by means of counter-

examples answered the question in the negative for the most general

class of continuous functions in the interval [0,1] .
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11. PERIODIC SOLUTIONS OF NONLINEAR

'DIFFERENTTIAL EQUATIONS

Let H be a Hilbert space and f a function mapping

+ + 1
R *H into H . Here R = 1{t €R , t 2 0} . We consider differential

equations of the form
(1) QE = f(t)u)

A function wu : R+ *+ H is a solution of (1) if it is a Cl‘function

(i.e. it has derivative du/dt at every point t € R+) and satisfies (1):
du ‘ +
It (t) = f(t,u(t)) , t €R .

The initial value problem consists in finding a solution of (1) such
that for t = 0 equals certain given value u € H.

The existence and uniqueness of solutions for the initial value
problem for (1) is a well established theory by now; see for example
Dieudonne ("Foundations of Modern Analysis", Chap X, §4) . Namely the
following result is well known. If £ satisfies a local Lipschitz
condition in u , then the initial wvalue problem has a unique local
solution. For finite dimensional spaces, one still has existence (but
not uniqueness) if it 1s only required that £ be continuous. This
last result is false in infinite dimension, see example in Dieudonné's
book, p. 287.

In [9], Browder proved that the following two assumptions are

+
sufficient for existence of a unique solution (defined for all t € R}

for the injitial value problem.
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(I) £ is a continuous mapping of R+ x H into H , carrying bounded
sets into bounded sets.
(II) There exists a continuous real-valued function c(t) on R+ such

that for all u, v € H we have
Re(£(t,u) - £(t,v), u - v) ¢ c(t) Ju - v|| 2

for all t €R* .

In later work Browder has been able to prove the same result
under a weaker hypothesis replacing (I), namely that £ is continuous
but not necessarily bounded.

In this section we assume that f 1s periodic in t with

period ¢ . We are interested in periodic solutions for the initial

value problem

du

a5 = f(t,u
(2) dt
u(0) = u s

where f 1is such that the initial value problem (2) has a unique solution. In

particular this will be the case if f satisfies hypotheses (I) and (I1) above

The following result was proved by Browder [5] . 1In later work

(8] he extended these results for Banach spaces.

Theorem I.14. Let H be a Hilbert space and f a function mapping

Rt H into H . Suppose that the initial value problem (2) has a

‘unique solution u : RT - H . Assume that f 1ig periodic in t of

‘period & satisfies the following two conditions:

36



(A) For each t € R+ and u,v € H we have
Re(f(t,u) - f(t,v) , u-v) < 0 .

(B) There exists r > 0 such that

Re(f£(t,u),u) < O

for all t € R\ and all u guch that |lu|l = r . Then (2) has a

emn——

periodic solution with period ¢ .

Proof. By hypofhesis, to each v € H there corresponds a unique
solution of (2) with u(0) = v . Define a mapping T : H~> H which
assigns to each v € H the value u(f) . In this way the problem of
finding a periodic solution of (2) with period & 4is reduced to the
one of determining a fixed point of T .

First we observe that T maps the ball Br(O) of radius r

about the origin in H into itself. 1In fact
L 4 nue | ®y = Re @ ,u) = Re(E(t,u(t)),ult))
2 dt { “u dt ] ) ] v

From this and hypothesis (B) it follows that,if for any value of t 1in

[0,£] the solution u(t) 4is such that luce) | = ¢, then

,é% UIU(t)[|2} < 0 . This means that the solution u(t) cannot leave

the ball Br(O)

Next we prove that T 1is a nonexpansive mapping. Indeed
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%-&% Clate) - we) )] ?) - Re(£(t,u(t)) - £CEup (6)), u(e) - u(e)) < 0

using hypothegig (A) . This implies |ju() - ul(E)II s |luco) - ul(O)”

which gives the nonexpansiveness of T ,
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CHAPTER II

LTERATION METHODS FOR OBTAINING FIxEp
L METHODS FOR OBTAINING FIXED

POINTS OF NONEXPANSIVE MAPPINGS

1. INTRODUCTION

Let E be a Banach Bpace and T g nonexpansive mapping of E
into itself. We are concerned with the question of obtaining fixed

points of T by the iteration method
(1) ' xn+1 = Txn » n=g0,1, 2, ...,

where X, 1s some given initial approximation. The bagic problem here
1s the convergence of the sequence '{xn} defined in (1) . 1¢ is well
known that if the mapping T ig g contraction (i.e.,

ITx ~ Ty|| < k Ix - y]| for a11 X,y € E and some fixed k, 0 < k < 1),
then the sequence '{xh} /defined in (1) converges to the unique fixed
point of T . However, 1f T 1ig only a nonexpansive mapping (i.e.,
[|Tx - Ty|| s [|x - ¥|| ) there is no guarantee that the sequence {x }
converges. In fact, it does not in general. Thig 1ig shown by the
following two simple examples. (1) T i1s a tranélation in the real
line. (11) T 1g a rotation of the plane around the origin. 1In the

last example the sequence '{xﬁ} does not converge as long as the

initial approximation X is not the origin.

Definition. A mapping T from a Banach space E 1into itself is said

to be asymptotically regular if Tn+lx - % converges to 0 as n - ,

for all points x in E . (Browder and Petryshyn [3])
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Using this definition and the fact that X = TnxO we obtain
the following necessary condition for the convergence of the sequence
{xﬁ} . "If the sequence '{xh} defined in (1) is convergent for each
initial approximation X s then the mapping T is asymptotically
regular'.

A nonexpansive mapping T 1is not necessarily asymptotically
regular. However, the determination of the fixed points of T can,
in some cases, be replaced by the same problem for an asymptotically

regular mapping. Namely, the following result holds, Browder and

Petryshyn [3] .

Propogition II.1. Let E be a uniformly convex Banach space and T a

nonexpansive mapping of E into‘;tsglg. Suppose that the gset F(T) of

fixed points of T 1is non-empty. Then the mapping TA = AL+ (1 - 0T,

for 0 <) <1, is nonexpansive and asymptotically regular. Moreover

F(T) = F(TA) .

Proof. It is immediate that F(T) = F(TA) . It 18 also easy to see

as a consequence of the nonexpansiveness of T .

that T, is nonexpansive

A
Now let u € F(T) . Then

|t - u]| = |7+ x - Tull [IT;‘x -uf .

A A

So the sequence ”T?X - u|| } 1s non-increasing. Thus it converges to

n+l n

some d 0. If d=0 1t follows immediately that TA X - TAX >0 .

Suppose now that d > 0 . The following identity holds

n n . n
) T;x.-f-lx -~ = AT 4 (L - MTTx - u = AN - w) + (1= ) ATx - o)
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Since ”T;+1x -~uf| +d, llT:k -ull »d and ”TT;x ~u] < ”T?x - ul|,
1t follows using Proposition I.1 in (2) that ”(T;x - u) - (TT:X -uwl] so0.

n+l

Therefore ”TA X - T:kl, algo converges to zero.

Remark. The use of TA in place of T for the determination of fixed
points was considered by Krasnoselsky [6] for A =1/2 and compact mappings.
A general ) wag considered by Schaefer [10] in the case of compact
mappings and Petryshyn [9] in the case of demicompact mappings, (gee

definition in Section 3 of this Chapter) .

‘2. LIMITS OF SUBSEQUENCES @)y

In this section we shall prove that under certain conditions a

limit of a subsequence of iterates '{Tn(J)x} 1s a fixed point for T .

Precisely, the two following results hold. See Browder and Petryshyn [3].

Proposition II.2. Let T be a nonexpansgive asymptotically regular

mapping in a Banach space E . Suppose that a subsequence '{Tn(j)xo}

converges strongly to some point y. Then y is a fixed point of T and

the whole sequence Tnxo converges strongly to y ,

Froof. First we prove that y 15 a fixed point. Indeed
Tn(j)xo +y implies (I - T)Tn(j)xo +(I-Ty .

On the other hand (I -T)Tn(J)xo = Tn(j)xo —‘Tn(j)+lxo + 0 because T

1s asymptotically regular. Thus I-T)y=0, i.e., y 18 a fixed

point of T . Next we gee that the whole sequence converges to y because
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n+1l
X

I -yl ¢ 1T -y for all n- 1, 2,

To state the next theorem we need the following notion.

Definition. A mapping S of a Banach space into itself is said to be

demiclosed if for any sequence '{xn} such that x_ -~ x (i.e. x
n

n

converges weakly to x) and an >y then y = Sx.

Proposition II.3. Let T be an asymptotically regular mapping in a

Banach space E . Suppose that T - T is demiclosed and there exists

. n{j .
a subsequence {T (J)xo} which converges weakly to some point v .

Then v is a fixed point of T .

Proof. Using the fact that T dis asymptotically regular we have that
(T - T)Tn(J)x0 > 0 . Since Tn(J)xO ~y and I - T is demiclosed it

follows that (I - )y = 0, i.e. y 1is a fixed point of T

3. STRONG CONVERGENCE OF THE ITERATES T x

In this section we discuss conditions that insure the strong

n .
convergence of the iterates T x . We present first a result of Browder

and Petryshyn [3] , Theorem II.1, and then a theorem of Edelstein [4],

Theorem II.2, for compact operators.

Theorem II.1. Let T be a nonexpansive asymptotically regular mapping

in a Banach space E . Suppose that the set F(T) of fixed points of

T is non-empty. Let us assume further that T satisfies the following

eondition:

(a) I-T maps bounded closed sets into closed sets.




" Then, for each point Xo in E, the sequence {Tnx } converges
R — 0

strongly to some point in F(T)

Proof. If y 1is a fixed point of T it follows that

0~ vl < llTnxo -yl . n=1, 2, ...

So the sequence {Tnxo] is bounded. Let G be the strong closure of
{Tnxo} - By condition (g) it follows that (I - T)6 is closed.

This together with the fact that T is asymptotically regular gives
that O € (I - T)G . So there exists z € G such that (I-T)z=0.
But this implies that either z = Tnxo for some n , or there exists
a sequence {Tn(j)xo} converging to z . Since z 4ig a fixed point
of T we can then conclude that, in either case, the whole sequence

n
{T xo} converges to z . The proof is complete.

Remark. Let A be such that 0 < ) < 1 . Let TA = AL + (1 - )T

T satisfies condition (a) 1if and only if TA also does. To see
that just observe that I - TA = (1-XMa-1
Using this remark and Proposition II.1 we have immediately

the following corollary of Theorem II.1.

Corollary II.1. Let T be a nonexpansive mapping of a uniformly convex

Banach space E into itself. Suppoge that the set F(T) of Ffixed points

of T is non-empty. Let us also assume that T satisfies the following

condition

(o) I - T maps bounded closed sets into closed sets.

46



n+1l

I|T X = vl < ”Tnxo - v for all n =1, 2,

To state the next theorem we need the following notion.

Definition. A mapping S of a Banach space into itself is said to be

demiclosed if for any sequence {xn} such that x -~ x (i.e. x
n n

converges weakly to x) and an >y then y = Sx,

Proposition II.3. Let T be an asymptotically regular mapping in a

Banach space E . Suppose that I - T is demiclosed and there exists

‘ n(j .
a subsequence {T (J)xo} which converges weakly to some point v .

Then y is a fixed point of T .

Proof. Using the fact that T 1is asymptotically regular we have that

a4
(J)xo ~y and I - T 1is demiclosed it

(I - T)Tn(j)xo >0 . Since T

follows that (I - T)y =0, 1.e. y 1is a fixed point of T .

3. STRONG CONVERGENCE OF THE ITERATES T x

In this section we discuss conditions that insure the strong
n .
convergence of the iterates T x . We present first a result of Browder

and Petryshyn [3] , Theorem II.1l, and then a theorem of Edelstein [4],

Theorem II1.2, for compact operators.

Theorem II.1. Let T be a nonexpansive asymptotically regular mapping

in a Banach space E . Suppose that the set F(T) of fixed points of

T is non-empty. Let us assume further that T satisfies the following

eondition:

(o) I-T maps bounded closed sets into closed sets.




_ ) ) n
Then, for each point Xo in E , the sequence {T x } converges
o

Strongly to some point in F(T)

Proof. If y 1is a fixed point of T it follows that

o = y” S llTnxo -yl ., n= 1, 2,

So the sequence {Tnxo} is bounded. Let G be the strong closure of
{Tnxo} - By condition (4) it follows that (I - T)G 1is closed.

This together with the fact that T ig asymptotically regular gives
that 0 € (I - T)G . So there exists z € G such that (I -T)z =0
But this implies that either gz = Tnx0 for some n , or there exists
a sequence {Tn(j)xo} converging to z . Since z is a fixed point

of T we can then conclude that, in either case, the whole sequence

{Tnxo} converges to z . The proof is complete.

Remark. Let X be such that 0 < ) < 1l . Let TA = AL + (1 - »)T .
T satisfies condition (a) if and only if TA also does. To see
that just observe that I - TA = Q-2 -17 .

Using this remark and Proposition II.1 we have immediately

the following corollary of Theorem IT.1.

Corollary II.1. Let T be a nonexpansive mapping of a uniformly convex

Banach space E into itself. Suppose that the set F(T) of fixed points

of T is non-empty. Let us also assume that T satisfies the following

condition

() I - T maps bounded closed sets into closed sets.
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Then, for each point X, in. E, the sequence '{xn} defined by

xn+1'_}‘xn+(1f)\)Txn’ 0<_A<19

converges strongly to a fixed point of T .

It is very reasonable, at this point, to ask which classes of
operators satisfy condition (a) . To answer it we introduce the follow-

ing concept.

Definition. A continuous mapping T from a Banach space E into

itself is said to be demicompact if every bounded sequence ‘{xﬁ} s, such

that {(I - T)kn} converges strongly, contains a strongly convergent sub-

sequence {xn(jj} . See Petryshyn [9] , where it 18 proved that the class

of demicompact operators contains, among others, all compact operators.

By compact operator we mean a continuous operator mapping bounded sets

into relatively compact sets.

Proposition II.4. A demicompact mapping T of a Banach gpace E into
itgself satisfies condition (o) .

Remark. It was stated in [3] that the converse of Proposition II.4

holds. We believe this is not true. For example, the mapping T = I

satisfies trivially condition (a) , but it is not demicompact.

Let

Proof of Proposition II.4. Let B be a bounded closed set in E .

(@ - T)xn} be a sequence in (I - T)B such that (I - T)x ~+y . We
claim that there exists a point x € B such that (I -Tix =y . To
prove this we use the demicompactness of T to conclude that {x_}
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\contains a convergent subsequence '{xn(i)} « Since B is closed we
have that xn(j) > X, where x 1s some point of B . By the contin-
uity of T 1t follows that (I - T)#n(j) + (I-T)x. Then
(I -T)x =1y and the proposition is proved.

In [4] Edelstein established the following result, which had
been previously proved by Krasnoselsky [6] and Schaefer [10] for uniformly

convex Banach spaces,

Theorem II.2. Let E be g stric¢tly convex Banach space and C g3
clogsed convex set in E . Let T be a non-expansive mapping defined in

C _such that T(C) is a relativelx compact set contained in C . Let

TA = Al + (1 - A\)T, where 0 <A <1 . Then, for each point X in

C , the sequence '{T§xb} converges strongly to a fixed point of T .

Remark. Observe that we cannot conclude, in this case, that TA is
asymptotically regular. The reason being that Proposition II.1 does
not hold for the wider class of strictly convex spaces. So Theorem II.?2

is not a special case of Theorem II.1.

Proof of Theorem II.2. 1°) By the Schauder's fixed point theorem (see

Remark 1 below) it follows that the set F(T) of fixed points of T 1is
non-empty. Let y € F(T) . It is easy to gee that F(T) = F(TA) .

Then, for every point x € C guch that x t’F(T) » we have that
(1) = -yl < J=-y] .

This follows from Tlx =~y =x(x=-y)+ (1 -))(Tx - y) using strict

convexity.
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2°) Now we show that the sequence ’{szo}' contains a strongly convergent

subsequence. Indeed, let X be the éonvex closure .of the set T(C) fJ{xo}.
By Mazur's theorem (see Remark 2 below) it follows that K is compact.
Since {T;xb} C K it follows that there exists a subsequence {T?(j)xo}
which converges strongly to some point z .

2°) Finally we claim that =z € F(T) . If this is proved, then the

theorem will be proved; for, it will follow from (1) that the whole

sequence '{Tgxo} converges to z . Suppose that z § F(T) . Then we

have from (1) that

2) ad=lz=yll = 1z - 5] > o0

for each y € F(T) . From the conclﬁsion of 2°) it follows that
Tr;(j)+'1x0 -y > sz -y

So, for all n(j) sufficiently large we have

+1
”T;\l(j) xo

‘ d
“yll €l -yl +
This together with (1) gives

d
3 HT.I;XO -yl s iz -yl + 5

for all k sufficiently large. From (2) and (3) follows

k d
T, = vll <« lz-7ll - 3
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for all k sufficiently large. This however contradicts the fact that
RO

o)

Remark 1. Schauder fixed point theorem states that a compact mapping
from a boﬁnded closed convex set of g Banach space into itself has a
fixed point. For a proof, see Schauder {11], or Cronin [13] or Chapter
IV of these Lecture Notes. Observe that we have considered above the

special case of a compact nonexpansgive mapping. For this case, a

simple proof of the existence of fixed points was given in Section 10

of Chapter T.

Remark 2. Mazur's theorem used above states: "Let K be a compact
subset of a Hausdorff complete locally convex space (in particular, a
Banach space). Then the convex closure of K 1s compact. See Bourbaki,

"Espaces Vectoriels Topologiques", Chapter 1T, §4.

4. WEAK CONVERGENCE OF THE ITERATES Tnxo

In this section we study conditions that give the weak conver-
gence of the sequence '{Tnxo} of the iterates of a nonexpansive

mapping T ,

Theorem II.3, Let E be a reflexive Banach space and T a nonexpansive

asymptotically regular mapping from E into itself. Suppose that I - T

is demiclosed, and that the sget F(T) of fixed points of T 1is non-empty.

n
Then, for each point x in E , every subsequence of (T xo} contains
o

a further subsequence which converges weakly to a fixed point of T . In

particular, if F(T) consists of precisely one point then the whole
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sequence '{Tnxé} converges weakly to this point. (Browder-Petryshyn [3])

Proof. Let y € F(T) . By the nonexpansiveness of T we have

”Tnxo -yl < ”xo - yv]| - So the sequence '{Tnxo} is bounded. Then
the reflexivity of E implies that every subsequence of ‘{Tnxo} contains
a further subsequence which converges weakly. By Proposition II.3 we
have that the limit of this last subsequence is a fixed point of T . If
F(T) contains only one point y then the whole sequence must converge

weakly to y .

Remark. If E is a Hilbert space the hypothesis that I - T is demi-
closed in the previous theorem is superfluous. In fact the following

result holds.

Proposition II.5. Let E be a Hilbert space and T a nonexpansive

mapping of E into itself; Then I - T 41is demiclosed.

This proposition is a special case of the following theorem.

To state it we need the following notion.

Definition. A mapping S from a Hilbert space E into itself is said

to be monotone if (Sx - Sy, x - y) » 0 for all x,y €E .

Remark. Monotone mappings have been studied extensively by Browder;
see, for example, [1] and [2] . This notion was apparently introduced
independently by many authors, Kachurovsky and Vainberg [5], Zarantonello

[12], Minty [7] and Duffin [14] .

Example. If T i1is nonexpansive then I - T is monotone.
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Theorem II.4. Let S be a monotone continuous mapping of a Hilbert

Space E into itself. Then S 1is demiclosed.

Proof. Let X € E such that x, ~x (i.e. X, converges weakly

to x ) and an >y . We wish to prove that S§x = Yy - By monotonicity

(an - Sz , x - z) >0

for all z € E . Taking limits we obtain
(2) ' (y -8z, x-2) 30

Now let w be an arbitrary vector in E and t » 0 . Taking

2 =X+ tw in (2) we obtain
(} -Sx+tw, w) 20

Making t > 0 and using the continuity of S (note: this is the only
place where continuity is used) we have (y - Sx, w) 30 for all

w “E . This implies (y - Sx, w) = 0 and finally y = Sx .

Remark. The continuity of S in the preceding theorem can be replaced
by the weaker condition that S 1is continuous from line segments in H
to the weak topology of E . This type of continuity has been named

hemicontinuity by Browder. It so happens that in the applications to

partial differential equations it is not hard to verify that certain

mappings are hemicontinuous.
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Theorem II.3 above has been considérably strengthened in the

case of Hilbert spaces by Opial [8]

Theorem II.5. Let E be lbert ace and T a nonexpansive as o-

totically regular mapping of E into itgelf. Suppose that the set F

’

of fixed points of T 4is non-empty. Then, for each point X in H

the sequence {T"x } converges weakly to a point of F .
q o y

Before proving this theorem we establish the following result.

Proposition I11.6. Let E be a Banach space and ¢ a convex continuous

real—valued function in E . Then ¢ 1is weakly lower semicontinuous .

Proof. We have to prove that, for each given real number a , the set
v, ={x €E: ¢(x) < a}

is weakly closed. This however is a consequence of the fact that Va

is closed and convex.

Proof of Theorem II.5. 1°) Since F is non-empty we see that a ball B about some
fixed point and containing X is mapped into itself by T ; consequently

B contains the sequence of iterates Tnx0 . So, we restrict ourselves

to mappings of a ball into itself. The set F of fixed points is then

bounded, closed and convex. (See Section 10 of Chapter I), So the

set F is weakly compact.

2°) Let us define in F the following mapping

¢ : F~»> R+ , (R+ = non-negative real numbers)

n _ n _
(3 o@y) = inf [[Tx, - yll = Lm [T, - y]
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(In (3) 1im = inf because the sequence -{IlTnxo - y” boig non-increas-

ing). The mapping ¢ so defined ig continuous. Indeed,
n
¢G') = Um ||T%_ - y'|| ¢ lin 1%, - y]| + Iy =51l =¢e) + |ly - |

from this inequality follows ¢ &y) - oGy < |y - v'll . On the other

hand, ¢ 1is a convex function. In fact
60y + =2y = Ua |1 - Gy + @-1)y)]
n n 1
CsA Um [T - y|| + (1 -2) 1im HTxo—y [
=20 + L -2) o(y")

So, using Proposition I1.6, we conclude that ¢ 1s weakly lower semi-

continuous.

3°) In view of the conclusions of 1°) and 2°) we can apply Proposition

I.4. Then we conclude that there exists a point y in ¥ such that
¢p(y)=d = infy(Fd:(y)

Now we claim that ; is unique. 1In fact, suppose this 1s not so. i.e.,
there exists another point y' € F guch that ¢$(y') = d . By the
convexity of ¢ it follows that ¢(A§ + (1 = My') =d forall 0 <A <1 -
So fx, -yl +a, |x -y'|l >d and lx, - Oy + @ - nyn || »4a.

By uniform convexity it follows that ”(xn -y) - (xn -y »o0 sy 1.e.

y=y' .
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4°) Finally we prove that the sequence {Tnxo} converges weakly to y .

To this effect we prove that given any subsequence of {Tnxo} s, 1t
contains a further subsequence which converges to ; « In fact, given
any subsequence of '{Tnxo} sy 1t follows that it contains a further
subsequence '{Tn(j)xo} which converges weakly to some point z . We

claim that z = y . Indeed, we have

L e N LR IR T TCii Ly

Taking limits we obtain
$(y) = ¢(2) + ||z - ¥

which is possible only if =z =,§ . The proof of the theorem is complete.

Remark. Opial [8] has proved‘this theorem for the class of Banach spaces
t hat have a weakly continuous duality mapping. This class contains all
Hilbert spaces but it does not include all uniformly convex Banach spaces.
For example, LP, p ¥ 2, does not have a weakly continuous duality

mapping. (See Browder and deFigueiredo, reference [12] of Chapter III)

5. ON _THE CONVERGENCE OF THE FIXED

POINTS OF THE CONTRACTIONS rT

Let T be a nonexpansive mapping of a Banach space E into
itself. Let {rn} be a sequence of real nuﬁbers such that r, > 1 and

0O<r <1. For each n the mapping Tn = rnT is a contraction, and
n
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- consequently it hasg a unique fixed point x sy 1.e. Tnxn =x . Itis
natural to ask if the sequence '{xn} converges to a fixed point of T .
One cannot expect, in general, an affirmative answer to this question.
For there are nonexpansive mappings which do not have a fixed point.
Theorem 1,10 provides some answer for a certain class of nonexpan-
sive mappings in Banach spaces. The situation in the Hilbert space case

is completely settled by the following result of F.E. Browder.

Theorem II.6. Let C be a_bounded clogsed convex set in a Hilpert space

H, and T a nonexpansive mapping of C into itself. Suppose that

0 €c, Let"{rn} be a sequence of real numbers such that r -1,

—ty

and 0 < r < 1. Let X be the unique fixed point of Tn = rnT .

Then the sequence '{xn} converges strongly to a fixed point of T .

Remark. It is easy to see that the sequence {xn} contains a subsequence
which converges weakly to a fixed point of T . 1In fact, by the weak
compactness of C it follows that there exists a subsequence V{Xn(j)}

which converges weakly to some point z . On the other hand, since
(1 - T)xn = rnTxn - Txn = (rn - l)Txn

it follows that (I - T)xn converges strongly to 0 . Since I - T is
demiclosed (see Proposition II.5) we conclude that (I -~ T)z = 0, 1i.e.

z 1is a fixed point of T.

Proof of theorem II.6. 1°) Let F be the set of fixed points of T .

It has been already proved (Proposition I.3 ) that F is closed and

convex. Let w, be the (unique) point in F closest to the origin.
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We claim that the sequence X~ converges strongly to LA

° —
2°) TFirst we prove that if Xa(q) ~ 2 then z = wand x

For any ¢ , 0 < s < 1, we have
a- s)xS + swxs =0, where W=1-T,
and
1-s8)w+sWww=(0-8)w, for w €F
By subtraction
(1 - s)(xs -w) + s(Wxs - Ww) = -(1 - 8)w

This last expression implies

(D -9 [x, - w|l?+ 80, - o, x, - W) = =1 - &), x,

Since W 1is monotone, it follows from (1) that
- 2 < (w, w=-x)
”xg W” = ! g’ ?
for all w € F . Then for w=w_  we get

(2) 1% = ¥l ? < W, z2=x%x)+ w, v -z
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-In the preceding Remark we have seen that z €F . So I I < llz]] .
o

On the other hand we have for 0 £Axg1l

2 2 2 2 2
”Wo” slaz+ Q- A)woll = ||w0|| + 2% ||z - w0|| +2Re AW,z - v ) .

From this inequality it follows that (wo, w, - z) £ 0. This used in

(2) gives
(3) “xs - Wbll < (wo, z - xs)';

Using (3) with X replaced by xn(j) and taking limits we obtain
”xn(j) = Wo'l >0 .

3°) Now we prove that the whole sequence ‘{xn} converges strongly to
W Given any subsequence of '{xn} we have seen by the above remark
that it contains a weakly conﬁergent subsequence. By 2°) above this
last subsequence converges strongly to w, o Thus the whole sequence

has to converge strongly to LA

6. AN ITERATION METHOD FOR GENERAL NONEXPANSIVE

MAPPINGS IN HILBERT SPACES.

" In the previous section we have considered a non-expansive
mapping T of a bounded closed convex subset C of a Hilbert space H
into itself. We have seen that the sequence of the fixed points X, of
the mappings Tn = rnT » 0« r, < 1, converges strongly to a fixed
point of T, as r_ - 1. In the present section we propose an itera-

n

tion method for obtaining this fixed point without the knowledge of the
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fixed points X

Theorem IT.7. Let C be a bounded closed convex subset of a Hilbert

space H . Suppose 0 € C . Let T be a nonexpansive mapping of C
RN ) .
into itself, and let Tn = tl T, n=1, 2, ... . Then for each

YOVE C the sequence

(1) y, =T

converges strongly to a fixed point of T.

Proof. For each n the mapping Tn has a unique fixed point X,
For a given initial approximation x we have the following estimate

for the error
k

(50)
VR o+l
T, x = x || ¢« =0 ||1,x ~ ||

n+l

This implies

k

n
k-1 *

k
(2) T x - X < K
I n nll (1+n)

where X 1is the diameter of C .

By Theorem II.6, the sequence {xn} converges strongly to

some fixed point w_ of T . We claim that the sequence {yn} defined

in (1) converges strongly to W o In fact, we have

2
n

ly, = w Il < Ty v q = x Il + lix - Il .

59



Using the estimate (2) we obtain

2 2 -
(3) Iyg = woll s a7+ ™1t fix_ -

It 1s easy to check that the right hand side of (3) converges to 0

as n > 4w .

Remark. Tt can be seen that the sequence, for given z, ¢ C,

does not necessarily converge.
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CHAPTER III

MONOTONE OPERATORS

1. TINTRODUCTION

This chapter is devoted to the theory of the monotone operators
(see definition below). We will be concerned with the existence of solu-
tions for functional equations of the form Tu = f , where T is a
monotone operator. The basic result of this chapter is Theorem III.1
due to Browder and Minty. In order to state it we need some definitionms.
Let E be a real Banach space, E* its dual space and T a
non-linear (or rather: a not necessarily linear) operator mapping E
into E* . The operator T : E ~» E* is monotone 1f (Tx - Ty, x - y) » 0
for all x,y € E . The parenthesis ( , ) denotes the duality pairing

* *
between E and E . The operator T : E > E is hemicontinuous if it

*
is continuous from line segments of E to the weak topology of E .
*
The operator T : E ~ E 18 said to be coercive if (Tx,x)/ ||x|| ~ +o

as ||x]| ++ = .

*
Theorem III.l. Let E be a reflexive Banach space, E 1its dual space

*
and T a (not necessarily linear) operator mapping E into E .

Suppose that T is monotone, hemicontinuous and coercive. Then the

*
mapping T is surjective, i.e., T(E) = E .

Remark 1. Let us consider the special case of Theorem III.1 when E 1is
the set of real numbers. Then the mapping T is a real-valued function
defined over the reals. In this case hemicontinuity coincides with

éontinuity in the usual sense. Monotonicity in the sense defined above
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'means that the function T is monotonically non-decreasing, i.e.
Tx 2Ty for x3» y . The hypothesis that T is coercive implies that

TX > +» as X+ +o and Tx + -o 88 X > -o , The above theorem

merely says that such a function T maps the reals onto the reals.

Remark 2. If E 1is a Hilbert space, we have E = E* by the usual

identification of E* with E wusing the Riesz-Frechet representation
theorem. Then, in this case, the duality pairing is the inner product
in E . For Theorem III.1 in Hilbert spaces see Browder [51, [6], [7]

and (8], Minty [27] and Dolph and Minty [14].

*
Remark 3. A mapping T : E+ E ig said to be strongly monotone if

there is a constant ¢ > 0 sguch that
2
(1) (Tx - Ty, x - y) 3 c||x - y|]

for all x,y € E. It is easy to see that a strongly monotone mapping
is coercive. In fact, using (1) with y = 0 we have

(Tx -~ TO, x) 3c “x”2 » which implies (Tx,x) » (ef|x]] - || T0|| ) ||} -
The last inequality implies the coerciveness of T . For strongly mono-

tone mappings we have the following corollary of Theorem III.1.

*
Corollary ITI.1. Let E be a reflexive Banach space and E  its dual.

*
et T : E> E be a hemicontinuous strongly monotone operator mapping

E into E . Then the operator T 1is bifective and -1 is continuous

*
from the strong topology of E to the strong topology of E .

Proof. By Theorem III.1 and Remark 3 it follows immediately that T 1is
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surjective. On the other hand (1) implies
(2) 1T ~ Ty[| » e ||x - y||
for all x,y € E. So the mapping T is injective. Consequently it is

bijective. The continuity of T_1 is immediate from (2)

Remark 4. Suppose that, in Corollary III.1, we replace the hemicontin-
uity of T by the continuity of T from the strong topology of E to

*
the strong topology of E . Then the conclusion of that corollary is

*
that T 1is a homeomorphism between E and E with the norm topology.

2. THEOREM III.1 FOR LINEAR MAPPINGS

In this section we consider an analogue of Theorem III.1 1in
the special case of a linear‘mapping T . First we observe that if T
is linear then the hypothesis‘of hemicontinuity of T is entirely super-
fluous. Indeed, the mere linearity of T implies that T(x + tz)
converges to Tx as t + 0 . In Theorem III.2 below the continuity of
the mapping T 1s replaced by the requirement that T be closed. The
proof of Theorem III.2 makes use of the adjoint operator T* in a very
esgential way. So such a proof does not extend to the case of a non-
linear T .

We remark that, for simplicity, we work in a real Banach space.
The method works also for complex Banach spaces.

A mapping T : E+ F from a Banach space E into another
Banach space F 1s said to be closed if X+ X in E and Txn >y
in F implies Tx =y . Every continuous mapping is also closed; but

not conversely.
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, *
Theorem III.2, Let E be a reflexive Banach space, and E its strong

dual, i.e. the dual space with the norm topology. Let T be a closed

*
linear mapping from E into E . Suppose that there is a positive

constant ¢ such that [(Txix)] > C "x”2 for all x €E. Then T is

*
a _homeomorphism between E and E .

To prove this theorem we need some facts about the adjoint of a
continuous linear mapping. Tor completeness we present succinctly these
facts in the sequel.

Let X and Y be two Banach spaces and T a continuous linear
mapping from X into Y . Let X* and Y* denote the dual spaces of X

* * *
and Y respectively. The adjoint operator T : Y - X is defined, for

each y'*€ Y* y by the relation (T*y*,x) = (y*,Tx) for all x € X . It
is an easy matter to check that T*y* is actually an element of X* ; so
T* is well defined. It alsp follows that T* is a linear mapping.

Moreover T* is a continuous mapping from the strong topology of Y* to

*
the strong topology of X .

Let A be a linear subspace of a Banach space X . The

annihilator A° of A 1s defined as the set
* * *
{y €X : (y,x) =0 forall x¢€ A} .

It is easy to see that A° 1is a linear subspace. Moreover if X is

reflexive then A°° = A . The following result is also readily proved.

* *
Lemma III.1l. let X and Y be two Banach spaces, X and Y their

dual spaces. Let T be a continuous linear mapping from X into Y ,

* *
and T* its adjoint operator. Then the null gspace N(T ) of T is

equal to R(T)o , where R(T) 1is the range of T.
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Proof of Theorem ITI.2. 1°) From the inequality |(Tx,x) | » ¢ “x||2

it follows that ||Tx|| » c ||x|| for all x € E . This implies that

T 18 injective, T—l is continuous and R(T) is closed. Thus by the
Closed Graph Theorem it follows that the mapping T 1s continuous. So
the proposition will be proved if we show that T is surjective,
f.e. R(T) = E .

2°)  We firét observe that the adjoint T* also maps E into E* ,
because E 1s reflexive. Moreover T* satisfies the inequality
](T*x,x)| 2 c x| 2 ,» which implies that ™ is injective, 1.e.,
N(T) = {0} ) .

‘ * . *
3°) By Lemma III.1 we have N(T ) = R(T)° , which gives N(T )° = R(T)°° .

Using the conclusion of 2°) and the fact that R(T)°®° = R(T) in the last

*
relation we obtain E = R(T) . Finally from the fact that R(T) 1is

*
closed it follows R(T) = E .

Remark 5. The basic assumption of Theorem III.2 , namely
2
|(Tx,x)| » c||x||°, forall x €E,

2
will be fulfilled if we assume that (Tx,x) » c x| “ .

Remark 6. Many results of the type of Theorem III.2 may be found in

Browder [10] .

Remark 7. An extremely interesting result, akin to Theorem III.2, is
the following theorem due to Friedrichs [16] . See also Mikhlin [26]
"Let T be a linear operator defined in a dense subspace D(T) of a

Hilbert space E . Suppose that (Tx,x) » “x||2 for all x € D(T) .
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Then T 4is surjective". This theorem is not contained in our Theorem

III.2.

We now present an application of Theorem III.2 to the problem
of representation of continuous linear functionals in a Banach space by

means of certain bilinear forms.

Theorem III.3. Let E be a reflexive Banach space and B a bilinear

form in E . Suppose that

(1) B is continuous, i.e. |B(u,v)| < K Hull U+l for all u,v € E

(11) B__1is coercive, i.e. |B(u,v)] » ¢ |lul| 2 for all u ¢E .

*
Then, for each & € E , there exist a unique x € E such that

2(u) = B(u,x) .

Remark 8. A bilinear form B : E €E + C is said to be strongly coercive

1f there exists a constant ¢ > 0 such that B(u,u) 3 c Hu||2 for all
u €EE. It is 1immediate t@at,every strongly coercive bilinear form is
also coercive. Theorem III.3 with the hypothesis of coerciveness
replaced by strong coerciveness and E = Hilbert space reduces to the
well-known Lax-Milgram lemma. See Lax-Milgram [22], Nirenberg [281 or

Yosida [36]

Remark 9. A constructive proof of Theorem III.3 in the Hilbert space

case has been given by Petryshyn [29] and Hildebrandt and Wienholtz [17].

Remark 10. A proof of Theorem IIX.3, distinct from the one given here,
-has been recently given by Sauer [31] . In that paper Sauer shows that

the assumption that E be reflexive i{s actually an essential one.

*
Proof of Theorem III.3. Let E be the dual space of E . Let us
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*
consider E  equipped with the norm topology. We define a mapping T
*
from E into E 1in the following way. To each x € E we associate

1
the functional lx : E+- R, Ex(y) = B(y,x) . It is easily seen that

2x is linear. Furthermore Hypothesis (1) dimplies that L, s
continuous. So the mapping T : E » E* is well defined. The
linearity of T follows from the bilinearity of the form B . And
Hypothesis (i) implies that T is continuous. Finally Hypothesis

(11) dimplies that T satisfies the inequality
2
|(Tx,%) | > c ||x]]|
for all x ¢ E . Thus applying Theorem III.2 we conclude that the
* *
mapping T : E - E  is bijective. This means that given j; €E there
exists a unique x € E such that Tx = £ ., This implies

L(u) = (Tx,u) = B(u,x) . The proof is complete.

3. _THEOREM TII.l : THE FINITE DIMENSIONAL CASE

In this section we assume that E is a finite dimensional

Banach space. Before stating Theorem III.1 for this case we prove the

following result.

*
Lemma III.2. Let E be a finite dimensional Banach space, and E its

dual gpace. Let T be a hemicontinuous monotone mapping from E into

Et . Then T is continuous.

* .
Remark. We consider E endowed with the norm-topology. (In fact we
could consider any other locally convex topology . For all these

topologies are the same, as a consequence of the finite dimensionality

of E.)
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Proof. 1°) We first prove that if '{xn} is a convergent sequence in
E then there exists M » 0 such that ”Tan £ M for all n., 1In

fact, assume this is not the case; then there exists a subsequence of

{xn} , that we denote by {xn} again, such that ],Txnll >4+ * . Let
X be an arbitrary vector in E . By monotonicity we have

(1) (Txn - Tx, X - x) 20,

Setting v, = Txn/||Txn|| we have from (1)

(2) - —=— , x_-x) 30 .

eI

Since ‘{yn} is a sequence of vectors with unit norm in a finite dimen-
sional Banach space, it follows that there exists a convergent subsequence-
Denote this subsequence by -ﬂyn} again and its 1limit by y . Taking

limits in (2) we obtain

(3) (y - 0, X, - x) 20

where X = 1im X - Since x is arbitrary, (3) implies that y =0,
which contradicts the fact that Hyll =1 .

2°) We now prove that T 1is continuous, 1.e., 1f X - X it follows
that Txn -a-Txo . To do this we show that every subsequence of {Txn}
contains a further subsequence which converges to Txo . Indeed, given
any subsequence of '{Txn} it follows from 1°) that this subsequence is
bounded. By finite dimensionality it follows that it contains a further

subsequence which converges. Denote by {Txn} this last subsequence
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and by w its limit. To complete the proof we shall prove that

w = Txo - Let x be an arbitrary vector in E . By monotonicity

(Tx - Txn s X - xn) 2 0

Taking limits it follows

(4) (Tx ~w, x - xo) >0

Let x be of the form x = xo +tv, tz0. So in (4) we obtain

(T(x0 +tv) ~w, tv) 2 0

which gives

(T(x0 + tv) ~w, v) 3 0.

Making t + 0O and using the hemicontinuity of T we have

(5) (TxO -w, v) > 0.

Since (5) holds for all v € E, it follows Tx = w . The proof is

complete.

In view of Lemma III.2, Theorem III.4 below implies Theorem

IT11.1 in the finite dimensional case.

*
Theorem ITII.4. Let E be a finite dimensional Banach space, and E
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- its dual space. Let T be a continuous monotone coercive operator

* *
mapping E into E . Then T is surjective, i.e., T(E) = E .

Proof. 1°) We need to prove the theorem only in the case when E is
the n-dimensional Euclidean space R" . To prove this claim we assume
that the theorem has been proved in this special cgge (i.e. E = Rn)

and show that it is true in general. First we observe that any n-dimen-
sional Banach space is linearly isomorphic to R" . That is, there exists

a linear mapping 1 : R" > E such that
(6) ¢ lxl s 1] 5 oy ]x]

for all x €R"™ . Here ¢y and ¢, are constants and |.| ( ”.,|)
denotes the Euclidean norm in R" (the norm in E) . Now given a

%*
continuous monotone coercive mapping T : E + E we define the mapping

* *
S=1 eToed , where i is the adjoint of 1 .

*

*
s
R"

M
o m

T
——————
n
———p

S
The mapping S is continuous as a composition of continuous mappings.

n
The mapping S 1s monotone; in fact for x and y in R we have
* *
Sx -8y, x-y)=({1 2 Toi)x-({1 oT, 1)y, x - y)

= (TAX)) - T((y)), 1(x) - i(y))
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which is > 0 ; because T is monotone. The mapping S 1is coercive;

in fact, for x € R" we have
(5x,x) = (T(i(x)), 1(x))

This together with (6) and the coerciveness of T gives the result.
Since the theorem is supposed true in the case E = R" sy 1t follows
that S is surjective. And this obviously impies that T 1is also
surjective.

2°) It suffices to prove that Tx = 0 has a solution or, equivalently,
that W=1I - T has a fixed point. By coerciveness there exists r » O

such that (Tx,x) >0 for all x €85 , where S_={x €E: |x]| =r .

(We may assume that r > 1) . Then
2
(7 Wx,x) = (x,x) - (Tx,x) < |x||

for all x € Sr .

Now define a new mapping w o r" > R® as follows

wx  1f  |lwx]] <«r

Wx =<

‘Wx

——— if Wx > r

L

It is clear that W' is continuous and W'(Br) C',Br , where Br is the
ball of radius r about the origin. So, by the Brouwer fixed point
theorem, it follows that W has a fixed point X, Now there are two
possibilities: either X belongs to the interior of Br or x is on

'
the boundary Sr . In the first case, it follows that W x, = Wx = X, s
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1.e. X is a fixed point of W . In the second case, we have that

= W' = wxo
%o %o |Wx [
from this follows
1
(XO,XO) ”onll (on,xo) .

Using (7) we obtain

1 |2

2
Il 1] < T %, |

which gives ”Wkoll < 1 . But this contradicts the fact that

”onl[ > r with r > 1. The theorem is proved.

4. PROOF OF THEOREM III.1.

In this section we prove Theorem III.l1 stated in the Introduc-
tion of this Chapter.

Let A be the collection of all finite dimensional subspaces
of the Banach space E . We consider this collection preordered
(partialiy ordered) by conclusion. For F € A we denote by jF t F-> E
the inclusion mapping. Endowing the subspace 'F with the induced

topology, it follows that jF is a continuous mapping. Let us denote

*
by jF the adjoint of jF .
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*
2
%
IF IF
v*
F > F
Ty

%
Let us denote by TF the composite mapping JF o T o jF . Using the
fact that T 1{is hemicontinuous, monotone and coercive, it follows

readily that T_ is also hemicontinuous, monotone and coercive. Using

F
Lemma III.2 and Theorem III.4 1t follows that, for every F € A, there

exisgts xF € F such that TFxF =0 ,

Now we claim that there exists M > 0 such that HxFll < M
for all F € A . Suppose that this is not the case; so there exists a

sequence {F_} such that [x_ || ++% . Then b coerciveness it
q ; ¥ y
n

follows that (TxF . xF ) *-4-5. But this is a contradiction because
n n

(Txg > xp ) = (TQp (g )y 4y (e )
n n n n n n

((j; °T o dp)xp 5 xp ) = (Tp x5 %) =0 .
n n n n n

For each F € A we define the set
Vg = LJF:)F {xF}
o o

By reflexivity it follows that the weak closure VF of VF is weakly

o] o

Comﬁact. It is easy to see that the collection of sets VF . FO € A,
()
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“has the finite intersection property. So the intersection of all of

them is non-empty. Let X be a point in this intersection. We

claim that Txo =0 .
Let x be an arbitrary point in E . Let F, € A be such

that x € F . For FDFO s we have by monotonicity
(1) (Tx - TxF, X - xF) >0 .

Since (TxF, X ~ xIJ = (TxF, jF(x - xF)) = ((j;oTojF)xF, X -x.,) =0,

F)
we obtain from (1)

(Tx, x - xg) 20,
for all F::'Fo . Consequently
(2) (Tx, x - xo) 0

for all x € E. Now let y be arbitrary in E and t > 0 . For

x=x +ty we obtain from (2)
(T(xo + ty), ty) 2 O

which gives (T(x_ + ty), y) 2 0 . By hemicontinuity it follows that
)

(Tx , y) 2 0 for ally ¢ E . This implies that Txo = 0 . The theorem
0 .

is proved.
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5. AN APPLICATION OF THEOREM III.1 TO

ELLIPTIC EQUATIONS

Let Q be an open set in R" . We consider real-valued func-
tions wu(x) defined in Q . 1In this section we investigate the Dirichlet

problem for a quasi-linear equation of the type
a me _

Here we use standard notation., o = (al, ceny an) is a vector with non-
o a
1

negative integral components. |a| = o + ... + a, - D% = Dl . Dnrl ,
where D, = —&- .
3 axy

The method employed here is an analogue of the variational
method used for linear elliptic partial differential equations. So one
Starts with a generalized Dirichlet problem. This generalized problem
i1s a natural extension of the classical problem in the following sense.
If the classical problem has a solution, then this 1is also a solution
of the generalized problem. If some proper restrictions are made, one
hopes that the solution to the generalized problem be also a solution
to the classical one. In the linear case this question is very much
settled. See, for example, the book of Agmon, "Lectures on Elliptic
Boundary Value Problems". 1In the non-linear case this is a very much
Open problem.

In order to formulate the generaliied problem we introduce

the so-called Sobolev spaces Wm’p(n) . We are interested only in the

Case where m 1s a non-negative integer and p > 1 . Let us denote

by D'(Q) the space of distributions in g , see, for example, Schwartz
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A[32] or Tréves [33] . Then we define
WPa) = {u €D'() : D% €LP(p), |a| < m}

The following expression

1
4l = Tl

defines a norm in Wm’p(n) . With this norm the space Wm’p(g) is a
reflexive Banach space. Let 0U(Q) denote the space of the infinitely
differentiable functions with compact support in @ . We denote by
Wg’p(ﬂ) the closure of D(g) 1in Wm’p(g) . The dual of Wﬁ’p(g) is
also a space of distributions, which is denoted by W’m’P'(Q) .
p' = p/(p-1) . See Lions[24] for a clear exposition on Sobolev spaces.

In the framework of the Sobolev spaces the generalized Dirichlet

problem is formulated as follows:

- 1
"Given f 4in the dual W P (q) of wﬁ’P(Q) , find u € wi,P(g)

such that
alu,$) = J Zlulqn(-l)lalAa(x,u,...Dz)D%dx = <£,¢>
o~ lals

for all ¢ G‘Wg’p(ﬂ)" . (&> denotes the duality pairing between
W?’p(ﬁ) and its dual.). We shall prove below that this problem has a

solution provided some hypotheses are made on the operator A.

Assumptions on the operator A.

(I) The functions Aa(x,i) , where £ = {EB : 18] ¢ m} is a vector
is some Euclidean space RM , are continuous in £ for fixed x and
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measurable in x for fixed £ . That is, the functions A : 0 x RM »—Rl
o

|a| <m , satisfy the so-called Caratheodory conditions.

(II) For all x in @ and |a| ¢ m we have the following estimate
|Aa(x,g)| < const (1 + |glp_l)

(ITI) For all u and v 1in Wg’p(g)
a(uy, u-v) -a(v, u~v) 50

(IV)  For all u in Wg’p(ﬂ)

atu,w) > e Jull , ) [lull

m,p °’

where c(r) 1s a real-valued function such that
c(r) > + as r - +o .

Remark. We shall see below that the above conditions insure tne existence

of solution for the generalized Dirichlet problem. These conditions are
however too restrictive. Much weaker assumptions have been shown to be
sufficient for existence of solution. See, for example, Browder [3],
Leray and Lions [23] and Vishik [35]. 1In these papers assumptions of
the type (III) and (IV) are made only on "terms of higher order", in
analogy with the linear case.

It follows from Assumption (II), using Hdolder's inequality, that
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@ 2w | < &Cflull, Yl
where g(r) 1s some real valued function.

Now we observe that the form a(u,v) is linear in v. Inequality
(2) above implies that, for fixed u € W:’p(ﬂ) s v >a(u,v) 1is a
continuous linear functional on W:’P(SD . So there exists a unique Tu

in W—m’p'(ﬂ) such that
(3) a(u,v) =<Tu,v>

for all v € wﬁ’P(sb . So, the generalized Dirichlet problem is equivalent

to solving the functional equation
(4) Tu=f |,

where T is a non-linear mapping from Wﬁ’p({D into W_m’P'(Q) defined
by (3) . However, the existence of solution for equation (4) 1is guaranteed
by Theorem III.1, because the operator T 1is

a) hemicontinuous--consequence of Assumptions (I) and (II) ,

b) monotone-~-consequence of Assumption (III)

c) coercive-—consequence of Assumption (IV)

6. LIPSCHITZIAN MONOTONE MAPPINGS.

THE GRADIENT METHOD.

In previous sections we have proved the existence of solutions

for the functional equation Tx = f , where T is a monotone hemicon-
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tinuous coercive mapping and f 1is a given vector. The method used
in the existence proof does not provide a constructi§e way of obtaining
a solution of the functional equation. In this section we assume a
stronger continuity hypothesis on T and obtain an iterative method

for solution of the equation Tx = f 1in the Hilbert space case.

Theorem III.5. Let H be a Hilbert space and T a strongly monotone
mapping of H dinto itself, i.e.,

(Tx - Ty, x - y) 2 ¢ ||x - y| 2

for all x,y in H and some positive constant c . Suppose further

that T 4is Lipschitzian, i.e., there is a positive constant k such that

IT= - Ty|| < & [|x - y||

for all x,y in H . Let us denote by T_ the mapping defined by

f
fo =Tx - f . Let )\ be a positive number such that
1) 0 < kzxz - 2ca+1<1.

Then, for any given x  » the sequence ‘{xn} defined by

C—

(2) X = (I - )\Tf)xn n=o0,1, 2, ...

n+1

Converges strongly to the unique solution x of Tx = f . Moreover,

We have the following error estimate
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_ A'n |
(3) llxy - =l < 2 llmx, - £]]

L]

where q = /A%AZ - 2cA +1 .

Proof. 1°) The mapping I - ATf‘ is.a contraction. Indeed, using the

assumptions that T is Lipschitzian and strongly monotone we obtain:

2
@ - atox - @ - adyll % = llx =yl %+ 2% flzx - 1911 % - 2201x - Ty,x - 7

2,2

< @+ K% - 2e0) [Ix - y|1 2.

Since ) satisfies the inequality (1) , it follows that I =~ ATf is

a contraction.
2°) The result of 1°) implies that the sequence ‘{xn} defined in (1)

converges strong to the unique fixed point of I - AT However it is

f L

is a solution of Tx

f

immediate that a fixed point of I - AT f , and

f
conversely. So the sequence '{xn} converges strongly to a point x ,
which is then the unique solution of Tx = f .

3°) The error estimate. Since I - AT is a contraction we have

f
= - 2"
”xn - x” s l—q ” (I - )‘Tf)xo - xoll = l—q ”Txo - f”
Remark 1. The existence of a unique solution for Tx = f , under the

conditions of Theorem III.5 , follows immediately from Corollary III.1.
The important new feature about the above theorem is that the solution

X can be obtained by an iterative method. This result is due to
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Zarantonello [37] . See also Browder and Petryshyn [13].

Remark 2. If ¢ <k in the above theorem, then k2A2 - 2cA + 1 1is
positive for any real X . So inequality (1) can be replaced by the
requirement that A 1s in the interval 0 < ) < 2c/k2 . In this case,

(c < k) , the value of ) that gives the best convergence of the

sequence '{xn} is A = c/k2 .

Remark 3. Let us consider the case ¢ % k . Let A+ and )\  be the
roots of kZAZ - 2cA + 1 . These roots are real and
0<xr ¢t < 2c/k2 .

So A satisfies inequality (1) if it is in one of open intervals
(0,A") and (A+, 2c/k2) . In this case, (c » k), there is no value
of X that gives the best convergence of the sequence {xn} . The
reason being that the infimum of q {is O for A varying in the two

open intervals above.

The gradient method. We now describe the gradient method for the solution

of the functional equation Tx = £ in a real Hilbert space. As before
we assume that the mapping T from a Hilbert space H into itself is

Strongly monotone, i.e.,
2
(Tx - Ty, x ~y) s c|lx-y[|°, c»0
and Lipschitzian

lltx - Tyl ¢ ® |Ix - y]]
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For given X, we define the following sequence of approximations for

the solution of Tx = f:

4 =
(4) X 4 =X tor
where
(5) r = f - Tx
n n

and a is a real number conveniently chosen.

From (4) and (5) it follows that

2 2 2 . 2
le 115 = e 7= I [ 7 - 2¢8, =) - llTx I © + 2¢8, Tx_ )
2 2 #ot
(7) = 2(f - Tx_,Tx_ . - Tx ) - || || - [lTx_ || * + 2¢0x0""
2 2
- E; (xn+l " X TR T Txn) - “Txn+l - Tan

Using the hypotheses made on T we obtain from (7):
2 2 2 2 2
(8) e 2 e l1? s ea - k2B (]|

Now o will be chosen in such a way that there exists a positive number

2 2
Bn such that 2can -k . z Bn , that 1s,

22
(9) k @ = 2can + Bn < 0.
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So, such a choice of a will be possible if Bn satisfies the condition
2 2

¢ -k Bn > 0 . Thus Bn must be in the interval
2
(10) 0<B g =
n kz

Once Bn has been chosen in the interval (10) , then @ can be taken

as any number in the interval
(11) a £ 0o £ o ’

where o  and a+ are the roots of k2a2 - 2ca + B
n n | n n n

Now we can prove the following result.

Theorem III.6. Let T be a strongly monotone Lipschitzian mapping in

a Hilbert space. Let a be a positive number such that a < 1 and

a g c2/k2 . Suppose that a sequence ‘{Bn} is chosen in the 1interval

[a, c2/k2] . Suppose also that a sequence ‘{un} has been chosen in the

interval (11) . Then

(1) the sequence '{rn} of residuals defined in (5) converges to 0 ,

(11) the sequence '{xn} defined in (4) converges to the unique solution

X of Tx=f,

(111) we have the following error estimate

n
) [EREET JPRE < ST

where q = /1 - a .
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. Proof. 1°) From inequality (8) and the conditions on Bn we obtain

2 2 2
(12) 117 = g 117 2 2 g Il

This implies that (1 - a) |[r_||® 5 ||z, [|®, where 1-a is
positive by hypothesis. Consequently we have “rn+l|| <q ”rnll. From

this last inequality we conclude that
n
(13) BRI L)

Since q <1, Part (1) of the theorem follows.
2°) By monotonicity we have

2

(Tx - Txn, X - xn) 3 C "xn+1 - X

n+l n+l n”

This implies ”xn+1 - xn|| < %- HTxn+1 - Txn” . Using (5) it follows

that

1

”xn+1 - xn” £ T |Irn+l - T

nll

This implies that the sequence {xn} converges. Let x be its limit.
From (5) and the fact that r -+ 0 we conclude that Tx = f . So Part
(i1) of the theorem is proved.

3°) Using monotonicity again we have

(tx_ - Tx, x_ - x) 3 c||x - x||

n

which implies c¢ ”xn - x|| < ||Tx - Tx|| . Since Tx = f and
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Tx = f = —-r we obtain
n n

- 1
[P P T

Using estimate (13) we obtain the error estimate (*) . The theorem
is proved.
Remark 4. Suppose c¢ < k . Then the value of a that gives the

smallest q 1is a = c2/k2 s So En = c2/k2 for all n and @ = c/k2
for all n . Thus, in this case ¢ < k » the method of Theorem III.5

gives the best convergence.

Remark 6. The gradient method has been used by Vainberg [34] for certain
classes of monotone operators. His results are more general than the
ones presented here. We also‘refer to Lagenbach [20] where potential

Operators are considered.

7. THE DUALITY MAPPING. AN APPLICATION TO

FOURIER SERIES.

An important example of a monotone mapping from a Banach space
E into its dual space E* is given by the so-called duality mapping
(see definition below). This concept was introduced by Beurling and
Livingston [2]. Later it was generalized and extensively studied by
Browder [3], [9], [11] . See also Browder and deFigueiredo [12] and
Asplund {1] . 1In this section we establish some of the most important

Properties of the duality mapping.
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Definitions. 1) A gauge function is a real—valued continuous function

U defined in the non-negative half line R+ = {t € R1 :t 20} such

that (i) u(0)

0, (i1) 11mt_mu(t) =+w , (iii) , 1is strictly
increasing. An example of a gauge function is (t) =t .

*
2) Let E be a Banach space and E its dual space. Let y(t) be a
given gauge function. The duality mapping in E with gauge function

*
*
is a mapping J from E into the set ZE of all subsets of E such

u

that

J() =0

. % * * * *
Jx={x €E ¢ o) = x| flx]] o, Jlx0l o= wCx|])Y, x40,

Remark 1. For X + 0 the set Jxo is non-empty. Indeed, let L be

the one-dimensional subspace generated by X . Define a linear functional

2 in L as follows
2(x) = uC x| ) [I%,]]
and
1) = 2Gx ) = aax) .
It is easy to check that the norm ||z|| of the functional & 1is equal
to u([lxol|) . Now using the Hahn-Banach theorem, we can extend the

*
linear functional & to a linear functional y defined in the whole

of E which has the same norm, 1i.e. “y*ll = l]l” . Such an extension
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is not necessarily unique. It is clear that Jxo is the set of all such

extensions.

* *
Remark 2. The set Jx 1s convex. Let x and y be in Jx. We

* * *
claim that 2z = x + (1 -A)y , for 0 <A <1, also belongs to Jx .

Indeed, first we have
* * %
(1) (z ,x) = a(x,x) + (1 - D ,x) = u(||x]])||x]
From this equality it follows that Hz*|| > uC||x]|) . On the other hand
* ] *
Nz {1 s A=l + @=]ly || = uClx]]) .

So  |[lz,]] = p( |[x|]) . This together with (1) implies that the linear

*
functional 2z  belongs to Jx .

Remark 3. Let y and pl be two gauge functions. Let J and J, be
the duality mappings in the Banach space E with gauge functions | and

My respectively. Then there exists a non-negative real-valued function

y (t) such that
Ix = v ||x]] )Jlx .

This follows immediately from Remark 1.

Example. Consider the L? space, 1 < p <« , in the interval [0,1]

It is easy to check that the mapping Jo : 1P o> 9 , q=p/lp -1,
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defined by
J £ = |f|p_1 sgn f

is the duality mapping in E with gauge function y(t) = tp"1 . (Notation:
sgn f = signal of f(x)) . By Remark 3 above it follows that any other
duality mapping J 1is of the form Jx = v ( ”x||)Jox s, where «y(t) is
some non-negative function defined in the half-line R+ .

The following result is essentially a reformulation of a char-

acterization of reflexivity due to James [18], [19].

*
Theorem III.7. Let E be a Banach gpace and E  its dual space. Let

J Dbe the duality mapping in E with a given gauge function y . Then

E 18 reflexive if and only if the union of all sets Jx , x € E ,

%
covers E .

* *
Proof. 1°) Let us first assume that E 1is reflexive. Let y € E .

Let B, be the unit ball about the origin. Since Bl is weakly compact

1
*
and the linear functional y 1s continuous, it follows that there
exists X € B1 such that
* *
(y »x) = SUszBl(y »X) .

* *
It is immediate that |[x [[ =1 . So (y,x) = ||y || [|x ] . DNow
by the properties of the gauge function , 1t follows that there exists
A, > 0 such that uQ)) = ||y || . Thus y( Ixgx 1) =1lly Il . This

* * *
together with (y ’ono) = ||y || ”AOXOII implies that y € J(ono)
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. *
2°)  Conversely, suppose that the union of the sets Jx covers E

We claim that E* is reflexive. To prove this we rely on the following
characterization of reflexive Banach spaces due to James. "A Banach
space E 1is reflexive if and only 1f every continuous linear functional
on E attains its supremum on the unit ball B1 about the origin". Let
*

y be a continuous linear functional on E . By hypothesis there exists

a point X in E such that y* € Jxo . This implies that
* *
(2) Goax)) = |y || ||x, ||

now, the point Y, = xo/ ”xo]| is in the unit-ball and from (2) it
* * *
follows that (y ,y ) = Hy || = sup, eg  »X) . So by the character-
o X Bl
1zation of reflexivity stated above it follows that E is reflexive.

The proof is complete.

Remark. See Laursen [21] for another characterization of reflexivity
using duality mappings.

As we have observed in Remark 1 the duality mapping is multi-
vValued in general. However, if the dual space E* is strictly convex,
then the set Jx consists of exactly one point; see Proposition III.1
immediately below. From now on we restrict ourselves to this case; so
the duality mapping J : E » E* is a single-valued mapping from E to

E* . For a study of multivalued duality mappings, see Browder [3], [9].

Proposition III.1. Let E be a Banach space with a strictly convex

dval space’ E* . Let J be the duality mapping in E with gauge

function y . Then the set Jx consists of precisely one point.
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Proof. By the definition of duality mapping, the set Jx 4is on the

: *
surface of the ball of radius y(||x|| ) about the origin in E . By
Remark 2 above the set Jx 1s convex. Thus by the strict convexity of

*
E it follows that Jx 1is a set with only one point.

Corollary III.2. Let E be a Banach space with a strictly convex

* *
dual space E . Let J : X >X be the duality mapping with gauge

function y . Then E 1s reflexive if and only if J is surijective.

Proof. Use Theorem III.7 and Proposition III.1.

Remark. Let E be a reflexive Banach space with a strictly convex
* - *
dual space E . Then the inverse mapping J 1 t E » E 1is the duality
* - -
mapping in E with gauge function ul(t) = 1(t) s, where 1(t)

is the inverse function of wu(t) .

Proposition III.2. Let E be a Banach space with a strictly convex

*
dual space E . Then the duality mapping J in E with gauge function

¢ 1s monotone.

Proof. By the definition of duality mapping we have

(Jx,x) + Jy,y) - Ix,y) - (Jy,x)

(3) (Jx - Jy,x ~ y)

{
Il xll + sty Bl = wC il gl = wcligll?!

Wv

Iy = wClylbrt =l - livil 3

The last expression is non-negative because p 1s a strictly
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increasing function. So (Jx - Jy, x - y) »0, 1i.e., the mapping J

is monotone.

Before stating the next proposition, we prove the following

result about strictly convex Banach spaces.

Lemma III.2. A Banach space E 1is strictly convex if and only if

every continuous linear functional on E does not attain its supremum

(relatively to the unit ball Bl about the origin) at more than one

point of B1 .
Remark. Observe that the above lemma does not state that every con-

tinuous linear functional on E attains its supremum on the unit ball
Bl . We have here a uniqueness statement. As we have observed before
the James characterization of reflexivity (see proof of Theorem III.7)

provides the answer for the existence question.

Proof of Lemma III.Z2. 1°) Suppose that E 1is strictly convex. Let

*
vy be a continuous linear functional on E . Let us assume that there

are two points Xy and X, in the ball Bl such that

(y*.xl) = (y*.xz) = sup_ (Bl(y*,X) il

It 18 clear that both x1 and x, are in the surface of the ball Bl .

Now
* * * *
(y »ax, + (1 - 2x,) = Ay ,xl) + (1 - Dy ,xz) = |y |
Se A%y + (1 - }‘)x2 is also in the surface of the ball B1 . This
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‘however contradicts the assumption that E is strictly convex.

2°) Conversely, let us assume that any‘given continuous linear functional
cannot assume its supremum at more than one point. Let us suppose that E
is not strictly convex. That is, there are two points X and x, on the

1
surface of the ball B

1 such that every point x AX + (1 - x

A 1°
' *
0 <a<1, 1is also on the surface of B1 . Let y be a continuous
* *
linear functional on E such that (y »X 5) = ||y || . The existence

of such a functional follows from the Hahn-Banach theorem. By our assump-

tion it follows that

e < Iyl ed @l < Y]
These two inequalities imply that

Gy 9 = TN+ TGN < IV

which contradicts the fact that (y*,xo.s) = ”y*|| . So E must be
strictly convex. The lemma is proved.

Definition. A mapping T : E » E* from a Banach space E into its
dual space E* is said to be strictly monotone if

(Tx - Ty, x - y) > 0

for all x =y in E .

Proposition III.3. Let E be a strictly convex Banach space with a
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' *
strictly convex dual space E . Then the duality mapping J with gauge

function uy is strictly monotone.

Proof. By Proposition III.2 it follows that J 1is monotone, i.e.,
(Jx - Jy, x -y) 20 for all x,y in E . Now, let us suppose that

there are two points x and y, x4y in E guch that
(4) Jx-Jy, x~-y) =0
This together with inequality (3) (see proof of Proposition III.2) implies

that ||x|| = Hy[l . Now by the definition of duality mapping it

follows that Jx attains its supremum on the unit ball B1 at the point

x/ ||x|] . Then it follows that (JIx,y/ ||y||) < [|Jx|| , {i.e.
(5) | x,y) < ||3x|| [yl

Similarly

(6) | Qy,x) < |[|3y]l [Ix]]

Using estimates (5) and (6) in (3) we obtain
(Ix - Jy, x = y) > CJlax[| - Jay|DH x|} - |yl =0 ,

which contradicts our assumption (4) . So (Ix - Jy, x - y) > 0 for

X%y,

Corollary 11I.3. Let E be a strictly convex Banach space with a
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Lk
gstrictly convex dual space E . Then the duality mapping J with gauge

function u 1s injective. If in addition E is reflexive then J is

bijective.

The next result is a statement about "continuity' of a duality

mapping.

Proposition 111.4. Let E be a Banach space with a strictly convex

*
dual space E . Then the duality mapping J with gauge function , is

* *
continuous from the strong topology of E to the weak topology of E .

Proof. Let {xn} be a sequence in E which cénverges strongly, i.e.,
X *X. We claim that an iL-Jﬁ , where nEn denotes weak* conver-—
gence . To prove this we show that every subsequence of '{th} contains
a further subsequence which converges weakly* to Jx . Since X, > X,

it follows that there exists M » 0O such that ||an|| = “(llxnll) < M
for all n . So, any subsequence of ‘{Jxﬁ} contains a weakly* convergent
subsequence. Let us denote this last subsequence by {Jyn} and its weak*
limit by w, 1.e., Jyn :L-w . We prove now that w = Jx . First we

note that

D JxllwC Il = U [yl uClygll ) = 1 Gy y) = Gox)

This implies that y( ||x||) <« [|w|| . On the other hand, since

Jyn A w , 1t follows that

w|l < 1w 1af |lay_|l = 1w uClly Il = wClixll> -
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So it follows that ||w|| = uC||x]||) . This together with (7) implies

that w = Jx .

Definition 1. A Banach space E 1is said to have Property (H) if the

following condition is satisfied:

(H) E 1is strictly convex. Moreover, if x converges weakly to X
and 11m||xn|| - ||xo|| , then x ~ converges strongly to X, - This

and many other equivalent properties in Banach spaces have been studied
by Fan and Glicksberg [15] . Hilbert spaces and uniformly convex Banach
spaces are examples of spaces satisfying Property (H) . Moreover, locally
uniformly convex Banach spaces (Lovaglia [25]) also satisfy Property (H) ,
see Lemma III.3 below. A Banach space satisfying Property (H) 1is not

necessarily reflexive, see [15] page 561.

Definition 2. A Banach space E is said to be locally uniformly convex

if for each given sequence "{xh} and a point x € E such that
(®) LS IRE S L)
(9) 1%, + =, 1| > 2|l

it follows that X converges strongly to X, . It is easy to see that
every uniformly convex Banach space is locally uniformly convex. Of

course the converse is not true, see Lovaglia [25].

Lemma III.3. Let E be a locally uniformly convex Banach space. Then

E gatisfies Property (H) .
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‘Remark. This result is proved in [15]. We give here a proof using the

*
duality mapping. We make the assumption that E is strictly convex in
order to have a single-valued mapping. The argument however works without

this extraneous assumption.

Proof of Lemma II11.3. 1°) E 18 strictly convex. Indeed, suppose

that this is not the case. So there are two distinct points x  and x;

such that

"Axo + Q- A)x1|| = “xo|| for all 0 ¢ g 1
The sequence X, = X4 n=1, 2, ... and the point X satisfy the
conditions (B) and (9) of Definition 2, but X does not converge
strongly to X - This contradicts the assumption that E 1is locally
uniformly convex.
2°) Let '{xn} be a sequencé in E which converges weakly to X and
|]xn|| > ”x0|| . Let J be the duality mapping in E with gauge
function u(t) = t . Then we have

2

(10) (x + %, Jxo) = (xn, Jxo) + (xo, Jxo) > 2||x0H
On the other hand

an G b x, ax) < llxg+x )l Haxll < lxg +x )l Ul

From (10) it follows that
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1im 1inf “xn + xdll 2 2 "xo||
This together with
Um sup ||x_ +x_|| < 2 ||x_||
implies that
U ||x, + x{] = 2|x || .

So conditions (B) and (9) of Definition 2 are satisfied. By local
uniform convexity it follows that X converges strongly to X, - That
is Property (H) is satisfied.

Now we prove the following continuity property of the duality

mapping.

Proposition III.5. Let E be a reflexive Banach space and E* its
dual space. Assume that E* has Property (H) . Then the duality mapping
J with a given gauge funcfion u_1s continuous from the strong topology
of E to the strong topology of E* .

Proof. Using Proposition III.4 we conclude that the duality mapping J

*
is continuous from the strong topology of E to the weak topology of E .

So 1if X > X then Jx -~ Jx (" »" denotes weak convergence) . We

claim that we actually have an >+ Jx . This follows using the fact that

*
E  satisfies Property (H) . Indeed, we already have Jx =~ Jx . Moreover
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foxall = wClixg 1) > wClixll) = Jlaxl]

because X, X The proof is complete.
Corollary III.4. Let E_be a reflexfve Banach space which has a locally

L *
uniformly convex dual space E . Then the duality mapping is continuous
from the strong topology of E to the strong topology of E. .

Proof. Use Proposition III.5 and Lemma III.3.

Corollary I1I.5. Any duality mapping in LP 2. 1 <p <=® 418 a homeo-

morphism between 1P and 19 . 9 =p/(p -1) .

Proof. Use Corollary III.3 and Corollary III.4.

Remark. A more general result than the one stated in the preceding

corollary holds true. Namely, let 1 ¢p <o and 1 ¢<r < «»; then the
P

- =1
mapping f -»-|f|r

f 1s a gomeomorphiem from LP onto LT . See
Bourbaki, "Intégration", Chap. IV, §6, Exercise 10.

Now ﬁe state a negative result about the weak continuity of the
duality mapping. By weak continuity we mean continuity from the weak

*
topology of E into the weak topology of E .

Proposition II1.6. Consider the Banach space Lp[0,1] for 1 <p <

P % 2. Then there exists no weakly continuous duality mapping J in X °

See the proof in Browder~deFigueiredo, [13] .

We remark that the duality mapping J 1in £, 1< p <+

defined by

IUE N = (g P2 )
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is weakly continuous.

AN APPLICATION TO FOURIER SERIES.

Now we give an application of the concept of duality mapping
to a problem in the theory of Fourier series. The result presented
here, Theorem III.8, is due to Beurling and Livingston (2].

Let f be an element of some Lebesgue space L? in the
interval [0, 27] , 1 < p < », The Fourier coefficlents of f are

defined by

Cn(f) = E% Jzﬂ einxf(x)dx
o
for n =0, +1, 42, ..., where £f(x) is any function in the equivalence
class defined by £ .
The following result is the well known Riesz-Fisher theorem. See
for example, Kolmogorov-Fomin "Elements of the Theory of Functions and

Functional Analysis", Vol II.

Theorem A. Let {an} , n=0, +1, +2, ..., be a sequence of numbers

such that

o

I olaf? <o

nN®—

Then there exists a unique element £ € L2[0,2ﬁ] such that cn(f) = a_

for all n.

This result implies the following theorem.
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Theorem B. Suppose that the set of all (positive and negative) integers

is partitioned in two non-empty distinct classes A and A' . Let

{an} , n=0,+l, 42, ..., be a sequence of numbers with the property

that there are two elements g and h in LZ[O,ZN] such that

cn(g) =a , n €A

cn(h) =a , n €A'

Then there exists a unique f €'L2[0,2n] such that cn(f) =a_ for

all n .
Theorem B above can be extended to the LP case. Namely

the follow result holds.

Theorem III.8. Suppose that the set of integers is partitioned in two

non-empty distinct classes A and A' . Let p be 1 <p < and

q = p/(p - 1) . Suppose that there is given a sequence of numbers {an} s
n=0, +1, +2, ..., with the property that there are two functions

g, ¢ LP(0,27] and h_ € L9[0,27] such that

cn(go) =a n €A
- 1
cn(ho) =a, n €A

Then there exists a unique fo € Lp[O,Zﬂ] suéh that
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cn(fo) =a n €A
cn(Jfo) =a_ n €A'

>

whire J 18 the duality mapping in Lp[O,Zw] with gauge function

sie) = eP71

This theorem will be proved here using the following result,

which is due to Browder [3], [11] .

Theorem II11.9. Let E be a reflexive strictly convex Banach space,

*
which has a strictly convex dual space E . Let V be a closed linear

subspace of E , and V° its annihilator, i.e.

* * *
ve = {x €E : (x ,x) = 0}, for all x €V

Let J be the duality mapping in E with given gauge function u .

*
Then, for every X € E and every Y, € E , the intersection

I, +V) NGy, + v

consists of precisely one point.

Proof. Let k : V> E be the inclusion mapping of V intec E . Let

us consider V with the induced topology. So the mapping k 1s con-
%* * * *

tinuous. Let k : E =V be the adjoint operator. The mapping k

is both continuous and weakly continuous. Now let us define the mapping

. *
T :V-~>V as follows
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*
(12) Tx = k [J(x + xo) - yo]

Since J 1is monotone (Proposition III.2) and continuous from the strong
*

topology of E to the weak topology of E (Proposition III.4) , it

follows that T has the same properties. On the other hand, for x ¢ V

we have

I

(Tx,x) (I + xo) - yo,x)

J(x + xo), x + xo) - (yo,x) - (Ji + xo), xo)

\'4

[+ x luClle 43 1) = Hy Il flxll = e flwCllx + 5 |1
From this estimate it follows immediately that (Tx,x)/ ||x|| > +« as
x|| -« . So, all the hyéotheses of Theorem III.1 are satisfied by
the operator T defined in (12). Applying that theorem we conclude that
T is surjective. So there exists a point x € V such that

K -0

[J(X+Xo) _Y0] = s

That is

& 1I(x + x) -y], V)= G&+x)-y, V) =0

for all v € V . This means that
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(o]
Jx + x) -y, €V,

i.e. the intersection J(V + xo) N + yo) is non-empty. Finally
we prove that this intersection consists of exactly one point. Suppose

that there are two points Xy and X, in this intersection. Then it

follows

(13) (J(x1 + xo) - J(x2 + xo), X, - xz) =

Using Proposition III.3, we conclude from (13) that X; =X

Before proving Theorem III.8 we state a very interesting

2 .

fact about Fourier series, which is due to Marcel Riesz [30].

Theorem C. Let f be an element in Lp[0,2n], 1l <p <o , Then the

Fourier series of f converges in the LP-norm to £ , i.e.,

|| - Zﬂg_N ¢ (£) I Lo

LP
ags N > 4o
Remark. For p = 2 this is a classical result which can be found in

the standard books on Fourler series. For p + 2 this theorem is
proved [30] using properties of the Hilbert transform. For p =1 the
result is false, see Zygmund's book on Tryonometric Series. We thank
John Horvath for supplying us with these refe;ences.

Now, Theorem C impiies the following result, which will be used

in the proof of Theorem III.S8.
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Lemma ITI.4. Suppose that the set of all integers is partitioned in

two distinct non-empty subgsets A and A' . Let V be the subset of

Lp[OAZn] s 1l <p <o , congisting of elements f such that

cn(f) = 0 for all n € A . Then the closure of the set of all finite

linear combinations of einx , n €A' , 1s precisely V .

.

Proof. 1°) First we observe that V 1is closed. This is a consequence

of the following estimate
(14) ey (8) = c @] s k||f - gl >

where k is a constant depending only on n . Estimate (14) is obtained
using Holder's inequality.

2°) Each function einx , for n €A' , belongs to V . This follows
from the fact that {einx} , n=20,+1, +2, ..., 1s an orthonormal set
in L2[O,2ﬂ] .

3°) Given any element f in V , its Fourier series contains only
terms of the form cn(f)einx for n € A' . Then, using Theorem C we

conclude that f 1is the limit in the Lp-norm of finite linear combina-

tions of einx , n €A' . So the lemma is proved.

Proof of Theorem III.8. We will apply Theorem III.9 with E = LP[0,2r] ~

l<p<wo ., 1Itis well known that Lp[O, 2r] , 1l <p <> , 18

reflexive and strictly convex. Let us denote by V the set

v = {g € LP[0,27] : c (g) =0, n €A} .
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Using Lemma III.4 we conclude that V 1s a closed subgpace and the

annihilator is the set
o _ q \ . . _ .
V' ={h €L*[0,2¢] : c,(h) =0, n€A")
It is immediate that
g, +V=1{g €LP[0,2r] : c_(g) =a_, n €A}
and.
oa q‘ 4 = ) L
ho +V {h € L[0,2n] : cn(h) a ,n €EA'} .
Now we use Theorem III.9 to conclude that the intersection
o
J(g, + V) ﬂ(ho+V)

consists of exactly one point. This means that there exists a unique

fo in 1P such that

cn(fo) =a, n €A
and

cn(Jfo) =a n €A

So the theorem is proved.
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CHAPTER IV

PROJECTIONAL METHODS

INTRODUCTION

This chapter is devoted to fixed point theorems for non-linear
mappings T : C » E defined in a closed convex set C of a Banach space.
We use projectional methods in a way very similar to Browder (see, for
example, [3]) and Petryshyn [15] . The material presented here has been
expounded by us in [7] and [8] . We find it convenient to introduce a
class of Banach spaces, see Section 1 , and a class of nonlinear opera-

tors, see Section 3 .

1. BANACH SPACES WITH PROPERTY (r,)

This section is primarily devoted to the study of a certain
class of Banach spaces, namely the ones with Property (ﬂk) . See Defini-
tion 1 below. These spaces have been introduced by deFigueiredo [6] in
the study of fixed points for weakly continuous non-linear mappings in
Banach spaces. (See also Section 4 of this chapter) We learned later
that Lindenstrauss had considered such spaces in [11] . The class of
Banach spaces with Property (ﬂk) even for k =1, seems rather large.
We show here that most of the standard Banach spaces have such a property:
Moreover, we do not know whether there is a Banach space which does not

have Property (nl)

Definition 1. A Banach space E 1s said to have Property (nk) , for

some fixed k 3 1, 1f there exists a collection of finite dimensional

subspaces F, , o € A , such that :
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(1) The collection ‘{F&} is directed by inclusion. That 1s, given
any two elements Fa and FB in this collection, there exists
a third one which contains both.

(11) The union of all Fa s a €A, 1is dense in E .

(111) Each Fa is the range of a continuous projection Pa of norm

< k (By projection we mean a linear operator P : E - E which

is idempotent, P2 =P .

Remark 1. In the previous definition, the Banach space E 1is not
necessarily separable. If a separable Banach space has Property (ﬂk) s
then the index family A can be taken as the set of all positive
integers. So, in this case, the collection '{Fu} is a linearly

ordered set.

Examples. 1) Hilbert spaces have property (ﬂl) . Indeed, we take
for ‘{Fa} the collection of all finite dimensional subspaces, and for
P, the orthogonal projection.

2) Banach spaces with a Schauder basis have Property (ﬂk) . See
Proposition A below.

3) Banach spaces with a monotone Schauder basis have Property (wl) .
See Remark 4 .

4) Let (X,S,u) be a o-finite measure space. Let 1 § p < = , The
space LP(X,S,u) has Property (ﬂl) . See Proposition IV.2.

5) Let X be a compact metric space. The space C(X) of real-valued

continuous functions in X , with the norm of the supremum, has Property

(m) . See Proposition IV.3.
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o

Definition 2. A sequence {xn}n=1

in a Banach space E 1is saild to be

a Schauder bagis for E 1if, for each x € E , there exists a unique

n
sequence of numbers a, ,n 1, 2, ... , such that Zj=l ajxj converges

strongly to x, as N « .

Remark 1. For each n , the mapping x - un(x) =a 1s a linear
functional in E . It is an immediate consequence of Proposition A below

that Gg is a continuous functional.

Proposition A. Let E be a Banach space with a Schauder basis '{xn}

Then, for each n , the mapping Pn ¢t E» E defined by

n
an = zj=l 0Lj(x)xj

is a continuous projection. Moreover, there exists a number k > O such

that

T2 ll <k

for every n .

A proof of this proposition can be found in the book of Goffman

and Pedrick, "First course in Functional Analysis", page 102.

Remark 2. For each n , 1t can be easily seen that the nullspace

N(Pn) of the projection Pn coincides with the set of all elements of

(x)x, . By Proposition A it follows that N(Pn)

the form x =

Lyeng1 @3 00%s

is closed. Consequently, the closure of the linear subspace generated DY

114



X410 Xogo s oo is also N(Pn) . Let us use the following notation:

R() =F , NP) =G and Q =I-P .

Remark 3. A metric question about the projection Pn is as follows.
Is an an element of Fn which is closest to x ? Same question for
an and Gn . Before giving an answer to this question, we note that,
as a consequence of the finite d;mensionality of Fn s 1t follows that
there exists at least one point in Fn which is closest to a given
point x € E . That is, given an element x in E , the following

set is non-empty.

(1) BFn(X) = (¥, € F, : lx - yOH = :Lnfyan”x -yl } .

Now the answer to the above question i1s as follows. In general, the set

BF (x)  does not contain the point an . However, Nikolsky [14] has
n

proved that, given a Banach space with a Schauder basis, there exists

an equivalent norm such that, with respect to this new norm, we have

BF (x) = {an} and BG (x) ='{an} .
n n

where { } denotes a set with a single element and BG is defined in
n

a similar way to BF . Recently, Rutherford [17] has considered this
n

problem for Banach spaces with an unconditional basis (see definition in

Day's book, '"Normed Linear Spaces').

Examples. 1) 1In CO and &P s p2 1, the sequence

{e.} ={0, ..., 0, 1, O, ...} 1s a Schauder basis. In this case
n
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'Gn(E) = an({El, Egs oo H = £y

2) In C[0,1] a Schauder basis has been constructed by Schauder [20]
himself. See also Day's book "Normed Linear Spaces".

3) The Haar system (see the book by Goffman and Pedrick, page 194) is

a Schauder basis for Lp[0,1] s, 1< p<o. See Schauder [21]

Definition 3. A Schauder baéis\'{xn}zgl for a Banach space E is

said to be monotone 1f, for every x € E, we have

D COEN BEIEY

for all n=1, 2, ... .

Remark 4. Let E be a Banach space with a monotone Schauder basis
{xn}:=1 By Proposition A it follows that the mappings

n
an = zj=l aj(x)xj are continuous projections and lIPn|| < k . However
in view of the monotonicity of the basis we have ||Pn|| =1 for all n .

This shows that a Banach space with a monotone Schauder basis has

Property (wl)

Remark 5. The Schauder bases of Examples 1 and 2 above are monotone.

@«

Remark 6. Let E be a Banach space with a Schauder basis {xn}n=1 .

The following expression defines a new norm in E

lIxl| * = sup |[2x]|
n

it can be proved (see the book of Goffman and Pedrick, page 102) that
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the two norms || || and || ||' are equivalent and that, with respect
to this new norm, the basis '{xn}:=1 is monotone.
The following result, according to Bessaga [24], is due to

Mazur. See also Michael and Pelczynsky [13] .

Proposition IV.1. Let E be a Banach space, and Pn , n=1, 2, ...

projections in E such that

(1) ]]Pn|| =1 ,n=1,2, ... .

(ii) The range R(Pn) = En of .Pn has dimension n .

C
(ii1) For every n , En En+l .

(iv) The union of all subspaces E_ 1s dense in E .

Then E has a monotone Schauder basis.

Remark 7. We emphasize the fact that we do not require that the projec-
tions of the above proposition be compatible. That is, we do not have

necessarily Pij =P, for k> j . If in addition to the hypotheses of

3
Proposition IV.1 , we assume that the projections are compatible, the
result could be proved very easily.

The proof of Proposition IV.1 uses the following result of

Nikolsky [14] .

Lemma IV.1. Let {en} be a sequence in a Banach space E , such that

the linear subspace generated by the elements of this sequence is dense

in E . Assume that, for all positive integers m and n and for all

scalars 11 s eres Apyn » WE have

mn '
(*) l|2?;1 Ajejll S |IZj=1 Ajej“
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Then {e } 1is a Schauder basis for E .
) 1

Proof of Proposition IV.l. We define a sequence ‘{en} in E as

follows. e is a vector in E1 with unit norm. The nullspace of the

projection Pl restricted to E2 is a one-dimensional subspace; let

e, be a vector in this subspace. We proceed by induction. The null-
space of the projection Pn restricted to En+1 is a one-dimensional

subspace; let e be a vector in this subpsace. We claim that {en}

n+1

so constructed is a monotone Schauder basis. Indeed let X,, ..., A

1 n+l

be arbitrary scalars. Then
1
TS0 Ayeyll > e Q5 Apepll = W g 2yl

By induction we have

for all positive integers m and n . Using Lemma V.1 the result

follows.

The following result 1s due to R. Beals (see Browder and

deFigueiredo [5]).

Proposition IV.2. Let (X,S,u) be a measure space with a o-finite

measure u . Then for any p, 1 g£p<>, the Lebesgue space

Lp(X,S,u) has Property (nl)

Proof. 1°) Let {S Sr} be any finite family of disjoint sets

1>
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of S with finite measure. Let xj be the characteristic function of

Sj sy J=1, «.., r . We consider the finite dimensional subspace F

of LP generated by the functions X9 sees Xy oo Let P be a projec-

tion over F defined by

r _1
P Ly a‘@—)U f“ﬂ X3
3 Sy

2°) We prove that the projection P has norm 1 . Indeed,

P
pe|| P = J 't ——l———"J , fdu‘ X, d
| P Jx Zj 1 U(Sj)p S e

1-p. -|P
=5, u(s) P 'J fdul
3=1 M 3

By Holder's inequality
1-p
£]|P_ < ¥ S J
(2) || IILP £ Ejgl u( j) L g

= Z§=1 IS |£]P du
]

From (2) it clearly follows that

pe|| P sj €P au = |l£[P .
lesh?, < | ’

This implies that ||P]] = 1 .

3°) Finally we observe that the union of all subsets F (corresponding
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to all possible choices of disjoint measurable subsets § S,

1’ ..., r
with r=1, 2, ..., 1s dense in L? . This is a consequence of the
fact that any f 1in LP can be approximated in the LP-norm by simple

functions.

The following result is due to Michael and Pelczynsky [12].

Proposition IV.3. Let X be a compact metric space, and C(X) the

Banach space of the real-valued continuous functions in X . Then

C(X) has Property (ﬂl) .

Remark B. The proof of this proposition uses the Interesting notion
of "peaked" partition of unit. In [13] Michael and Pelczynsky show

that C(X) has a monotone Schauder basis.

2. DUALITY MAPPING IN BANACH SPACES WITH PROPERTY (ﬂl) .

Let E be a Banach space with Property (ﬂl) ,» see defini-
tion in Section 1 of this Chapter. Let us denote by E* its dual space.
Let {F } and '{Pa} be the finite dimensional subspaces and the pro-
jections (with norm 1) which are associated with E . For each o € A,
the adjoint operator P: : E* - E* is a projection in E* also with

norm 1 . ¥r any subspace M of E , we denote by M° the annihilator

of M, that is, the set

*
M° = {y* € E* : {y ,x) =0 for all x €M} .

It is easy to see that
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RE)) = NE)® and NG - R )°

Let y(r) be some given gauge function, see Section III.7.

*
Then there exists a unique multi-valued duality mapping J : E » 2E
with gauge function u(r) , as defined in that section. We now estab-

lish some simple results about the way J acts on the subspaces Fa

Proposition IV.4. Let E be a Banach space with Property (wl) .

Let J be the duality mapping in E with a given pauge function

Then, for every x € Fa , the following inclusion holds

%
Pa (Jx) C Jx

*
Proof. Let y' € Jx . We prove that Pay' € Jx . In fact, we first

have
*
(1) (B y'»x) = (v,Bx) = (v'5x) = [ly'|| x|
* *
From (1) it follows |y'|| < ”Pay'” - Since P has norm 1 we
*
conclude that ||P:y'|] = ||y'|l . This gives !|Pay'” = u(|x|]) -

*
And this together with (1) shows that Pay' is an element of the set

Jx .

Corollary 1IV.1. In addition to the hypotheses of Proposition IV.4

* *
assume that E is strictly convex. Then P Jx = Jx .

Proof. The proof follows immediately from the fact that the additional
hypothesis implies that the set Jx consists of exactly one point
(Proposition III.1).
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*

‘Remark. This corollary shows that, when E 1is strictly convex, the
*

duality mapping maps F into the finite dimensional subspace R(Pa)

If in addition the Banach space E 1is reflexive, it follows from the

*
next proposition that the duality mapping actually maps Fu onto R(Pa)

Proposition IV.5. Let E be a reflexive Banach space with Property

(wl) . Let J be the duality‘ﬁapping in E with a given gauge func-

tion u . Then, for every a € A , the following inclusion holds

*
R(Pa) C_J(Fa) .

*
Proof. Let y'¢€ R(Pa) . By the generalized Beurling Livingston

theorem (see Browder [4]) it follows that the intersection
* t
JE) NINE) +3'1 ¢ ¢

*
Thus let x € F and z' E’N(Pa) such that z' +y' € Jx . From
*
this it follows that Pa(z' +y') =y' € Jx , 1in view of Proposition

IV.4. The proof is complete.

3. FIXED POINT THEOREMS FOR FINITE DIMENSIONAL MAPPINGS

In this section we consider the question of the existence of
fixed points for continuous mappings in finite dimensional Banach spaces-
Let § be a bounded open subset of a finite dimensional Banach space E »
and ( 1ts closure. We consider continuous mappings T : Q > E, whose

range may contain points outside of Q . We shall prove two theorems on
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the existence of fixed points for such mappings. the first one,

Theorem IV.1 ; concerns continuous mappings T defined in a ball about
the origin. In this case, the proof of the exigtence of a fixed point
uses the Brouwer fixed point theorem. The second result, Theorem IV.2 ,
concerns continuous mappings T defined in a general bounded closed

set &, and it i1s an extension of Theorem IV.1 . In this case the

tool used in the proof is the Brouwer degree theory.

Theorem A. Existence and Properties of the Brouwer degree). Let @

be a bounded open set in the Euclidean n-dimensional space R" R

Q its closure and 9Q dits boundary. Then, for each continuous mapping

T : § - Rn and each point 2z not in the image T(@@) , there is defined

an integer deglT;0,z] , which is called the Brouwer degree. Moreover,

the Brouwer degree has the following properties.

(1) deg[I:0,2z] =1, where I 1s the identity mapping, Ix = x for

all x € Q .

(11) If deg[T;R,z] # 0 , then there exists at least one x €8 such

that Tx =z .

(ii1) Let A be some closed interval in Rl . Let F:@axA->R"

n
be a continuous function, and z some given point in R~ such

that z + F(x,t) for all x € 30 and all t € A . Let us denote

by Ft : Q> R® the mapping defined by Ft(x) = F(x,t) , for

each fixed T € A . Then the degree deg[Ft;ﬁ, z] 1is constant

for t €A .

Remark. There are many nice presentations of the Brouwer degree theory.

We think the reader will enjoy the elegant exposition of E. Heinz {9]
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- Corollary A. (Brouwer Fixed Roint Theorem). Let T : B, >B; hea

continuous mapping of the unit ball Bl' about the origin in R" into

itself. Then T has a fixed point.

Proof. Consider the mapping F : B1 x [0,1] ~ R" defined by
F(x,t) = x - tTx

This function is obviously continuous. We may assume that, for x € 9B,
and t =1, we have F(x,1) # 0 . (For otherwise there would exist
a fixed point of T and the theorem would be proved). Furthermore for

x €3B, and 0 ¢ t <1 we have

1

e, )| = |lx]| -t |Tx]] s1-¢t>0.

So the conditions of Theorem A , part (iii), are satisfied. Then

deg F, = deg Fo . Since Fo = jdentity mapping, we obtain, applying

1
Theorem A, parts (i) and (1i1) , that there exists X € int Bo such

that x - Tx =0 .
o o

Remark 1. It is immediate that Brouwer fixed point theorem holds for
any topological space homeomorphic to the unit ball B1 of R® . 1In
particular, it holds for the clesure of any open convex set in R" .

Consequently, the following result follows.

"Let E be a finite dimensional Banach space, and B a ball
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the origin in E . Then every continuous mapping T : B » B has a fixed

point in B".

Remark 2. The above result, Corollary A , was proved by Brouwer
[Math. Ann. 69(1910), pp. 176-180] . However the result had been
previously obtained by Poincaré [Joﬁrnal de Math. 1886] and Bohl
[Journal fur die reine und angewandte Math. 127 (1904), pp. 179-276.
In fact, the following result is proved by Bohl. "Let K be the
| £ X

n-dimensional rectangle -a i=1, ... n. Let

1 $% S35,

" be a continuous function defined in K , such that Tx 4 0

T: K>R
for all x € K. Then there exists a point X, on the boundary 3K
of K such that Txo = Axo where ) 1s some negative number." It
is easy to see that this result is equivalent to Brouwer fixed point

theorem.

Remark 3. A proof of the Brouwer fixed point, without the notion
of degree of a mapping, can be found in the book of Dunford-Schwartz,

Linear Operators, Part I , pp. 467-470.

Theorem IV.1l. Let E be a finite dimensional Banach space,

B= {x : lIxIJ“ £ rl and 9B = {x : |lx|| =r}. Let T:B+E bea

continuous mappiné defiﬁed'in B , which satisfies the following

condition
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(*) Tx - Ax $ 0 for all x €3B and all A > 1 .

Then T has a fixed point in B .

Remark. The proof below i1llustrates the use of the Brouwer fixed
point theorem. The next theorem, Theorem IV.2 , could be reduced
to Theorem IV.1l. We have preferred to give a separate proof of it,

so as to i1llustrate the use of the degree of a mapping.

Proof of Theorem IV.l. We define a new mapping Tl : B+ B as follows

x, 4if |ltx|| <«
rTx/ ||Tx|| , 1f ||Tx|| 2 r

This new mapping T1 is continuous, and so, by the Brouwer Fixed Point

Theorem, it follows that it has a fixed point Tlxo =X . We claim

that X is also a fixed point of T . In fact, there are two possibil-

ities.

(1) x  is in the interior of B . 1In this case, it follows immediatel¥
that Tx_ = T;x =x , i.e., x is a fixed point of T .

(ii) X is in the boundary of B . In this case, it follows from the
definition of T1 that Txo = (||Tx0H/r)x0 . This implies, in

view of hypothesis (*) , that |ITx0||/r ¢ 1 . This together with
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the fact that r S'||Txo|| gives r/||Txo|| =1. Thus Tx_=x_ also

in this second case. The theorem is proved.

Theorem IV.2. Let  be a bounded open subset of a finite dimensional

Banach space E . Assume that 0 € Q. Let T : Q - E be a continuous

mapping defined in the closure § of O . Let 39 denote the boundary

of @ , and suppose that

(*) Tx - Ax %0, forall A >1 and all x €3Q

Then T has a fixed point in Q .

Remark. We give below a proof for the case E = Rp_. The general

cagse follows immediately from this speclal case.

Proof. A fixed point of T 18 a solution of the equation (I - T)x =0 .

Let us consider the mappings
Ta =a(I-T)+ (1 -a)I=1=4aT ,

for 0 < a< 1. It is clear that the mapping F : [0,1] x Q + E defined
by F(a,x) = Tax i8 continuous. We can assume that Tlx $# 0 for all

x €30 . Tor, otherwise, T would have a fixed point in { , and the
theorem would be proved. Furthermore, assumption (*) implies that

T,x $ 0 for all x €930 and all o such that 0<a < 1. So

Tax + 0 for all x € 3Q and all o € [0,1] . By Theorem A it follows
that deg[Ta;ﬁ,O] is constant. Since the degree of T0 =1 is 1,
(Theorem A), we obtain that the degree of T1 = T - T 1is also 1 . Usiag

Theorem A again we obtain that there exists x € & such that (I - T)x

The theorem is proved.
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Remark. Condition (*) will be fulfilled if, for every x € 3Q

: *
there exists a continuous linear functional v; v; €E

s such that

(Tx,v;) < (x,v;) and 0 < (x,v;) .

4. GALERKIN APPROXIMABLE OPERATORS.

In this section we introduce a large class of non-linear
operators defined in Banach spaces with Property (ﬂk) . We have called
[7] them Galerkin approximable operators, or for short G-operators.

We show that compact operators, weakly continuous operators and P-compact

operators, among others are all G-operators.

Definition 1. Let C be a closed convex subset of a Banach space E

with Property (ﬂk) . An operator T : C > E 1is said to be Galerkin

approximable, (or for short a G-operator) if

1) PaT : C ﬁFu +’Fa is continuous for all but a finite number of
a € A,
(11) T has a fixed point in C whenever there exist x € F,» for
all but a finite number of a's , such that g Txa =X and
||xa|] £ R for some positive R independent of o .
Now we proceed to establish that the class of G-operators is

indeed a large one. 1In fact, it contains most of the standard non-linear

operators. To fix our terminology, let us give some definitioms.

Definition 2. A mapping T ¢: C > F from a closed convex subset C of

a Banach space E into another Banach space F 1is said to be compact
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if it is continuous and maps bounded sets into relatively compact sets.

These operators are called completely continuous by Vainberg [23].

Definition 3. A mapping T : C > F from a closed convex subset C
of a Banach space E into another Banach space F 1is said to be com-

pletely continuous if it takes each weakly convergent sequence into a

strongly convergent sequence. These operators are called strongly con-

tinuous by Vainberg [23].

Remark. The two classes of mappings just defined are not comparable.
That is, neither one is contained in the other. This is shown by the
two examples beléw. However, 1f the Banach space E 1s reflexive or
the mapping T is linear, then one can prove some relations between

these classes, Propositions IV.6 and IV.7.

Example 1, (Example of a compact mapping which is not completely

continuous). We learned this example from F.E. Browder. Another example

may be found in Vainberg's book [23], page 14. Let mz be the Hilbert

space of the infinite sequences {51, 52, ++..} of real numbers such that

Z:=l [Ejlz <o, Let T: 22 -+ 22 be the mapping in 22 defined as

follows,
Tx = {p(x), 0, ...}
2 1
where p : 2~ =+ R~ 1s defined by

1- |1x]1% 15 x]l <1
p(x) = .
0 1f x| > 1
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It is immediate that T is compact. On the other hand, T 1is not
completely continuous. Indeed, if we have x T X and Txn + Tx ,
it will follow uxn|| > ‘|x|| . It is well known that, in Hilbert
spaces, the two facts x - x and llxn“ + ||x|| imply X >x .
Since there are weakly convergent subsequences which do not converge

strongly, it follows that T cannot be completely continuous.

Example 2. (Example of a completely continuous mapping which is not

compact) . (Cf. Vainberg's book [23].) Let T : C[-m,m] > LZ[-ﬂ,ﬁ]
be the identity mapping, Tf = f , for all f € C[-m,n] . The mapping

o<

T 1s not compact. In fact, the sequence {sin jt}jm1 is bounded in

2
C[-m,m] , but has no convergent subsequence in L"[-m,n] . For

||sin jt - sin ktl] g =2m, for j k.
L

On the other hand, let {fn(t)} be a sequence in C[0,1] which con-
verges weakly to some continuous function f£(t) . This implies that

the sequence {fn(t)} is uniformly bounded and converges pointwisely
to f(t) . Applying the Bounded Convergence Theorem (see any book in

measure theory) , we obtain that
m 2
J |£ () - £(t)|“dt +~ 0 .
-7

This proves that T 1is completely continuous.

Proposition IV.6. Let E and F be Banach'spaces. In addition supposé

that E 1s reflexive. Let C be a closed convex subset of E . Then

every completely continuous operator T: C~+F 1is also compact.

130



Proof. Let '{xﬁ} be a sequence such that X, *Xx . Then, a fortiori,
Xx ~x. (">" denotes weak convergence). Since T 1is completely
continuous, it follows Txn *Tx . So T 1is a continuous mapping. Now
let B be a bounded set in E ; we want to prove that every sequence
{Txn} » x €B M C , contains a strongly convergent subsequence. This
1s however immediate, for the reflexivity of E dimplies that {xn}
contains a weakly convergent subsequence. Since T 1is completely con-

tinuous, this subsequence goes in a strongly convergent subsequence

of {Tx } .
n

Proposition IV.7. Let T be a linear mapping from a Banach space E

into another Banach space F . Then, if T 1is compact, it follows that

T 1is completely continuous.

Proof. Given xn - x , we claim that Txn > Tx . Since T 1is a
linear continuous mapping we have that Txn -~ Ix . So to prove our

claim it suffices to show that every subsequence of Txn contains a
further subsequence which converges. However this is immediate because

the sequence X is bounded and T 1is compact.

Corollary IV.,2. For linear mappings from a reflexive Banach space into

a (not necessarily reflexive) Banach space the two concepts, compactness

and complete continuity, coincide.

Theorem IV.3 . Let C be a closed convex subset of a Banach space E

with Property (m) . Let T : C > E be a compact operator defined in

C. Then T is a G-operator.

Proof. 1°) It is immediate that P T is continuous for all o .
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.2°)  Let By be a ball of radius R about the origin. We prove that

for every positive integer n there is an index a(n) € A with the

following property: given z € T(C F\BR) we have an element z ¢ Fu(n)

such that Ilz - znll < 1/n . Indeed, using the fact that T(C F\BR) is
relatively compact we can find points Xyp soes X in E such that the
balls B(xj) of radius 1/2n about these points cover T(C (WBR) .
Since the union of all Fa is dense in E we can find subspaces

F s j=1, ..., m , such that each Fa intersects the ball B(xj)
h| h|
By the fact that the collection '{Fa} is directed, it follows that there

exists a subspace Fa(n) in this collection which containg the subspaces

F s «ees F o Now let 2z be an arbitrary point in T(C f\BR) . It
1 m

follows that 2z belongs to some ball B(x,), that is

3

(1) ||z - xj|| < 1/2n .

On the other hand since Fa(n) intersects B(xj) we have for a point

z € Fa(n) N B(xj)
2) 12y - %1l < /20 .

Inequalities (1) and (2) gives ||z - znll < 1/n, as we have claimed.

'3°) Now let us assume that, for all but a finite number of 4's , there

are x € TF such that PaTxa =x and ||xa|| < R . So there exists
a

a a

an integer n, such that, for all n 3 n_ ., we have

ain)

(3) Pa(n)Txn =X x = xa(n) €F
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where Fa(n) are the subspaces defined in 2°.

Since the sequence '{xn} is bounded and T 1is compact, it
follows that Txn contains a strongly convergent subsequence. To keep
notation simple we assume that Txn >y .
4°)  Now we claim that Pa(n)Txn >y . To prove this we first observe

that, for all x € E and a}l z E.Fa(n) » Wwe have
(4) % = Byegyxll s @410 flx - 2] .

By the triangle inequality and the fact that all projections involved

are uniformly bounded by k , we obtain

(5) ”Pa(n)Txn - Y“ £ k”Txn - Txm” + ”Pa(n)Txm = Txm” + ”Txm - Y”

Since Txn +y , we have that the first and last terms in the right hand
side of (5) can be made small. To estimate the middle term we use Part 2°
of this proof and (4). We then conclude that Pa(n)Txn >y .

5°) Thus, in view of (3), we have that X, Y . Since T 41is continuous
we have that Tx = Ty . This together with the conclusion of 3° gives

Ty = y . The theorem is proved.

Corollary IV.3. Let C_ be a closed convex subset of a reflexive Banach

space with Property (ﬁk) . Let T : C-=> E be a completely continuous

‘operator defined in C . Then T 1is a G-operator.

Proof. Consequence of Theorem IV.3 and Propdsition Iv.6.
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‘Definition 4.  (Petryshyn [15]) Let E be a separable Banach space

with Property (wk) . Amapping T : E » E 1is said to be projectionally
compact (or for short P;édmﬁact) if

(1) PnT is continuous for all but a finite number of n's .

(11) Every bounded sequence '{xh} » X € Fn , such that the sequence
'{PnTxn - pxn} (for some p > 0) converges strongly, contains a subse-
quence ‘{xn(j)} which converges strongly to some point x € E and

Pn(j)Txn(j) > Tx as n(j) » =,

Remark. This notion was introduced by Petryshyn in [15] , where he
considered the case of bounded mappings, i.e., operators mapping bounded
sets in E 1into bounded sets in E . The general case of a (not neces-
sarily bounded) P-compact mapping was discussed also by Petryshyn in

[16] . The concept of P-compact mapping evolved from the notion of a
quasi-compact mapping due to’Kaniel [10] . 1In [15] it is proved that
every quasi-compact mapping 1s also P-compact. Furthermore the following

two results (Petryshyn [15]) hold.

Proposition IV.8. Let E be a separable Banach space with Property (nk) ‘

—

Then every compact mapping T : E+ E is also P-compact.

Proof. The continuity of PAT for all n 1is immediate. Now let {xn} ’

X € F o be a bounded sequence and p > 0 such that
(1) PIx -px, >V

where y 1is some point in E . Since T 1s compact i1t follows that tner®
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exists a subsequence '{Txn(ji} whith,convérges strongly. This implies

that Pn(j)Txn(j) also converges strongly. From (1) it then follows

that there exists a point x € E guch that

(2) xn(j) + x

Since T 1s continuous, we obtain from (2) that Txn(j) -+ Tx . Conse-

quently Pn(j)Txﬂ(J) +Tx . Thus T 1s a P-compact operator.

Definition. Let E and F be two Banach spaces. A mapping T: E->F

is said to be demicontinuous if it is continuous from the strong topology

of E to the weak topology of F .

Proposition IV.9. Let H be a separable Hilbert space, and let H be

an_increasing sequence of finite dimensional subspaces of H , whose

union is dense in H . Let Pn be the orthogonal projection over Hn .

Let T : H->H be a bounded demicontinuous monotone mapping in H .

Then the mapping -T 4is P-compact.

Proof. Let {xn} be a bounded sequence in H and p > 0 such that

x €H and
n n
(3) PnTxn + pxn >y

where y 1is some point in H . Since H 1s a Hilbert space we may
assume that X -~ x . We claim that X »+ x .and PnTxn + Tx , that is,

~T is P-compact. We first prove that y = (T + p)x . Let z be an
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~arbitrary point in H . Then for n 2 n we have that
0

(T + p)xn - (T + plz, X - z) 20

implies

(Pn(T + p)xn - Pn(T + plz , x - z) » 0

Taking limits in this last inequality we have

(4) (y - (T+plz, x=-2)20
Now we observe that (4) holds for every z € LJ:=1En . Since this set

is dense in E and T 1is demicontinuous, it follows that (4) holds
for every z in E . Take im (4) =z = x + tv , where v {is an arbi-

trary vector in E and t > 0 . After simplification, we obtain
(y-(T+p)x+tv), v) 0.

Taking limits and using the fact that T 1s demicontinuous one gets
(y - (T+0p)x, v) 2 0 for all v € E . This then implies that

y = (T + p)x . Now using the monotonicity of T we have
P Hxn - x||2§:((T + p)xn - (T +p)x, X - x)
= (Pn(T + p)xn, xn) + ((T + p)x,x) - ((T + p)X, xn)
- (Pn(T + p)xn,x) - ((T + p)xn,(I - Pn)x)
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Taking limits and using the fact that T 1{s bounded we conclude that
) o .
P lnm|lx - x||” s (7,x) + (T + p)x,x) = (T + pI)x,%) = (7,x) = 0

So x > x . Then PnTxn >y -px=(T+p)x~-px="Tx. This proves

that -T 1s P-compact. The proposition is proved.

Theorem IV.4. Let C be a closed convex subset of a separable Banach

space E with Property (nk) + Then every P-compact operator

T : C+E is also a G-operator.

Proof. We assume that, for all but a finite number of n's s there
exists x € F_ such that P Tx = x_ and le I] £ R . We shall prove
n n n'n  “n n

that there exists x € C such that Tx = x . This together with the
fact that PnT is continuous by hypothesis proves that T 1is a G-operator.
We have PnTxn -x = 0O . Using the fact that T d1s P-compact we obtain

a subsequence {x ¢ .} such that

n(j)

(*) N N
xn(j) X and Pn(j)Txn(j) Tx ,

where x 1s some point in C . From (*) it follows that

xn(j) + x and xn(j) > Tx ,

This implies that x = Tx . Thus T is a G-operator.

Definition. Let E and F be two Banach spaces. A mapping T : E > F
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is said to be weakly continuous if it is continuous from the weak topology

of E to the weak topology of F .

Theorem IV.5. Let C be a closed convex subset of a reflexive Banach

space E with Property (nl) . Assume that the dual space E* is

strictly convex. Then every weakly continuous mapping T : C + E is

also a G-operator.

Remark. The above theorem provides an example of a G-operator which is

not necessarily P-compact.
We shall need the following result to prove Theorem IV.5.

Lemma IV.2. Let E be a reflexive Banach space with Property (nk) >

® * * *
and E its dual space. Let Pa t E - E be the adjoint of the

* *
projection P, & € A . Let us denote by R(POl ) the range of P .

* . *
Then the union of all R(Pa) sy, o €A, 1s weakly dense in E .

. *
Proof. It suffices to prove that, for each y' € E , the set

{P;y'}a €A has y' as one of its weak accumulation points. Indeed,

given € >0 and x € E, we know that there exists a sequence

{a(n)} CA
1B, () = x|| s €.
and then it follows

* '
[y = ¥ x| = [ R yx - ® < eyl
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Lemma IV.3. Let E be a reflexive Banach space with Property (m) ,

— . — : —e :
and E - its dual space. Let J be a duality mapping with given gauge

function u . Then the union of all sets J(Fa) » o €A 1s weakly dense

%
in E .

Proof. Immediate consequence of Lemma IV.2 and Proposition IV.5.

Remark. The following result can be proved as a consequence of Proposi-
tions III.2 and III.4. "Let E be a reflexive Banach space with a
strictly convex dual space E* . Let ‘{Fa} be a collection of subspaces
whose unjon is dense in E . Then the uqion of all sets J(Fa) is

*
weakly dense in E ."

Proof of Theorem IV.5. For all a €A, the continuity of PT in F

is immediate. Let us suppose now that, for all but a finite number

a € A, there exists x € F such that P Tx = x_ and = || «Rr.
a a a Ta a o

For each e € A (except, of course, the a's for which PaTx = x is

not solvable) define

ch = weak closure of UFOP Fq {xa} .

(o]

These sets Vu are weakly compact in virtue of the reflexivity of E .
o

It 18 immediate that the collection {Va} s o €A , has the finite

intersection property. Consequently the intersection (\a €A Va is

non-empty. Let x be a point in this intersection. We claim that

Tx = x . Let 2z be a point in Fa « In view of the construction of
o

x , it follows that there exists a sequence {xa(n)} in Va such that
)
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By the weak continuity of T we have
Txa(n) ~Tx .

So
(1) (Txa(n) - xa(n),Jz) + (Tx - x,Jz) .

Since z € Fa(n) for all a(n) , we have using Corollary IV.1 that
* .

Pa(n)Jz = Jz . Thus

(2) (Txa(n) - xa(n),Jz) = (Pa(n)Txa(n) - xa(n),Jz) =Q .
From (1) and (2) follows that
(Tx - x,Jz) = 0

for all =z €‘Fu . By Lemma IV.3 we conclude that Tx =x . So T 1is
a G-operator.
The next example of a G-operator was discussed in a paper by

" Browder and deFigueiredo [5] .

Definition. Let E be a Banach space with a strictly convex dual space

N
E* . Let J : E~+E the duality mapping in E with gauge function

u(r) . (See Section 7 of Chapter IIT). A mapping A : E > E is said to
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be J-monotone if

(Ax - Ay, J(x -y)) 3 0

for all x,y € E .

Example. If T: E—+>E is a non-expansive mapping in some Banach space

E , then the mapping I - T 1s J-monotone.

Theorem IV.6. Let E be a reflexive Banach space with Property (nl)

%
Assume that the dual gpace E of E ig strictly convex. Let J : E . E*
be a duality mapping in E which is supposed to be continuous and weakly

continuous. Let A : E *E be a J-monotone demicontinuous mapping in

E. Then T =1 - A 18 a G-operator.

Proof. 1°) The continuity of P,T in F_ 1is immediate. Now suppose

that, for all but a finite number of a's , there is X, € F_ such that

PaTxa = X, and "xa“ € R . For each a € A define the set
vV, = weak closure of U FSF {xu} .
0 A ao

Since '{xa}‘C:BR and E 1is reflexive, it follows that each v, 1is
‘ o

weakly compact. The collection '{Vd} » & €A | has the finite inter-
section property. So there exists a point x 1in the intersection of

all v . We prove that Tx =x , {.e., T 18 a G-operator.
o

2°) Llet v be an arbitrary point in F, . For every @ such that
o

F DF we have by J-monotonicity
a a,
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A EH) (Av - Axa, J(v - xa)) >0 .

%*
Since v - X € Fa we have using Corollary IVW.1 P J(v - x ) = J(v - x ) -
a a a

This implies
(2) (Axa, J(v - xa)) = (Pana, J(v - xu)) =0 ,
From (1) and (2) it follows

(3) (Av, J(v - x)) 3 0

for all X, € Fa :)Fa . Since x € Va and J 1is weakly continuous
o o

we obtain from (3)
(4) (Av, J(v - %)) 3 0.

Now observe that (4) holds for every v € Fa . Since the union of all
F. 1is dense in E , given u € E there exists a sequence v_ € F

o n a(n)
such that v, o>u. The demicontinuity of A implies Avn -~ Au . The
continuity of J dimplies J(vn - x) » J(u - x) . Since (4) holds for

every v_ , it then follows
- (5) (Au, J(u-x)) 2 0

for all u € E .

3°) Now let w be an arbitrary point in E and t > 0 . Using (5)
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with u = x + tw we obtain
(6) A+ tw), J@&w)) 20 .

From results of Section 7 of Chapter IIT we have that J(ﬁw) = B(t)T(w)

where B(t) 1s some positive function of t . So it follows from (6) :
(Alx + tw), J(w)) 20 .

Finally taking t * 0 we have (Ax,Jw) 2 0 for all w € E. Since E
' *
is reflexive we have, in virtue of Proposition III.2, that J(E) = E .

So Ax = 0, which gives Tx = x . The theorem is proved.

Corollary IV.4. Let E be a reflexive Banach space with Property (ﬁl) .

*
Agsume that the dual space E is strictly convex. Suppose that there

exists a duality mapping in E which is both continuous and

weakly continuous. Then every nonexpansive mapping T : E - E 4is also

a _ G-operator.

5. FIXED POINT THEOREMS FOR GALERKIN APPROXIMABLE OPERATORS

In this section we prove a fixed point theorem, Theorem IV.7,
for mappings in the class of Galerkin approximable operators defined in

the last section. We then use this theorem to derive most of the known

fixed point theorems in Banach spaces.

Theorem IV.7. Let C be a closed convex subset of a Banach space E
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with Property (nk) » (see definition in Section IV.1). Let T : C 5> E

be a G-operator defined in C . Assumeé that there exists R s 0 such

that

(1) 0 belongs to the interior of C r\BR r\Fd » for all but a finite

number of o's ., By ={x eE: ||x] <R}

(i1) For all but a finite numbér of o's, we have

(A) Tx - Ax ¢ N(Pa) , forall A >1 and all x € B(BRIW C) r\Fa

Then T has a fixed point.

Remark 1. The condition (1) above 1s automatically satisfied in the

case when C contains a ball about the origin in E .

Remark 2. The possibility that 3(C f\BR) = C has not been ruled out.

Remark 3. In the case of a Banach space with Property (nl) s Condition
(A) of the previous theorem is satisfied if condition (B) below holds.
Let J be the duality mapping in E with gauge function p(r) . Condi-

tion (B) is as follows:
(B) (Tx,Jx) s ||x||uC|x|[) , for all =x €3(C NB)

To prove that Condition (B) implies Condition (A) , we proceed as

: *
follows. By Proposition IV.4 there exists y' € Jx (\R(Pa) . For this

y' we have

(1) (P, (Tx - Ax),y') = (Tx - Ax,y') ¢ x|l uC|ix]]) = A&, ¥")
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where the inequality was obtained using (B) . Now by the definition of

duality mapping we have (x,y") = ”xllﬁ( ”xll) - This used in (1) gives

P (Tx - Xx) 40, i.e., Condition (A) is satisgfied.

Remark 4. Let us consider the case of a bounded P-compact operator

in a separable Banach space with Property (n Then Condition (A) of

k) ’
the previous theorem is satisfied, for all but a finite number of Fn’s

2

if Condition (P) below holds. Condition (P) 1is as follows:

() Tx-xx40, forall A 21 andall x € 3B,
To prove that (P) implies (A) we proceed as follows. Suppose that this
1s not the case. So there exist a sequence .{An(j)} of numbers greater

t
that 1 and a sequence {xn(j)} s xn(j) € BBR(W Fn(j) s 8such tha

(Tx

(2) Pac) T*a(s) ™ *a)®ng)) = 0 -

Since T 1s bounded, it follows that the sequence { } is bounded.

Am(j)
So we may assume that An(j) +*X, XA 21. From (2) it then follows that

3) Pn(j)Txn(j) - Axn(j) +0 .

Since T 1s P-compact we conclude that there exists a subsequence
(denote it again by .{xn(j)}) that converges strongly to a point x ¢ 3C .

T + Tx . Thus from (3) we obtain Tx - \x = 0 for
Moreover Pn(j) xn(j) X (3)

A 21 . This contradicts Condition (P) which has been assumed to hold.
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Proof of Theorem IV.7. 1°) *€ince T : C *E 1is a G-operator, it
follows that, for each a , the mapping P T : C r\Fd > F_ 1is continuous.
2°) Now we observe that the boundary (relatively to Fa) aa(BR 1C) of

the set Bo Nc r\Fa is contained in B(BR No f\Fa . So by assumption

(A) it follows that, for each x € aa(BR NC) , we have
Pa(Tx - Ax) 4 0o, for all A>1.

This implies that hypothesis (*) of Theorem IV.2 1is satisfied for the

operator PaT : B, NC F\FOl - Fa . Applying that theorem it follows that

R

there exists x €B_. VCF suchthat PTx =x . Since T is a
o R : a o o o

G-operator it then follows that T has a fixed point in C .

Now we derive, as corollaries to our Theorem IV.7 , some of

the known fixed point theorems.

Corollary IV.5. (Schauder) Let E be a Banach space with Property

(wl) . Let T :B~>B be a compact mapping of a ball B about the

origin into itself. Then T has a fixed point in B .

Proof. By Theorem IV.3 1t follows thgt T 1is a G-operator. It is
easy to check that Condition (A) of Theorem IV.7 holds true for

Bp = B . In fact, PaTx—Ax+0 for all x ¢ 3B and all A > 1,
because ”PaTx|| 3 l|Tx|| £ ||x|! and ilkx|| = X||x|| . So, applying

Theorem IV.7 the result follows.

Remark 5. This corollary was stated in {7] for the general case of a

bounded closed convex set. But there it was given a proof for the case

of a ball about the origin.
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Remark 6. Corollary IV.5 can be proved by this same method for the
case of a separable Banach space with Property (ﬂk) . (See Petryshyn
[15]) . 1Indeed, one has just to use Proposition IV.8 -and Remark 4

above in order to verify Condition (A) of Theorem IV.7.

Corollary IV.6. (Schauder) Let E_be a reflexive Banach space with

*
Property (ﬂl) + Assume that E 1is strictly convex. Let T : B + B

be a weakly continuous mapping of a ball B about the origin into itself.

Then T has a fixed point.

Proof. By Theorem IV.5 it follows that T 4is a G-operator. As in
the proof of the previous corollary we have that T sgatisfies Condition

(A) of Theorem IV.7 . Applying that theorem the result follows.

Corollary IV.7 (Rothe). 1Let E be a Banach space with Property (wl)

Let T :B—+E be a compact mapping defined in some ball B about the

origin. Assume

(R) T(3B) TB .

Then T has a fixed point in B .

Proof. By Theorem IV.3 , T is a G-operator. Similarly to the two
previous corollaries, Condition (R) implies Condition (A) of Theorem

Iv.7 .

Corollary 1IV.8. (Petryshyn) Let E be a separable Banach space with

Property (nk) . Let T : E-+>E be P-compact mapping. Assume that
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the following condition holds: there exists R » 0 guch that

(®) Tx - Ax # 0 for all A >1 and all x €08, .

Then T has a fixed point in BR

Proof. By Theorem IV.4 it follows that the mapping T is a G-operator.
Now we have the following alternative: either T has a fixed point in
BBR or not. If the first possibility occurs the corollary is proved.
The second possibility together with hypothesis (P) implies Condition
(P) of Remark 4 . According to that Remark, Condition (A) of Theorem
IV.7 then holds. So it follows, using Theorem IV.7 , that T has a

fixed point in BR .

Remark 7. As remarked by Petryshyn the above result contains a theorem
of Altman [2] for compact mappings. The '"boundary condition' required

by Altman is as follows:
(2) lx - || 25 [|7x|| 2 - ||Ix|]|® for all x €ac .

It is easy to prove that Condition (2) implies Condition (P)

Corollary 1IV.9. Let E be a reflexive Banach space with Property (nl) .

. *
Assume that E ig strictly convex. Let T : C + E be a weakly contin-

uous mapping of a bounded closed convex set C into E . Let J be the

duality mapping in E with a given gauge function u(r) . Assume

(B) (Tx,Jx) £ ||x||u(||x||) for all x € 3C .
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Then T has a fixed point in C .

Proof. By Theorem IV.5 it follows that T 1is a G-operator. By

Theorem IV.7 and Remark 3 the result follows.

Remark. The above result extends previous theorems of Altman [1; Theorem
[2] and Shinbrot [22] for the Hilbert space case. This result has
proved first by deFigueiredo [6] with the assumption that E* has

property (ﬂl) .

Corollary IV.10. (Browder-deFigueiredo) Let E be a reflexive Banach

*
space with Property (ﬂl) . Assume that dual space E 1is strictly

*
convex. Let J : E +*E be a duality mapping in E which 1s assumed

to be both continuous and weakly continuous. Let T : E+ E be a demi-

continuous mapping such that I - T 418 J-monotone. Assume that there

exigsts R > 0 such that

(B) (Tx,Jx) < Hx||u(\”x||) for all x € BBR .

Then T has a fixed point in BR .

Proof. Consequence of Theorem IV.7 , Remark 3 and Theorem IV.6 .

Corollary IV.11. Let E be a reflexive Banach space with Property

*
(nl) . Agsume that E 1is strictly convex and that a duality mapping

*
J ¢+ E+>E is both continuous and weakly continuous. Let T be a

nonexpansive mapping in E which maps a ball B about the origin into

itseif. Then T has a fixed point in B .
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- Remark: This gives a new proof that a nonexpansive mapping of a ball
in a Hilbert space into itself has a fixed point. The above corollary

applies also to lp—spaces p>1, but not to Lp—spaces.
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