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Abstract.

It is shown thatvfor the orthogonal sets bounded in
the time the double orthocomplementation is equsl to
the causel closure. Thg‘family of double orthdcbmplemehted -
sets generated by orthogonal sets tounded in time is

‘an orthomodular lattice.
J . »

F



1. Introduction.

In the previous papers Ve invesiigated the causai
logic E2,43 as a faﬁily of double orthdclosed sete.
zut from the physiéal point of view double orthocomplemen-
tation have not simple'physical interpretation.

30 in the present peper we shall introduce the causel
closure as the physicel generalization of the property of
the light cone in ilinkowski space. e shell see, that
the family of tihe causally closed sets forms the.complete
lzttice, which contains the family of double orthoclesed
sets as & proper sublattice.

Assuming suitable form for the causal structure the cau-
sel logic forms a complete orthomodular lattice as was shown

in L2J) . 5o by Foulis-Randall theorem L6] each double

' orthoclosed set is generated by a maximal orthogonal subset.

Gur main result in this paper proves that double ortho-
complementatlon is equeal to the causal closure for the ortho-‘
gonal sets bounded in tlme. de shall prove also that the cau-
sal logic generated by the orthogonal sets bounded in time

forms the orthogonel lattice.



2. Causel closure and orthocomplementation generated

by causali ty struc ture.

By & causel structure /3/of the set X we shell mean

the non-empty family of sets 9 covering the set )( .
Every element { belonging to G is cailed a causal path.
Let usdenot.e by }B(x) {:GS X E .(’}

the set of all paths containing X . Of course if xe@

then .f; V’b‘) . Two points R ’3 e X are causelly

related if there is some path .g e | pessing through
both of them. It means that there is ‘& physical signal bet-
ween them. o
But there exists the second aspect of causality when an
event X is determined completely by a set A ., For ,
& partisl differential equation in the Minkowski space the
initial data on an achronal set A determines a physical
state at each point X in a double light cone generated
by A [5,7]

Now ‘.we_ shallexamine precisely a causal dependence

between a point and a set,

Definition 2.1

A point - X€ X is causa.lly cgn’troled by a set A ife

46\3"‘) {ZGA * ¢
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For any set A we shall find the greatest set of points
causally controled by the set A . |

-

Definition 2.2

A cgussl closure of A vis the set of all points controlled

by /\ end is denoted by DA

= +¢ 3
D(A) : I,xeX ;‘\Mx)%f\ ¢ 2,1

We have a simple physical meaning of this definition.

Any element X belongs to DAY ifee every path
pessing by X intersects the set A .

Lemma 2.1
. 9X 9 |
The map D: LT 2% has the following properties:
iz A< DA |

ii/ if AC D then DA) ¢ D(R)
i1/ DAY = D(DIAY)

| Proof.

From definition 2.1 i/ end ii/ are obvious. It is enough

to proie that D(D(A«D CD(A).
Let xeD(DA) irr ¥  PLADA) #+ ¢

- - $e 309
irr % F 2eLaDA)Y e ¥ 3 N4
TR 4ePG) zef  geRE)
%/\A#d) but 2€{ g0 {ie—'ri&). We put 8.':.(3 then
¥ oA % CP izt x & D(A)

AN \ .
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We define the Temily of ceusally closed sets

\fCXII» = ,&AC‘X,; A=D(A‘)k

Lemma 2.2 .
The family f-(xb) forms a complete lattice where

g+l.b, 2nd 1 u.b. are given respecuvely

VAL = D(VA) A A=A

Proof. : . , C
From lemmsz 2.1 and by virtue of well known theorem [ 1 p.49 |
we shall get the proof.
Now we can introduce the orthogonality relation defined
by ;.he caussl structure E 31 .
Let Y E X XYy XLy - ire x, Y is not
causelly related. Of course it is symmetric and irreflexive
relation. The above definition is eﬁuivelent o the follo-

wing one

N "\17 \1 iff f\"ncJ = (f 22-
oo V079 lpep TP
Using formula 2.2 we are able to rewrite -_an\‘orthocomplemen-

tation in ~the lengueage of paths.

At =lhxeX: xia ’v‘o.eMl {xeX ¥ﬁ3LX)+0A ¢3

il iy
A =\A ) « It is well known fl:\ that orthogonal :
map has the following propertlea.

1l
i/ ACA
Ll/ifA—- ~ then B'LQAJ'
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sii/ ANnAT =
il

i,
iv/ A = AT
We have two operations D anda 1i and we are inte-

rested in the relation between them.

Lemme 2.3

.9 X X .9 X 7 X
The maps D& -"’»Z and L4 ’5’2
have the following properties:

L DAY = A =[DAY]

ii/  D(A) ¢ AT

Proof. 7 » < | |
i/ By lemma 2.1 . A-LC—"D[A,L> and A cD(A) from
which follows ['D(A)]-LC- A- . Therefore it is enough
to prove only D(A") C AL and A'LC- L D(&)]‘ .

. i . o + . '
Let Xe& D(AY)  irr '{Z{fsC) LA =F<75 ife

.(?Zl(s(x) ‘ze{. %é[&&)%hi\ CIS but Zé-g- 80 .FQFCZ)
We put % 4@ and we have ;‘Z{Yb(ﬂf NA = ¢ iff xeA
Let xeA" | iff *v‘?&) foA=¢ . From this

follows that if xe{. then i’v: g if we put he=4

N RE A A VS
Ge (2
iff  xe CD(M] Fe po) 2%’? hep )

ii/ Beseuse ACA“ vvtt.xen DAY DALY ?D)CAL)]1= AT



Corollsry 2.1

From the lemmas 2.1 and 2.3 we get the formule
1L |
Ac DIR) < A

The simplest figures ilustrating the above formuls in
the two dimensionel space we shsll give es an example in

the part 4.

3. Equivalence between ithe causal c_losure and the double

orthocomplementation for the bounded in time sets.

" In this part we shall present the maip. results. We are
interested in the question when D) =A '. From the
definitions given in the second" part we knew the simple
physmal meaning of the causal closure. In: sueh situation
the causal logic has physical mterpretation.

From this plac.e. we shall use the causal Structure intro-
duced in E23 '+ The space is identified with Z=RxX
R is o i‘_eal line snd X is non-empty set. Minkowski
space has of course such 2 form. A | N
’ The. causal structure is given by the graphs of family S
of functlons ¥ R - X - which satisfies the fol-

‘lowing conditions:

le For any T, Qi_zz G and for any |  )(..,.)<‘2, X3 e X
ir B ,x) A Pl x)#¢ ena Pleyx) A Bty xs) +

then ' -
T Rl 0 Pliaxs) #¢



2. For any e R x X and for any -Fé.a
tme set [§,h43] = huelR 5 (5,300 ¢ hyd* }

is open in ‘R. .

The first assumption is a kind of & causal transitivity
condition and the second .one some kind of continuity condi-
tion. .

In [23 was shown that one of the equivalent thesis
of Foulis-Randall theorem [ 6) is fulfiled. It means that
every double qrthacloéed. set A“’A is generated by any
meximel orthogonal set ScC A such that Str= A“‘

From .he physical poinf. of view we shall examine the
orthogenal set bounded in the time, because only the boun-
ded counter is a gb’od ‘candidate for the measurement appa-

ratus.

Definition o
ACJQXX is bpunded in time if exists strip
PIA) := Tyt x X containing A .

ve demote  PTA) 1= B YxX | PHA)= 11,1 X

Before the thgoren let remind the symbola L2 1

B R : -~
A+f=-lz(t x) € RxX /;:;”)Qn (L) xX)nA =]

Dm0 e RxX ﬁmCGﬁﬁlxX)ﬁA=¢}

¥
LAl i=1veR ; (onccuyw,t\{; }
[, Al =hveR:y (0, 40) ¢ AT)



Lemma 3.1

If A is en orthogonal set bounded in time and

.g,f‘»A‘L'«-‘-Cf? then .Fa’\ A*¢'.

Proof.

From the boundness in time we see imediately that
(AT #¢  ena [FAL+¢ a0 suwp [§ AL,
and inf U, AT_ are finite,

We shalll conasider two cases:

1. sup E{»,Al.i_ > inf E{»,A]..

2. sup L§ Al & inf E,QIA'_\_

The first is impossible because of the orthogonality of A
[3,A1, A T§,Al_=¢

From the second we conclude {ff'\ A’F¢ 'because in the

opposite by lemma 2 [2] we get .FﬁAl*(ﬁ .

| '
Theorem 2 1
If A is orthogonal and bounded in time then
At = D(A)
Proof.

It is enough to prove . A'L’LC. D‘A), ‘:[f‘ X & A'LL
X ¢ D(A) then ex:Lsts Le }3(*) such. that |
‘PGAL'?S ~ end '?“A ¢ . By virtue of

lemma 3.1 it 13 mposs:.hle.



o

| The above theorem sfxows that

fb (XfD) ; -‘-ED/A); A-orthogonal bounded in time } =
‘ il N | ]

f-b ()((.L)f'-‘-{A ) A-orthogonal bounded in time S

Now we shall interest in the structure of the family €b ( )(,D),

Lemmg 3.2 - : o
12 t¢t<t, ana (g, {8)) (4 {0t)) e DIB)
then (t,£(8) € B

Proofe | :
Let %&}3 (t Ht)) ana ('E‘,g (f‘)) e g . If +! ?"t then

using the transitivity condition 3.1 exists hE€ %  such

that L'EE,S("&‘)) R ('f:A} 4’-&4\ ¢ ., Because {1, ﬁ{@))éb(@)
so hAAB=E ¢) « In the oppusite case t'¢t  the |

proof go‘es in the similar way.

Lemma 3, , | i |
Let P be avsti‘ip'z and . B‘= B'u '« If S is the maximal
| Aérthogonal set in PnB and .('P AR) o B

then st =B . | |

Proof. ‘

Let xe& BN ‘-(“'P.h B) +There are two cases:
U xg 2P N |

ii/ X SFP-

We shall exesmine the case i/e



e

P SR B
Because . ( ""‘_B) =DB*" tnen exists %e F’C") ' and
Meq such that /a‘erpml?) . Let z:gjf\'\y
Because "+ €2, & Xy /index + denotes the time

coordinaste/ and x, j e 3 =DI(B) then by lemma 3,2
2eBY=B
5 is the maximal brthogonal set in *N B and
26 P~ D ye conclude that there exists h&,B(?‘-) such
that hnb * 4) By the first condition for the cau-~
sal structure 3.1 there exists -{36 ]BCX) ‘such thet
{’./\5:\/\05 $'¢ +S0 we proved that S is
the meximal orthogonal set in > . Using the our version

of RandalleFulis theorem CZ] “we have’ =B,
B
Theorem 3.2
€ fb()( D) = fb[)(,,(_) is an orthomodular lattice.

Proof.
i/ € i is closed for l.u.b.
ii/ <., is closed for the orthacomplementation

iii/ ,_ffb is closed for g.l.b.

i/ Let 64«6z be orthogonsl bounded in tme set
such that 54“'- A 5 SU'._ B |
Let P heabelt suchthat PoS, 0S5, . Of course
(?r\ AY”L ') N B .By virtue of lemma 3.3
it is enough to prove that ('P ~ (Av B)“‘\u: (A U'B)uv |
et A= ('Pméﬁu e(Pa (AuB)YH)™ | |
Rz (PABc(PAA )M

- T : Cad\ 4L
From this we get (A o)t < (?m-_(AUB) ‘L) B
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Thé contrary relation is obvious.

ii/ Let S be the orthogonél béunded in time such that
ot A |

Let P ‘heAast:ipj such that v 25

By virtue of lemma 3.3 it is enough to prove that
(PAAM ™ = A o

At fu‘st we shall prove that Al c D(Pnr Ai)

Let XE€ Al'\cp’“ Al> '« There sre two cases:

1. % > P

2. ¥, < P

We shzsll examine the casel.

PR . + o
Let {¢€ PB(x) and 2={0P7 _ ye shall sece that ze A"
If 2¢ A" then there exists hE¢ Plz) , hnA *_9’3 :
But D(S‘)_: A /theorem 3.1/ then exists W& NS

Let notice that Wy <2, < X; 8o by the transitivity
condition for the causel path /3.1/ stA « It is easy
to see that if At < D(Pn A'L) then - At c [‘PnAL)“_

‘The contrary relat,jion is ebvious.

iii/ It is enough to see that if A=A'", R=R
- L_(ato i)ttt . s
then (AAB®)Y=(A"UR")" and to use i/ and ii/.
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4. Exsmples., :
We shall consider the space Z = thx\'R ,  Re=RR

/denotes the time/ and the causal structure given by

=P RR M) - pl)| < bty }

Fig.t A ¢ D(A) =A** R o mg.z A=D) = A“' TR
A 18 on the cone -

Rep R 'R‘A.‘

- A

| 'ng.z A= D(A) $A“ R F:Lg4 A$D(A)I-»$”A+*>R'-.

A:.s on thc cone

Let us’ aee that orthogonal set A in the fJ.gurea 3 and 4
Aare nnbonnded J.n time and D(A)*Au '

At laat we shall show 'f.hat in the above causal atructure
't.he fmly fb (X, -L) fb(x D)la not' G--complete,.
lattice. ' ' o o . o
‘_>.vLet A= ")i'l‘t""E) ‘b - ratlonal number } . It is not
‘»‘VT.dlffJ.cul‘t to- aee that o | - |
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'2.' it 'S,CA_ $ - orthOgohél bonnded m time -

By. vlrtue of 1 A :'/ej"‘ 3 ;- 1Be'c"au5¢j_"‘6b(x,i3

,contames the point. set then by 2 "C},CX.,;L.), is not

G-comple te lattlce.
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