March ITP-UWr-85/632

REMARKS ON THE CAUSAL LOGIC

A~ NS
1RO

Wojciech Cegla"‘*

Institute of Theoretical Physice University of Wrociaw
50-20& Wroctaw, Cybulskiego 3€, Poland

ABSTRACT

The causal structure of space-time is considered in t he quantum logic

approach. -The properties of corresponding lattices are investigated in
nonrelativistic and relativistic examples.



1. Introduction’

In the quantum theory there is an old unsoived Droblem, the problem of
a relativistic localization. In the well known nghtman paper [15] a gene-
ral eonsttuction of the p051t10n operator for an arbltrary hlperplane has
been given. From the physical point of'v1ew nghtman’s solution has some
disadvantages: the main one is the so called noneeausal propagation. It
means that the scalar product of two localized states (ra,Tb) where a an&
b are points in Minkowski space is different from‘zeto also for (afb)2<0‘
(a and b are space-like separated).

We propose a new approach to the locallzarlon problem using the quantum
,loglc. Cur scheme 1s the followlng. in the Space-tlme we shall _construct
a family of subsets building a quantum logic and then we shall look for co—
variant representations;of this logic in a Hilbert space. i

First of all we need a distinguishability criterion for space-tiﬁe events
weaker than mere difference which has a simple physical comnection with the.
causality. 4 very useful matoematical model«fOr our investigations is an
orthogonalitytepace i.e. a pair (X,L) where X is a set and L is a symmetrlc
and irreflexive relatlon on X [12]. The orthogonality relation distinguishes
certain fam111es of subsets of X whioh from the'probabilistic point of view
should satisff an orthomodularity condition as a minimum requirement needed
for a good definition of the orthogonality additive measure (ortho-states)
Of course it imposes the conditions for the orthogonallty relatlon [10, 11]

The flrst part of this paper (section 2 and 3) contains a general anES'
tigation of the orthogonallty space generated by a causal structure. Physi-
cally the orthogonallty relatlon will be interpreted as a causal indepen-
dence between events. We give the sufficient conditions for orthomodularlty
and study the problem of structure and physical 1nterpretat10n of the fa-

milies of sets dlstlngulshed by the orthogonality relatlon. In sectlon 4

we shall give two examples.
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2. The causal structure and the orthogonality relaticm.

’

We shall start with some facts about the orthogonality space. An orthogo-

nality space is a pair (X,l) where X is a set and 1 an orthogonality'rela-

tion on X e.a. symmetfichand_irreflexive. DcX is called an orthogonal set

(L-set) iff
V xfy  implies ‘xy ' .‘ (2.1)
X,YED N '
For A=X define A; : = {x€X; xla Va€Al" 4 ' : , | (2.2)
and All := (A"L)'L

~

The well known lemma [12] gives AEAL;, if ACB'theq B’L - ’ AnAl =0 ,
Ateat, (UAi)l=nA'i' . | |

We introduce causal paths as a method of investigation of orthogonality
spaces. Let (X,G) be a pair where X is 2 nonempty set and G is a distinguis-

hed covefing of X by nonempty subsets. The pair (X,G) will be called a cau-

sal space, the family G a causal strucfure, an element féG a causal path.

_ Let x€X we denote by B(x) := {fEG; x€f} the set ofaJJ.causél pathsvcontai?
ning x. Of course if x€f then fEB(i).

~ In the causal space  (X,G6) one can intrqduce an orthogonality relation in
'a natural wéy: X, y€X, x is orthogonal to y (xly) iff B(x)NR(y)=¢ .

Observe that

xly iff v fn{yl=p iff v fn{xd=¢ - (2.3)
feB (x) - f€B8(y) e

and | .
AT = {x€X; V  fha=¢). L (2.48)

feR(x)



If we understand a causal path as a possible physical signal then from (2.4)
we see that A‘L is a.sét of points which are not causally related to any
point from the set A,

we say that a point x€X is cansally coutrolled by a set A iff feg( )fﬂA#Q

\

For each set A we deflne the causal closure

D(A) := {x€X; vV fNAF ¢} 3 o (2.5)
- f€B(x) - :

Observe that D(A) is.connectéd with a concept of a region'of'causal depen-

dence as in [15.14]. | |

Lemma 2.1. ' . ‘ -

‘The map D : 2% n»éx has the following properties |

i)  a<Dp(a) .. |

ii) if ACB then D(A)=D(B)

- 1ii) D(A)=D(D(Aa)).

i) and ii) are obvious from definition. It is enough to prove that

D(D(A)D(A).
Let x€D(D(A)) = V £ND(A) #¢= V 3z€fnD(A)» ¥  32€f vV ghA #o.
: feg(x) .. feER(x) f€B(x) ~ g€B(2).
but z€Ef implies f€R(z). wé put g := f then V- fnA # ¢ i.e. x€D(A).
. g€R(x) | ' B

' . ' . ' o . . oX
The next lemma gives a relation between the two operatioms D and ‘1 in 2°.

- Lemma 2.2.

The maps D : éx?» 2* and L: 2X=- 2% have the following properties:
i) p(ah) = __— [D(a) 1+
ii) p(a)ea™

 Proof .

- . Rt ,
i) From the previous lemma we have Ach(Al) and A=D(A) so [D(A)] <A~ . There-

fore it is enough to prove fﬁaﬁD(A%);Al‘and'A%:[D(A)]l'; This can be done



- analogously as in lemma 2.1.

ii) Because K:A'L.'L then D(A)CD(AJ"L)=A'U' B

As a corollary from the above lemmas we have

ap(a)ent . o - L (2.6)

\

More details one can find in [7].

3. Causal logic in Minkowski’s type space.

In this section we restrict our consideration to a special case of a cau-
sal space namely (RXX:G ) where R the real line, X-any set. The family G

consists of graphs of functions f : § = X, R .

GcoU {f; fi5=X }.
SR '

The fovl'lowing. symbols and notations have been introduced in [6].
(t,x) € RxX, B(t,x) = {£f€G; (t,x)€f)
let AR XX

E={(,06RE: ¥V ([e,=)x0namp) -
fef(t,x) -
| | (3.1)
A s={(t,x)ERXX: Vv £ ( (=, t]xX)NA=0} |
fep(t,x)

Let f€G and AR x¥

[£,4],:= (%R (v,2(v) ¢ &)

[£,8)_:= (&R (v,£(v)) § &7 | (3.2)
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Those sets deacrlbe p01nts‘on the path f from which we are able to send

a 51gnal to the set A (to the future 1if£, A] or_tO'the~past [f,A]_ with an
"accordance to the order of the real llne) | |
Let us notice that from,G 1) we have A%ﬂA

‘ From (3.2) we get
L£,A1UI£,A]_ = (v€R;(v,£(v)) ¢ &} * _‘L}=: I£,4]
In particular

[£,45}] = {veR ; (v,£(v)) ¢ {y}'} .
In the rest of this sectlon we shall study the structure of the 3 families

of sets.

1. CX,D = {acamatly
2. L, := {All;A‘-.Lset}

3. C();,D) := {AX;A=D(A)}

It is well known [1] that C(X,1) form a complete ortholattlce (partlally
ordered by the set theoretlc inclusion and equipped w1th the orthocomple-
‘mentation A#Al) -The g. 1 b. and l.u.b. are glven respectlvely by the for-

mulas

Buﬁ in general'C(X,JJ ﬁeed not be orthomodular. This has been dlscussed

in [11] and the condltlons equlvalent to the. orthomodularlty were given
there. One of them is the follow1ng. 1f ‘A is an orthogonal subset of X, if
x€A and xiA then A n(x HAL)#¢ . |

Now we formulate the conditions for the family G such that the orthogona-
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lity relatlon generated by G w111 sat

. Gc U {£: s*X} s is a connected subset of R.
SR . ; |
2. For any t St Sty and for any x, ,xz,x3€x if $(t1,x1)n3(t2?x2)f.¢ and |

B(rym)NB(E5, A0 then B(E ,x NB(ER, xR0~ (3.4)

3. For any f€S and foy: any yERxX the set [£,{y}] is open-in RN dom £ whe-

re dom f is the domain of f.

The second assumption is a causal transitivity condition. The last one is
a kind of a continuity (if we are able to send a signal from x€f to y then
we can also signal to y from a neighbourhood of x on f) .

.I..emma 3.1.
Let G satisfies condition 2 of (3.4) and A be an orthogonal set. If feG

ZNA"#¢ then sup[f,A], <inf[£,A]_, and £nA=¢ .

“emma 3.2.
Lot G satisfies condition 2 and 3 of (3.4) and A be a subset of RxX. If
f€G, fnA=¢ and sup[f,A]l <inf[f,A]_, then {f,A] = (=»,a)Ndomf and [f,A] =

(b,®)Ndom £ .

The proofs can be found in [6]. Using the above lemmas we can prove the or-

thcmodularity condition.

Theorem 3.1.

Let G satisfies conditions 1,2,3 and A be an orthogonal set. If (t,x)ERxX,
(t,x) € A’L, (t,x) ¢ & then A'Lﬂ({t,;;} NA )'L 0 .

Proof

We rewrite the thesis in the path language.

snde,xrtnaht £ o ier atnle,xluntt £ ¢



i) zeatiff v fna=¢
S . f€B(z)

i) zede,xumtt ise v de,xuntng = ¢
S : 8€B(2) : R

iff W v a3 [(t,#)éﬁ_ or hhA'¢f¢1
-g€B(2)  (w,g(w))€g HEB(w,gw))
From the aséxjnption (t,x)QAl it follbws th'at (t,x-)eA:t or (t,x)(Af. We con-
| sider 'only. the éase (t,.x);CAi'. | BN | |
From kﬁx)(A‘u it follow§ ‘thét théfe exists f€B(t,x) such th’at‘ an'L $¢,
S0 existsA (s,f(s))EA‘L and by lemma (3.1) and (3.2) and condition 1 of ’(3.4')
one can prove that a€domf and (é.f(a))eAJ' . .
 We shall prove that (a,f(a))EA'Lﬂ({t,x}UA)J'L . iet g€B(a, £(a)) and

(w,g(w))Eg. We have two possibilities

1. w2 a

Since t<asw so by condition 2 of (3.4) there exists h which satisfies the

first part of the thesis (t,x)€h,

2. w < a
From the 3 co,nditioﬁ of (3.4) there exist £€(w,a) and kER(§,£(E)) such
that (w,g(w))€k. Since £<a and E€domf and (-m,a)ﬂddmfc['f,A]_,_ so
' E€[f,A]+.§ecause w<E and Agé[‘f,A]_l_so by éondition 2 éxists heB (w,gw))

such that hNA # ¢ as in the second part of the thesis. x

More details one can find in: [6]; We _alsé have C(X,L1)=L(X,1) and each: a=att
is. generated by the. maximal orthogénal set‘ contained in A (see [11]).

One can prow}e' that (L(X,1), < »1) forms an oftho-complete orthomodular po-
set also whem 3 is replaced by a weaker condition 37 .V xly 3£€B (NB(Y),
Vz€1RxX [£,{z}] is a open.set in R Ndom £ (see [8,10]). '

Consider now the structure of the family C(X,D). Lemma 2.1. gives a suf-
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-ficient con&i£i0n~for C(x,D) io be avcémpléte 1attic§{[1}. From the corol-.fn
lary 2.6 we ﬁavé that if.AcAllr;ﬁen A=D(A) and so L(X,1)<C(X,D) as a sub-
set but not as a sublattice, because usually AL+ # D(A). Let us sée, that
from definition (2.5) D(A) has a. simple physical interpretation so it is
important to know, when A'L'L = D(&). In [7] the conditions has been given

for A to satisfy st D(A). We shall briefly review the results. We assume

that each f€S is a2 function f:R= X. ACRXX is said to be boyndéd in time
if there exists a strip P(A):=[t1,t2]XX containg A.

Lemma 3.3.

~If A is an orthogonal set bounded in time and fﬂA'L = ¢ then fMA # ¢ .

-

Proof
From the boundness in time we see immediately that»[f,A]+ # ¢ and [f,A]_# ¢

S0 sup[f,A]+ and inf[f,A]_ are finite. We consider two cases: 4
1. sup[f.,A]+ > inf[f,A]_

2. suplf,A], < inf[f,A]_

The f1rst is 1mp0551b1e because the orthogonallty of A. From the second we

have fNA # ¢ because otherw1se by lemma 3.2 we get fﬂA ¥ ¢
R

Theorem 3.2
If A is an orthogonal set bounded in timc then Ali'# D(a).
Proof |
. o i i
It 1s enough to prove AT cD(A). If x€A™ and xtD(A) then exlsts feg(x) such

that an -¢ and fNA=¢ . By virtue of lemma 3. 3 this is lmp0551ble.‘.

Letlb(x,l) v {A+l;‘A-an orthogonai bounded injtime} = {D(A); A - an ortho-

~ gonal bounded in.time}.

pf course-Lb(X,L):;(X,L)‘and each element of Lb(X,L) can be interpreted as
" a generalized. double cone (diamond)’in-the space-time. One can prove [7]

that L, (X.L) is an orthomodular lattice (but not o-complete) with 1l as a or-
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thocomplementation and Ll as a closure operation.

>4'. Examples and final remarks.

Non-relativistic case.

Galileén sPace-timé can be consider as X=]R?<lR3 and'G is ..tt-xe family'éf all
, fﬁucﬁions f ]R-#]RB; R represents tfxe time and ]R31 po‘sitions,.‘ Two points .
(t,x), (s,y) are ofthogonal iff t=s and x#y. Every constant' fuﬁétion .
g : R =R represents a hiperplane S of thé constant time ‘t,'.béing a maxi-
mal -orthogonall set, “and évery maximal or;hogbnai set has such a form'.‘ From
the'.defiﬁit.iqns for every orthogoenal set E we get E—'=E and L(X,L1) in this
case is isomorphic to tfxe disjoint sum of Boolean lattices Lt=2§t- indexed
by t. FWe can iestrict ourselves to‘ the Borei sets in X an& denote by
LB (X,41) the correspondlng logic. Of course the Borel structure is consistent
with the lattice structure, so L (X l) is a o-complete orthomodular lattice.
In the épace X we have the action of the Galilean group. It 1nduces
au;hqmqrp%usms _‘of the logic LB (X, -
To solve the problem of localization we have to find covariant represen—
tations, with resPect to the Galllean group, of the 1og1c L "(X,4) in a Hil- |

bert space. ‘I'h:Ls problem was dlscussed in [3] and the general form of the

covariant representations has been found there.

‘Relativistic example.

3 with the scalar product

Xey == xo-yo + 3{_-2. Let Ga be the family of functions f: R ]R3 .

Minkowski space will be identified with M=‘]R><]R

- O<ose ,

| £ ) - £l < alx, =y,

The faﬁily G satisfies the condition (3.4) and so C(M Ly=L(M,1) is a comp-

»lete ort:homodular lattice,
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Two points x,yEM are orthogonal iff ]xo - y°] s éﬁfﬁ_- y|| and every maxi-

—_—

mal 'orthogoﬁal set is Agiv‘en by a function g: R>= R such that r|g(§)-g'(;1)}é
sglz-zl - -

If o is a velocity of light the orthogonality relation méans thaﬁ’i is
'space-o¥ light-like to y. This case has been considered in [3] where for

G has been taken the family of time-like straight lines. For q=<= we get
the.Galilean case.

The relativistic logic L(M,l) is much less trivial than thé non-relativis-
tic one. The illustrating pictufes fof two dimensional Minkowski épace—time
one can see in [9]. |

As in the previous example we>can restrict tb,the Borel setS'iniMinkowski
space and in [4] has been shown that Borel structure is consistent Vitb
‘the lattice one -and the corr§5ponding lattice LB(M,l) is a'd—compiete
orthomodular one.‘In [A}Ihas beén studied also the grdup of authomorphisﬁ]of
LB(M,l). It _has been shown that aPthomQtphism are'given by Poincaré'tfans—
formation and dilation. The first step to thé studies of the representa-
tions of the logic LP(M,L)'in_a Hilbert space is the inveétigagion of a ge-
neral—ized ortho-s;aﬁe W LB(M_;.L) = R such that u(VAi) = ‘Z_,'u(Ai)' , Ai__i_Aj .
It has been done in [5] where has been shownrthat every conserved cur;enfl
generate the state. The problem of finding all covariant representations

with respect to the Poincaré group, of the causal logic LB(M,i)'is still

open. Partial results have been obtained in [2]..
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