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ABSTRACT

The usual digital method of obtaining a power spectrum estimate
from a measured autocorrelation function makes the assumption that the
correlation function is zero at all lags for which no estimate is avail-
able and uses some treatment of the estimated lags to reduce the effect
of truncation of the autocorrelation function. The method discussed in
this paper instead retains all of the estimated lags without modi“cat'on
and uses a non-zero estimate for the lags not directly estimated. The
particular estimation principle used is that the spectral estimate mus t
be the most random or have the maximum entropy of any power spectrum
which is consistent with the measured data.

This new analysis technique gives a much higher resolution spectra'
estimate than is obtained by conventional techniques with a very little

Increase in computing time. Comparisons will {llustrate the relative

per formance.



MAX IMUM ENTROPY SPECTRAL ANALYSIS

Tn the digital measurement of the power spectrum of a statlonary,
band-1imited time function, the two basic theoretlical equations are
those defining the autocorrelation function and the power spectrum.

(See Slide 1.) These definitions involve Infinite summations and thus

must be modified for practical applications. This paper presents an

unconventional method of power spectrum estimation from a finite number

of autocorrelation lag values.

The conventional manner of treating the lack of data beyond the

last avallable lag value of the autocorrelation function is to intro-

duce the concept of a weighting function. There are many such weighting

functions (Slide 2 chows the Hanning and Bartlett ones), but all have

the common feature of multiplying the unmeasured lag values by zero.

The particular welghtings applied to the known lag values governs the

shape of the corresponding frequency window which when convolved with

the true power spectrum gives the estimated spectrum. The different

approach used In this paper tetains all of the known lag values without

modi fication and estimates the values of the unknown autocorrelation
lags.

In extending the known portion of the autocorrelation function,

the basic autocorrelation function theorem shown in Slide 3 is used.

For this Nt1 by NIl toeplitz matrix to be semi-positive definite, its

determinant has to be non-negative. Thus, if the values of &(7),

(1 =0 to N-1), are known, then w(N) must have a value which makes

the determinant non-negative. The determinant is a quadratic function



in ®(N). Thus there are two values of ®(N) which make the determinant
equal to zero. These two values and all the values In between are the
theoretically allowable ones. At times, the range of possible values
is quite narrow so that one can predict the next value of the auto-
correlation function with considerable accuracy. Such a case is shown
in Slide 4 where knowing the first 20 values of the autocorrelation
function allows one to state that ®(20) lles In the range of 0.98901 +
0.11099.

Tn selecting the predicted value of ®(N), the most natural choice
would be the midpoint of the allowable range. Then, using this value,
one could then determine the allowable range of (N+1) and again use
the midpoint as Its estimated value. This procedure could be continued
on to extend the known autocorrelation function indefinitely in a mathe-
matically acceptable fashion. Using this method, Slide 5 shows the
estimated values of m(?o) through (40) for the example shown in Slide
h. As one can see, this extension method is much closer to the actual
autocorrelation values than the zern extension commonly used.

Let us now consider the information theory concept of entropy:
Surprisingly enough, this concept which relates to randomness or
uncertainty, is strongly connected to the particular correlation
extension method just discussed. Slide 6 presents the mathematlca'
expression involved in defining the entropy of a Gaussian stationary
time series. This expression is usually used in connectijon with the
channel capacity of a communication system, where maximum entropy

corresponds to maximum information transmission rate. A reasonable



question is one of asking what power spectrum has the maximum entropy,
knowing the first N values of its autocorrelation value. The solution

to this problem turns out to be falrly simple and is given in Slide T.
The matrix equation may be recognized as that of designing a N+1 point

) with the mean square

prediction error filter (1, FQ, ceey FN’ FN+1

error being given by P .. The top equation for P(f) can be seen to
be PN+1/W divided by the power response of the prediction error filter.
W is of course the fold-over frequency of the band-limited time series

which has a sampling period of At = oW

Slide 8 illustrates the time series, Xn’ being operated on by the

N
optimum N point prediction filter, with output Xn. The output, € of

the N+1 point prediction error filter is just the difference between

N
the true value of Xn and the predicted value xn' Since the prediction

filter is optimum in the mean square error sense, the average product

of ¢ with any of the N previous values of X Is zero.
n

Let us consider the possibility that the average product of €
n

with all previous values of Xn is zero. In this case, the N point

prediction filter is also the optimum infinitely long prediction

filter., This would also mean that the predictability of x” would

not be increased by us ing more of the past of Xn. This possibility

does in fact correspond to the maximum entropy assumption since an

increase in the predictability of X would mean a decrease In its

uncertainty or entropy. Continuing on, we can note that in this

case where €_X ¢ = 0 for § > 0, we can note then € -1 is simply
o - n n-

a linear comhination of X __ for S > O and thus € 1€, = 0. In

fact, € s uncorrelated with all other points of the error trace
n



and thus the onutput of the prediction error filter has a white power
spectrum of total power P, . or of a density level of PN+1/W° Slide
9 shows the simple relation between Input and output power spectra.
This viewpoint makes the equation for P(f) quite understandable.

Slide 10 shows a comparison of the max{mum entropy technique
with a conventional spectral estimation method using the Bartlett
weighting function. The true spectrum Is the same as referred to
in Slides U and 5. The conventional estimate is very poor because
zero Is a very poor extension of the autocorrelation function whereas
the maximum entropy extension was reasonably accurate. Besides having
very high resolution, the new method has much lower ''side lobes''. This
term is put into quotes since, for the maximum entropy technique, s ide
lobe analysis has no meaning because the autocorrelation function is now
infinitely long.

Slide 11 shows a maximum entropy spectrum and a Bartlett spectrum
of some ambient seismic noise recorded on a horizontal seismometer at
the Wichita Mountains Seismqlogical Observatory. The autocorrelation
function used had 100 lag values. Note that most of the peaks In the
M.E. spectrum are also seen at a subdued level in the Bartlett spectrum:
This is reasonable since if one convolves the M.E. spectrum with the
Bartlett frequency window, one would obtain exactly the Bartlett spec”
trum.  This statement is obvious if one considers the equivalent
operation on the autocorrelation function.

Slide 12 Is presented to show that from a theoretical viewpoint,
the maximum entropy concept could be used as a different |imiting

process in defining a power spectrum.



THE AUTOCORRELATION FUNCTION OF A SAMPLED
TIME SERIES, X ,IS DEFINED AS
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THE POWER SPECTRUM IS THEN DEFINED AS
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WHERE at IS THE SAMPLE PER10D OF THE TIME SERIES.

THE BAS|C AUTOCORRELATION FUNCTION THEOREM

$(0), #(1), ..., $(N) ARE THE FIRST N+1 VALUES OF AN
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THE VALUES OF ¢(0) THRU ¢(19) REQUIRE THAT
$(20) LIE IN THE RANGE OF 0.98901 + 0.11099
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THE MAXIMUM ENTROPY SPECTRUM IS GIVEN BY
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WHERE P, AND THE T'_  ARE OBTAINED FROM
THE MATRIX EQUATION
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THE ENTROPY OF A GAUSSIAN BAND-LIMITED TIME SERIES
WITH POWER SPECTRUM P(f) IS PROPORTIONAL TO

w

f log P(f) df .
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UNDER THE CONSTRAINT THAT P(f) AGREES WITH THE N+1
MEASURED VALUES OF THE AUTOCORRELATION FUNCTION,
i.e.,

w
f P(f) cos(2nfrat) df = plr), (T= 0toN),
0

WHAT P(f) HAS THE MAXIMUM ENTROPY?
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THE MAX IMUM ENTROPY SPECTRUM AS AN ALTERNATE DEFINITION
OF A POWER-DENSITY SPECTRUM
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Fort = Oton é (1) = (7) ¢ (T) = $(T)
For v > N ¢ (T) = 0 ¢, (T) = MAXIMUM ENTROPY

EXTENSION
AS N— = , THESE TWO DEFINITIONS ARE THE SAME.
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