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1. INTRODUCTION

T think that most of the results which I will present here
will be new for most participants, but the main aim of my talk
is not so much to present new results, but rather to draw
attention to some interesting research problems. All of these
problems are related to the so called general theory of
interpolation spaces, more specifically, to the construction and
study of the properties of various interpolation methods.

The development of this theory is still far from complete.
There are two important considerations which have motivated its
development up till now and which should continue to do so in
the future.
¥ First, the theory should give us a stable framework for
calculations which before were obtained by good luck and
ingenuity.
¥ Secondly, it should be able to give timely answers to new
questions which constantly arise in applications.

At the same time, specific calculations and applications are a
powerful stimulus for the development of the theory. Indeed, its
successful development is impossible without the prior
accumulation of a "critical mass" of concrete results. Such a
"eritical mass" had collected at the end of the fifties, and it
led to the glorious period of formation and development of the
theory during the years 1959-1966. Since then some important
papers have appeared from time to time in this field but of
course their quantity (not quality) cannot be compared with that

powerful stream of papers dealing with calculations and
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applications. Let me express the hope that conferences like this
one will give new impetus to the development of important parts
of interpolation theory. ’ A

Most of the results which I will mention in this lecture
have been obtained by M. Aizenstein, N. Krugljak and myself,
during the time when Krugljak and I were writing our book [1].
All these results and their proofs can be found in Chapter II of
the book, together with a number of other classical and new

results.

2. SOME DEFINITIONS AND NOTATION
Let me quickly recall some standard notions: '
(i) Banach couples R = (A, ,A )
(ii) The Banach space 2(§ ﬁ) of linear operators T which map i
to B with norm

ITI3 3 := sup {u’r]A - }
, .'A.,B,
i=0,1 ot
(iii) Interpolation functors, i.e. maps F from the category of

Banach couples Z to the category of 'Banach spaces B such that
F(K) is an interpolation space with respect to R for all R e B .
(iv) If A is any intermediate space of the couple it ’ then a°
denotes the closure of the intersection space A(X) in a . R°

the couple (A Ai) . We say that A 1is regular if A° =na .

‘
Similarly, it 1;)regular if B°=2X.

(v) If' A is any intermediate space of it , then A~ denotes the
Gagliardo cOmpletion of A with respect to the sum space Z(X) .
(vi) Triples: For each couple R we refer to (K, A) , where A is
some intermediate space of ¢ , as a triple.

We now recall the Aronszajn-Gagliardo theorem:

Given any class 6 of triples, there exist two interpolation
functors Fg and GE such that:
Ge(®R) €' a <t Fe (R) for all (R, A) e €

Moreover, the functor G, is maximal among all functors G having
the property G(X) et A for all (X, A) e & . Similarly F6 has an
analogous minimal property.

If & consists of a single triple (X, A) then, for well
known reasons, F€ is denoted by OrbA(X;o) (orbit functor) and

Ge by CorbA(o;X) (coorbit functor). It 1is surprising that
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although orbits and coorbits were defined in 1965, it was not
until 1981 that it was shown (by Brudnyi-Krugljak and by Janson)
that the "classical"® interpolation functors such as the real and
complex methods are orbits or coorbits of certain simple couples

such as 7 = [ew,em({z““} 7 = (el,el({z'“}

© nez)] ! 1 nez)]

and [FLl’FLl({z—n}neZ)] . Why do these particular couples play
such an important role, but others apparently do not? (Question:
po orbit or coorbit functors generated by some other nice couple

n

such as P&,ez({z‘ }nez)] have good  properties like

reiteration?)

3. INTERPOLATION OF FINITE DIMENSIONAL SPACES

In 1965 Aronszajn and Gagliardo stated that there are many
different interpolation methods. They were thus strongly
motivated to develop a general theory encompassing all such
methods. Now, a guarter of a century later, we can observe that
so far ohly three essentially different interpolation methods
have been created. (All known methods are either the Treal
method, complex method, abstract versions of the
calderén-Lozanovskii construction, or other <closely related
methods.) Why are there so few methods? I think that this is
because we have not yet carefully studied the case of finite
dimensional couples.

Here are two simple examples:
Example (i): Let X be a reqular finite dimensional couple. The
reqularity means that X can be regarded as the space R" equipped
with two norms. Obviously in this case all exact interpolation
spaces of R can be obtained by the (general) real method, but
only to within equivalence of norms. Let 7(3) be the least
constant of equivalence for all exact interpolation spaces of
R . Let T be the supremum of W(X) as X ranges over all regular
n~-dimensional couples. It can be proved (using compactness and a
theorem which I obtained with Krugljak) that ¥, <. However

limvn = w . But how fast does T, tend to « ? This is an open
n-o il
question.

In order to construct new interpolation methods we need to
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know the answer to a similar question: Consider a quantity wﬁ(ﬁ)
similar to T, v obtained by letting it range over all
n-dimensional subcouples of a fixed infinite dimensional couple
B . How fast does 7&(3) tend to o ?

Example (ii): We shall obtain a sequence of couples Kn by

equipping R" with the two (semi) norms:

Ihdbm ?zﬁsnlxil ' "x"Lip Tzisn—llxi+l X, |
For these couples V(Xn) -+ w , But can we characterize all the
exact interpolation spaces of Xn ? This is an open problemn.
We recall that if the second norm is replaced by Hx"n then

el

the famous Calderdén-Mityagin theorem gives a  complete

description of all exact interpolation spaces.

4. FUNCTORS DEFINED BY FINITE DIMENSIONAL APPROXIMATION

We shall now describe two important classes of
interpolation functors of such a type. We will denocte them by ¥%
(finitely generated) and Somp (computable) . Each functor in the
class %5 is completely determined by its "trace"™ on the class
ﬁfin
sentence can be taken as the definition of ¥¥ . We shall present

a result which establishes the connection between functors in %¢

of finite dimensional regular couples. In fact this

and Jansoh’s approximation condition.

(A couple 2 satisfies Janson’s approximation condition if for
each a e Z(K) and £ > 0 there exists a finite rank linear
operator P = P.e mapping Z(K) into A(X) such that

1

Pl =1+ € and la - Pall =€ .)

A(X)

’

Theorem (Aizenstein-Brudnyi) F € §§ if and only if
F = OrbA(X;o)
for some R which satisfies the approximation condition and for

some inteﬁﬁediate space A such that A(X) is dense in A .

Examples: For any interpolation functor F , 1let F° denote the
functor defined by taking FO(K) F=F(X)° . Then F° is in the
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class ¥ when F is any of the following functors:
KQ (general K-method) for non degenerate parameters & ,

}¢ (general J-method) ,
o

c6 (the first calderdén method) and of course also C° (the second
calderdén method) since by Bergh’s theorem (Ce)o = Ce ,
The functors (->¢ (Peetre) , Py and Py (Ovchinnikov) <,

(Gustavsson-Peetre) for all non-degenerate concave functions

p:R, >R, .

Let %fin(z) be the set of all finite dimensional regular

subcouples of .
Definition: An interpolation functor F is said to be computable

on some couple R if
llal

BeB., () )

= inf {HaHF(g) fin

F(Z)
for all elements a .

We say that F is computable if it is computable on all
couples. The class of all computable couples is denoted by
Gamp .

The concept of computable functor was introduced in the
category of Banach spaces by Herz and Wick-Pelletier and
generalized to the category of so-called "doolittle diagrams" by
Kaijser and Wick-Pelletier. I would like to point out that this
concept is closely related to the following condition on orbit
functors F = Orb (X°-) introduced and used by Janson:

For all couples B and all b e A(ﬁ)
bl = inf { = "Tk"X gnaku}

14

F(B)
(#*) { where the infimum is taken over all

finite families {T c Q(X ﬁ) and
{a,} < A(R) such that b = = T,a, .

We will refer to all orbit functors F satisfying (¥) as correct .

Theorem (Aizenstein-Brudnyi) The functor F is computable if and
only if it is finitely generated and correct.
Most functors FC in the preceding list of examples are
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computable. The only exception is wz : we dc not know yet
whether it is computable.

The preceding theorem shows that %% < Gomp but we do not
know if the inclusion is. strict. (Perhaps wz might be the
missing counterexample?)

It is very significant that there exists a subcategory of B
on which all interpolation functors F° are computable.

Theorem (Brudnyi) F° is computable on every couple satisfying

the Janson approximation condition.

Let us now mention a very useful criterion for correctness
of orbit functors which are generated by a single element.
(Recall that several "naturally occuring® functors turn out to

be of this type.)

Thecorem (Krugljak-Mastylo) If R is a couple of Banach lattices
both having the Fatou property, then every orbit functor
OrbA(X;°) which is generated by a single element is correct.

Computable functors have some remarkable pfoperties. The
first of them is of course Janson’s famous duality theorem. This
result will appear below as part of a more general framework.
But now I will describe some other properties, which deal with
the stability of such functors under some natural operationsf
and also with interpolation‘of nonlinear operators:

(i) Stability under superposition:

Theorem (Aizenstein-Brudnyi) Let F v F1 and F be computable on
some couple. R and suppose that A(X) is dense in F (X) n F (X) .
Then the functor F(F F ) is computable on X .

(This functor is deflned by F(FO,F )(ﬁ) c= F(F (ﬁ) F (ﬁ)) for
all B .) Corogllary: (Weak reiteration theorem) Suppose that the
functors F_, F,, F and G are computable and that
F(FO,Fl)(ﬁ) = G(ﬁ) for all regular finite-dimensional couples
B . Then F(FO,Fl) coincides with G on all couples X for which

A(X) is dense in FO(X) n Fl(X) .
Example: As proved by Janson, the functor C6 is both an orbit
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and coorbit on 3 . So the preceding corollary gives the

calderén reiteratiginformula without any calculation.

We do not know whether it is possible to do without the
density condition in the preceding theorem. If it were possible
then our theorem would also yield the stronger reiteration

result of Cwikel-Janson for C6 .

(ii) Interpolation of nonlinear operators:

Let Lip(X,ﬁ) denote the space of all continous maps T from Z(X)
into Z(g) which are Lipschitz fronm Ay into B; i=0,1, and
satisfy T(0) = 0 . The norm of T in this space is the maximum of

the Lipschitz constants of T[A .
i

Theorem (Aizenstein-Brudnyi) The estimate
HT(al) - T(az)HF(g) < "T"Lip(X,ﬁ)"al - aan(X)

holds for each computable F , each T € Lip(X,ﬁ) and each a; . a,
in F(X) . .
Corollary (generalization of a theorem of Felix Browder): If 3
has the Janson approximation property, then for every functor F°
the above estimate holds for all T e Lip(X) .

Example (a problem of Lions): Is the functor C8 stable under
Lipschitz mappings?

M. Cwikel constructed a very interesting example of an operator
T and a couple R such that T:Z(X) - Z(K) and T|AO € Lip(Ao) but

T|A is only bounded. He proved that T does not map CB(X) to

itself. So in this context the answer is no. But from our

theorem we see that for T € Lip(X,g) the answer is yes!

5. DUALITY
Let us recall that if A is an intermediate space of 2 then
the dual space A’ of A is the linear subspace>of the Banach
conjugate space A(X)* defined by the finiteness of the (Banach)
norm ‘
Mwyz=mmK€@xHMA§1,aeA@H
The dual couple of Z is the couple R = (A’,Ai) . It is natural
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to expect that if A is an interpolation space of K then A’ is an
interpolation space of X’ . But life can be hard: There exists a
counterexample to this assertion, constructed by N. Krugljak. So
the mapping F’ from the subcategory B of dual couples to B
given by:

(*%) F' (') := F(R)’ for all R e B

in general is not an interpolation functor. This leads us to
define the dual functor DF of a given interpolation functor F in
a way which is slightly different from (*%) .

Definition: DF is the maximal functor among all interpolation
functors G which satisfy G(X) ! F(X)' for all regular couples
.

Of course there are other possible variants of this
definition: E.g. take the maximal extension wusing 'finite
dimensional instead of regular couples. (This functor is denoted
by DfinF ). But I think that the next two results show that our
choice of definition is the correct one.

Intuitively orbits and coorbits seem to be dual to

eachother. But here is a precise statement:
Theorem (Brudnyi) Let the couple R and its intermediate space A
both be regular. Let F := OrbA(X;-) and G := CorbA,(~;X’) .
Then the norms of DF(@) and G(ﬁ) coincide on A(g) for all
BeB.

In particular, if G(g) Sl (Go(ﬁ))~ then DF(ﬁ) = G(g) .

The second result further confirms our choice of

definition:
Theoren (Aizenstein-Brudnyi) If F is computable then
DF =D_.. F =F .

fin

Ccorollary (slight generalization of Janson’s first duality
theorem): If OrbA(K;°) is computable, then
OrbA(X;~)’ = CorbA,(-;K’) .
It is very natural to seek an analogous duality result for
coorbits. Janson’s second duality theorem requires very strong
assumptions on the coorbit. We can understand why this is so in

view of the following result:
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Theorem (Brudnyi-~-Krugljak) Let R be a regular couple and A an
intermediate space of R satisfying A <t (AO)~ . Then the
equality

CorbA,(ﬁ;X’)’ = OrbA(X,ﬁ’)
holds for all reqular couples B if and only if the closed unit

*
ball of OrbA(X,ﬁ’) is weak-star closed in the space A(g) .
(In fact this result can be made into part of an alternative

proof of the second Janson duality theoremn.)

6. REAL INTERPOLATION OF WEAKLY COMPACT OPERATORS
Finally here is one more example of an application of the

general theory.
Definition: An operator T € 2(3,3) is said to be weakly compact

if T'A(K) is weakly compact as an operator from A(K) into
=(B) .
Beauzanmy posed and solved the question of whether a weakly

compact operator T e Z(X,ﬁ) is also weakly compact from Ke p
1

into ge p -

7
Question: For which parameters ¢ does the real method functor KQ
interpolate weak compactness, i.e. have the property that

T| R K (K) > K (ﬁ) is weakly compact for all weakly compact
KQ( )R ]

Te ¢(X,B) ?

Here is the complete answer:
Theorem (Aizenstein-Brudnyi) The functor K® interpolates weak
compactness if and only if the space KQ(%”ew{(z_n)}) is
reflexive.
Example (generalizing Beauzamy’s theorem):
Let ® be a quasipower parameter of the K method and suppose that
it is also reflexive. Then KQ(K) is reflexive if and only if the

closed unit ball of A(X) is weakly precompact in Z(K) .
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