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 Carbon Compounds – 

Diamonds of the 21st century 

Electronic structure of graphene 

 Carbon nanotubes (CNTs) – geometry, properties,  

                                                  & applications 

Electronic structure of carbon nanotubes (CNT)  

CNT & graphene based electronics –  

the future of information technologies ?  

 

1. diamond  

2. graphite  

3. fullerene  

4. graphene 

5. carbon nanotubes 

6. carbon nanocoils  

7. lonsdaleite "hexagonal diamond" 

8. amorphous carbon  

9. carbon nanofoam  

10. ..... 

 

Allotropes of carbon 
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Covalent bonds between carbons 

sp3  and sp2 hybrids 

Diamond 

 

Lattice constant 

0.3566 nm at 298 K. 

nearest neighbor distance:  

0.154450 nm at 298K. 

Atomic weight: 12.01 

Atomic radius: 0.077 nm 

Number of atoms in a  

unit cell: 8 

 

Two fcc lattices  

shifted by (a/4) [111] The hardest material ! 

Graphite 

STM image 

projection of 

a = b= 0.2456 nm, c= 0.6694 nm 

 
The carbon-carbon bond length in the bulk  

form is 0.1418 nm (shorter and stronger  

than in diamond)  

The interlayer spacing is c/2 = 0.3347 nm 

    weakly coupled 2D planes  

    pencil, lubricant 

Fullerenes 

The C60 cluster 

‘buckminsterfullerene’ 

‘bucky-ball’ 

60 carbon atoms formed in  

       12 pentagons 

       20 hexagons  

diameter = 1.034 nm 

Point group –  

120 symmetry operations 

Synthesized by R. F. Curl,  

H. W. Kroto, and R. E. Smalley  

Nobel Prize for Chemistry 1996 

Named after Buckminster Fuller 

American architect  

(living XIX-XX century)   
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Fullerenes 

C20  

consists of 12 pentagons 

ideal of dodecahedron 

C40  

Fullerenes 

C86  C540  

and many more …. (up to C980 ) 

Carbon nanotubes (CNTs) 

S. Iijima, Nature 354, 56 (1991) 

D. Vgarte, Nature 359, 707 (1992) 

Multiple Wall Carbon Nanotubes 
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Boron Nitride Nanotubes 

Carbon (Boron Nitride) Nanocoils 

„These nanotubes are so beautiful that  

they must be useful for something” 

 

                                                  R. Smalley 

CNTs – Mechanical Properties 

Mechanical strength –  graphite-like strong bonds 

                                    --  no dangling bonds 

                                    --  no weakly bound sheets 
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Graphene: 
a sheet of carbon atoms  

What is graphene? 

    2-dimensional 

hexagonal lattice  

    of carbon 

       sp2 hybridized 

      carbon atoms 

        Among strongest 

        bonds in nature 

        Basis for: C-60  
(bucky balls) nanotubes 

graphite 

Graphene – a single sheet of C atoms 

x 

y 
Two unit-cell vectors:  

Two non-equivalent  

atoms A and B in the unit cell  

(two sublattices) 

a a( , )1

3 1

2 2

a a( , ) 2

3 1

2 2

M. Machon, et al., Phys. Rev. B 66, 155410 (2002) 

The band structure  

was calculated with  

a first-principles  

method 

Electronic band structure of graphene 

Γ Q Q P 

Γ 

P 
Q 

xk

yk

Brillouin Zone 
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Tight-binding description of graphene 

σ bonds – not considered  

                 in this model 

π bonds considered   

Only couplings between  

nearest neighbors taken into  

account  

One pz orbital pro atom 

Tight-binding description of graphene 
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Dispersion relations for graphene 

y yx
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k a k ak a
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Nearest-neighbors tight-binding  

electronic structure of graphene 

T-B 

Ab-initio 

Γ Q Q P 

Γ 

P 
Q 

xk

yk

Brillouin Zone 

t = -2.7 eV 

Hopping parameter 
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Tight-binding band structure of graphene 

y yx

/
k a k ak a

ε( k ) t cos cos cos
      

          
      

2

1 2
3

1 4 4
2 2 2

Graphene is  

semi-metallic 

Energy gap is  

equal zero only  

in one k-point  

(P-point) 

Massless 2D Dirac Fermions  

“light cone” 

Reciprocal lattice of graphene 

Carbon nanotubes: 
geometry & electronic structure  
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Nanotube = rolled graphene sheet 

hC ( n,m ) na ma 1 2

Nanotube is specified by  

chiral vector: 

hC ( n,m ) na ma 1 2

Structure of Carbon Nanotubes  

The chiral vector: 

m n

(n,0) – zig-zag 

(n,n) – armchair 

(n,m) – chiral 

m n

Structure of Carbon Nanotubes  

Carbon nanotube 

of type chair (5,5) 

Carbon nanotube 

of type zigzag (9,0) 

Chiral (10,5) 

carbon nanotube 

(8,4) chiral tube (7,0) zig-zag tube (7,7) armchair tube 

Perspective view of nanotubes 
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Electronic structure of CNT –  

Zone-folding Approximation 

Graphene – infinite plane in 2D 

For CNTs, we have a structure which is  

                      macroscopic along the tube direction,  

                      but the circumference is in atomic scale 

Periodic boundary conditions  

in the circumferential direction 

The allowed electronic states are restricted  

to k-vectors that fulfill the condition 

hk C ( n,m ) πl  2

P-point belongs to allowed k-vectors  CNT is metallic 

P-point does not belongs to allowed k-vectors 

                                              CNT is semiconducting 

Which CNTs are metallic?  

Which semiconducting?  

       GAP ABE H ( k )  0 0

   GAPE exp( ik a ) exp( ik a )      1 20 1 0

We get two possible conditions 
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or 

k a π l
 

   
 

1

2
2

3
k a π l'

 
   

 
2

1
2

3
and 

Due to the periodicity condition 
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Which CNTs are metallic?  

Which semiconducting?  

n m
l




2

3
n m

l'



2

3

Nanotube (n,m)  

is metallic 
n m l  3

Nanotube is a metal if n-m is multiple of three 

Otherwise CNT is a semiconductor 

All armchair (n=m) CNTs are metallic  



Modelowanie Nanostruktur 

Lecture 6 10 

Metallic and semi-conducting CNTs  

Metallic and semi-conducting CNTs  

Metallic and semi-conducting CNTs – Band Structure  

CNTs – band structure & density of states  
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Electronic density of states for  

(16,0), (13,6), (21,20) nanotubes 

Pronounced 1D-behavior ! 

CNTs – Ideal 1D Quantum Wires  

Transverse momentum quantization:  
 

                   is only allowed mode,  

         all others more than 1eV away (ignorable bands)  

 

1D quantum wire with two spin-degenerate transport  

 channels (bands)  

 

Massless1D Dirac Hamiltonian  

 

Two different momenta for backscattering 

CNT & graphene based FETs - 
the future of nanoelectronics?  

Molecular Electronics with fullerenes and  

Transistors based on CNTs 
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TIME 

Scale 

10 nm? 

2015 ? 

Electronics based on semiconductor 

nanostructures and large molecules  

“Top down” 

“Bottom up” 

? 

? 

Semiconductor nano-wires  

& carbon nanotubes 

Field Effect Transistor based 

 on silicon nano-wire  &  carbon nanotube 

CNTFETs: 1998 - 2004 

Back gate transistor Top gate transistor 

CNTFETs – Isolated Top Gate Devices  

Schematic cross section of  

a top gate CNTFET  

Output characteristics of  

a p-type device with Ti gate  

and a gate oxide thickness  

of 15 nm.    

S. J. Wind et al., 

Appl. Phys. Lett. 80, 3817 (2002) 
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Comparison of Si-MOSFETs with up-scaled  

CNT-MOSFETs  

CNTs devices show competitiveness to state-of-the-art  

Si-MOSFETs ! 

CNT-MOSFET shows unprecedented values for  

transconductance and maximum current drive 

Integrated circuit built on single nanotube 

Ring oscillator circuit built on a 

single carbon nanotube 

consisting of five CMOS inverter 

stages.  

Nanotube covered by the 

contact and gate electrodes. 

IBM T. J. Watson Research 

Center, the University of Florida, 

and Columbia University 

[Chen et al., Science(2006) 311, 

1735]. 

Integrated circuit built on single nanotube 

Metals with different work functions as the gates 

Al Pd 

Gate Gate 

p-type FET n-type FET 

SWCNT 

The difference in the  

two work functions  

shifts the characteristics  

to give a p-/ n-FET pair 

In this way, five inverters involving ten FETs were arranged 

side-by-side on a single, 1.8 µm long SWNT. 

Inverter works at a frequency of 52 MHz, ~100 000 times 

faster than previous circuits built by connecting 

separate nanotube transistors. 

This improvement is a result of our compact design, which 

eliminates parasitic capacitance contributions to a large extent 

+ = Inverter 

Graphene for devices 
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Graphene’s advantage: cut-a-structure 

Graphene Nanoribbon FETs (GNR FETs) 

I-V characteristics for 

different GNR widths 
The schematic sketch  

of an GNR 

Scheme of GNR FET 
I-V characteristics for n=12 GNRs 

with charge impurities 

On May 21, 2009,, HRL laboratories said that it had 

made devices from single-layer graphene on 2 inch 

diameter 6H-SiC wafers with much-improved 

performance figures. 

Epitaxial graphene based devices 

“They have world-record field 

mobility of approximately 

6000 cm2/Vs, which is six to 

eight times higher than current 

state-of-the-art silicon n-

MOSFETs,” 

IEEE Electron Devices Lett. 30, 650-652 (2009) 

Summary 

Fascinating world of carbon compounds 

Are carbon compounds based devices 

 the future of information technologies? 

Jacek A. Majewski, University of Warsaw 

Electronic structure of graphene & CNTs   

It’s not clear yet, but 

Carbon compounds definitely changed  

the way of thinking about materials science 
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? 

When it happens? 

Thank you  


