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What about realistic nanostructures ? Synthesis of colloidal nanocrystals
Inorganics
3D (bulks) : 1-10 atoms in the unit cell Injection of organometallic

precursors
2D (quantum wells): 10-100 atoms in the unit cell

- > A
1D (quantum wires): 1 K-10 K atoms in the unit cell FE a2
! )
. b
0D (quantum dots): 100K-1000 K atoms in the unit cell : Teiee)
~ . \'
Organics

Nanotubes, DNA: 100-1000 atoms (or more)

Mixture of surfactants Heating mantle

Examples of Nanostructures Nanostructures: colloidal crystals

TEM image of a InAs/GaAs dot

-Crystal from sub-pum
spheres of PMMA
(perpex) suspended in
organic solvent;

- self-assembly when
spheres density high
enough;

illuminated with white light ——

HRTEM image:

Z[nm]

segregation of Indium Bragg's law — different
in GaN/InGaN crystals — different orientation
Quantum Well different 2.

RS
X [nm]
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http://ehf.uni-oldenburg.de/pv/nano/bilder/Nano-CdSe-Loesung-gross.png
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Hot topic (to come) —
The curious world of nanowires

SEM of ZnTe nanowires grown by MBE
on GaAs with Au nanocatalyst

Mag = 100.00 KX LEO 1530 - IWC PAN

Self-organized growth of nanowires:
catalytic VLS growth

SILICON
VAPOR CAYSTAL

Au-5i LIQup
ALLOY

\l/

SILICOMN SUBSTRATE
Mechanizm Vapor-Liquid-Solid
VLS (Wagner 1964)

Nanowire site control and branched NW structures:
nanotrees and nanoforests

RIENEE R ¥ S

http:/www.nano.ftf.Ith.se/

(A) Nanowires can be accurately positioned using lithographic methods such as EBL and NIL. (B) Subsequent seeding by aerosol
deposition produces nanowire branches on an array as in panel (A). Shown here is a top view of such a ‘nanoforest” where the
branches grow in the <111>B crystal directions out from the stems. (C) Dark field STEM image and EDX line scan of an
individual nanotree. An optically active heterosegment of GaAsP in GaP has been incorporated into the branches.
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Nanowire nanolasers

Room temperature lasing action from chemically synthesized
ZnO nanowires on sapphire substrate

Schematic illustration A SEMimage

; ; § ; Zna ZnO nanowires
élélélil}““"
70- 100 nmJ -— | | I
sapphire
I obstrate

One end of the nanowire is the epitaxial interface between the
sapphire

and ZnO, whereas the other end is the crystalline ZnO (0001)
plane Huang, M., Mao, S.S., et al., Science 292,

Controlled Growth and Structures of
Molecular-Scale Silicon Nanowires

(a) TEM images
of 3.8-nm SiNWs
grown along the
<110> direction

(c) cross-sectional
image

(b) & (d) models
based on
Wulff
construction

Yue Wu et al., NANO LETTERS 4, 433

Detection of single viruses with NW-FET

Patolsky et al., Proc. Natl. Acad. Sci.
USA 101 (2004) 14017
B 2100

Patolsky & Lieber, Materials Today, April 2005, p. 20
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Simultaneous conductance and optical data recorded
for a Si nanowire device after the introduction of influenza A

High Performance Silicon Nanowire
Field Effect Transistors

Comparison of SINW FET
transport parameters

with those for
state-of-the-art planar
MOSFETs show that

® “SiNWs have the
potential to exceed
substantially conventional
devices, and thus could be
ideal building blocks for future
nanoelectronics.”

Yi Cui, et al. NANO LETTERS 3, 149
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Heterostructured Nanowires

COHN LOHN Nanotape

coaxial longitudinal
heterostructured heterostructured
nanowire nanowire

Heterostructured Nanowires

Transmission electron microscopy images of

a GaN/AlGaN two Si/SiGe
core—sheath nanowire superlattice nanowires

Simulation methods

Atomistic methods for modeling of
nanostructures

® Ab initio methods (up to few hundred atoms)
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Density Functional Theory (DFT)

@ One particle density determines the ground state energy
of the system for arbitrary external potential

E[p] =[d°Fp(F Jvexe(F )+ F [ p]
E [POI: EO‘% ground state energy}
ﬁund state density |

Total energy Kinetic Exchange Correlatio
functional energy energy n

- energy
* Elp] = [dio, (F)p(7)+ T.[p] +ULp] + E [ p] + E.[p]

- 7
External Classic Coulomb
energy energy

Tight-Binding Hamiltonian

— T 7
H = Zgiaciacia + Z tia,jﬂciacj/)’
ai ai,fij

[creation & anihilation operators]

® On-site energies are not atomic eigenenergies
They include on average the effects
of neighbors
==) Problem: Transferability
E.g., Siin diamond lattice (4 nearest neighbors)
& in fcc lattice (12 nearest neighbors)

® Dependence of the hopping energies on the distance
between atoms

Atomistic methods for modeling of
nanostructures

® Ab initio methods (up to few hundred atoms)

e Semiempirical methods (up to 1M atoms)

E Tight-Binding Methods

Atomistic vs. Continuous Methods

® Microscopic approaches can be applied
to calculate properties of realistic nanostructures

le+06

Continuous

é 100 000 methods
§ 10000~ Tight-Binding ‘
5 i
= 1000 Pseudo-
2 1004 potential
2w

1 1 1 1

1
0 2 4 6 8 10 12 14
R (nm)
Number of atoms in a spherical Si nanocrystal as a function of its radius R.
Current limits of the main techniques for calculating electronic structure.
Nanostructures commonly studied experimentally
lie in the size range 2-15 nm.
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Atomistic methods for modeling of
nanostructures

® Ab initio methods (up to few hundred atoms)

e Semiempirical methods (up to 1M atoms)
B (Empirical Pseudopotential)

E Tight-Binding Methods

e Continuum Methods
(e.g., effective mass approximation)

Electron in an external field

- +V(F)+ U@V/(F) =gy/(T)

Periodic potential of crystal Non-periodic external potential
@ Strongly varying on atomic scale @ Slowly varying on atomic scale

hS) |'Ol>
N

Band structure
of Germanium

As Qo Mg,

Band Structure

U(F)=0 =» g (k) ==

Energy [eV]

Wave vector k

Continuum theory-

Envelope Function Theory

Electron in an external field

=22 - - —> -
\—;_m/JrV(F) +U @ w(r)=&p(r)

Periodic potential of crystal Non-periodic external potential

@ Strongly varying on atomic scale @® Slowly varying on atomic scale

Which external fields ? - @2
= Shallow impurities, e.g., donors U(F)=—-—%
e K|r|

L - - =
= Magnetic field B,B=curlA=Vx A
® Heterostructures, Quantum Wells, Quantum wires, Q. Dots

GaAs | GaAlAs GaAlAs | GaAs | GaAlAs

@ Does equation that involves the effective mass and a slowly varying

function exist ?{ Fe)

*

+U('F’)JF('F’)=aF<F"’) F{f)="
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Envelope Function Theory —
Effective Mass Equation

J. M. Luttinger & W. Kohn, Phys. Rev. B 97, 869 (1955).

[6(—iV)+U(F)—e]F,(F)=0 | (EME)

EME does not couple different bands
- - -
WAT) = Fo (1) uno ).
“True” SvEE Periodic
wavefunction op Bloch Function
Function

@ Special case of constant (or zero) external potential

U(F)=0 = F,(F)=exp(ik-F) == (') Bloch function

® U(z) =5 F(M=expli(kyx+k,y)F(2)

Envelope Function Theory- Electrons in Quantum Wells
Effect of Quantum Confinement on Electrons

@ Let us consider an electron in the conduction band near I" point

cbb Potential U(F) ?

GaAlAs| GaAs| GaAlAs

U(?'):U(z): &co ze GaAs
go+4E, ze GaAlAs
Growth direction (z — direction )

6'c(lz) =&

U(F) is constant in the xy plane
Effective Mass Equation for the Envelope Function F

2 (52 52 g2
—+—+— |F(X,y,2) +U(2)F(X,y,2) = EF(X,Y,2
m*(axz o 622](y) (2)F(x,y,2) = EF(X,Y,2)

Separation Ansatz  F(X,Y,z)=F,(X)F,(y)F,(2)

2 92 o°F
_2m*(aaxzx FyF,+—5 o YR F, +—5- o S~ FFy [+U(2)F(FF, = EF,FF,

Electronic states in

Quantum Wells

2 5%E 2E
-5 *(66 XFF, + o —YF,F, +aa LF,F, |+U(2)FF/F, = EF,F/F,
m*| &x

Effective Mass Equation of an Electron in a Quantum Well

E=E,+E/+E,

2 2 3%F
25 68XFZXFF_EFFF 2’5 ayVFF_EFFF
m* m*

52 O°F
Tom* 6222 FFy +U()RFyF, = E,RFyF,
2 A2 ] 2
A~ OF, —EF, oF -~e E =2
Tom* gx2 x X 2m* X
2 52E ) 2
0N R oF -, =i
am* ayz yy y ! y om* y
% °F
Tom* 6zzzn +U(2)Fy = ExnFpp
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Conduction band states of a Quantum Well

Fe ()= %exp[i(kxx+kyy)] =%exp(i|z” )

= - 1 =
Fn,lz"(r) = F@l(r”)FZ”(Z) = ZeXp('kﬂ “B)Fn(2) '{(z)

o 52 o 2 62F
En(kﬂ) = k||2 +Ep 4EL|_ ~ o +U(D)Fn = ExFyp

2m* 72

Energies of bound states
in Quantum Well
m £ +4E,

I T e AN
]I/%/\ BN\

[Wave functions an(z)]

Energy

Band lineups in semiconductors

IN

ENERGY (eV)
® o

-12

Band edges compile by: Van de Walle (UCSB) Neugebauer (Padeborn), Nature’04

Band structure Engineering
Semiconductor Multilayers — Heterostructures
GaAs

AlAs

Energy Gap [eV]

54 56 5.8 6.0 62 6. 6.6

Lattice constat———-

The major goal of the fabrication of heterostructures is the
controllable modification of the energy bands of carriers

Envelope Function Theory- Electrons in Quantum Structures

Various possible band-edge lineups in heterostructures

Type-l Type-ll -
2 (staggered) (misaligned)
AE, AE
cbb CI EB cbb < Egap 4E, EB B
EX S gap
Vbt AlEgp A B A
A b
AEV e Eoap AEV cb ¥ Ec AEV
vbt vbt
e.g., GaAs/GaAlAs GaN/SiC InAs/GaSh
AEV - Valence Band Offset (VBO) A4E_ - Conduction band offset

VBO'’s can be only obtained either from experiment or ab-initio calculatiq

Band lineup in GaAs / GaAlAs elilg 10.14 eV
Quantum Well with Al mole fraction
equa| 20% 1.75eV||1.52 e
vbt 0.09 eV
GaAlAs GaAs |
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Density of states

Density of States of a Two-Dimensional Electron Gas

A special function known as the density of states G(E) that gives
the number of quantum states dN(E) in a small interval dE around
energy E: AN(E)= G(E) dE

V -the set of quantum numbers (discrete and continuous)
corresponding to a certain quantum state

G(E)=Y5(E-E,)] __
p Energy associated wit
\’\Lthe guantum state V T

{ Spin gquantum numbér [Continuous two-dimensional vector }

s
For 2DEG: V={SME\

A quantum number characterizing the
transverse quantization of the electron states

s +k]

n,kx,ky

Density of States
G(E)dE - the number of electron states with energies E and E + dE

Generally, this quantity is proportional to the volume of the crystal
Convention: we define G to refer to the volume of a unit cell £2

@ We defineG, to refer to a single direction of electron spin
(denotedo )

-9 e . (K
Co(B)= 53 zn:jd KS(E —£ng (K))

Of course, there is no contribution from
a particular band at energy E unless
there are states of energy E in that band

3/2 \/—\/_

52Kk2
£(K) = £,(0) +
2m’,

= [GCP)(E)= [ ]
Vi

n

Density of States of a Two-Dimensional Electron Gas

2
G(E)=2 3 Ol -Ey— 2 (K2 +K2)]
Ny ky 2m*

Ly, Ly -arethe sizes of the system in x and y directions

Idkdk( )

S=L,L, -the surface of the system Z( )—
Ky Ky

Ll Y
G(E)= ZWzn:Udedkyé[E —En— ekt ko=

52
dkd(E - E, _ﬁkﬂz)z

LiLy 2
T 7?2 ZI {eKS(E ~ B —K]) — ki =4

@(X)—Heavisidestep function @(x)=1 forx>0 and @(x)=0 forx<0

10
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Sm*
G(E)=—~ E-E
(E) m?zn:@( ")

Density of States of a Two-Dimensional Electron Gas

Often the density of states per unit area,
G(E)/S ,is used to eliminate the size
of the sample

Each term in the sum corresponds to the contribution from one subba|

The contributions of all subbands are equal and independent of energ

® The DOS of 2DEG exhibits a staircase-shaped energy dependence,

with each step being associated with one of the energy states.

@ GBDI(E A\3/2

g ® eme-(m) e

2 SR

y— (2D) 2

S G E Y

> (E) &(K)=——k?

D 2m

3

[a} R For large n, the staircase

E. E E E function lies very close to
12 8 , the bulk curve G®P)(E)

Density of states for 2DEG in an
infinitely deep potential well

Electronic states in

Quantum Wires

Density of States of a Two-Dimensional Electron Gas

Dependence on the width of Quantum Well

s -
N -,
> /
= /
100 A QW
s |/ [sonaw
1
[a)
1
0 100

200

Energy [meV]

QW of large width === Bulk

Electron States in Quantum Wires

@ Free movement in the X-direction,
/(' © Confinement in the y, Z directions
x e Confinement potential U(y,z)

F(x,y,2) =e"*F, (y,2)

7 (8% &
_Zm*(ayf’azz] Fa(y,2)+U (Y, 2)F, (Y, 2) = EF, (Y, 2)

}52
En(kx) =E, +Wk§

Density of states for one-dimensional electrons
n

GOV (E)=2) s(E-E, -

n,Ky

*
6eO(E) == 275 _8(E-E,)
]

72K2 w

x\ #2 S

Density of state:

Lecture 4

2m*
E; E,

\J\

11
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Electronic states in

Quantum Dots

Electron States in Quantum Dots

Electrons confined
in all directions

U(x,y,z)
Self-organized quantum dots
52
+2+az2JF”(X' y,2)+U(X, Y, 2)F (X, y,2) = E R (X, ¥,2)

Density of states for zero dimensional (OD) electrons (artificial atoms)

GOP(E)= Y 5(E-E,)

0
3
S
g
4
-
S
>
=
@
o
)
[a)]

E, E, E; E, E

Confinement == Quantization of energy levels

How small should be semiconductor system to see
separate levels in room temperature?

L

kXL=27l'nX 2 2

A (2n
k,L=2mn, E=2m*[T) (n>2<+n§+nzz)
L k,L=2zn,

m*=m*m,

AE > kg - 300K = 0.026¢V/|
12 <1 173,55 nm?
m*

GaAs m*=0.03 L <76nm
Si  m=02 | «29nm

B
o

Electronic states in
Nanostructures

Summary

12
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Energy spectrum |
1D: free motion in x direction, dimensional quantisation in z,y

[Hp]=0 >
Wm,n(r) = uk(r)eikXXFm,n(y1z)/(|—x)1/2

2D: free motion in x,y directions,dimensional quantisation in z

[HpJ=0;[Hp]=0=>

Yn(r) = u (et me, )L, L)Y
3D: free motion in x,y,z directions

[Hp]=0 =>

Wk(r) = uk(r)eikr/(l—x Ly I—z)l/2

Density of States of Electrons in
Semlconductor Quantum Structures

3D & (K GEP(E)

VA
2m’ :’
Bl B GCO(E) = [ J IJ—

GEP)(E)
Quantum Wells.G(ZD)(E) Z@(E E,) - | 2 322
P ,,/2 x
E, E,

e (E)
Quantum Wires 61O (E) = { (E E) \
GOP)(E)
Quantum Dots
6O (€)= T o(E-E,)
n

E, E, B

Position Dependent

Effective Mass

Effective Mass Theory with Position Dependent
Electron Effective Mass

mg(2)
mg
z=0 -0
My # Mg £=" «Graded structures”
#2 d?
- — I
2m*(2) 4z IS NOT HERMITIAN ! _izi 1 i
== Symetrization of the kinetic energy operatQr 2 dz m*(z) dz ,
2 IS HERMITIAN !
AL F(z)+U(z)F(z) = EF(2)
2 dz| m*(z)dz
1 dF(2)
l F@) and mey & ARE CONTINOUOS !
General form of the kinetic energy operator
T=[m*@)]*p,Im* @)Y p,Im*@)]*  with 2a+B=-

13
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Doping in Semiconductor

Low Dimensional Structures

Effects of Doping on Electron States in Heterostructures

e®eeT — — -E¢

e —— Ec >
Unstable Charge transfer

Thermal equilibrium

Resulting electrostatic potential Fermi distribution function

o A4me — - .
Vo(t)=——| X 5(F-Rp)- Y. 8(F-=Rp)- 2 f, v, (N
€ (acc) (don) v
should be taken into account in the Effective Mass Equation

2m*

2 2 2 2
% [:72+%+;—2]+U(x, v.2) —et])(?')]y/v(i") =E, (F)

® The self-consistent problem, so-called “Schrodinger-Poisson” probler

Electrostatic potential can be obtained from the averaged acceptor and|
donor concentrations

4”e[NA(F)— Np ()= 1, Iy, (F) |2}

&

V2o(F) =

Energy band diagram of a selectively doped AIGAAs/GaAs
Heterostructure before (left) and after (right) charge transfer

= Positively charged
[‘" T region
Iy -
XA _ EF Eg
ofcooo Ze o
AE, 2V %
0/
2 L
EgA EgB GaAs By A (Negatively
000000 charged
— AEV region
AlGaAs ]AEV .
— - U(2) =U9(2) +e¢(2)

e XaandXs - The electron affinities of material A & B

® The Fermi level in the GaAlIAs material is supposed to be pinned
on the donor level.

® The narrow bandgap material GaAs is slightly p doped.
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