

Chair of Condensed Matter Physics Institute of Theoretical Physics Faculty of Physics, University of Warsaw

Semester Zimowy 2011/2012

Wykład

Modelowanie Nanostruktur

Jacek A. Majewski

E-mail: Jacek.Majewski@fuw.edu.pl

Modelowanie Nanostruktur, 2011/2012 Jacek A. Majewski

Wykład 4 – 25 X 2011

Continuous Methods for Modeling Electronic Structure of Nanostructures

Effective Mass Approximation

Controlled Growth and Structures of Molecular-Scale Silicon Nanowires (a) TEM images of 3.8-nm SiNWs grown along the <110> direction (c) cross-sectional image (b) & (d) models based on Wulff construction Yue Wu et al., NANO LETTERS 4, 433

Simulation methods

Atomistic methods for modeling of nanostructures

• Ab initio methods (up to few hundred atoms)

Atomistic methods for modeling of nanostructures

- Ab initio methods (up to few hundred atoms)
- Semiempirical methods (up to 1M atoms)
 - Tight-Binding Methods

Tight-Binding Hamiltonian

$$H = \sum_{\alpha i} \varepsilon_{i\alpha} c^{\dagger}_{i\alpha} c_{i\alpha} + \sum_{\alpha i,\beta j} t_{i\alpha,j\beta} c^{\dagger}_{i\alpha} c_{j\beta}$$

creation & anihilation operators

- On-site energies are not atomic eigenenergies
 They include on average the effects
 of neighbors
- **⇒** Problem: *Transferability*

E.g., Si in diamond lattice (4 nearest neighbors) & in fcc lattice (12 nearest neighbors)

 Dependence of the hopping energies on the distance between atoms

Atomistic vs. Continuous Methods

 Microscopic approaches can be applied to calculate properties of realistic nanostructures

Number of atoms in a spherical Si nanocrystal as a function of its radius R. Current limits of the main techniques for calculating electronic structure. Nanostructures commonly studied experimentally lie in the size range 2-15 nm.

Atomistic methods for modeling of nanostructures

- Ab initio methods (up to few hundred atoms)
- Semiempirical methods (up to 1M atoms)
 - (Empirical Pseudopotential)
 - Tight-Binding Methods
- Continuum Methods

 (e.g., effective mass approximation)

Continuum theory-Envelope Function Theory

Envelope Function Theory – Effective Mass Equation

J. M. Luttinger & W. Kohn, Phys. Rev. B 97, 869 (1955).

$$[\varepsilon(-i\vec{\nabla}) + U(\vec{r}) - \varepsilon]F_n(\vec{r}) = 0$$

(EME)

EME does not couple different bands

$$\psi(\vec{r}) = F_n(\vec{r})u_{n0}(\vec{r})$$
"True"

wavefunction

Envelope
Function

Periodic
Bloch Function

Special case of constant (or zero) external potential

$$U(\vec{r}) = 0 \implies F_n(\vec{r}) = \exp(i\vec{k} \cdot \vec{r}) \implies \psi(\vec{r})$$
 Bloch function

• U(z) \Longrightarrow $F_n(\vec{r}) = \exp[i(k_x x + k_y y)]F_n(z)$

Electronic states in Quantum Wells

Envelope Function Theory- Electrons in Quantum Wells

Effect of Quantum Confinement on Electrons

• Let us consider an electron in the conduction band near Γ point

Potential $U(\vec{r})$?

Growth direction (z - direction)

$$\varepsilon_c(\vec{k}) = \varepsilon_{c0} + \frac{\hbar^2}{2m^*} \vec{k}^2$$
 $U(\vec{r})$ is constant in the xy plane

Effective Mass Equation for the Envelope Function ${\it F}$

$$-\frac{\hbar^2}{2m^*} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) F(x, y, z) + U(z) F(x, y, z) = EF(x, y, z)$$

Separation Ansatz $F(x, y, z) = F_{x}(x)F_{y}(y)F_{z}(z)$

$$-\frac{\hbar^2}{2m*}\left(\frac{\partial^2 F_x}{\partial x^2}F_yF_z + \frac{\partial^2 F_y}{\partial y^2}F_xF_z + \frac{\partial^2 F_z}{\partial z^2}F_xF_y\right) + U(z)F_xF_yF_z = EF_xF_yF_z$$

Effective Mass Equation of an Electron in a Quantum Well

$$-\frac{\hbar^2}{2m*}\left(\frac{\partial^2 F_x}{\partial x^2}F_yF_z + \frac{\partial^2 F_y}{\partial y^2}F_xF_z + \frac{\partial^2 F_z}{\partial z^2}F_xF_y\right) + U(z)F_xF_yF_z = EF_xF_yF_z$$

$$E = E_x + E_y + E_z$$

$$-\frac{\hbar^2}{2m^*}\frac{\partial^2 F_x}{\partial x^2}F_yF_z = E_xF_xF_yF_z \qquad \qquad -\frac{\hbar^2}{2m^*}\frac{\partial^2 F_y}{\partial y^2}F_xF_z = E_yF_xF_yF_z$$

$$-\frac{\hbar^2}{2m*}\frac{\partial^2 F_z}{\partial z^2}F_xF_y + U(z)F_xF_yF_z = E_zF_xF_yF_z$$

$$-\frac{\hbar^2}{2m^*}\frac{\partial^2 F_x}{\partial x^2} = E_x F_x \quad \Rightarrow F_x \sim e^{ik_x x}, \quad E_x = \frac{\hbar^2}{2m^*}k_x^2$$

$$-\frac{\hbar^2}{2m^*}\frac{\partial^2 F_y}{\partial y^2} = E_y F_y \quad \Rightarrow F_y \sim e^{ik_y y}, \quad E_y = \frac{\hbar^2}{2m^*}k_y^2$$

$$-\frac{\hbar^2}{2m^*}\frac{\partial^2 F_{zn}}{\partial z^2} + U(z)F_{zn} = E_{zn}F_{zn}$$

Density of states

Density of States

G(E)dE - the number of electron states with energies E and E + dE Generally, this quantity is proportional to the volume of the crystal Convention: we define G to refer to the volume of a unit cell arOmega

> • We define G_{σ} to refer to a single direction of electron spin $(denoted \sigma)$

$$G_{\sigma}(E) = \frac{\Omega}{(2\pi)^3} \sum_{n} \int d^3\vec{k} \, \delta(E - \varepsilon_{n\sigma}(\vec{k}))$$

Band index

Of course, there is no contribution from a particular band at energy E unless there are states of energy E in that band

$$\varepsilon_n(\vec{k}) = \varepsilon_n(0) + \frac{\hbar^2 \vec{k}^2}{2m_n^*} \longrightarrow G^{(3D)}(E) = \left(\frac{m^*}{\hbar^2}\right)^{3/2} \frac{\sqrt{2}}{\pi^2} \sqrt{E}$$

Density of States of a Two-Dimensional Electron Gas

A special function known as the *density of states* G(E) that gives the number of quantum states dN(E) in a small interval dE around energy E: dN(E) = G(E) dE

v -the set of quantum numbers (discrete and continuous) corresponding to a certain quantum state

$$G(E) = \sum_{\nu} \delta(E - E_{\nu})$$
 Energy the guarantees

Energy associated with the quantum state ν

Spin quantum number

Continuous two-dimensional vector

For 2DEG: $v = \{s, n, k_{\parallel}\}$

A quantum number characterizing the transverse quantization of the electron states

$$G(E) = 2\sum_{n,k_x,k_y} \delta[E - E_n - \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2)]$$

Density of States of a Two-Dimensional Electron Gas

$$G(E) = 2\sum_{n,k_x,k_y} \delta[E - E_n - \frac{\hbar^2}{2m*}(k_x^2 + k_y^2)]$$

 L_x, L_y - are the sizes of the system in x and y directions $S = L_x L_y$ - the surface of the system $\sum_{k_x, k_y} (...) = \frac{L_x L_y}{(2\pi)^2} \iint dk_x dk_y (...)$

$$G(E) = 2\frac{L_x L_y}{(2\pi)^2} \sum_n \iint dk_x dk_y \delta[E - E_n - \frac{\hbar^2}{2m^*} (k_x^2 + k_y^2)] =$$

$$L_x L_y \sum_n \int_0^\infty 2 dx \, dx \, S(E - E_n - \frac{\hbar^2}{2m^*} k_x^2 + k_y^2)$$

$$= \frac{L_x L_y}{2\pi^2} \sum_n \int_0^\infty 2\pi k_{||} dk_{||} \delta(E - E_n - \frac{\hbar^2}{2m^*} k_{||}^2) =$$

$$=\frac{L_x L_y}{\pi} \frac{2m^*}{\pi^2} \sum_{n} \int_0^\infty k_{\parallel} dk_{\parallel} \delta(E - E_n - k_{\parallel}^2) \underbrace{\qquad \qquad \qquad }_{k_{\parallel}^2 = \varepsilon_{\parallel}}$$

$$G(E) = \frac{Sm^*}{\pi \hbar^2} \sum_{n} \int_0^\infty d\varepsilon_{\parallel} \delta(E - E_n - \varepsilon_{\parallel}) = \frac{Sm^*}{\pi \hbar^2} \sum_{n} \Theta(E - E_n)$$

 $\Theta(x)$ - Heaviside step function $\Theta(x) = 1$ for x > 0 and $\Theta(x) = 0$ for x < 0

Density of States of a Two-Dimensional Electron Gas

$$G(E) = \frac{Sm *}{\pi \hbar^2} \sum_{n} \Theta(E - E_n)$$

Often the density of states per unit area, G(E)/S , is used to eliminate the size of the sample

- Each term in the sum corresponds to the contribution from one subba
- The contributions of all subbands are equal and independent of energy
- The DOS of 2DEG exhibits a staircase-shaped energy dependence, with each step being associated with one of the energy states.

infinitely deep potential well

$$G^{(3D)}(E) = \left(\frac{m^*}{\hbar^2}\right)^{3/2} \frac{\sqrt{2}}{\pi^2} \sqrt{E}$$
$$\varepsilon(\vec{k}) = \frac{\hbar^2}{2m^*} \vec{k}^2$$

For large n, the staircase function lies very close to the bulk curve $G^{(3D)}(E)$

Density of States of a Two-Dimensional Electron Gas Dependence on the width of Quantum Well Bulk Density of states 100 A QW **300 A QW** 100 200 Energy [meV] QW of large width \implies Bulk

Electronic states in Quantum Wires

Electron States in Quantum Wires

- Free movement in the x-direction.
- Confinement in the y, z directions
- Confinement potential U(y,z)

$$F(x, y, z) = e^{ik_x x} F_n(y, z)$$

$$-\frac{\hbar^2}{2m*} \left(\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) F_n(y,z) + U(y,z) F_n(y,z) = E_n F_n(y,z)$$

$$E_n(k_x) = E_n + \frac{\hbar^2}{2m^*} k_x^2$$

Density of states for one-dimensional electrons
$$G^{(1D)}(E) = 2\sum_{n,k_x} \delta(E - E_n - \frac{\hbar^2 k_x^2}{2m^*})$$

Electronic states in Quantum Dots

Electronic states in Nanostructures Summary

Energy spectrum

1D: free motion in x direction, dimensional quantisation in z,y

$$[H,p_x] = 0 \Rightarrow$$

 $\psi_{m,n}(r) = \mathbf{u}_k(r)e^{ikxx}F_{m,n}(y,z)/(L_x)^{1/2}$

2D: free motion in x,y directions, dimensional quantisation in z

$$[H,p_x] = 0; [H,p_y] = 0 \Rightarrow$$

 $\psi_n(r) = \mathbf{u}_k(r)e^{i(kxx+kyy)}F_n(z)/(L_xL_y)^{1/2}$

3D: free motion in x,y,z directions

$$[H_{*}p] = 0 \implies$$

$$\psi_{k}(r) = \mathbf{u}_{k}(r)e^{ikr}/(L_{x}L_{y}L_{z})^{1/2}$$

Position Dependent Effective Mass

Doping in Semiconductor
Low Dimensional Structures

