

Chair of Condensed Matter Physics Institute of Theoretical Physics Faculty of Physics, Universityof Warsaw

Semester Zimowy 2011/2012

Wykład

Modelowanie Nanostruktur

Jacek A. Majewski

E-mail: Jacek.Majewski@fuw.edu.pl

Computational Materials Science: A Scientific Revolution about to Materialize Due to the complexity of materials systems, progress has necessarily proceeded either within the Bohr quadrant or Edison's guadrant

Pasteur's Quadrant

lie in the size range 2-15 nm.

- Experiments are without doubt the most important approach in studying nanomaterials
- However, Kohn and co-workers opened a new avenue to study properties of nanomaterials from first-principles with the formulation of density functional theory (DFT).

P. Hohenberg, W. Kohn, Phys. Rev.136, B864 (1964).

DFT – Applied to real materials

- There are numerous applications of DFT in chemistry and physics (> 10 000 papers a year)
- The use of DFT based methods is still very new in the field of engineering
- The simulation of cracks in materials belongs to the most challenging problems in materials science.
- While the crack itself is a macroscopic property, the physical processes at the crack tip itself involve the breaking of bonds governed by quantum mechanics.

Hartree-Fock Approximation

$$\Phi_{H-F} \implies E[\Phi_{H-F}] = \frac{\langle \Phi_{H-F} | \hat{H} | \Phi_{H-F} \rangle}{\langle \Phi_{H-F} | \Phi_{H-F} \rangle}$$

$$H = H_0 + \frac{1}{2} \sum_{i,j} U(\vec{x}_i, \vec{x}_j)$$

$$H_0 = \sum_i H_0(i) = \sum_i -\frac{1}{2} \nabla_i^2 + V_{ext}(\vec{r}_i) \qquad U(\vec{x}_i, \vec{x}_j) = \frac{1}{|\vec{r}_i - \vec{r}_j|}$$
Variational Principle

$$\implies H_0 \psi_i(\vec{x}_i) + \left[\sum_{j=1}^N \int \psi^*_j(\vec{x}_j) U(\vec{x}_i, \vec{x}_j) \psi_j(\vec{x}_j) d\vec{x}_j \right] \psi_i(\vec{x}_i)$$

$$- \left[\sum_{j=1}^N \int \psi^*_j(\vec{x}_j) U(\vec{x}_i, \vec{x}_j) \psi_i(\vec{x}_j) d\vec{x}_j \right] \psi_j(\vec{x}_i) = \varepsilon_i \psi_i(\vec{x}_i)$$

Density Functional Theory – constrained search formulation Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979).				
Functional of the one particle density $F[ho] \doteq \min_{\Psi o p} \left\langle \Psi_{ ho} \hat{T} + \hat{V}_{e-e} \Psi_{ ho} ight angle$				
The functional $F[\rho]$ searches all many particle functions Ψ that yield the input density $\rho(\vec{r})$ and then delivers the minimum of $\langle \hat{T} + \hat{V}_{e-e} \rangle$				
$Theorem I \int d\vec{r} v_{ext}(\vec{r}) \rho(\vec{r}) + F[\rho] \ge E_{\theta}$				
Theorem II $\int d\vec{r} v_{ext}(\vec{r}) \rho_0(\vec{r}) + F[\rho_0] = E_0 \qquad \begin{array}{c} \rho_0 & \text{-ground state density} \\ E_0 & \text{-ground state energy} \end{array}$				
Let us define function Ψ_{min}^{ρ} that minimizes $\left\langle \Psi_{\rho} \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_{\rho} \right\rangle$ $F[\rho] = \left\langle \Psi_{min}^{\rho} \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_{min}^{\rho} \right\rangle$ $F[\rho_{0}] = \left\langle \Psi_{min}^{\rho_{0}} \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_{min}^{\rho_{0}} \right\rangle$ Proof of Theorem I: $\int d\vec{r}v_{ext}(\vec{r})\rho(\vec{r}) + F[\rho] = \int d\vec{r}v_{ext}(\vec{r})\rho(\vec{r}) + \left\langle \Psi_{min}^{\rho} \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_{min}^{\rho} \right\rangle =$ $= \left\langle \Psi_{min}^{\rho} \mid \hat{V}_{ext} + \hat{T} + \hat{V}_{e-e} \mid \Psi_{min}^{\rho} \right\rangle \geq E_{0}$ Ritz variational principle				

Density Functional Theory – constrained search formulation				
Proof of Theorem II: $E_0 \leq \left\langle \Psi_{\min}^{\rho_0} \hat{V}_{ext} + \hat{T} + \hat{V}_{e-e} \Psi_{\min}^{\rho_0} \right\rangle$				
From variational principle				
$\left\langle \boldsymbol{\Psi}_{\boldsymbol{\theta}} \mid \hat{V}_{ext} + \hat{T} + \hat{V}_{e-e} \mid \boldsymbol{\Psi}_{\boldsymbol{\theta}} \right\rangle \leq \left\langle \boldsymbol{\Psi}_{min}^{\rho_{\theta}} \mid \hat{V}_{ext} + \hat{T} + \hat{V}_{e-e} \mid \boldsymbol{\Psi}_{min}^{\rho_{\theta}} \right\rangle$				
$\int d\vec{r} v_{ext}(\vec{r}) \rho_{\theta}(\vec{r}) + \left\langle \Psi_{\theta} \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_{\theta} \right\rangle \leq \int d\vec{r} v_{ext}(\vec{r}) \rho_{\theta}(\vec{r}) + \left\langle \Psi_{\min}^{\rho_{\theta}} \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_{\min}^{\rho_{\theta}} \right\rangle$				
$ (\mathbf{A}) \qquad \left\langle \boldsymbol{\Psi}_{0} \mid \hat{\boldsymbol{T}} + \hat{V}_{e-e} \mid \boldsymbol{\Psi}_{0} \right\rangle \leq \left\langle \boldsymbol{\Psi}_{min}^{\rho_{0}} \mid \hat{\boldsymbol{T}} + \hat{V}_{e-e} \mid \boldsymbol{\Psi}_{min}^{\rho_{0}} \right\rangle $				
But, on the other hand, from the definition of $\Psi_{min}^{\rho_0}$ (B) $\langle \Psi_0 \hat{T} + \hat{V}_{e-e} \Psi_0 \rangle \ge \langle \Psi_{min}^{\rho_0} \hat{T} + \hat{V}_{e-e} \Psi_{min}^{\rho_0} \rangle$				
$[(A) \& (B) true] \Rightarrow \langle \Psi_{\scriptscriptstyle \theta} \hat{T} + \hat{V}_{\scriptscriptstyle e-e} \Psi_{\scriptscriptstyle \theta} \rangle = \langle \Psi_{\scriptscriptstyle min}^{\rho_{\scriptscriptstyle 0}} \hat{T} + \hat{V}_{\scriptscriptstyle e-e} \Psi_{\scriptscriptstyle min}^{\rho_{\scriptscriptstyle 0}} \rangle$				
$F\left[\left. \rho_{_{\theta}} \right. \right] = \left\langle \boldsymbol{\Psi}_{min}^{\rho_{_{\theta}}} \mid \hat{\boldsymbol{T}} + \hat{V}_{e-e} \mid \boldsymbol{\Psi}_{min}^{\rho_{_{\theta}}} \right\rangle$				
$\int d\vec{r} v_{ext}(\vec{r}) \rho_0(\vec{r}) + \left\langle \Psi_0 \mid \hat{T} + \hat{V}_{e-e} \mid \Psi_0 \right\rangle = F[\rho_0] + \int d\vec{r} v_{ext}(\vec{r}) \rho_0(\vec{r})$				
$\left\langle \Psi_{\theta} \hat{V}_{ext} + \hat{T} + \hat{V}_{e-e} \Psi_{\theta} \right\rangle = F[\rho_{\theta}] + \int d\vec{r} v_{ext}(\vec{r}) \rho_{\theta}(\vec{r})$				
$E_0 = F[\rho_0] + \int d\vec{r} v_{ext}(\vec{r}) \rho_0(\vec{r})$				

Derivation of the Kohn-Sham Equations			
Performing variational search for the minimum of $E[\rho]$ one must actually constrain orbitals to be orthonormal $\int d\vec{r} \phi_i^*(\vec{r}) \phi_j(\vec{r}) = \delta_{ij}$ (•)			
Let us define the constrained functional of the N orbitals			
$\Omega[\{\varphi_i\}] = E[\rho] - \sum_{i=1}^{N} \sum_{j=1}^{N} \varepsilon_{ij} \int d\vec{r} \varphi_i^*(\vec{r}) \varphi_j(\vec{r})$			
where \mathcal{E}_{ii} are Lagrange multipliers for the constrain ($ullet$).			
For $E[\rho]$ to be minimum, it is necessary that $\delta \Omega[\{\phi_i\}] = 0$			
$-\frac{\delta}{\delta \phi_i^*(\vec{r})} \bigg\{ E[\rho] - \sum_{i=l}^N \sum_{j=l}^N \varepsilon_{ij} \int d\vec{r}' \phi_i^*(\vec{r}') \phi_j(\vec{r}') \bigg\} = 0 \text{Note:} \frac{\delta}{\delta \phi_i^*(\vec{r})} = \frac{\delta \rho}{\delta \phi_i^*(\vec{r})} \frac{\delta}{\delta \rho}$			
The variational procedure leads to equations:			
$\left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + v_{ext}(\vec{r}) + v_H(\vec{r}) + v_{xc}(\vec{r})\right]\varphi_i(\vec{r}) = \sum_{j=l}^N \varepsilon_{ij}\varphi_j(\vec{r})$			
$v_{H}(\vec{r}) = \frac{\delta U}{\delta \rho} = \int d\vec{r} \frac{\rho(\vec{r}')}{ \vec{r} - \vec{r}' } \qquad v_{xc}(\vec{r}) = \frac{\delta E_{xc}[\rho]}{\delta \rho}$			

Derivation of the Kohn-Sham Equations				
In Kohn-Sham method exchange-correlation functional can be split into separate exchange and correlation functional $E_{xc}[\rho] = E_x[\rho] + E_c[\rho]$				
$E_x[\rho] = -\frac{1}{2} \sum_i \iint d\vec{r} d\vec{r}' \phi_i^*(\vec{r}) \left(\sum_j \frac{\phi_j(\vec{r}) \phi_j^*(\vec{r}')}{ \vec{r} - \vec{r}' } \right) \phi_i(\vec{r}')$				
Exchange energy functional functional Exchange potential Correlation potential				
$v_{xc}(\vec{r}) = \frac{\delta E_x[\rho]}{\delta \rho} + \frac{\delta E_c[\rho]}{\delta \rho} = v_x(\vec{r}) + v_c(\vec{r})$				
Kohn-Sham potential (local potential !)				
$v_{KS}(\vec{r}) = v_{ext}(\vec{r}) + v_{H}(\vec{r}) + v_{x}(\vec{r}) + v_{c}(\vec{r}) (=v_{S}(\vec{r}))$				
$\hat{H}_{KS} = -\frac{\hbar^2}{2m} \vec{\nabla}^2 + v_{KS}(\vec{r}) \text{is hermitian} \Rightarrow \varepsilon_{ij} \text{is also hermitian}$				
Unitary transformation of $\{ \phi_i \}$ diagonalizes \mathcal{E}_{ij} , $(\mathcal{E}_{ij} = \langle \phi_i H_{KS} \phi_j \rangle)$ but the density and \hat{H}_{KS} remain invariant.				

- Becke 88: Becke's 1988 functional,
- Perdew-Wang 91
- Barone's Modified PW91
- Gill 96
- PBE: The 1996 functional of Perdew, Burke and Ernzerhof
- OPTX: Handy's OPTX modification of Becke's exchange functional
- TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuser

and also many correlation functionals

Exact Exchange Method (EXX) Exact Exchange for non-homogeneous systems + E_c in LDA or GGA Main difficulty: How to calculate the exchange potential $v_x(\vec{r}) = \frac{\delta E_x[\rho]}{\delta \rho(\vec{r})}$? M. Städele et al., Phys. Rev. B 59, 10031 (1999). $E_x[\rho] = -\frac{1}{2} \sum_i \iint d\vec{r} d\vec{r}' \varphi_i^*(\vec{r}) \left(\sum_i \frac{\varphi_i(\vec{r}) \varphi_j^*(\vec{r}')}{|\vec{r} - \vec{r}'|} \right) \varphi_i(\vec{r}')$

Problem: Explicit dependence of $E_x[\rho]$ (i.e., $\varphi_i[\rho]$) on ρ is unknown

Abinit	HILAPW Software	supporting DFT
•ADF	JAGUAR	supporting bir i
AIMPRO	MOLCAS	
Ascalaph Quantum	MOLPRO	
Atomistix Toolkit	MPQC	
Atompaw/PWPAW	NRLMOL	
• <u>CADPAC</u>	<u>NWChem</u>	
- <u>CASTEP</u>	OCTOPUS	
- <u>CP2K</u>	OpenMX	SPR-KKR
- <u>CPMD</u>	ORCA	- <u>TURBOMOLE</u>
CRYSTAL06	ParaGauss [1]	•VASP
- <u>DACAPO</u>	PARATEC [2]	WIEN
• <u>DALTON</u>	PARSEC	<u></u>
• <u>deMon2K</u>	PC GAMESS	
• <u>DFT++</u>	<u>PLATO</u>	
• <u>DMol3</u>	Parallel Quantum Solutions	
• <u>EXCITING</u>	<u>Priroda</u>	
- <u>Fireball</u>	 <u>PWscf</u> (<u>Quantum-ESPRESSO</u>) 	
• <u>FLEUR</u>	• <u>Q-Chem</u>	
 FSatom, dozens of free and 	<u>SIESTA</u>	
proprietary DFT programs	<u>Socorro</u>	
• <u>GAMESS (UK)</u>	<u>Spartan</u>	
• <u>GAMESS (US)</u>	<u>S/PHI/nX</u>	
• <u>GAUSSIAN</u>		http://en.wikipedia.org
• <u>GPAW</u>		

Computational (Nano)Materials Science – The Era of Applied Quantum Mechanics

The properties of new and artificially structured materials can be predicted and explained

- entirely by computations,
- using atomic numbers as the only input.

DFT - further developements required

Density functional theory has revolutionized the way scientists approach the electronic structure of atoms, molecules,and solid materials in physics, chemistry, and (nano)materials science

We are not at the end of this way!