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Computational Sciences 

Computational Physics 

Computational Chemistry 

Computational Biology 

Computational Engineering 

Computational Astrophysics and Cosmology 

Computational Materials Science 

Theory Experiment 

Comp. Simulation 

Computational Geophysics 

Computational Nanoscience (Modeling of Nanostructures)  

Computational Materials Science:  

A Scientific Revolution about to Materialize 

Pasteur's Quadrant 

Due to the complexity of materials systems, progress has 

necessarily proceeded either within the Bohr quadrant or  

Edison‟s quadrant 

Realistic simulation is the vehicle  

for moving materials research  

firmly into Pasteur's quadrant. 

experiment and theory done on 

model systems 

research and development  

by trial and error 
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Recent technological developments  

cause increasing demands  

for (nano)materials with specific properties 

 

 Modeling of nanostructures 

New Materials for Si- Technology     

Moore‟s Law increasingly relies  

on material innovations ! 
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Ab initio 

Atomistic vs. Continuous Methods 

Microscopic approaches can be applied  

to calculate properties of realistic nanostructures 

Number of atoms in a spherical Si nanocrystal as a function of its radius R. 

Current limits of the main techniques for calculating electronic structure. 

Nanostructures commonly studied experimentally  

lie in the size range 2-15 nm. 

Continuous 

methods 

Recent technological developments cause  

increasing demands for materials with  

specific properties  

Experiments are without doubt the most important  

approach in studying nanomaterials 

However, Kohn and co-workers opened a new avenue 

to study properties of nanomaterials from  

first-principles with the formulation of density 

functional theory (DFT). 

P. Hohenberg, W. Kohn, Phys. Rev.136, B864 (1964). 
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Usage of Density Functional Theory (DFT) 

Using DFT many practical problems of materials science 

(nano science) have been solved successfully.  

 

DFT is now employed not only by physicists, but also by 

chemists, geophysicists, biophysicists, metallurgist, 

and in other scientific fields. 

The computational implementations of DFT together with 

modern solid state theory allow it to obtain reliable results  

for thermodynamic, mechanical, electrical and magnetic 

properties of  

                    metals,  

                    semiconductors, or  

                    insulators  

without any adjustable parameters fitted to the experiment. 

The big impact of DFT has been clearly high lightened by 

awarding the Nobel Prize in Chemistry in 1998 for the 

development               and           application            of DFT. 

DFT – Nobel Prize in Chemistry, 1998 

Walter Kohn John A. Pople 

Born in 1923 1925 - 2004 

80th  birthday of Walter Kohn 

“Walter Kohn –  

  Personal Stories and Anecdotes  

 Told by Friends and Collaborators”   

eds. Matthias Scheffler &  

        Peter Weinberger 

Springer Verlag 

DFT – Applied to real materials 

There are numerous applications of DFT in chemistry  

and physics (> 10 000 papers a year) 

The use of DFT based methods is still very new in the 

field of engineering 

The simulation of cracks in materials belongs to the 

most challenging problems in materials science. 

While the crack itself is a macroscopic property,  

the physical processes at the crack tip itself involve  

the breaking of bonds governed by quantum 

mechanics. 
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Anisotropic crack propagation in Silicon 

J. Kortus, Microstructure Analysis in Materials Science, 2005 

The DFT simulations give different energies for bond 

breaking along different crack directions =  

crack in Si propagates differently depending on crystal 

plane and direction. 

 

Fundamental problem in nano science   

A fundamental problem in nanomaterials science is  

the prediction of condensed matter‟s electronic structure 

DNA - molecule 

Crystal - diamond 
C60 - molecule 

Materials Science: 

Why ab-initio approach is needed?  

A model  

as simple as possible 
A model  

non-empirical and realistic  

 Explanation and  

    extrapolation of  

    experimental results 

 Physical insight 

 Qualitative physics 

 Reliable predictions  

    of matter‟s properties 

 Design of new materials 

 Unexpected phenomena  

    and unusual conditions 

    (e.g., extreme pressures) 
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Materials Science: 

Examples of Schrödinger Equation?  

Ab-initio (first principles) Method –  

ONLY Atomic Numbers {Zi} as input parameters 

Materials are composed of nuclei                    and electrons  

            the interactions are known 

{ , , }Z M R   { }ir

Kinetic energy 

of nuclei 
Kinetic energy 

of electrons 

Nucleus-Nucleus 

interaction 
Electron-Nucleus 

interaction 

Electron-Electron 

interaction 
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Quantum Mechanics of Molecules and Crystals   

Molecule or Crystal = a system of nuclei (Ions) and electrons 

el Nucl
ˆ ˆH T U( x, X ) T  

en ee NN
ˆ ˆ ˆU( x, X ) V ( x, X ) V ( x ) V ( X )  

2

α

en

iα i α

Z e
V̂ ( x, X )

| r R |



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 2

ee

i j i j

e
V̂ ( x )

| r r |






2

NN

α β α β

e
V̂ ( X )

| R R |






2N N
2 2

el i i

i 1 i 1

1
T̂ p

2m 2m 

    
nucl nuclN N 2

2 2

Nucl i α

α 1 α 1 α

1
T̂ P

2m 2M 

    

nucl1 2 N
X { R ,R , ,R }

1 2 N
x { r ,r , ,r }

( M , X ,P )

Nuclei – mass M, coordinates X, and momenta P, 

Electrons – (m,x,p) 

Kinetic energy of electrons Kinetic energy of the nuclei 

Potential energy = The total Coulomb  

energy of nuclei and electrons 

Electron-nucleus 
Electron-Electron 

Nucleus-Nucleus 

The Adiabatic Approximation (Born-Oppenheimer)   

It is natural to consider the full Hamiltonian of the system  

to be the sum of an ionic and an electronic part 

N el
ˆ ˆ ˆH H H 

N Nucl NN
ˆ ˆ ˆH T V ( X ) 

el el en ee
ˆ ˆ ˆ ˆH T V ( x, X ) V ( x )  

M. Born & J. R. Oppenheimer, Ann. Phys. 84, 457 (1927) 

The Adiabatic Approximation (Born-Oppenheimer)   

The Schrödinger equation for the electrons in the presence  

                                                                                           of fixed ions 

el n n n
Ĥ Ψ ( X , x ) E ( X )Ψ ( X , x )

Parametric dependence  
on ionic positions  

The energy levels of the system of ions are determined by solving  

N
ˆ[ H E( K', X )] χ(Q,K', X ) ε(Q )χ(Q,K', X ) 

The electronic energy contributes to the potential energy of the ion system.  

This implies that the potential energy depends on the state of the electrons.  

Adiabatic approximation – interacting electrons move in the „external‟  
                                           potential of nuclei (ions) at fixed positions 

en e e
ˆ ˆ ˆ ˆH T V V
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  
2

α

en ext ext i

iα ii α

Z eˆ ˆV V υ ( r )
| r R |


  


 

2

e e

i j i j

e
V̂

| r r |









Quantum Mechanics:   

System of N electrons in an external potential 
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23
N 10Many particle wave function 

0
ˆ ˆ ˆ ˆmin | | min | |e e ext

N N
E H T V V

 
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1 2( , , , ) Nr r r

Ritz Variational Principle  Ground State Energy of the system 

Many-particle wavefunction 

Schrödinger equation 

Full minimization of the functional           with respect to all  

allowed N-electron wave functions  

E[Ψ ]

ˆΨ | H |Ψ
E [Ψ ]

Ψ |Ψ

 


 

0
E[Ψ ] E
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Quantum Mechanics:   

System of N electrons in an external potential 

HΨ EΨ
Schrödinger equation Exact analytical solutions  

are not known  

even for two electrons !   

Approximations are needed ! 

Concept of independent particles moving in an effective  

potential 

Interacting particles Independent particles 

231 2 10
Ψ( x , x , , x ) 231 2 10

φ( x )φ( x ) φ( x )

Idea: consider electrons  

as independent particles  

moving in an effective  

potential  

Hartree and Hartree-Fock Approximation   

Ansatz for the wave-function 

Hartree N N NΨ ( x ,x , , x ) ψ ( x )ψ ( x )....ψ ( x )1 2 1 1 2 2

Hartree Method 

Hartree-Fock Method 

N

N
H F N

N N N N

ψ ( x ) ψ ( x ) ψ ( x )

ψ ( x ) ψ ( x ) ψ ( x )
Ψ ( x , x , , x )

N !

ψ ( x ) ψ ( x ) ψ ( x )

 

1 1 2 1 1

1 2 2 2 2
1 2

1 2

1

iψ - one-electron wavefunction of the 

                                               ith level   

Hartree-Fock Approximation   

H F H F

H F

H F H F

ˆΦ | H |Φ
E [Φ ]

Φ |Φ
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 


 

Variational Principle 
N

*
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j
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j

H ψ ( x ) ψ ( x )U( x , x )ψ ( x )dx ψ ( x )

ψ ( x )U( x , x )ψ ( x )dx ψ ( x ) ε ψ ( x )





 
  
  
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  
  





0

1

1

i j
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H H U( x , x )  0

1

2

i ext i
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H H ( i ) V ( r )      2
0 0

1

2 i j
i j

U( x , x )
| r r |




1

H FΦ 

Spectrum of Electronic Hamiltonian:  

What ab initio methods do we have?  

Methods for computing  

the electronic structure 

Empirical Methods 

Ab-initio Methods 

Hartree-Fock  

Method 

+ Configuration  

Interaction 

§H-F - neglects completely 

           electron correlation 

§H-F+CI – is able to treat  

                  ONLY few electrons 

Density  

Functional Theory 

Quantum  

Monte Carlo 

Ø Existing realizations of DFT 

    allow accurate predictions 

    for large systems 

Ø Currently the method of   

    choice in materials science 
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P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)  

Density Functional Theory (DFT)  

The DFT is based on two fundamental theorems for a functional  

of the one particle density.   

1 2 N i 1 2 N

i

*

2 N 2 N 2 N

ˆ( r ) ( r ,r , ,r ) | ( r r ) | ( r ,r , ,r )

N dr , ,dr ( r ,r , ,r ) ( r ,r , ,r )

   

 

  

      

 







One particle density – Basic quantity of DFT 

One particle density determines the ground  

state energy of the system  

Modern formulation – constrained-search method of Mel Levy 

Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979). 

Interacting particles Independent particles 

231 2 10
Ψ( x , x , , x ) 231 2 10

φ( x )φ( x ) φ( x )

Idea: consider electrons  

as independent particles  

moving in an effective  

potential  

Density Functional Theory (DFT)  

in Kohn-Sham realization  

This reduction is rigorously possible ! 

Density Functional Theory – constrained search formulation   
Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979). 

Functional of the one particle density ρ e e ρ
Ψ ρ

ˆ ˆF [ ρ] min Ψ |T V |Ψ





The functional           searches all many particle functions       that yield  

the input density          and then delivers the minimum of     

F [ ρ] Ψ
ρ( r )

e e
ˆ ˆT V




ext 0
drυ ( r )ρ( r ) F [ ρ] E 

ext 0 0 0
drυ ( r )ρ ( r ) F [ ρ ] E 

Theorem I 

Theorem II 
0
ρ

0
E

- ground state density 
- ground state energy 

Let us define function        that minimizes  ρ

min
Ψ ρ e e ρ

ˆ ˆΨ |T V |Ψ




ρ ρ

min e e min
ˆ ˆF [ ρ] Ψ |T V |Ψ


  0 0ρ ρ

0 min e e min
ˆ ˆF [ ρ ] Ψ |T V |Ψ


 

Proof of Theorem I: 

ρ ρ

ext ext min e e min

ρ ρ

min ext e e min 0

ˆ ˆdrυ ( r )ρ( r ) F [ ρ] drυ ( r )ρ( r ) Ψ |T V |Ψ

ˆ ˆ ˆΨ |V T V |Ψ E





    

   

 

Ritz variational principle 

Density Functional Theory – constrained search formulation   

Proof of Theorem II: 0 0ρ ρ

0 min ext e e min
ˆ ˆ ˆE Ψ |V T V |Ψ


  

0 0ρ ρ

0 ext e e 0 min ext e e min
ˆ ˆ ˆ ˆ ˆ ˆΨ |V T V |Ψ Ψ |V T V |Ψ

 
    

0 0ρ ρ

ext 0 0 e e 0 ext 0 min e e min
ˆ ˆ ˆ ˆdrυ ( r )ρ ( r ) Ψ |T V |Ψ drυ ( r )ρ ( r ) Ψ |T V |Ψ

 
     

0 0ρ ρ

0 e e 0 min e e min
ˆ ˆ ˆ ˆΨ |T V |Ψ Ψ |T V |Ψ

 
  

From variational principle  

0ρ

min
ΨBut, on the other hand, from the definition of 

0 0ρ ρ

0 e e 0 min e e min
ˆ ˆ ˆ ˆΨ |T V |Ψ Ψ |T V |Ψ

 
  

0 0ρ ρ

0 e e 0 min e e min
ˆ ˆ ˆ ˆΨ |T V |Ψ Ψ |T V |Ψ

 
   

ext 0 0 e e 0 0 ext 0
ˆ ˆdrυ ( r )ρ ( r ) Ψ |T V |Ψ F [ ρ ] drυ ( r )ρ ( r )


    

0 ext e e 0 0 ext 0
ˆ ˆ ˆΨ |V T V |Ψ F [ ρ ] drυ ( r )ρ ( r )


    

0 0 ext 0
E F [ ρ ] drυ ( r )ρ ( r )  

0 0ρ ρ

0 min e e min
ˆ ˆF [ ρ ] Ψ |T V |Ψ


 

(A) 

(B) 

[(A) & (B) true] 
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Density Functional Theory – Constrained Search Formulation   

The ground-state energy minimization procedure of  

can be divided into two steps          

Relation to Ritz Variational Principle   

2

1

4

3

5

6

7

ˆΨ | H |Ψ
E [Ψ ]

Ψ |Ψ

 


 

ρ ρ

0 e e ext e e ext
Ψ N ρ N Ψ ρ

ˆ ˆ ˆ ˆ ˆ ˆE [Ψ ] min Ψ |T V V |Ψ min min Ψ |T V V |Ψ
 

  

      
  

Percus-Levy partition of the N-electron Hilbert space 

The inner minimization is constrained to all wave functions that give        ,  

while the outer minimization releases this constrain by searching all   ρ( r )

ρ( r )

Each shaded area is the set of      that  

integrate to a particular        . ρ( r )
Ψ

The minimization             is over all  

such points. 

ρ N

The minimization             for a particular      

is constrained to the shaded area  

associated with this   , and is realized  

by one point (denoted by     )  

in this shaded area.     

Ψ ρ ρ

ρ

Density Functional Theory – Constrained Search Formulation   
Relation to Ritz Variational Principle   

ext
E[ ρ] F [ ρ] drυ ( r )ρ( r )  

0 e e ext
Ψ N

ρ ρ

e e ext
ρ N Ψ ρ

ρ ρ

e e ext
ρ N Ψ ρ

ext
ρ N

ρ N

ˆ ˆ ˆE [Ψ ] min Ψ |T V V |Ψ

ˆ ˆ ˆmin min Ψ |T V V |Ψ

ˆ ˆmin min Ψ |T V |Ψ drυ ( r )ρ( r )

min[ F [ ρ ] drυ ( r )ρ( r )]

min E [ ρ ]





 


 





   

    
  

    
  

  







In         O N E  function of 3 variables !!! 

In         2N wave functions of 3N variables 

Density Functional Theory    
PROBLEM: exact functional             is unknown ! F [ ρ]

Thomas-Fermi-Method (probably the oldest approximation to DFT) 

xc
F [ ρ] T [ ρ] U [ ρ] E [ ρ]  

One needs a good approximation to  F [ ρ]

 

ρ ρ

ρ e e ρ min e e min
Ψ ρ

ρ ρ

min e e min

ˆ ˆ ˆ ˆF [ ρ] min Ψ |T V |Ψ Ψ |T V |Ψ

ˆT [ ρ] U [ ρ] Ψ |V |Ψ U [ ρ]

 




   

   

Kinetic energy 

1 ρ( r )ρ( r ')
U [ ρ] drdr '

2 | r r ' |




Classical Coulomb energy  

xc
E [ ρ]Exchange & Correlation 

                          

The functional            is universal in the sense that it is independent of 

the external potential (field)             .  ext
υ ( r )

F [ ρ]

T F

ee
V [ ρ] U [ ρ]

 
2

T F 2 2 / 3 5 / 33
T [ ρ] ( 3π ) dr [ ρ( r )]

5 2m

  
and extensions  

§   Thomas-Fermi-Dirac 

§   Thomas-Fermi-Weizsacker   

PROBLEM:   

Very often these models give even  

qualitatively wrong results. 

T F
T [ ρ]



DFT- The Kohn- Sham Method    

W. Kohn & L. Sham (1965) invented an ingenious indirect approach to the  

kinetic- energy functional.   

They turned density functional theory into a practical tool for  

rigorous calculations   

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 

System of interacting  

electrons with density ( )r
System of non-interacting electrons  

with the same density ( )r

The main idea: 

“Real” system “Fictitious” or Kohn-Sham reference  

                                                 system  ρ( r ) T [ ρ]
S

T [ ρ]
S
ρ ( r ) ρ( r )

ext S xc
E[ ρ] drυ ( r )ρ( r ) T [ ρ] U [ ρ] E [ ρ]   

xc ee S
E [ ρ] V [ ρ] U [ ρ] T [ ρ] T [ ρ]   

Exchange-correlation functional contains now the difference between  

kinetic energy functional of interacting and non-interacting electrons. 
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    The Kohn- Sham Method –  

    Kinetic energy functional    

Hamiltonian of the non-interacting reference system 
2N N

2

S i S i

i i

H υ ( r )
2m

    

How the              looks like ? 
S

T [ ρ]

S
υ ( r ) - local potential 

1 2 N

1
Φ det[φ ,φ , ,φ ]

N !


2
2

S i S i i i
ĥ φ υ ( r ) φ ( r ) ε φ ( r )

2m

 
     
 

For this system there will be an  

                exact determinantal ground-state wave function 

, where      are the N lowest eigenstates  

of the one-electron Hamiltonian 
i

φ

N

i i

i 1

ρ( r ) φ* ( r )φ ( r )




The density 

2N
2

S i i
Φ ρ Φ ρ

i 1

ˆT [ ρ] Min Φ |T |Φ Min φ | | φ
2m 



   

S
T [ ρ] - can be defined by the constrained-search formula 

The search is over all single-determinantal functions       

that yield the given density       .       ρ

The existence of the minimum has been proved by Lieb (1982). 

Φ

is uniquely defined for any density.  S
T [ ρ]

S
T [ ρ] T [ ρ]

Φ Ψ

Crucial characteristics of the Kohn-Sham Method 

NOT 

    The Kohn- Sham Method –  

    Kinetic energy functional    

The Kohn-Sham Method: Variational Procedure  

We cast the Hohenberg-Kohn variational problem in terms of the one-particle 

(Kohn-Sham) orbitals  

 

 
 

i

0
ρ N

S xc ext
ρ N

xc ext
ρ N Φ ρ

S xc ext
Φ ρ

S i i xc i
{ φ } N

E min E [ ρ ]

min T [ ρ ] U [ ρ ] E [ ρ ] drυ ( r )ρ( r )

ˆmin [ Min Φ |T |Φ ] U [ ρ] E [ ρ ] drυ ( r )ρ( r )

min T [Φ ] U [ ρ[Φ ]] E [ ρ[Φ ]] drυ ( r )ρ( r )

min T [{ φ }] U [ ρ[{ φ }]] E [ ρ[{ φ }]] d





 





 

   

   

   

   






N

*

i ext i

i 1

rφ ( r )υ ( r )φ ( r )


 
 
 



The dependence of the density     on the orbitals         is known i
{ φ }ρ

N

i i

i 1

ρ( r ) φ* ( r )φ ( r )




Variational search for the minimum of             can be equivalently  

performed  in the space of the orbitals           . 

E [ ρ]

i
{ φ }

    Derivation of the Kohn-Sham Equations    

Performing variational search for the minimum of            one must  

actually constrain orbitals to be orthonormal 

E [ ρ]

Conservation of the number of particles 

Let us define the constrained functional of the N orbitals 

*

i j ij
drφ ( r )φ ( r ) δ

N N
*

i ij i j

i 1 j 1

Ω[{ φ }] E [ ρ] ε drφ ( r )φ ( r )
 

  

(    ) 

where       are Lagrange multipliers for the constrain (    ). ij
ε

E [ ρ]For           to be minimum, it is necessary that 
i

δΩ[{ φ }] 0
N N

*

ij i j*
i 1 j 1i

δ
E [ ρ] ε dr ' φ ( r ')φ ( r ') 0

δφ ( r )  

 
  

 
  * *

i i

δ δρ δ

δρδφ ( r ) δφ ( r )


2 N
2

ext H xc i ij j

j 1

υ ( r ) υ ( r ) υ ( r ) φ ( r ) ε φ ( r )
2m 

 
      
 



The variational procedure leads to equations: 

Note: 

H

δU ρ( r ')
υ ( r ) dr '

δρ | r r ' |
 

 xc

xc

δE [ ρ]
υ ( r )

δρ

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In Kohn-Sham method exchange-correlation functional can be split into  

separate exchange and correlation functional  xc x c
E [ ρ] E [ ρ] E [ ρ] 

*

j j*

x i i

i j

φ ( r )φ ( r ')1
E [ ρ] drdr ' φ ( r ) φ ( r ')

2 | r r ' |

 
   

  
 

                     x c

xc x c

δE [ ρ] δE [ ρ]
υ ( r ) υ ( r ) υ ( r )

δρ δρ
   

is hermitian       is also hermitian      
2

2

KS KS ij
Ĥ υ ( r ) ε

2m
   

Unitary transformation of          diagonalizes      ,  

but the density and        remain invariant. 
i

{ φ } ij
ε

KS
Ĥ

 
ij i KS j

ˆ( ε φ | H | φ )

(     )
KS ext H x c S
υ ( r ) υ ( r ) υ ( r ) υ ( r ) υ ( υ )) ( rr    

Kohn-Sham potential (local potential !) 

    Derivation of the Kohn-Sham Equations    

Exchange energy  

functional 

Correlation energy  

functional 
Exchange 

potential 

Correlation 

potential 

2
2

ext H x c i i i
υ ( r ) υ ( r ) υ ( r ) υ ( r ) φ ( r ) ε φ ( r )

2m

 
       
 

The Kohn- Sham Method –   

    The Kohn-Sham Equations   

N

i i

i 1

ρ( r ) φ* ( r )φ ( r )




x
δE [ ρ]

δρ

c
δE [ ρ]

δρ
H

δU ρ( r ')
υ ( r ) dr '

δρ | r r ' |
 



2 s

ext

s ,n s n

Z
υ ( r ) e

| r τ R |
 

 


Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  

iteratively (self-consistently)  

    The Kohn- Sham Method –   

    ‚Aufbau„ principle   

HOMO 

LUMO 

ε1

ε2

Nε
Nε 1

unoccupied 

occupied 

How to calculate one particle density? 

    The Kohn- Sham Method –  The Total Energy   

2 N
* 2

i i x c ext

i 1

E[ ρ] drφ ( r ) φ ( r ) U [ ρ] E [ ρ] E [ ρ] drυ ( r )ρ( r )
2m 

       

2N N
2

i i KS i S KS

i 1 i 1

ε φ | υ ( r ) | φ T [ ρ] drυ ( r )ρ( r )
2m 

       

N

i x c x c

i 1

1 ρ( r )ρ( r ')
E ε drdr ' E [ ρ] E [ ρ] dr ( υ ( r ) υ ( r ))ρ( r )

2 | r r ' |

     


  

so-called double counting correction 

Sum of the one-particle Kohn-Sham energies 

Energy of the reference system   

 

differs from the energy of „real‟ system  
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Kohn-Sham energies may be considered as the zero order  

approximation to the energies of quasi-particles  

in the many-particle theory.  

Correlation energy functional            (also           ) is unknown for  

non-homogeneous systems 

Physical meaning of the Kohn-Sham orbital energies      ? i
ε

    The Kohn- Sham Method –  Problems   

(Note, these energies were introduced as Lagrange multipliers) 

c
E [ ρ]

max
ε μ I  

*

i i i

i

ρ( r ) f φ ( r )φ ( r ) i

i

E
ε

f






c
υ ( r )

 Strictly speaking there is none  

 The Kohn-Sham orbital energy of the highest occupied level  

  is equal to the minus of the ionization energy, 

Extension to non-integer occupation numbers  i
0 f 1 

Janak theorem (1978) 

c
E [ ρ] - is known for homogeneous electron gas  

 (constant density) 

DFT: Implementations of the Kohn-Sham Method   

Fully relativistic 

Semi-relativistic 

Non-relativistic 

Non-periodic 

periodic 

All-electron full potential 

All-electron muffin-tin 

All-electron PAW 

Pseudopotential 

Non-spin-polarized 

Spin polarized 

Beyond LDA  

Generalized Gradient Approximation (GGA) 

Local Density Approximation (LDA) 

GW (quasi-particles) 

EXX (exact exchange) 

sX-LDA 

Time dependent DFT 

LDA+U 

Atomic orbitals 

 

Plane Waves 

 

Augmentation 

Fully numerical  

(real space) 

Gaussians(GTO) 

Slater type (STO) 

Numerical  

Plane waves (FPLAPW) 

Spherical waves  

(LMTO, ASW) 

2 ( ( )
1

2
)

 
    

 
 xcextV r V r    

Exchange and Correlation Energy   

of Homogeneous Electron Gas     

s
B

r
a

 
  

 

1/ 3
1 3

4

x xE e
 

   
 

1/ 3
2 4/ 3 hom3 3

2
  


x e

 
   

 

1/ 3
hom 2 1/ 33 3

2
 



Ba
 in 3

( )
x

s

Ry
r

 
   

 
   in 

1/ 3
hom

2

3 9 1
[ ]

2 4




x s sr r Ry    hom
( ) 0.91633/ [ ]

s s s s s

c s
s s s

A r B Cr r Dr r
r Ry

r r r

   
 

  

   for   

                 for        

hom

1 2

ln ln 1
( ) [ ]

/(1 ) 1


  

/N  

Exchange energy per unit volume Exchange energy per particle 

1
( , )

ik r
k r e 



Homogeneous electron gas (free electron gas or “jellium”) 

Wave functions: Constant electron density: 

Dimensionless parameter  

characterizing density:  

Quantum Monte-Carlo simulations for homogeneous electron gas 

Correlation  

energy  

per particle 

D. M. Ceperly & B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) 

Parametrization: J. P. Perdew & A. Zunger, Phys. Rev. B 23, 5048 (1981) 

A B C D 1 2, , , , , ,   - fitted parameters 

Local Density Approximation (LDA)     

LDA
xc xcE dr r r 

hom
[ ] ( ) ( ( ))   

xc x c hom hom hom  

In atoms, molecules, and solids the electron density  

is not homogeneous 

r)

1r

1 1(   )r

r

1

The main idea of the  

Local Density Approximation:  

the density is treated locally as constant 
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GGA - Gradient Corrections to LDA    

Gradient Expansion Approximation 

2

4/ 3

| ( ) |
[ ] [ ] ( ) [ ] ]

( )

GEA LDA
xc xc xc

r
E E dr r C

r


   




  

[ ] ( ( ), ( ))
GGA
xc xcE dr f r r   

Generalized Gradient Approximation 

J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986) 

D. C. Langreth & M. J. Mehl, Phys. Rev. B 28, 1809 (1983) 

xcf -constructed to fulfill maximal  

 number of “summation rules”  

Exchange-correlation potential can be calculated very easily,  

since explicit dependence of Exc on the density     is known.  

xc
xc

E





Becke 88: Becke's 1988 functional,  

Perdew-Wang 91  

Barone's Modified PW91  

Gill 96  

 PBE: The 1996 functional of Perdew, Burke and Ernzerhof  

  OPTX: Handy's OPTX modification of Becke's exchange functional  

TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuseria 

Examples of exchange functionals    

and also many correlation functionals 

Difference in energy per atom  

in the diamond phase and in the β-tin phase of 

Si.  

Accuracy Benchmarks of the different DTF Functionals

Phys. Rev. B 74, 121102(R) (2006)  

Explicit dependence of            (i.e.,           ) on     is unknown 

Exact Exchange Method (EXX)    

*

j j*

x i i

i j

φ ( r )φ ( r ')1
E [ ρ] drdr ' φ ( r ) φ ( r ')

2 | r r ' |

 
   

  
 

How to calculate the exchange potential                               ? x
x

E
r

r


[ ]
( )

( )

 




i[ ] xE [ ]Problem:  

M. Städele et al., Phys. Rev. B 59, 10031 (1999). 

Exact Exchange for non-homogeneous systems + Ec in LDA or GGA 

Main difficulty: 
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Hybrid  functionals    

A*EX
LSD+(1-A)*EX

HF+B*ΔEX
OPTX+C*ΔEC

LYP+(1-C)EC
VWN  

O3LYP: A three-parameter functional similar to B3LYP:  

Hybrid functionals include a mixture of Hartree-Fock exchange  

                                                  with DFT exchange-correlation  

Exc =  

EXAMPLE: 

Lead very often to better accuracy with experiments 

Extensions of the DFT 

( )j x

Relativistic DFT 

Kinetic energy operator (free Dirac field) 

2
ĥ c p mc   

The ground-state energy is a functional  

of the four-vector current density 

A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973) 

 
 


[ , ]xcE  
 

For example, systems with odd number of electrons 

Energy functional of both spin densities 

Local Spin Density Approximation (LSDA) 

  
 

 

[ , ]xc
xc

E  




  



Exchange-correlation potential 

( , )   

U. Von Barth & L. Hedin, J. Phys. C 5, 1629 (1972) 

Alternatively [ , ]xcE m m  
 

 where 

Spin polarization (magnetization) 

Important for magnetism ! 

Extensions of the DFT –  

Spin-polarized systems    

Extensions of the DFT    

Finite - Temperature  ( 0)T 

Grand canonical ensemble, 

 

N. D. Mermin, Phys. Rev. 137, A1441 (1965) 

The grand potential of the a system at finite temperature  

is a functional of the density in the system at that  

temperature.  

ˆ ˆ( ) /
ln [ ]BN H k T

Bk T Tr e
 

 

Applications of DFT in statistical physics 
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Solution of the Kohn-Sham Equations      

Direct methods on a mesh in r-space 

Expansion of the Kohn-Sham orbitals in a basis 

Eigenvalueproblem 

Bandstructure 

{ ( )}
k

r



( ) ( , ) ( )
nk k

r c n k r 


  

2
2

'' '
'

| ( ) | ( ) | ( , ) 0
2

KS nk k k k
r k c n k

m
   



     
 

     
  


' ' '[ ( ) ( ) ( )] ( , ) 0nH k k S k c n k   

' 'det[ ( ) ( ) ( )] 0nH k k S k  

( )n k

Hamiltonian  

matrix elements 
Overlap integrals 

Solution of the Kohn-Sham Equations –  

Survey of Methods involving basis    

OPW (Orthogonalized Plane Waves) 

     All electron, plane waves orthogonalized to core states 

LCAO (Linear Combination of Atomic Orbitals) 

   All electron & pseudopotential 

   Semiempirical Tight-Binding Method 

Plane waves and pseudopotential 

     EMP – Empirical Pseudopotential Method 

Solution of the Kohn-Sham Equations –  

Survey of Methods    

LAPW [FPLAPW] (Full Potential Linearized Augmented Plane Wave) 

       Plane waves outside muffin-tin spheres 

       Considered to be the most accurate method 

LMTO (Linearized Muffin-Tin Orbitals) 
       Hankel functions outside muffin-tin spheres 

KKR (Kohn – Korringa – Rostoker) 
        Green‟s Function Method 

Multi-scattering Methods (All electron) 

Muffin-tin form of the potential used to generate basis 
Basis function – Numerically obtained wave function  

                             inside the muffin-tin sphere +  

                             augmented function outside  

Very important for alloys (VCA, CPA) 

Density Functional Calculations in Solids     

 tot el ion ionE E E

 
  


2

'

' ' ' '
2 | |

s s
ion ion

nn ss n s n s

Z Ze
E

R R 

 ({ },{ },{ }) ({ },{ },{ }) ({ },{ })tot i s j el i s j ion ion s jE a E a E a    

Total energy of a solid:  

{ }ja - primitive translations   1 1 2 2 3 3nR n a n a n aLattice vectors 

{ }s - Basis vectors – positions of atoms in the unit cell 
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Density Functional Calculations in Solids     

Shape of the unit cell, primitive translations 


 



tot
s

s

E
F




 



totE

u





 0

Equilibrium 

 0sFForces on all atoms disappear 

Equilibrium positions of atoms in the unit cell 

Crystal is stress free 





u
u

x




Deformation tensor: 

-a vector field (deformation) that describes  

the displacement of every point in the solid 
( )u r

Stress tensor: 

Force on atom s: 

Before deformation:  r After deformation: ( )r u r

{ }
eq
ja

{ }
eq
s

, { , , }x y z  

sF
and are usually calculated using  

Hellmann-Feynman Theorem 

Hellmann-Feynman Theorem 

R. P. Feynman, Phys. Rev. 56, 340 (1939) 

H. Hellmann, “Einführung in die Quantenchemie”  

(Denieke, Leipzig, 1937), p.285 

 


 

ˆ ( )
( ) | | ( )

E H 
   

 

- Ground-state wavefunction of the Hamiltonian  ˆ ( )H ( ) 

Only these terms of the Hamiltonian contribute, which are explicitly  

dependent on the parameter      . 

DFT (LDA, GGA, EXX) for weakly correlated systems   

 Accuracy of geometries is better than 0.1 A 

Accuracy of Common DFT implementations 

 Accuracy of calculated energies (relative) is usually  

    better than 0.2 eV 

    Very often better than 0.01 eV 

Band Gap problem ! 

Unsatisfactory accuracy of discussed approximations  

for highly correlated systems  

(mostly involving 3d – electrons)  

May we reach so-called chemical accuracy within DFT? 

Exact Exchange Kohn-Sham Method – a step in this direction 

 Systematic improvement of existing Kohn-Sham schemes 

  Computationally very demanding 

• Bulk systems up to now 

• Implementations for larger systems going on 

    Crucial - Better correlation energy functionals 

DFT - further developements required   
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•SPR-KKR  

•TURBOMOLE  

•VASP  

•WIEN 

 
•HiLAPW  

•JAGUAR  

•MOLCAS  

•MOLPRO  

•MPQC  

•NRLMOL  

•NWChem  

•OCTOPUS  

•OpenMX  

•ORCA  

•ParaGauss [1]  

•PARATEC [2]  

•PARSEC  

•PC GAMESS  

•PLATO  

•Parallel Quantum Solutions  

•Priroda  

•PWscf (Quantum-ESPRESSO)  

•Q-Chem  

•SIESTA  

•Socorro  

•Spartan  

•S/PHI/nX  

 
•Abinit  

•ADF  

•AIMPRO  

•Ascalaph Quantum  

•Atomistix Toolkit  

•Atompaw/PWPAW  

•CADPAC  

•CASTEP  

•CP2K  

•CPMD  

•CRYSTAL06  

•DACAPO  

•DALTON  

•deMon2K  

•DFT++  

•DMol3  

•EXCITING  

•Fireball  

•FLEUR  

•FSatom, dozens of free and 

proprietary DFT programs  

•GAMESS (UK)  

•GAMESS (US)  

•GAUSSIAN  

•GPAW  

Software supporting DFT   

http://en.wikipedia.org 

Density functional theory has revolutionized the way  

scientists approach the electronic structure of atoms,  

molecules,and solid materials in physics, chemistry,  

and (nano)materials science 

We are not at the end of this way!  

   DFT - further developements required   

Computational (Nano)Materials Science –  

The Era of Applied Quantum Mechanics 

The properties of new and artificially structured  

materials can be predicted and explained  

    entirely by computations,  

    using atomic numbers as the only input .  

Thank you ! 

http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR/
http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR/
http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR/
http://en.wikipedia.org/wiki/TURBOMOLE
http://en.wikipedia.org/wiki/Vienna_Ab-initio_Simulation_Package
http://www.wien2k.at/
http://home.hiroshima-u.ac.jp/fpc/manuals/HiLAPW/HiLAPW.html
http://en.wikipedia.org/wiki/JAGUAR
http://en.wikipedia.org/wiki/MOLCAS
http://en.wikipedia.org/wiki/MOLPRO
http://en.wikipedia.org/wiki/MPQC
http://en.wikipedia.org/w/index.php?title=NRLMOL&action=edit&redlink=1
http://en.wikipedia.org/wiki/NWChem
http://en.wikipedia.org/wiki/The_Octopus_Project_%28software%29
http://www.openmx-square.org/
http://ewww.mpi-muelheim.mpg.de/bac/logins/downloads_en.php
http://en.wikipedia.org/w/index.php?title=ParaGauss&action=edit&redlink=1
http://www.theochem.tu-muenchen.de/welcome/index.php?option=com_content&task=view&id=61&lang=en
http://en.wikipedia.org/w/index.php?title=PARATEC&action=edit&redlink=1
http://www.nersc.gov/projects/paratec/
http://en.wikipedia.org/wiki/PARSEC
http://en.wikipedia.org/wiki/PC_GAMESS
http://en.wikipedia.org/wiki/PLATO_%28Package_for_Linear_Combination_of_Atomic_Orbitals%29
http://en.wikipedia.org/wiki/PQS_%28chemical%29
http://en.wikipedia.org/w/index.php?title=Priroda_%28fast_relativistic_RI-DFT_program_by_Dr._D.N._Laikov%29&action=edit&redlink=1
http://en.wikipedia.org/wiki/PWscf
http://www.quantum-espresso.org/
http://www.quantum-espresso.org/
http://www.quantum-espresso.org/
http://en.wikipedia.org/wiki/Q-Chem
http://en.wikipedia.org/wiki/Q-Chem
http://en.wikipedia.org/wiki/Q-Chem
http://en.wikipedia.org/wiki/SIESTA_%28computer_program%29
http://en.wikipedia.org/wiki/Socorro
http://en.wikipedia.org/wiki/Spartan_%28software%29
http://www.sphinxlib.de/
http://en.wikipedia.org/wiki/Abinit
http://en.wikipedia.org/wiki/Amsterdam_Density_Functional
http://aimpro.ncl.ac.uk/
http://www.agilemolecule.com/Ascalaph/Ascalaph_Quantum.html
http://en.wikipedia.org/wiki/Atomistix_Toolkit
http://en.wikipedia.org/w/index.php?title=Atompaw/PWPAW&action=edit&redlink=1
http://en.wikipedia.org/wiki/CADPAC
http://en.wikipedia.org/wiki/CASTEP
http://cp2k.berlios.de/
http://www.cpmd.org/
http://www.crystal.unito.it/
http://en.wikipedia.org/wiki/DACAPO
http://en.wikipedia.org/wiki/DALTON
http://www.demon-software.com/public_html
http://dft.physics.cornell.edu/
http://www.accelrys.com/products/mstudio/modeling/quantumandcatalysis/dmol3.html
http://en.wikipedia.org/wiki/EXCITING
http://fireball.phys.wvu.edu/
http://www.flapw.de/
http://www.fsatom.org/programs.php?type=4
http://www.fsatom.org/programs.php?type=4
http://en.wikipedia.org/wiki/GAMESS_%28UK%29
http://en.wikipedia.org/wiki/GAMESS_%28US%29
http://en.wikipedia.org/wiki/GAUSSIAN
http://en.wikipedia.org/wiki/GPAW

