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Basics of the Monte Carlo Method 

Macroscopic properties of a systems (i.e., how the whole  

system behaves) are of interest  

In a macroscopic system, it is difficult to treat the motions  

of the all (microscopic) atoms or molecules  

Coarse-graining necessary 

If the time evolution of the system is coarse-grained   

stochastically, one achieves one class of models,  

so-called stochastic models.   

Monte Carlo Method – efficient method to realize this  

numerically on a computer  

Monte Carlo methods provide a powerful way to solve  

numerically the fluctuation or relaxation in a stochastic  

system 
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Brownian Motion 

A typical example of Monte Carlo method 

The bigger colloidal particle  

(Brownian particle) moves  

randomly, colliding with  

small solvent particles.   

When one observes it through  

a microscope, one identifies the  

position (or velocity) of the  

Brownian particle only.   

Applying coarse-graining procedure, the other degrees of  

freedom (e.g., the motion of small solvent particles) are  

removed and, finally they can be regarded as a  

random force acting on the Brownian particle.  

Clearly:  

  I = area under the 

       curve 

Monte Carlo vs. Deterministic Philosophy 

Problem:  

evaluate an integral 

0 a 

f(x) 

x 

a
I f ( x )dx 0

Deterministic (calculus  

based) approach 

spatial grid:  

Monte Carlo vs. Deterministic Philosophy 

Monte Carlo-Based Approach 

0 a 

f(x) 

x 

b 

Probabilistic interpretation 

Throw N random darts at the rectangle. 

M = the number of times the dart  

          lands under the curve. 

P =  probability that a random point  

          lies under the curve 

I M
P

ab N
 

M
I ab

N


No spatial grid, no discretization error  

Statistical error -  
ζ

N


Monte Carlo vs. Deterministic Philosophy 

Monte Carlo-Based Approach  

(computer code) 

0 a 

x 

b 

y

( x, y )

( x, f ( x ))

y f ( x )

accepted point 

Random  

number  

generated  

by computer 

ξ 0 1
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Stochastic Processes – Dynamical Variables  

A set of all variables that characterizes the internal state 

of a dynamical system – dynamical variables  

Examples: 

An assembly of N molecules in the gas phase 

a set of atomic positions and momenta 

N( X , X , , X )1 2 N( P ,P , ,P )1 2

q

A system of weakly interacting harmonic oscillators 

e.g., for studies of thermal motion of atoms in a solid 

A set of energies of the oscillators 

A magnetic spin system 

A set of spin variables 

N( ε ,ε , ,ε )1 2

Stochastic Processes – Dynamical Variables  

                                               at Equilibrium  

One of the most important subjects in the Monte Carlo method 

distribution of dynamical variables at thermal  

equilibrium of the system ?  

It is not necessary to examine the trajectory of the  

dynamical variable according to some deterministic equation. 

It is important to discuss the value of the dynamical  

variable at a certain place and a certain time 

Suppose we have obtained successive data for  

the dynamical variables  

by observing the system L times at different time steps 
Lq ,q , ,q1 2

Lt ,t , ,t1 2

Studies of the time evolution of the dynamic variables  

Stochastic Processes – Dynamical Variables                                                

If these successive data seem to change stochastically  

with time step, we may call this a stochastic process. 

In the Monte Carlo methods which are used to the dynamics  

of a many-body system,  

    the time evolution is considered as a stochastic process,  

    the dynamical variables at each time step are updated  

    by using random numbers. 
A sample obtained in one simulation  

The real Monte Carlo - simulations repeated many times  

and analyzed using standards of statistical physics 

Lq ,q , ,q1 2

Stochastic Processes – Distribution Function 

Transition probability that the system with a dynamic  

variable       at time     moves to the state  

between               and        at a later time       
iq it

j jq δq jq
jt

i i j j jΦ(q ,t | q ,t )δq

Distribution function of q - probability 

that the system is in the state defined by q at time t 

p( q,t )

 p( q,t ) dq p( q ,t )Φ(q ,t | q,t )  0 0 0 0 0

Transition probability should be normalized 

 i i j j jΦ(q ,t | q ,t ) dq  1

for any state qi at time  i jt t
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Markov Process 

Φ(q ,t | q,t )0 0

Most algorithms used in simulating a realistic system 

by Monte Carlo methods, are based on the following  

Markov process.  

is independent of any information  

about any time t’ before t0 

All the history before time t0 is contracted into the single  

piece of information that the system has  the dynamic  

variable     at the time    .    t0
q0

Markov Process 

Φ(q ,t | q ,t ;q,t )δq δq0 0 1 1 1The transition probability 

 at      at       at q t ( q ,q δq ) t ( q,q δq ) t   0 0 1 1 1 1

Φ(q ,t | q ,t ;q,t ) Φ(q ,t | q ,t )Φ(q ,t | q,t )0 0 1 1 0 0 1 1 1 1

 Φ(q ,t | q,t ) dq Φ(q ,t | q ,t )Φ(q ,t | q,t ) 0 0 1 0 0 1 1 1 1

Chapman-Kolmogorov equation 

The stochastic process satisfying these two equations 

is called in general Markov process or Markov chain  

The stochastic process depending on the history is  

called a ―non-Markov process‖ 

Markov Process 

By introducing a kind of random updating of the  

dynamical  variable in compensation for neglecting  

the microscopic details of the real system,  

one may arrive at a Markov process.  

 

Replacement of the neglected details with a random  

updating process is identical to the introduction  

of a heat bath    

Detailed motion of atoms on the microscopic scale  

can be seen as heat on the macroscopic scale. 

The form and amount of the updating probability are  

directly related to the temperature of the equilibrium  

state.  

Markov Process 

Time evolution of a system obeying a Markov Process 

new variables Γ(q ) W ( q ;q )1

Φ(q ,t | q,t Δt ) [ Γ( q )]δ( q q ) W(q ;q ) O( Δt )      2
1 1 11

and  

             

Φ(q ,t | q,t Δt ) Φ( q ,t | q,t )

dq Φ(q ,t | q ,t )W ( q ;q ) Φ( q ,t | q,t )Γ( q ) O( Δt )

  

  

0 0 0 0

2
1 0 0 1 1 0 0

                    

p( q,t Δt ) p( q,t )

dq p( q ,t )W ( q ;q ) p( q,t )Γ( q ) O( Δt )

  

  
2

1 1 1

Transition amplitude 

Change of the Transition amplitude 

Change of the distribution function 
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Markov Process 

                    

p( q,t Δt ) p( q,t )

dq p( q ,t )W ( q ;q ) p( q,t )Γ( q ) O( Δt )

  

  
2

1 1 1

Master equation – basis time-evolution equation 

describes the process  

of transition into state q  
(probability increases) 

describes the process  

of transition  

out of the state q 
(probability decreases) 

In order to get               normalized p( q,t )

Γ(q ) dq W(q;q )  1 1

W ( q ;q )1

stochastic operator 
represents transition 

rate 

Markov Process – Random Walk 

Example of master equation – a random walk  on a d-dim. 

                                                     hypercubic lattice   

d

i

i

p( q,t Δt ) p( q,t ) υ p( q ae ,t ) p( q,t ) O( Δt )
d

 
      

 

2

21

2

The kernel  

(transition rate) 

d

i

i

υ
W ( q ;q ) δ( q q ae )

d
  

2

1 1
2

υ -- diffusion velocity 

ie -- one of the 2d neighbors 

a -- lattice constant 

υa
D

dΔt


2

2
diffusion constant 

 with constant  a,Δt D 0

p( q,t ) D p( q,t )
t


 



2Master equation =  

a finite-difference  

version of diffusion equation  

Ergodicity 

If there is a unique equilibrium state without any periodic  

motion, this Markov process is called ergodic. 

 

Ergodicity  -- property of approaching a unique final state  

from an arbitrary initial state   

In many thermodynamic systems, the final state after  

enough time has past is the thermal equilibrium state  

A system at thermal equilibrium obeys the Boltzmann  

distribution 
eq

Bp ( q ) exp[ E( q ) / k T ]
Z

 
1

Partition function B

q

Z exp[ E( q ) / k T ] 

Algoritms for Monte Carlo Simulations  

The most basic algorithm of the Monte Carlo method:  

 

       (1)  Generate a random number 

       (2)  Take or do not take a new random step,  

              depending on the generated random number  

       (3)  Repeat trial 

Random numbers 

The ―random numbers‖ generated on computer are not  

mathematically ideal random numbers  

pseudo-random numbers – uniformly distributed numbers  

in the interval [0,1] having long but finite period 

For 32-bit processor,  

                            the period is M = 231 - 1 = 2 147 483 647 
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Algoritms for Monte Carlo Simulations  
Simple Sampling Techniques 

The evaluation of an expectation value of a physical  

quantity   
A dqA( q )p( q ) 

an important theme in the field of Monte Carlo methods 

N

l l

l

N

l

l

A( q )p( q )

A

p( q )











1

1

Monte Carlo method is  

introduced to extract samples  

of the system in a completely  

random way.  

This method actually offers a  

well–defined stochastic process  

Such a method of Monte Carlo sampling is called  

a Simple Sampling Technique 

Algoritms for Monte Carlo Simulations  
Simple Sampling Technique  

Handling a thermodynamic ensemble based on a 

stochastic model by the simple sampling technique 

N

l B

l

N

B

l

A( q )exp[ E( q ) / k T ]

A

exp[ E( q ) / k T ]















1

1

Note, all samples l are 

selected here completely  

randomly, irrespective  

of the Boltzmann weight 

l lA( q ) E( q )Now assume 

The relative width of the energy fluctuations decreases  

with the number of particles N, in the system  

E E

NE

    


 

2 2

2

1

Probability to generate states with one particle energy  

close to                     becomes exponentially small for large N 

Algoritms for Monte Carlo Simulations  

Simple Sampling Technique for thermodynamic  

ensamble   

p( ε )The one-particle energy distribution function             

shows a peak of height          and width       

around its expectation value  
N / N1

E / N 

B

( ε E / N )
p( ε ) exp N

Ck T

   
  

  

2

2
2

Note, Gaussian form  

for large N  

E / N 

Simple Sampling Algorithm becomes very inefficient  

Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  

Simple Sampling Technique offers an efficient algorithm  

to evaluate the average of a physical quantity             , 

only if the distribution function         resembles a more or less 

uniform distribution  

A( q )
p( q )

In contrast, if the distribution function has a big value only  

at an isolated point, it becomes more efficient to choose the  

integration points with the same probability as that given  

by the distribution function          .    p( q )

Such a biased sampling with a probabilistic weight is  

called Importance Sampling Technique 

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. M. Teller, and  

E. Teller, J. Chem. Phys. 21, 1087 (1953).  

Commonly called Metropolis Algorithm 
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Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  

If the sample integration points are chosen with the same  

probability as the distribution function         ,  

the expression for the expectation value can be replaced  

simply by  

p( q )

N

l

l

A A( q )
N 

 
1

1

Metropolis et al. considered a Markov process that  

generates a descendant sample l’ from the present sample l  
according to the transition rate l l'W ( q ,q )

They showed that by suitable choice of the transition rate,  

it is possible to bring the distribution of the dynamic variable  

to the expected (prescribed) distribution          in the limit  

     

p( q )

N 

Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  
Markov chain 

We consider one particle in the multidimensional space  

of the dynamic variable q and move it step by step  

according to random numbers.   

The movement obeys following rule 

Calculate the value of the distribution function  

q q'

p( q')

Compare  p( q') to the present value of the  

distribution function  p( q )

  If p( q') p( q ) move the particle to the new position 

  If p( q') p( q ) generate random number ξ [ , ] 0 1

p( q')

p( q )
ξ If 

leave the particle at the same position 

move the particle to the new position 

If p( q')

p( q )
ξ 

Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  

In IST one updates the particle position with the  

probability min[x,1]  p( q')

p( q )
x 

After repeating this process enough times,  

the distribution of this random walker  

approaches  p( q )

Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  

Back to the specific problem of the thermodynamic 

                                                             ensembles 

N

l B l

l

N

B l

l

A( q )exp[ E( q ) / k T ] / p( q )

A

exp[ E( q ) / k T ] / p( q )















1

1

How to choose the distribution function             ? 

We assume that the samples are chosen with the same  

probability as the distribution function  lp( q )

lp( q )

The simplest and most natural choice is the  

Boltzmann distribution  
l Bp( q ) exp[ E( q ) / k T ] 
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Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  

Using Metropolis’s idea of importance sampling,  

one may bring the distribution function  

close to the thermal-equilibrium distribution   
lp( q )

l Bp( q ) exp[ E( q ) / k T ]
Z

 
1

A sufficient condition to achieve the equilibrium  

distribution is to impose  

the principle of detailed balance 

eq eq
l l l' l' l' lp ( q )W ( q ,q ) p ( q )W ( q ,q )

However, the principle of detailed balance does not  

uniquely determine the transition rate 
l l'W ( q ,q )

Algoritms for Monte Carlo Simulations 

Importance Sampling Technique  

Two often used choices of transition rate 

B
l l'

B B

exp( δE / k T )δE
W ( q ,q ) tanh

η k T η [ exp( δE / k T )]

   
    

   

1 1
1

2 1

Heat bath method (Glauber algorithm) 

R. J. Glauber, J. Math. Phys. 4, 294 (1963) 

l' lδE E(q ) E(q ) 

Metropolis Algorithm 

      

                          otherwise

B

l l'

exp( δE / k T ) δE
η

W ( q ,q )

η


 

 



1
0

1

Metropolis Monte Carlo Simulation  
Standard, very important sampling technique to realize  

the canonical ensemble  

By using random numbers, produce a new state  

from the present one  

Calculate the energy difference        of the new state  

relative to the present one 

δE

If  δE , 0 update to the new state. 

then generate a random number                , and If  δE , 0 η [ , ] 0 1

if 

else 

update to the new state 

leave the state as it is. 

Bexp( δE / k T ) η 

Applications of Monte Carlo Simulations  
in the field of condensed-matter &  

                        materials science  

Classical particles  

 

Percolation 

 

Polymers   

 

Classical Spins  

 

Crystal Growth 
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Monte Carlo Simulations –  
Systems of Classical Particles  

A system of N classical interacting particles 

N
I

N
II

p̂
H U( r ,r , ,r )

M

 
2

1 2

1 2

N /N
B

B I IN
I

mk T
Z exp[ H / k T ] dr dp Q(T ,V )

h N ! h





 
    

 


3 2

3 2
1

1 2

N N BQ(T ,V ) dr dr exp[ U( r ,r , ,r ) / k T ]
N !

  1 1 2

1

Hamiltonian 

Partition function 

The distribution function for the coordinates of   

                                                                           the N particles 

N N Bp( r ,r , ,r ) exp[ U( r ,r , ,r ) / k T ]
N !Q(T ,V )

 1 2 1 2

1

Monte Carlo Simulations –  
Systems of Classical Particles  

Procedure 

One chooses one particle among N particles randomly  

(or one may select them one by one from 1 to N)  

allow this movement 

Move the position        of the selected particle to  

the new position 
ir

i ir Δr i ir r Δr 

a random vector  

Metropolis algorithm 

Check whether the new configuration is energetically  

more stable than the original configuration      

If YES 

If NO further procedure 

Procedure (ctn.) 

Monte Carlo Simulations –  
Systems of Classical Particles  

Calculate the ratio of the distribution function before and  

after this movement   
i i N

i N

p( r ,r , ,r Δr , r )

p( r ,r , ,r , r )

1 2

1 2

Allow this movement if this ratio is larger than a uniform  

random number  [ , ] 0 1

The random vector          is chosen so that the allowance  

rate of the movement is roughly several tens of per cent  
Δr

The Monte Carlo procedure is usually performed with  

a fixed particle number N, temperature T, and volume V  

NTV ensemble 

Monte Carlo Simulations –  
Systems of Classical Particles  

Form of potential U ? 
The simplest one - “Hard sphere system” 

liquid – solid phase transition 

B. J. Alder & T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957) 

W.W. Wood & J.D. Jacobson, J. Chem. Phys. 27, 1207 (1957) 

Molecular dynamics 

Monte Carlo Simulations 

ζ
V ( r )

ε r

n
 

  
 

1
Soft-core, pair potentials 

ij ij
ij ij

R R
V ( R ) U

R R

 
   
     
    
     

0 0
0 2

12 6

Lennard-Jones potential 
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Monte Carlo Simulations –  
Systems of Classical Particles  

System of charged particles ? 

Long-range Coulomb potential ζ
V ( r )

ε r

 
  

 

1

One should pay attention 

Usually, charge neutrality should be preserved 

Periodic boundary conditions usually imposed 

Even if the number of N of particles is small,  

one has to evaluate an infinite sum of Coulomb interact. 

The Ewald sum 

Fast multipole method 

Kinetic Monte Carlo a tool  

for simulation of growth processes 

Kinetic Monte Carlo Simulations –  
An approach to perform epitaxial growth  
simulations  

Epitaxial growth is a key technique in fabricating 

semiconductor-based electronic and optoelectronic 

devices such as  

       light-emitting diodes (LED’s),  

       laser diodes (LDs), or 

       high electron mobility transistors. 

These devices consist of vertically stacked thin films  

that differ by the material, alloy composition, 

or doping. 

Epitaxial growth of materials 

Substrate 

Layer 1 

Layer 2 

Layer 3 

Layer 4 

Vertically stacked layers 

of various materials 
Epitaxy (from Greek  

epi = upon;  taxis = ordered)  

To employ quantum effects 

some of these structures are 

only a few atomic layers thick. 

For the performance/efficiency  

of such devices the quality  

of the interfaces between  

the different layers is crucial. 

Realistic growth simulations could help to understand  

mechanisms affecting the interface quality but also to 

identify optimum growth conditions or suitable material 

combinations. 
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Schematic view of a MBE system for the growth of multi-element films  

Substrate heater 

Effusion cells for constituent 

elements and dopants  

substrate 

Vapor mixing zone 

Molecular beam generation 

Individual shutter 

Molecular Beam Epitaxy (MBE) 

MBE – real maschine 

Film Growth Modes  

Nucleation and growth of a film proceeds from energetically  

favorable places on a substrate surface 

Schematic view of the elements  

of surface morphology 

If the surface diffusion is fast  

enough, a randomly deposited 

adatom will diffuse to the  

energetically most favorable  

places like steps and especially  

kinks.       

If at lower temperatures the  

diffusion is slower, several  

mobile addatoms may encounter  

each other within a terrace and  

may form additional immobile  

adatom cluster within terraces    

Possible events during film growth  
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Simulation of growth processes  

A challenge to perform such growth simulations is  

the large range of relevant length and time scales.  

 

The features interesting for device design (interface 

morphology, formation of nanostructures) are of the order of 

100–1000 nm and the time to grow these structures is of the 

order of seconds. 

 

The origin of these effects, however, lies in the atomic 

processes on the surface (adatom adsorption, desorption, 

nucleation,etc.). 

This requires a resolution in the length scale 0.1 nm  

and in the time scale of 10-13 s. 

From Molecular Dynamics to   

Kinetic Monte Carlo   

Simulation of growth processes –  

Kinetic Monte Carlo (KMC)  

Modeling crystal growth with the KMC method allows 

one to cover experimentally relevant growth times and 

system sizes, since each event on the surface is just 

described by a single quantity—the transition rate—

rather than by modeling the full reaction path including 

atomic geometries and energies 

Bridging of length and time scales 

KMC Simulation for Equilibrium Structures  

at Various Temperatures  

Experiment  Simulations  

380°C 

440°C 

0.083 Ml/s 
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KMC Simulations: Effect of Nearest  

Neighbor Bond Energy EN 

Large EN: 

Irreversible 

Growth 
Small EN: 

Compact 

Islands 

Experimental Data 

Au/Ru(100) 

Ni/Ni(100) 

Hwang et al., PRL 67 (1991) Kopatzki et al., Surf.Sci. 284 (1993) 

KMC Simulations 

Thank you! 


