

Chair of Condensed Matter Physics Institute of Theoretical Physics Faculty of Physics, University of Warsaw

Summer Semester 2013

Lecture Modeling of Nanostructures and Materials

Jacek A. Majewski

E-mail: Jacek.Majewski@fuw.edu.pl

• Basics of the alloy theory

Multiple Scattering Theory – Basic Equation $\begin{bmatrix} H_o + V \end{bmatrix} \psi(\vec{r}) = E \psi(\vec{r}) \\
-H_o \text{ is the free space Hamiltonian} \\
-V \text{ is the perturbing potential} \\
-Y \text{ is the electron wavefunction} \\
<math>\psi(\vec{r}) = \chi(\vec{r}) + \int G_o(\vec{r}, \vec{r}') V(\vec{r}') \psi(\vec{r}') d^3 r' \\
e We can express the wavefunction at some position as a sum of the free space wavefunction, <math>\chi$, and contributions from the perturbing potential, V, at different sites.
e In this case, G_o is the free electron propagator and describes motion in regions where no scattering from the potential occurs.

Getting the Band Structure Together

• The poles of *M*(*E*) determine the *eigenenergies* for the system for a given *k* through the following equation:

$$det\left[m(E) - \tilde{G}\left(E,\vec{k}\right)\right] = 0 \implies \varepsilon(\vec{k})$$

- This allows us to calculate the system band structure.
- Possibility to calculate non-periodic systems (clusters)

Getting the Band Structure Together

• In the *MT* formalism, the *T* matrix becomes:

$$T^{ij} = t^i \delta_{ij} + t^i \sum_{k \neq i} \widetilde{G}^{ik} T^k$$

- There exists a matrix M such that T^{ij} are the elements of its inverse.
- The matrix *m* is just the inverse of the cell *t* matrix.

$$M^{ij} = m^i \delta_{ij} - \widetilde{G}^{ij} (1 - \delta_{ij})$$

- The inverse of the T matrix is cleanly separated into
 - **potential** scattering components, mⁱ, and
 - structural components, G^{ij}.

Problem with the KKR method

- Linking interstitial region (V=0) with spherical regions with muffin tin potentials can be difficult
- Determinant used to find band structure is a nonlinear function of energy (energy dependence carried in the site t matrices) – this can not be reduced to a standard matrix eigenvalue problem
- The Solution Linearize the equation LMTO approach (Andersen, PRB, 1975 – 1370 citations)

Continuum Field Description of Crack Propagation Static solutions The static one-dimensional equations read $\frac{\partial \rho u_{yy}}{\partial y} = 0$ $\frac{\partial^2 \rho}{\partial y^2} - \rho (1 - \rho) [1 - (b - \mu u_{yy})\rho] = 0$ With the fixed-grips boundary conditions (BC) = $u_y(y=\pm L)=\pm L\delta$ = $\rho(y=\pm L)=1$ = $\partial_y(\rho=0)=0$

Growth science

- In recent times, the evolution processes have ultimately become a central object of scientific study in many fields.
- A vast variety of phenomena are studied by *growth science*, ranging from
 - the spread of a forest fire to
 - the sedimentation of sand on the bottom of a water basin.
- These growth phenomena have been recently reviewed in beautiful articles and books
 - T. Halpin-Healy & Y.-C. Zhang, Phys. Rep. 254, 215 (1995)
 - Evans, *Rev. Mod. Phys.* 65, 1281 (1993)
 - A.L. Barab'asi & H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge: Cambridge University Press, 1995)

Crystal growth and growth science

Crystal growth is special in that it was studied in detail, because of its practical importance, much before the present fashion

Hurle D T J (ed) *Handbook of Crystal Growth* (Amsterdam: North-Holland, 1993)

- Atomistic description of crystal growth
- >>> Continuum models of crystal growth

dependent on the physics of growth

Traditional concepts of crystal growthSurface growth• For stable growth the most widely considered geometry
is that of a planar or quasi-planar surface, moving in the
positive z-direction with (on average) constant velocity v.
The chemical potential of the vapor μ
of the crystal μ_{eq} • The driving force for crystal growth: $\Delta \mu = \mu - \mu_{eq}$ • Two basic and related questions are:
• what is the growth mode and
• what is the growth kinetics, i.e., how does
the rate of growth *G* depends on the driving force

Growth of rough surfaces – Stochastic differential equations

• A non-linear perturbation of the EW equation is the Kardar–Parisi–Zhang (KPZ) equation Kardar M, Parisi G and Zhang Y, Phys. Rev. Lett. 56, 889 (1986) $\frac{\partial h}{\partial t} = v \nabla^2 h + \lambda (\nabla h)^2 + \eta$ • The KPZ equation generates surfaces whose roughness may be stronger than logarithmic, i.e. of power-law form.

Growth of rough surfaces –
Stochastic differential equations• If the EW equation is perturbed by a *periodic force*
favoring the *integer levels* (i.e. if the crystal structure is
taken into account) the *Chui–Weeks* (CW) equation is
obtained
 $\begin{array}{c} Chui S. and Weeks J., \\ Phys. Rev. Lett. 40, 733 (1978) \end{array}$ $\frac{\partial h}{\partial t} = v \nabla^2 h + y_0 \sin 2\pi h + \eta$ • and the surface tends to become *smoother*.• Thus a surface obeying the CW equation either
is smooth, or if it is rough cannot be more than
logarithmically rough.

