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Materials Science:
Examples of Schrédinger Equation?

© Materials are composed of nuclei {Za,Ma,ﬁa} and electrons {;7}
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==> the interactions are known
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Ab-initio (first principles) Method —
ONLY Atomic Numbers {Z} as input parameters




Quantum Monte-Carlo Method

o Efficient (and successful!) approaches to
approximate the wave-function are already
common in quantum chemistry and physics :

HF, CI, DFT.

@ In these approaches the integration reduces to
one and two electron integrals.

e Here we will present a different approach, namely
Quantum Monte Carlo (QMC).

Spectrum of Electronic Hamiltonian:
What ab-initio methods do we have?

Methods for computing
the electronic structure
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[Ab-initio Methods ]

Hartree-Fock l’ Quantum
Method Density Monte Carlo

+ Configuration ‘ Functional Theory

Empirical Methods

\ Interaction
O Existing realizations of DFT
§H-F - neglects completely allow accurate predictions
electron correlation for large systems

§H-F+CI —is able to treat

ONLY few electrons @ Currently the method of

choice in materials science

Quantum Monte Carlo Methods

Quantum Monte Carlo Methods

are methods for solving quantum mechanical
problems based on stochastic (or random)
processes.

There are several QMC methods:

= Variational Monte Carlo (VMC)

= Diffusion Monte Carlo (DMC)

= Auxiliary-field Monte Carlo

= Path-integral Monte Carlo W. M. C. Foulkes, L. Mitas,

R. J. Needs, and G. Rajagopal
Rev. Mod. Phys. 73, 33 (2001)

Variational Monte Carlo Method

e In VMC one assumes a variational form
of the trial wave-function, ¥

e and evaluates the expectation value of the Hamiltonian
in this state as the variational ground-state energy.

® VMC thus provides an upper bound to the exact ground
state energy.




Monte Carlo Integration

"Traditional' one-dimensional integration

A

Feaction Vake

® | Traditional numerical integration techniques are
virtually impossible for high-dimensional integration:

The computational time scales as md m

d=3N
(3 x number of particles)

Monte Carlo Integration (2)

® We now introduce a normalized function 2( X )
® and may rewrite the integral as

® Metropolis (1949) introduced a means to sample
the points randomly from the distribution g(x)

=) the Metropolis algorithm

§ (X
/./'(.r)(/‘rk Z (//((X))

Xeg(x)

e where the points X are taken from the distribution £(x)

Monte Carlo Integration (3)

The Metropolis algorithm
Given a starting point X,,.

Propose a random trial move X; = X, + &.

Acceptance ratio given by: r = min(1, g—(%'l))

Generate a random number & between () and 1

If z < r accept move, else reject move.
— f (‘Yn 4 l)

Sample the integrand I,, ;1 = A(Xorr)"

Monte Carlo Integration (4)
@ Steps 1-5 in the Metropolis algorithm creates
a sequence of pomts\{XO,_,_,Xn,,._}J
Y called a walker

® Metropolis showed that a population of walkers will evolve
according to the function g(x) , when 1 becomes large.

Monte Carlo integration scheme
1 Randomize the starting position of walkers.

2 Move every walker by the Metropolis algorithm (steps1-5)
a sufficient number of times.

3 Sample the integrand, and move walkers (steps 1-6).

4 Quit when the standard deviation is below a given level.




Variational Monte Carlo Method

e The variational Monte Carlo simulation for a quantum
many-particle system can be performed by an importance
sampling with respect to the square of the normalized
trial wavefunctions

S(R)= |¥r(R)P/ Jar 1w (R)P

a point in probability distribution function
3N-dimensional

space

e Since }AI is an operator the quantity that is averaged is
the local energy E;(R)=H(R)¥Y;(R)/¥;(R)

e |deally, if ¥;(R)is the exact ground-state wavefunction
the local energy E;(R) should be a constant.

Variational Monte Carlo Method

{.ocal energy ET(R)
Y

IR2:0 7 : A (%) dR
[U2dR [ U24R

Evyc =

Average local energies E7(R) over the walk 2 Eyy;c-

Variational Monte Carlo Method

Local energy
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Variational Monte Carlo Method

e Regarding the importance sampling, the trial ground-state
energy is given by

1 &
ET=N—2ET(R,.)
P_i=l

where Np points R; are sampled according to the square
of the trial wavefunction (probability distribution function).

e In this way, provided enough points are taken to sample
the distribution function, the resulting total energy converges
to the exact trial energy with the standard deviation

proportional to | / /NP




Variational Monte Carlo Method
The trial wave-function

e So far, there has been no limitations on the trial
wave-function, ¥ (R )

e However, for practical applications we need a
good starting point

® The difficulty in the VMC method is the appropriate choice
of the trial function Y. (R)

It must have the proper symmetry
= antisymmetric for Fermions
(symmetric for Bosons)
= must be an eigenstate of all operators
that commute with Hamiltonian

Variational Monte Carlo Method

H R. Jastrow,
Jastrow function Phys. Rev. 98, 1479 (1955).

1
¥ =D(R)exp| —— Y u(r;)
/ 2i<j !

- _/

Slater-determinant

part (HF or DFT) Jastrow factor

The Jastrow factor is introduced to build in correlation effects

Contains two-body or three-body terms
and up to 30 parameters that could be
varied to minimize the ground state energy

Variational Monte Carlo Method

Problems and challenges:

1 Creating accurate trial wave-functions that are fast
to evaluate.
(fermion calculations take much more CPU time and
memory than boson calculations)

2 Efficient energy (or variance) minimization schemes.

3 Sample the whole state space.

4 Auto-correlation effects.

5 Creating the correct nodal structure.

® The accuracy of VMC is rather limited.

° VMC is most efficiently used in conjunction with DMC.

Diffusion Monte Carlo (DMC) Method

® The DMC method is based on rewriting the
Schrédinger equation in imaginary time, T = it

® This equation looks like a diffusion equation, and its effect
is to converge the initial wavefunction to the ground state




Diffusion Monte Carlo Method

e Diffusion Monte Carlo (DMC) is a stochastic projector
method for solving the imaginary-time many-body
Schrddinger equation,

—9,®(R,t)=(H—-E7)®(R,1)

O(R, 1+ r)=f G(R—R’",7)®(R",1)dR’
where (I‘(R:—R’,T)=<RCXP[—T(F]—ET):”R,)

is a Green'’s function that obeys the same
eauation as the wave function

—3,G(R—R",1)=(H(R)—E7)G(R—R',1)
with the initial condiion U (R—R’,0)=38(R—R")

Diffusion Monte Carlo Method
Using the spectral expansion
exp(—7H) =2, | W yexp(— 7E;) (V]
one can express the Green’s function as

G(R—R',7)=2, V(R) e "EimED ¥ *(R")

i

where{¥; } and { E; } denote the complete sets of
eigenfunctions and eigenvalues of H, respectively.

Diffusion Monte Carlo Method

@ Itis straightforward to show thatas 7—
the operator exp| — 7H— E7)]
projects out the lowest eigenstate | W())
that has nonzero overlap with the chosen initial state

|(I)([:O)> = I(I)inil>

® The imaginary-time development is just a mathematical trick
used to convert an arbitrary starting state into the ground state
without assuming any particular functional form.

Diffusion Monte Carlo Method

lim(R|exp[ — 7(H — E7)]| ®;y;0)

T— 0

- limj G(R—R',7)®;;(R")dR’

= limE Vi(R) exp[ — 7(E; = E7) ] (V| Pini0)

7T

=lmW(R) exp[ —7(Ey—E7)] <‘l'()|(l)inil>~

T




Diffusion Monte Carlo Method

e By adjusting Eto equal E, , one can make the
exponential factor in the last line constant, while
the higher states in the previous line are all exponentially
damped because their energies are higher than E

® This fundamental property of the projector
exp[—T(H—E7)]

is the basis of the diffusion Monte Carlo method
and similar projector-based approaches.

Diffusion Monte Carlo Methods

Possible choice of the Green’s function

aN /A >y 2
GR,R,67) = (2767) 7 exp [ (RRM"TM‘))]
T

xexp |:—(ST <—EL(R) J; Er(RY) — ET>}

Quantum Monte Carlo Simulations

CASINO

The Cambridge Quantum Monte Carlo Code

R.J Needs, M.D. Towler, N.D. Drummond, P.R.C. Kent

Can treat atoms, molecules, polymers, slabs, solids,
2D/3D electron phases and 2D/3D electron-hole phases.

www.tcm.phy.cam.ac.uk/~mdt26/casino.html

QMC - Atomic Results: Correlation
Energy
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QMC - Atomic Results: Correlation

VMC

Jastrow-factor Be

Two-body 94.00(1)
Three-Body 97.54(5)

DMC

Jastrow-factor Be
Two-body 99.73(3)
Three-Body 99.89(1)

Energy

QMC - Atomic Results: Correlation

Energy
Atom Method Orb. Total energy E.
type (a.u.)

HF G —2.86165214 0 %

HF N —2.86168000 0%
VMC G —2.903499(8)  99.5 %
He VMC N —2.903527(9) 99.5 %
DMC G —2.903732(5) 100 %
DMC N  —2.903719(2) 100 %
“Exact” 27 —2.903724 100 %

G — Gaussians, N —numerial orbitals

QMC - Atomic Results: Correlation

QMC - Atomic Results: Correlation

Energy

HF G —128.53832860 0 %

HF N  —128.54709811 0%

VMC G —128.8794(4) 85 %

Ne VMC N  —128.891(5) 88 %
DMC G —128.9232(5) 96 %

DMC N —128.9231(1) 96 %
“Exact”?® —128.939 100 %

Energy

HF N  —2752.05497715 0%

Kr VMC N  —2753.2436(6) 57 %
DMC N  —2753.7427(6) 82 %
“Exact”3® - —2754.13 100 %

HF N  —7232.13836331 0%

Xe VMC N —7233.700(2) 46 %
DMC N —7234.785(1) 77 %
“Exact”3® -  —7235.57 100 %




Correlation Energy for Atoms
as a Function of Atomic Number Z
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The logarithm of the CPU time required to obtain
a fixed error bar in the energy versus In(Z) for DMC
calculations.

Cohesive Energy of Solids

Possible calculations involving up to 2000 electrons

Table 1. The Cohesive Energy of Ge Obtained Using Three
Different Methods

Cohesive Energy of Solids

Method Used Cohesive Energy (eV/atom)
LDA Calculation 4.59
Diffusion QMC Calculation 3.85
Experiment 3.85

W. M. C. Foulkes, M. Nekovee, R. L. Gaudoin, M. L. Stedman,
R. J. Needs, R. Q. Hood, G. Rajagopal, M. D. Towler, P. R. C. Kent,
Y. Lee, W.-K. Leung, A. R. Porter, and S. J. Breuer

Blackett Laboratory, Imperial College
Cavendish Laboratory, Cambridge University

Method ~ Si Ge C BN NiO
LDA 5.28 4.59 8.61 15.07 10.96
VMC 4.48+0.01 3.8040.02 7.36+0.01 12.85+£0.09 8.57+0.01
4.38+0.04 7.27£0.07
4.82+0.07
DMC 4.63+0.02 3.854+0.02 7.346+0.006 - 9.444+0.01
Exp. 4.62+0.08 3.85 7.37 12.9 9.45

Units: eV per atom Si/Ge/C and eV per 2 atoms BN/NiO




NiO lattice constant
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Mike Towler, Theory of Condensed Matter Group, Cavendish Laboratory
University of Cambridge

Silicon Defect Formation Energies

Defect LDA GGA  DMC

Split—(110) 331 3.84  4.96(28)
Hexagonal 331 3.80 4.82(28)
Tetrahedral 3.43 4,07 5.40(28)

LDA, GGA and DMC formation energies in eV of the
self-interstitial defects

Quantum Monte Carlo

® VMC using Slater-Jastrow wave functions with ~30
variational parameters can recover between 75 and 85%
of the valence correlation energy, and DMC calculations can
recover roughly 95% plus.

® |n solids, QMC is the only practical method based on
many-body correlated wave functions, the variational
principle, and the many-electron Schrédinger equation.
It is now the method of choice for tackling large
quantum many-body problems.

Quantum Monte Carlo

e Efficient implentations of VMC and DMC for finite

and periodic systems have been made in the
computer program CASINO (and few other codes).
Much remains to be done to make QMC as flexible
and easy to use as traditional methods.

e With its emphasis on many-electron wave functions and

probabilities, QMC has shown that it is possible to study
interacting electrons in real solids using very direct
computational techniques.

There is no need to resort to perturbation theory

or mean-field approximations.
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Quantum Monte Carlo & Molecular Dynamics

PHYSICAL REVIEW LETTERS

R woek ending
PRL 94, 056403 (2005) 11 FEBRUARY 2005

Efficient Quantum Monte Carlo Energies for Molecular Dynamics Simulations

Jeffrey C. Grossman
Lawrence Livermore National Laboratory, 7000 East Avenue L-415, Livermore, California 94550, USA

Lubos Mitas
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695.8202, USA
(Received 27 August 2004; published 10 February 2005)

A method is presented 1o treat electrons within the many-body quantum Monte Carlo (QMC) approach
“on-the-fly” throughout a molecular dynamics (MD) simulation. Our approach leverages the large
(10-100) ratio of the QMC electron to MD ion motion to couple the stochastic. imaginary-time electronic
and ime tonic trajectories. This continuous evolution of the QMC electrons results in highly accurate
total energies for the full dynamical trajectory at a fraction of the cost of comventional, discrete sampling.
We show that this can be achieved efficiently for both ground and excited states with only a modest
overhead to an ab initio MD method. The accuracy of this dynamical QMC approach is demonstrated for 3
variety of systems, phases, and properties, including optical gaps of hot silicon quantum dots, dissociation
energy of a single water molecule. and heat of vaporization of liquid water.

DOL: 101 103/PhysRevLett 94.056403 PACS numbers: 7115.P, 31.25.«v, TLISNe, TLISMb

A (QMC) song ...

He deals the cards to find the answers
the secret geometry of chance

the hidden law of a probable outcome

the numbers lead a dance

Sting: Shape of my heart

Dario Bressanini

Universita’ dell'Insubria, Como, Italy
http://www.unico.it/~dario
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