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Kohn – Sham Equations  

•! Concept of Muffin-Tin Potential  

•!  Linearized Augmented Plane-Wave (LAPW) 

•!  Full-potential version FP-LAPW  

•!  Muffin-Tin Orbital Method (& LMTO) 
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    The Kohn- Sham Method –   
    The Kohn-Sham Equations   
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Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  
iteratively (self-consistently)  

DFT: Implementations of the Kohn-Sham Method   

Fully relativistic 
Semi-relativistic 
Non-relativistic 

Non-periodic 
periodic 

All-electron full potential 
All-electron muffin-tin 
All-electron PAW 
Pseudopotential 

Non-spin-polarized 
Spin polarized 

Beyond LDA  
Generalized Gradient Approximation (GGA) 
Local Density Approximation (LDA) 

GW (quasi-particles) 
EXX (exact exchange) 
sX-LDA 
Time dependent DFT 
LDA+U 

Atomic orbitals 
 
Plane Waves 
 
Augmentation 
Fully numerical  
(real space) 

Gaussians(GTO) 
Slater type (STO) 
Numerical  

Plane waves 
 (FPLAPW) 
Spherical waves  
(LMTO, ASW) 
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Plane Waves and Pseudopotentials    

Nucleus

   
electrons
   Core

Valence electrons

The basic idea of the  
pseudopotential theory:  

Core electrons are localized and  
therefore chemically inactive (inert) 

Valence electrons determine chemical  
properties of atoms and SOLIDS 

Describe valence states  
by smooth wavefunctions  

Features of the Pseudopotential Method     

Pseudopotential is approximation to all-electron case, but! 
Very accurate 
•Comparable accuracy to AE in most cases 
•Simpler formalism 
 
Low computational cost 
•Perform calculations on ‘real-life’ materials 
 
Allows full advantage of plane-wave basis sets 
•Systematic convergence 
•Easy to perform dynamics 
 

Basis Expansion around atom  

•! Previous lectures - delocalized basis set (plane waves)"

•! Muffin tin approaches!
–! Spherical potentials around each atom"
–! Wavefunction expanded in spherical waves "
    (s, p, d, f character)"
–! Potential is zero in space between atoms"
–! Solution of different sites connected together "
   (multiple scattering, cancellation of orbital tails)"

"

V(r) V(r) 

V(r) V(r) 

V(r) 

V(r) 

V=0 V=0 

electron 
atom bonding 

Muffin tin approaches  

Every day life  Physical model 
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V(r) V(r) 

V(r) V(r) 

V(r) 

V(r) 

V=0 V=0 

Muffin tin potential shape  

interstitial  
region 

Original approximation for the potential:  
 
   spherically symmetric in spheres 
 
   zero (or constant) outside  

Muffin Tin Orbitals  

r 

E 
Potential 

rS 

Two sets of solutions 
     Solve Schr. Eq. in sphere 
      Solve Laplace Eq. in interstitial 

for a given energy E 

Orbitals based on angular  
momentum character – s, p, d, f 
Small basis set! 

Main challenges 
   Matching conditions at sphere boundary requires orbitals and  
   first derivative to match at sphere boundary 

Needed - secular equation that is linear in energy 

The original Augmented Plane Wave (APW) 
method (1)  

All APW descendent methods divide space into atomic  
centered spheres surrounded by an interstitial region 

The APW basis functions consist of planewaves  
in the interstitial region augmented into radial solutions  
of the Schrödinger equation inside the MT-spheres 

                                             For a system with one atom per unit cell  

reciprocal lattice vector 

wave vector from BZ  L { l ,m }!!

spherical 
harmonics 

Radial solution                                                                      

Radial parts of an APW basis function for Ce 

The original Augmented Planewave (APW) 
method (2)  

Energies: for s-states  0.3 Ry 
                      all other  0.5 Ry 
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The original Augmented Planewave (APW) 
method (3)  

The coefficients            are found by expanding each  
planewave into Bessel functions                at the MT-spheres, 
               , requiring the basis functions to be continuous  
at the sphere boundaries  

 
 This yields 

The radial solutions          depend on the energy at which  
the radial Schrödinger equation is evaluated 

The planewaves are energy independent 

The original Augmented Planewave (APW) 
method (4)  

An eigenfunction                           
 
can only be efficiently described by orbital solutions       
evaluated at the eigenenergy   of 

A new set of APW basis functions must therefore be  
evaluated for each new energy treated. 
As the matrix elements representing operators depend on  
the choice of basis set the secular equation is non-linear  
in energy  

 
 
 

                                         

kinetic energy  
operator 

Potential  Overlap 

The original Augmented Planewave (APW) 
method (5) – Finding the APW Eigenvalues  

 
 
 

The APW determinant must be evaluated  
for a number of energies in order to find the energies  
corresponding to eigenvalues.  
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The original Augmented Planewave (APW) 
method (6) – An asymptote problem  
The task of finding the APW eigenvalues becomes somewhat  
more troublesome, due to the asymptote problem  

When going through a large number of energies,  
one might hit an energy for which  
is very small or even equals zero.  

This yields very large or infinite coefficients  
The determinant, involving matrix elements with summations  
over the coefficients  will then go to infinity,  

Det( E )!!""
Any routine used to find the eigenvalues must therefore  
be adjusted to handle the asymptotic behavior  
of the determinant at such energies.  
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The original Augmented Planewave (APW) 
method (7)  

The procedure of evaluating the determinant for a number  
of different energies in order to find the energy eigenvalues  
makes the APW method very time consuming. 

Linearization procedure 

If the basis functions, and thereby the matrix elements  
were independent on energy, the secular equation  
would turn into a general eigenvalue problem  

The Linearized Augmented Plane Wave  
(LAPW) method   
An energy independent basis set must be able to describe  
all eigen-functions of the different eigenenergies 

By introducing the energy derivatives  
of the radial solutions  
Andersen constructed an  
energy independent LAPW basis set  

                                             

linearization energy 

O.K. Andersen,  
Phys. Rev. B 12, 3060 (1975) 

The Linearized Augmented Planewave  
(LAPW) method   

provides a sufficient basis for  
eigenfunctions in an energy range  
around the linearization energy  

The two coefficients  and 
are determined by forcing each basis function to be  
continuously differentiable, i.e., continuous  
with continuous first derivative,  
at the surfaces of the MT-spheres. 

                                                                     

The Linearized Augmented Planewave  
(LAPW) method   

Radial parts of an LAPW basis function for Ce 

The k and G as for APW basis functions   
Reference energies: 0.3 Ry for s-states, 0.5 Ry for other 
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The Linearized Augmented Plane-wave  
(LAPW) method   

APW LAPW 
Radial parts of an LAPW basis function for Ce 

The linear combinations of  and 
smoothly connected to the Bessel expansion at  

differ considerably from the original APW solutions  
[2nd, or 3rd order expansion of ul(r,E) ?] 

The Linearized Augmented Planewave  
(LAPW) method   

Thereby the LAPW basis functions, although more flexible  
in describing eigenfunctions far from       
provide a poorer basis set close to       

There is no free lunch! 

The poorer basis set requires a larger number  
of planewaves  
It is easier to solve larger general eigenequation  
than to deal with smaller determinant 

det[T̂ ++ (V̂ !! !!"" I )
!!
O ] == 0

The matrix is diagonalized,  
giving all LAPW eigenenergies at one time 

The APW (LAPW) + localized orbitals   
The variational freedom can be improved by using  
a complementary basis set consisting of local orbitals.  
They are local in the sense that they are completely  
confined within the MT-spheres   

 
 

is set to 1 is determined using the condition  
that localized orbital should vanish 
at r = rMT  

Localized orbitals can be generated for another  reference  
                                                                              energy 

LAPW vs. LAPW+lo   

Convergence of total energy for cerium (Z = 58) 

multiplied by 100 

LAPW 
LAPW + lo 
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Full potential LAPW (FP-LAPW)   
In its general form the LAPW (LAPW+lo) method expands  
the potential in the following form  

 
 
 

and the charge densities analogously.  
Thus no shape approximations are made, a procedure  
frequently called a ``full-potential`` method  
The ``muffin-tin`` approximation used in early band calculations  
corresponds to retaining only the         component in the first expression  
and only the K = 0 component of the second 

This (much older) procedure corresponds to taking the spherical average 
inside the spheres and the volume average in the interstitial region.  

FP LAPW method - Summary   

The LAPW method is a variational expansion approach  
which solves the equations of DFT by approximating  
solutions as a finite linear combination of basis functions  

What distinguishes the LAPW method from others  
is the choice of basis.  

The LAPW basis is constructed to be particularly accurate  
and efficient for the solution of the all-electron ab initio  
electronic-structure problem, where solutions are rapidly  
varying and atomic-like (like isolated-atom solutions)  
near the atoms but more smoothly varying and  
not atomic-like throughout the rest of the cell  

FP LAPW method - Summary   

The atomic-like nature of the LAPW basis in the vicinity  
of the atoms leads to an efficient representation,  
while the planewave nature in the interstitial region  
allows for highly accurate solutions for  
any atomic arrangement: close-packed or open,  
high-symmetry or low, surfaces or bulk  

An advantage of the LAPW method  
                                  over the PPs based methods  
is that core and semicore electrons are explicitly  
included in the calculations.  
 
This can be especially important at high pressures,  
where outer core states may change substantially.  

FP LAPW method - References 

D. Singh, Plane waves, pseudopotentials and  
the LAPW method, Kluwer Academic, 1994  

G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt,  
and L. Nordström, "Efficient linearization of the  
augmented plane-wave method,"  
Phys. Rev. B 64, 195134 (2001).  

P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka  
and J. Luitz, WIEN2k, An Augmented Plane Wave +  
Local Orbitals Program for Calculating Crystal Properties  
(Karlheinz Schwarz, Techn. Universität Wien, Austria),  
2001. ISBN 3-9501031-1-2.  
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FP LAPW method - Codes 

http://www.wien2k.at 

Peter Blaha, Karlheinz Schwarz & coworkers 
Inst. f. Materials Chemistry, TU Vienna  

The EXC!TING FP-LAPW Code (GNU – licence) 
 EXCITING is still in its beta state  
so check the consistency  
of your results carefully!  
http://exciting.sourceforge.net 
Claudia Ambrosch-Draxl 
Karl-Franzes Universität Graz, Austria  

FP LAPW method - Applications 
Theoretical Mineral Physics 
Ronald Cohen, Geophysical Laboratory, Carnegie Institution of Washington 

The state-of-the-art in theoretical mineral physics uses  
first-principles methods. 

In 1992, a phase transition in stishovite (SiO2)  
from the rutile structure to the CaCl2 structure  
at 45 GPa was predicted using the LAPW method 

New Raman experiments found exactly what was 
predicted theoretically, with a best estimate of the 
phase transition pressure of 50 GPa. 

FP LAPW method – Applications SiO2 
Raman frequency vs. hydrostatic pressure 

Transition 

solid lines – predicted  
Raman frequencies 

points – experimental  
              data 

FP LAPW method – Applications SiO2 

Valence charge density computed for SiO2 stishovite. 

The oxygen ions are elongated towards the three 
surrounding silicon atoms. 

Insight into  
the nature of  
bonding   
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One of the most active areas in first-principles 
mineral physics is for properties of the Earth’s core. 

Theoretical mineral physics 

Temperature of the core ? 

Composition ? 

Muffin Tin Orbital Method 

Making Life Easier with ASA 
Atomic Sphere Approximation  

Many crystals are close-packed "
systems (fcc, bcc, and hcp)"
"
"
Most of the space is filled by atomic spheres"
"
What if we cheat a little…and have the spheres overlap??!
"
Doing this, we remove the interstitial "
region and our integration over space "
becomes an integration of atomic spheres."
"
This approach works best when the system is close packed,"
otherwise we have to pack the system with empty spheres "
to fill space "
"
"How to choose radius of spheres?  

Solutions in the Interstitial Region  
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Potential in interstitial region is zero 
Interstitial region has no space, electron kinetic energy in region  
is zero as well 

Take advantage of spherical symmetry – express wavefunction  
 in terms of spherical harmonics and radial portion 

L=(l,m)  l=0,1,2,! |m|<l 

We get two solutions for Laplace’s equation  
      regular one, JL(r) (goes to zero at r=0) and  

         irregular one, KL(r) (blows up at r=0) 
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Solutions within the Atomic Spheres  

( ) ( )[ ] ( ) 0,,2 =!+"! EErVE R rr ##

( ) ( ) ( )rYErE L ˆ,, !! =r
r 

E 

rS 

We need to match radial amplitude up with  
interstitial solutions, J and K, at rS 

( ) ( ) ( ) ( ) ( )[ ]rJEPrK
EN

Er R
R

!!!
!

!= 1,"

Normalization function Potential function 
obtained from matching  
conditions 

Muffin Tin Orbitals  

"We can define the total wavefunction as 
a superposition of muffin tin orbitals as"

( ) ( )! "=
RL

RLRL Ea ,rr#

Where the muffin tin orbitals are given by: 

( ) ( ) ( ) ( ) ( )

( ) SRL

SRLRRLRL

rrK

rrJEPEENEr
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for            ,,
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Muffin-tin Tail 
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"

""""#=
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We also need to make sure solutions work in other atomic spheres! 

Expansion theorem used to link solutions centered at different spheres 

Structure constants –  
lattice info 

( ) ( ) ( ) ( ) ( )

( )

( )  )(                                                   
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MT tail in interstitial 

MT tail at other spheres 

( ) ( )! "=
RL

RLRL Ea ,rr#

This form of the muffin-tin orbitals does not guarantee  
that it solves the Schrodinger equation.   
We must insure that it does  

Muffin Tin Orbitals  
ASA gives particularly simple solutions in the  
                                                                 interstitial region  

Canceling Muffin Tin Tails  

 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

   

Tail Cancellation needed 

(( ))     RL RL RL,R L RL,R L
RL
a P E ! S!! !! !! !!"" ##$$ ==%% &&'' 0

(( ))RL RL,R L RL,R Ldet P E ! S!! !! !! !!"" ##$$ ==%% && 0

For periodic systems, we can write this in k-space  
and get the band structure! 
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This allows us to express the system in terms of  
linear muffin tin orbitals that depend on      and       
 
 
 
 

The Linearization of the problem  

!!R! r,E( ) =!!R! r,Ev( ) + E ! Ev( ) !!!RL r,Ev( )

!!!

Taylor expansion of the orbital! 

!RL rR( ) =!!RL rR( )+ !!! "R "L rR( )
"R "L
# h "R "L ,RL

with E" being a reference energy for the problem 

LMTO method 

chosen in such a way that  
the linear muffin tin orbitals and  
its derivatives match continuously  
to tail functions at muffin-tin  
sphere radius  

Speed Improvement: Removal of non-linearity in  
determinant equation, accelerates calculations. 
 
Accuracy:  Eigenvalues correct up to third order in (E-Ev) 
 
Limitations: Can run into problems with semi-core d-states  
outside of the effective energy window. 

!Two reference energies often required 

  Advantages of the LMTO over MTO  

Full Potential Linear Muffin-Tin Orbital  
(FP-LMTO) method  

In a full potential method the idea is to describe  
the potentials and charge densities in the crystal  
without the approximation of regarding them as  
necessarily spherical.  
 
In FP-LMTO the unit cell is divided into non-overlapping  
muffin-tin spheres around the atoms and an interstitial  
region outside these spheres. 

 
 
 

                                                         

Comparison to PPs and plane waves 
! Very complicated formalism (and codes !) 
!!No forces and stresses up to now ! 
!!Problem to judge convergence of results 
!!Relatively small secular matrices  
   (standard diagonalization techniques efficient) 
!All-electron technique  
   (core electrons in spheres)  
!Minimal basis, full analogy to atoms 
!Simple, approximative tight-binding version 

LMTO is commonly used, specially for metals 

LMTO - Comparison with PPs  
                                   and plane waves  



12!

Multiple Scattering Theory 
&  
Basics of the alloy theory   

V(r) V(r) 

V(r) V(r) 

V(r) 

V(r) 

V=0 V=0 

electron 
atom bonding 

Muffin tin approaches (KKR & LMTO)  

Every day life  Physical model 

Multiple Scattering Theory (MST)  

•! Multiple scattering techniques determine electronic 
structure by accounting for the scattering events an electron 
wavefunction experiences within a solid."

•! This is tougher than it looks!
–! single scatterer, single scattering event – analytic solution"
–! two or more scatterers, infinite number of possible scattering 

events, recursive solutions required for wavefunctions"
"

! eikz 

eikr 

Single site Multiple sites 

Short History of MST  

•! Lord Rayleigh (1892) “On the Influence of Obstacles in 
Rectangular Order upon the Properties of a Medium” Phil Mag. – 
Laplace Equation"

•! N. Kasterin (1897) – extends MST to Helmholtz equation 
(scattering of sound waves by collection of spheres)"

•! Korringa (Physica, 1947) – first use to find electronic states in 
solids (computational facilities however not up to the task)"

•! Kohn and Rostoker           – rediscover in 1950’s (Phys. Rev.)"

•! This leads to the Korringa Kohn Rostoker approach (KKR) "

•! 1960’s – first serious calculations using the approach – 
computers begin to catch up with the theory!!

"
Archives (http://www.aip.org/history/esva) 
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[ ] ( ) ( )rErVHo
!! !! =+

-Ho is the free space Hamiltonian 
-V is the perturbing potential 

 is the electron wavefunction 
 

( ) ( ) ( ) ( ) ( ) rdrrrrGrr o !!!!+= " 3V, !!!!!! #$#
We can express the wavefunction at some position as a  
sum of the free space wavefunction, #,  and contributions  
from the perturbing potential, V, at different sites. 
 
In this case, Go is the free electron propagator and describes  
motion in regions where no scattering from the potential occurs. 

Multiple Scattering Theory – Basic Equation  Letting Green do the expansion  

In analogy to the previous wave function equation, we can 
do a similar expansion for the system Green function. 

VGGGG oo +=
We can expand this equation out to infinity! 

...++++= oooooooooo VGVGVGGVGVGGVGGGG

The total Green function acts as the system propagator.   
 
This expansion shows the infinite number of scattering  
events that can occur through potential interactions.  
  
Electron propagation in free space is described by Go.  

George Green’s Mill 
Nottingham, England 
 ( )

   
... oooooo GVVGVGVVGVGGG ++++=

We can rearrange the last equation to isolate  
the effects of the potential. 

where 

( ) ...+++= VVGVGVVGVVT ooo

The scattering matrix, T, completely describes  
scattering within the potential assembly.   
It contains all possible scattering paths. 

Introducing T-matrix  

ooo TGGGG += 
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Multiple Scattering Sites  

Assume the potential is made up 
of a sum of terms due to different 
cells or atoms. !=

i

iVV

The T matrix in this case becomes: 

...++=!
"
#$

%
&= ''''

j

j
o

i

i

i

i

i

i VGVVVTT

We can separate out the sequences where the scattering  
always involves the same cell or atom into the cell t matrix. 

...+++= i
o

i
o

ii
o

iii VGVGVVGVVt

Atomic t-matrix  

Solve the radial Schrodinger’s equation for an isolated  
muffin tin potential and determine the regular and 
irregular solutions, Z and S. 

The atomic t matrix is diagonal in the angular momentum 
representation. 

li
ll eit !" !sin=

The phase shift, , can be found from the atomic  
wavefunction. 

All the possible paths !  

We can now write the T matrix in terms of the single site 
scattering matrices, ti. 

...++=!
"
#$

%
& ''''

(i ij

j
o

i

i

i

i

i tGttVT

This equation shows that the scattering  
matrix of an scattering assembly is  
made up of all possible scattering 
sequences.   
 
Each scattering sequence involves  
scattering at individual cells with  
free electron propagation in between. 

!!
"

+==
ik

kj
o

i
ij

iij

ij

ij TGttTTT #        where

Getting the Band Structure Together  

In the MT formalism, the T matrix becomes: 

!
"

+=
ik

kjiki
ij

iij TGttT ~#

There exists a matrix M such that Tij are the elements 
 of its inverse. 
 
The matrix m is just the inverse of the cell t matrix. 
 ( )ijij

ij
iij GmM !! ""= 1~

The inverse of the T matrix is cleanly separated into 
     potential scattering components, mi, and 
     structural components, Gij. 
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The poles of M(E) determine the eigenenergies for 
the system for a given k through the following 
equation: 

This allows us to calculate the system band structure. 

Getting the Band Structure Together  

!!(
!!
k )det m( E )!! !!G E,

""
k(( ))""

##
$$
%% == 0

Possibility to calculate non-periodic systems (clusters) 

•! Linking interstitial region (V=0) with spherical regions 
with muffin tin potentials can be difficult"

•! Determinant used to find band structure is a non-
linear function of energy (energy dependence carried 
in the site t matrices) – this can not be reduced to a 
standard matrix eigenvalue problem!

•! The Solution – Linearize the equation – LMTO 
approach (Andersen, PRB, 1975 – 1370 citations)"

Problem with the KKR method  

Present Applications the KKR method  

Practically only first-principles method for very  
important class of materials, i.e., random alloys  
on the market  

Coherent Potential Approximation (CPA) relatively  
easily implemented 

Virtual Crystal Approximation (VCA) 

Potential of a Random Binary Alloy AxB1-x 

Other methods ! supercells 

x xV ( A B ) xV ( A ) ( x )V ( B )!! == ++ !!1 1

Periodicity of the system restored 

Random Alloys  

1 1
0 0 0( ) ( )G G G G G! != + " = !"

0 0 0G G G T G= +

1
0(1 )T G T !" = +

Self-energy 

Configurationally averaged Green”s function 
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Coherent Potential Approximation (CPA)  

Best single-site solution for describing scattering 
in substitutional alloys 

Atom in  
binary alloy 

Atom in equivalent  
effective medium 

Scattering properties of alloy 
can be represented by an  
effective medium 

Treat scattering by atom as an impurity in the effective medium. 
 
Introduction of atom should give no scattering in the correct 
effective medium (iterative solution). 

How to determine  
effective medium ? 

Application of KKR-CPA method- FeCr Alloys 

Cr magnetic  
     moment 

Fe magnetic  
     moment 

LKKR-CPA (D. Stewart, unpublished)  
KKR-CPA (Kulikov et al., 1997)  
Experimental (Aldred et al., 1976)  

FeCr Alloy  
Magnetic Moment 

Cluster expansion 

Ortho-normal and complete set of basis functions are introduced. 

! is the configuration variable (+/- 1 for binary systems) 

Basis for M lattice sites is given as: 

Energy of the lattice (M sites) is given as: 

For all cluster sizes For all clusters with number of atoms =K 

Average of energies of all 
configurations projected onto the 
basis function 

For binary system 

...!

Cluster expansion 
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Cluster expansion fit 

•! The cluster expansion 
is able to represent any 
function E( ) of 
configuration  by an 
appropriate selection of 
the values of J .  
•! Converges rapidly 
using relatively 
compact structures 
(e.g. short-range pairs 
or small triplets).  
•! Unknown parameters 
of the cluster 
expansion is 
determined by fitting 
first-principles energies 
as shown. Connolly-Williams method,  

Phys Rev B, 1983 

Thank you ! 


