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Band Gaps in Solids

The DFT & the GW Method

DFT- The Kohn- Sham Method

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

System of interacting PR System of non-interacting electrons
electrons with density p(7) with the same density p(7)
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The Kohn- Sham Method —
The Kohn-Sham Equations

@ Schrodinger-like equations with local potential

JE [p]) (OE [p]
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@® These equation are nonlinear and must be solved
iteratively (self-consistently)

Exact Exchange Method (EXX)
[Optimized Effective Potential (OEPXx)]

Solution: v, is the first functional derivative of E

JE
===> First order perturbation theory determines exactly ‘30"
=_— Apply
chain rule o 5E 5E op; < Oy
5”Ks &
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Perturbation theory
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M. Stédele et al., Phys. Rev. B §9, 10031 (1999).

LDA & GGA Approximations

Local Density Approximation (LDA):
the density is treated /ocally as constant

EP(pl= [dip(F)ehe™ (p(7)

hom hom

hom
Exe “E& +6'

Generalized Gradient Approximation (GGA)
J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986)
GGA - -
ESp)= [dif, (p(7),Vp(F)

xc -constructed to fulfill maximal
number of “summation rules”

Exchange-correlation potential can be OoE
calculated very easily, since explicit =) U, = —%
dependence of Exc on the density ¢ is known. §p

The Kohn - Sham Method —
One particle energies

unoccupied
LUMO Enet ks
HOMO | '——¢ oar
N Kohn-Sham Gap
. occupied
&
¢

The occupied states are used to calculate one particle density
(Aufbau principle) and the total energy




The Kohn- Sham Method —

The Kohn- Sham Method — The Total Energy Physical meaning of one particle energies

& &
E[p]=——"Y |dip,(F)V’p.(¥)+U E E drv_(7)p(F
[ lel 2m ;I "o (F)V e (F)+ULPI+E [p]+ ”[p“-[ rv”’(r)p(r)} © The Kohn-Sham orbital energy of the highest occupied level

is equal to the minus of the ionization energy,
[ 8max =H= —I }
Sum of the one-particle Kohn-Sham energies] © Extension to non-integer occupation numbers

N N 2 7)= (F r 0L f.<1
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so-called double counting correction

ﬁEnergy of the reference system}

differs from the energy of ‘real’ system Janak theorem (1978)

Band structure of metals and semiconductors
Band structure of metals and semiconductors Semiconductors Semi-metal
Silicon Germanium Alpha-Tin
p(i)= %6(@ -, (), (k,F)p, (k,F) ~ Exgty fiand 5 TG AR
% I > oy
Band structure of simple metal (Calcium) Fermi energy -E o % V GA1P/
o .
10 TN 4 E -
8| I tal w - @ <
%‘ .nFZ::iaense.rgy lies in a band ' & -dik
T 61 , LA ave UK T LA dave vestsF T A Fahe SOK ST
> E ® Fermi energy must be . . ave vecior lave vector
o F P calculated in each iteration In an ideal pure semiconductors at 0 K there are .
o 4F AN of the self-consistent @ fully occupied valence bands & completely empty conduction bands
LICJ C a procedure separated by the energy gap .
2+ 3 ® Fundamental band gap = Energy difference between
N= _[ d’rp(r) = Ep the lowest unoccupied state and the highest occupied state
Q, ® Fundamental energy gap can be direct (Ge) or indirect (Si)
AXZIWQ LA T X X @ Fermilevel lies in the energy gap
Wave vector O Insulator — like semiconductor with very flat bands and huge energy gap




LDA Band Structure Calculations
in Semiconductors

Valence bands for GaAs as determined
from angle-resolved photoemission

experiments and pseudo-potential theory @ |LDA gives very good
description of the occupied
s-p valence bands (4s & 4p)
in semiconductors

Energies [eV] in symmetry points

PP LMTO LAPW EXP.

,,-12.84 -12.85 -12.78 -13.1
© GaAs X, X; -10.36 -10.49 -10.47 -10.75
™ oaue ExXps X; -6.83 -7.06 -6.72 -6.70

Energy [eV]
o & b

10 Psey

X5 -2.67 -2.83 -2.60 -2.80
Ly 6.66 -6.94 -6.53 -6.70

_/;
51,

® Various methods of solving
C A T 3 K X A T Kohn-.Sh.am equations give
Wave vector very similar results

Probing the Electronic Structure
by Photoemission (ARPES)

Photoemission

Measurements of kinetic

v [energy (and angle) of
photo-emitted electrons
give valence band energies

(N-1)-electrons

ARPES - Energetics of the
photoemission process

Egin? Spectrum Eki.n = hl/ —_ (b — |EB]
ol K. = L /3mEpp sind cos
/ Valence Band h

1
K, = E\/2mEkin sin? sin ¢
K, = l\/ 2mE};y, cos .

E Sample [— h
_— Corclevs — Qne-step vs.
NE)  Three-step model

hv

(i) Optical excitation of the
electron in the bulk.

(i) Travel of the excited electron
to the surface.

(iii) Escape of the photoelectron
into vacuum.

m
@
g

Kohn-Sham Method in LDA (GGA) Approximation
Energy Gap of Silicon

Band structure of diamond silicon
— Kohn-Sham gap

y W " 7 i
& BREEE

P

K
T, EGp =Enat (V) =€x° (V)
ot
)
3 ) @ Relation of the Kohn-Sham gap
E T to the quasi-particle energy

T

: (change of system energy
{ caused by adding a particle) ?

[
| @ Is the Kohn-Sham gap generally
Wave vector " ° wrong, for description of

one particle excitations ?

X x

Ecap = ELumo - Enomo
Too small by factor of 2

@ Does the error is caused by the

- : imati i 2
@ For all semiconductors and insulators, @PProximation of the functionals 7

LDA (GGA) give energy gaps that are

40%-70% of experimental gaps The band gap problem




Fundamental band gaps in semiconductors:
Local Density Approximation & Exact Exchange

Fundamental Band Gaps

6 1 I I I I ,
AN L7 @ EXX Method leads to

5} c'g - Kohn-Sham gaps that agree
%' ® EXX al very well with experiment
Y ar GaN,~” 7 )
e =) Large part of the error in
o 3| sic .~ f the fundamental gaps
2 ! is connected to the
S 2r SiGa:s,' Al s approximated functionals
9 Ge™ o (LDA, GGA)
e :

0 z 1 1 1 1

01 2 3 4 5 6
Exp. band gaps [eV]

4.0

35

3.0

2
n
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Band Gap of Semiconductors in
Exact-Exchange OEP
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Experimental Band Gap [eV] New J. Phys. 7, 126 (2005)

Band structure of semiconductors:
Local Density Approximation & Exact Exchange Method

. Band structure Dielectric function
- :/\&2/\ GaAs — EXX
= of ; g ,§30*
b ok ’
§ 4 7§<~/ ~—20 — expt.
e 6 o 1 &
° 2 Gahs L oex] J
12 \_/ \ o | | "
4 T T T 0 2 4 6 8 10
Wave vector fo[eV]

GaAs: electron effective mass: LDA=0.03m,, EXP= 0.07m,, EXX=0.10m,

@ The most pronounced difference between band structure calculated
with LDA and EXX methods - rigid shift of the conduction bands

==) Concerning energy differences — LDA should give valuable predictions

LDA calculations in wurtzite GaN:

Change of A, B, C exciton energy gaps with biaxial strain

— theory
— i t
S ot
9 A APLEB, 3766 (1996)
Dingle etal.
Q <O PRBA4, 1211 (1971)
>
= 3.50
S CB
& @/ Al B C
3.451 | | ‘\
-0.2 0.0 0.2 t‘:)?:)
biaxial straine | [ % ]

@ Gives a reference scale to determine strain

in an epitaxially grown sample




LDA calculation in wurtzite nitrides:
Energy gap deformation potentials for biaxial strain

and hydrostatic pressure

4 N
dE(A exciton)
_— -8.2
-6.1 -8.0
de o -8.4 theory
dE(C excitor) . . expt.
= ) 15.8 -17.2 -22.2 p
dE(A excitor) i
dinV -8.0 _gg -9.5
\_ (all datainev) /

[ Very good agreement with experiment]

lonisation Potential and Electron Affinity

lonisation potential:
minimal energy to remove an electron

I=E(N-1) - E(N)

Electron affinity:
minimal energy to add an electron

A=E(N)-EN+1)

lonisation Potential for Atoms

0.0

-100 |- -
X
E200F —
4

A—A UF
3001 w—wKLI |
=E(N-1)-EQN) L o 4 Egix
00k PWo1| |

| | | | | | | | | | | | | |
He Be Mg Ca Sr Cu Ag Au Li Na K Rb Cs Zn

E. Engel in A Primer in DFT, Springer 2003

lonisation Potential vs. Kohn-Sham HOMO

® Kohn-Sham: eigenvalue of the highest occupied
Kohn-Sham level Ig¢=—gn(N)

e For exact density functional - Ig¢=1=E(N-1) - E(N)

e How this relation is fulfilled for approximate functionals ?

0.0 aH T I I 1 I I I 1 I I I I I
-10.0 -
7200 4—& OEPx
£ 300 @8 L1DA

= [ &= OEPx KS
400 | O-O LDAKS
-500 =€, (N) .

IR T T T N N TN TN TR T N R N
He Be Mg Ca Sr Cu Ag Au Li Na K Rb Cs Zn

e  Much better for EXX than for LDA'!




EXX versus LDA: Zn and Ga Atoms lonisation Potential - Small Molecules
0.0 1 Ty e e ) 0.0 1Ty panan— el - H
Slnmnannsass BN SAASAAAAS :;_/_/_1 y Kohn-Sham Eigenvalue Comparison of
5.0 e N Kohn-Sham HOMO
' | S— e X at with experimental
< s Ga Sl 4 BS88x . H o 1 values of ionization
@ G0 ] h R %. L, potential
] 2 "
= - — ] = Y LiH
" - 5?3-‘“'-0:\) Sl A p N § Very good
250 ) £ 2 o o ?greeme(lz)t )
o\ or EXX (OEPx) !
5 4 HSAA..éA..g‘“lAO..A” Lok CH, .H:ONH3 1
rlan] A H: co
N, S. Hamel et al.,
® | Correct asymptotic decay FH{F; J. C::n? Shjs.
VLDA(r) reoe o—Br/3 of potential in DFT-EXX 209 G—— '»1;0‘ L '_1(')-0‘ — '_5'.0' — 116, 8276 (2002)
xe I, [eV]
Band Gap of Semiconductors
Band gap:

Epy=I-A=E(N+1)=2E(N) +E(N- 1)

=) For solids, E(N + 1) and E(N — 1) cannot be reliable
computed in DFT, yet !

Band Gaps in Solids

@ |n Kohn-Sham the highest occupied state is exact
= S(N)=-Iy=E(N)-E(N-1)
eSS (N+1)==I,, =E(N+1)—E(N)
Eo,={E(N+1)=E(N)}—{E(N)-E(N-1)}

The DFT & the GW Method

E,,=enu(N+1)=ey’ (N)




Band Gap of Semiconductors

Egap = F%I—SH(N + 1) - F%S(N)
KS KS KS KS
= NN +1) = N2 (V) + (V) — N (N)
- e
Discontinuity Kohn-Sham gap

@ Forsolids:t N>>1 = An(r)—0for N— N+1
= discontinuity in vy upon changing the particle number

b= (| B ) oL

N+1

Band Gap of Semiconductors - Discontinuity in V.

Band gap:  E,,, = E;jﬁ + A,

€ &5 After the addition of an electron
into the conduction band
XS o (right) the xc potential
s A | & and the whole band-structure
Enn(N) XS E,, shift up by a quantity A, .
al;f'.\') e |
R.W. Godby et al.,
in A Primer in DFT,
Springer 2003
Nelectrons  k N+t 1 electrons  k

The Quasi-particle Concept

Quasiparticle: . .
A(g) quasiparticle-
@ single-particle like excitation pcak
° 2
k
Ax(e) = :
© €= (ex+ iTx)
€ . excitation energy
My : lifetime
Zy : renormalisation _
>

&
Spectral | A(r.¥;e) = 2Im G(r.¥;¢) = 3 v (N (F)o(e — &)
function 77 3

Quasiparticle:

. : + =
@ electron acquires
polarisation cloud
@ new entity clectron  polarisation  quasiparticle

cloud

Quasi-particle energies in many-particle theory
L. Hedin & S. Lundquist, Solid State Physics 23, 1 (1969)

@ Energy of quasi-particle = energy of one-particle excitation =
Change of system energy caused by adding a particle to the system
Difference between total energy of a system with N+7 and N particles

. Etot(N +D)- Etot(N)
Dyson equation

2 =
[fVz—vm(?)—vH(F)+E]G(?,F';E)—
m

— [ Y S EGE P E) = 8 - F)

Z(F',F";E) -self- energy operator
G(¥,7";E) - one particle Green’s function
@ Energies of one-particle excitations = poles of G(¥,7';E)

can be complex
Real part — energy of the quasiparticle
Imaginary part - Life time




Quasi-particle energies in many-particle theory
Green’s function for a non-interacting system

© Self-energy operator 2 - independent on energy

@ ltis possible to introduce one particle functions ug
ﬁz 62 > > > J’d3"v PEAl 7 = 7
“om +0,,(r)+v,(F) |u,(r)+ r Z(r,r Ju (F')=€u(r)

u (Fyug (7')

°OETD=Y e tie

@ Self-energy operator X, (",7") =V (7,7

Quasi-particle energies in many-particle theory
GW- method

Y (E)===pintroduce functions ¥, (F)

I = q q NS (S 5 5
{—zmV2+vext(r)+vH(r)]w"l;(r)+J'd3r'2(r,r';Enl;)wnE(r')=Enlzwnl;(r)

Re(E,;) Im(E, ;)

If one is interested in energies of excitation and not their lifetimes,
one can neglect imaginary part of the self-energy operator Im(Z) =0

There exists series expansion for self-energy operator

Take the first term 2(? F' E)——J-d(oe"’”’” G‘( sE 9W(r P 0)

G(#, P E) = 2 Vo WV ) GW - method
wi E=E,;+io” sgn(E, ;. — 1) Hedin & Lundgist
2
W7 o) = [dF e G F o)

|#"—7'| Screened Coulomb potential
Inverse of dielectric function

Self-consistent solution gives energies of single particle excitations

The GW Method — Green’s Function

G e \We make the problem simpler by
© considering one electron in an

effective potential

o The effective potential is the

Coulomb interaction, V, between

the electron and the average of all

the others

e We describe the electron’s motion

with the Green’s function, G

The GW Method -
Screened Coulomb Interaction

e |In order to make the model
better we model the excited
states and their interactions.

e The electron polarizes the
system, making effective
electron-hole pairs.

e This screens the Coulomb
interaction.

e This means that the electron
now interacts with a screened
coulomb interaction, W




GW Approximation - Interacting Quasiparticles

W(rr’;o) G is propagator

iil

_ interacting
GW = quasiparticles

Self-Energy:

@ energy response of the system that the quasiparticle experiences due
to its own presence

o GW:  X(r.r;e) /d@’e’e‘sG(r e+ )W(r.r';€)

GW self-energy: X(r,re)=
Screened interaction:

Dielectric function:

GW Approximation - Formalism

Wirr'iw) G is propagator
(;\\v = Il“s‘fﬂc“nf! = W
(%) < G
.
i e
—/de’e’6 °G(r v e+ eYW(r v €)
(r.r',€) /dr”_1 v e =)

z(r.r ) =d(r—r) — /dr”v(r —"xo(r".v;¢)

Polarisability: Yo(r.v';€) = —%_/dr/G(r. v e —€e)G(r.r€)

Quasiparticle equation:  ho(r)es(r)

+ /dr’):(r. v ePYihs(r') = ePipg(r)

Quasi-particle energies in many-particle theory
Connection to Kohn-Sham energies

Self-consistent calculations show that ¥z (F) = (Df,fq (¥)

DN
Kohn-Sham orbitals

Enl; =€ nk <¢nk (r) | Z(Enk) v—’“‘ |¢"k (I‘)>

-1
aZ(E)
nk aE

Kohn-Sham energies

So-called renormalization

E=E,;

E=e% 4 (o8 @) X (B, -8 |05 @)z,

® Relation between quasi-particle and Kohn-Sham energies

Theoretical Band Gap [eV]

10.0

8.0

6.0

4.0

0.0

GW Approximation for Solids

R R AN
Lo 1 General improvement
Lo 1 of the energy gaps

I i |m _LDA 1 . .

Eo 1 in comparison to

r 1 DFT-LDA

r L] u

r u

L m .

[ " " ]

;‘ - E

r me ey

L l" 1 | 1 | ]

(' L L1 11 L L1 Aulbur et a/

0.0 2.0 4.0 6.0 8.0 10.0

Experimental Band Gap [eV] Solid State Phys. 54 (2000)
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Fundamental band gaps in lI-VI semiconductors:
LDA, EXX, and GW calculations

Energy gaps in eV

o 21 CdSe CdTe
14 13 1.3 1 2
ﬁ AiE Bl
LDA LDA LDA
38 ZnS @ | DA gives dramatically too small band gaps

@ LDA + GW - large corrections to LDA gaps

- corrected gaps are of order of
EXX gaps
@ EXX + GW - very small correction
of order (0.1 -0.2 eV)
LDA

=) Still some work to do !

Quasi-particle (GW) Band Gaps

TTTT | TTTT I TTTT | TTTT I TTTT ] TTTT l TTTT TTTT | T,
40F &
a : LDA ™ 1 EXX better than
35E | a AEPX;LBA) % | /1 LDA basis for
WAL ®! 4/ ] Qquasi-particle
Rty Al E i
& | OEPx=EXX LN calculations
© 25k AN/
=] E f : I I I ]
< L I I N
X A T
8 I b O 8
S 150 . * iGaN? 28
2 F | ! i ]
S ofE | :. - i 3
[ ! ZnSe g ]
| .
05F i CdS 7Zn0/ b Rinke ef 4l
F ] ] . Rinke et al.
0. 1||x||1|||Cdsc T L bvraa b 1 NeWJPhyS
2)0 05 10 15 20 25 30 35 40 7,126 (2005)

Experimental Band Gap [eV]

Energy [eV]

Electronic Structure of Copper
in the GW Approximation

8 T+

6! , \/ |

4 ;IL| '\ : - GW

21 | ---- DFT-LDA
X, 1 \%‘ cooo EXP.

X ?32-2{“ d

Andrea Marini et al., Phys. Rev. Lett. 88, 016403 (2001)

GW Approximation - Merits

® Gives accurate band gaps for many materials
® Allows for calculation of lifetimes
® Successfully applied to

4 bulk materials

A surfaces

A nanotubes

A clusters

A defects

A defects on surfaces

1



Additional reading DFT (LDA, GGA, EXX) for weakly correlated systems

® A Primer in Density Functional Theory, C. Fiolhais, F. Nogueira and Accuracy of Common DFT implementations
M. Marques, Springer 2003 (ISBN 3-540-03083-2). O Accuracy of geometries is better than 0.1 A

e “Quasiparticle Calculations in Solids’, O Accuracy of calculated energies (relative) is usually
W. G. Aulbur and L. Jénsson and J. W. Wilkins, better than 0.2 eV
Solid State Phys. : Advances in Research and Applications 54, 1 (2000). Very often better than 0.01 eV

May we reach so-called chemical accuracy within DFT?
® “Electronic Excitations: Density-Functional Versus Many-Body Green’s
Function Approaches”,
G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys. 74, p601 (2002). » Systematic improvement of existing Kohn-Sham schemes
» Computationally very demanding
* Bulk systems up to now

© Exact Exchange Kohn-Sham Method - a step in this direction

® “Combining GW calculations with exact-exchange density-functional theory:
An analysis of valence-band photoemission for compound semiconductors”,

P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt and M. Scheffler, * Implementations for larger systems going on
New J. Phys. 7, 126 (2005). ® Crucial - Better correlation energy functionals
Failures of LSDA for strongly correlated systems Spin-polarized LDA (LSDA) prediction:

zinc-blende CrAs is ferromagnetic
M. Shirai et al., J. Magn. & Magn.

@ Band Gap Problem \QB/- 1
[ | | Mater. 177-181, 1383 (1998)
© Positions of the cationic d-bands in semiconductors === Cr-3d states

1
are by 3-4 eV too high in energy ﬁ\h\ ! : .
==) overestimation of p-d hybridization d-band 5 _ ’PreVlOUShé nonexistent
(in Cu d-bands are 0.5 eV too high) R ! m | Eompee
o8 MB ! > Later thin films

ST =

@ LSDA predicts negative ions (e.g. F’) to be unstable grown by MBE

> Curie temperature
larger than 400 K

»>Magnetic moment = 3mg
Agreement between
theory and experiment

© For strongly correlated systems, LSDA consistently
underestimates the tendency to magnetism
(e.g., cuprates, NiO)

Density of states [a.u.]
(=]

;
I

@ For strongly fluctuating systems, LSDA consistently
overestimates the tendency to magnetism

FeAl : M = 0.7 mg (Exp. - paramagnetic)

0
-
(=]

0 2 4
Energy [eV]

Sr3Ruy07: M =0.6 mg (Exp. — paramagnetic)




Photoemission spectrum of Lay g,Sr( oTiO3

6% hole doping

Fermi Spectra are Gauss-broadened
(0.3 eV broadening parameter)
to simulate the experimental
accuracy

LDA band structure
calculations clearly fail to
5“ reproduce the broad band

. observed in the experiment
-3 -2 -1 0 1 | at energies 1-2 eV below

Intensity [a.u.]

Energy [eV] the Fermi energy.

Exp.: A. Fujimori et al., PRL 69, 1796 (1992)
LSDA: I.A.Nekrasov et al., Euro. Phys.J B 8, 55 (2000)

Phonon dispersion curves for NiO
Comparison of LDA results with experiment

18 e o & @ LDA overestimates
16 ® ° the electronic screening
I14<. ® o o effects by large amount
|_

- 4 i
2] v =) causing
o
51 0\./ (4 O the artificial softening of
o .
§_ 8 LDA optical phonons &
[

= 62e = = O lowering of the LO-TO

41 oo splitting.

) @,
2
UX G L @ LDA overestimates the
Phonon wave vector value of £,
by a factor of 6.

Savrasov & Kotliar (2002)

Beyond LDA approach
to correlated electron systems

HkinA
A A AN
A =78 F)-a+V™ P F)+

+ %Id37d3? @ EEFE (7 - FYEF)P ()

—

il A

H

e—e

H= jd%f/*(?—)[—A +V (¥ F)+H,,
N 4

Hyp,
© Expansion of field operators in basis Qilm (LMTO, LAPW, ...\
'PT(F) = 26;}”’47,1"’(7) HLDA = z tiIm,jI'm',ﬂégrjtlé;?I-'m'
ilm ilm,jl'm',o

® How to deal with H, 2

corr

LDA + local Coulomb correlations

7 — 1 rylocal ryLDA 'y
H=H LDA + H corr - H corr + H res

1 A}
o' ~ A
o Z Umm PitmoMitm' o
il=l;,m,om'c'

g

—
J{ Ab-initio correlated electron model

@ Needed basis where interacting orbitals can be identified
2
°E; p,(ny)
on}

@ [/ can be calculated via constraint LDA: [/ =
@ Hund’s rule coupling can be calculated similarly
B LDA + U: solve H with Hartree-Fock

B LDA+ DMFT: solve H with Dynamical Mean-Field Theory




Dynamical Mean-Field Theory
G. Kotliar & D. Vollhardt, Physics Today, March 2004
Time o

™

DMFT

of '.1

Electron reservoir

DMTS in the simplest case of an s orbital occupying an atom

@ DMFT replaces the full lattice of atoms and electrons with a single
impurity atom imagined to exist in a bath of electrons

@ DMFT captures the dynamics of electrons on a central atom as it
fluctuates among different atomic configurations, shown here as
snapshots in time.

Dynamical Mean-Field Theory —
Basic Mathematical Description
@ To treat strongly correlated electrons, one has to introduce

a frequency resolution for the electron occupancy at a particular
lattice site

@ Green function specifies the probability amplitude to create
electron with spin O at site i at time 7' and destroy it at the same
site at a later time 7
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@ The dynamical mean field theory (DMFT) can be used to investigate
the full many-body problem of interacting quantum mechanical

particles or effective treatments such as the Hubbard model
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Dynamical Mean-Field Theory —
Basic Mathematical Description (2)

® The Anderson impurity model
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® The hybridization function A(@)= 2 bath
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plays the role of dynamic mean field.

@ A(w) has to be determined from the self-consistency condition:
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Self-energy term X[A(®)]| = A(®) — (G[A(a))])_l +o

takes on the meaning of a frequency dependent potential

LDA+DMFA - Functional Formulation

A functional of both the charge density and the local Green function
of the correlated orbital
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Self-consistent cycle of LDA+DMFA
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LDA+DMFA - Computational Scheme

LDA+DMFT
LDA
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Photoemission spectrum of La g,Sr( o¢TiO3
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Exp.: A. Fujimori et al., PRL 69, 1796 (1992)
LSDA: I.A.Nekrasov et al., Euro. Phys.J B 8, 55 (2000)

Phonon dispersion curves for NiO
Results of LDA + DMFT
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Importance of correlations
Savrasov & Kotliar (2002) in lattice dynamics of NiO

Dynamical Mean Field Theory

* DMFT is an intrinsically many body electronic theory.

« It simultaneously handles the atomic and band character
of electrons. This is at the heart of correlation physics.

» The approach leads to a non trivial but tractable problem.
» Misses out on spatial correlations. CDMFT can handle them.

* From a curiosity in the early 90’s, it has become now
an indispensable part of the theorists training.
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Dynamical Mean Field Theory
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