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Molecular Dynamics   

Equations of motion for the particles and  
the thermostat’s degree of freedom 
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Value of Q  
is arbitrary, can be  
fixed by trial and error. 
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Classical MD 
Ab initio MD (AIMD) 

I{ R ( t )}
From MD simulations, one gets 

{
!
vI ( t )} kin,I{ E ( t )} potE ( t )

trajectories velocities kinetic  
energies 

potential  
energy 

These quantities maybe used for performing time averages  

ABC ( t ) !A( t )!B( )==<< >>0

MD and Time Averages 
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MD and Structural Quantities   

The Time Correlation Functions between two quantities  
ABC ( t ) !A( t )!B( )==<< >>0

Response Functions, such as  
                                     diffusion coefficient, 
                                     viscosity, 
                                     compressibility, 
                                     electrical and heat conductivities, 
                                     dynamical structure factor. 

MD provides us with structural quantities such as  
the pair correlation function, which gives the distribution  
of distances between pairs of atoms   

The structure factor S( k ) !( k )!( k )
N

== << !! >>1

can be measured in neutron-scattering experiments  

MD – limitations  
system size and time scales 

Ab initio (Car-Parrinello) MD 
100 – 200 atoms (workstations) 
100 000 atoms (multiprocessor supercomputers)  

size:  

time: 10 ps 

Classical MD 
size:  up to 18 x 109 atoms (supercomputers)  
time: 10 ns 

Both methods – atomistic scale methods 

Advantage of AIMD – bond formation and bond breaking 

Simulation of materials properties – larger scales needed 

Hybrid QM/MM approaches: 
quantum-mechanics/molecular-mechanics 

Systems of interest in computational biology are too large  
for a full AIMD treatment 

The system is divided in two subsystems:             
an inner region (QM) where quantum-mechanics is used  
and an outer region (MM) where a classical field is used,  
interacting with each other 

QM 

MM MM = classical MD 
QM = AIMD 

Large scale modeling - Coarse-Graining 

For large scale modeling, one may introduce alternative  
approaches using simplified coarse-grained models  
(lattice gas models) 

These models can be treated with the methods used  
commonly in statistical mechanics such as  
         mean-field theory, 
         the cluster variation method (CVM), 
         Monte Carlo methods. 
          
Question: how to provide a link between atomistic  
calculations (ab initio, classical potentials) and the  
potential parameters suitable for coarse-grained  
models. 
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Why do we need coarse-grained modeling?  

Polyelectrolyte problem: ions around DNA 

Atomistic MD  
not really possible to  
sample distances  
30 – 40 A from DNA  

Na+ 

Water molecule 

An Example 

Na+ 

All-atom model  Coarse-grained model  

Coarse-grained model for ions around DNA  

Coarse-grained model for ions around DNA  

Ions interacting with DNA  
by effective solvent-mediated  
potentials  
Different potentials for  
various parts of DNA 
No explicit water 

Na+ 

density profile and integral  
charge 
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Another example: Coarse-grained lipid model  

All-atom model 
118 atoms 

Coarse-grained model 
10 sites 
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Lipid bilayer in water 

Picture contains 50000 atoms 

Minimal, reasonable piece of bilayer for atomistic MD 
72 lipids + at least 20 H2O per lipid = 13000 atoms 

Multi-scale approach 

All-atomic model Full information 
(but limited scale) 

RDFs for selected 
degrees of freedom 

Effective potentials 
for selected sites 

Effective 
potentials 

Properties on a 
larger length/time 

scale 

MD simulation 
Coarse-graining – 
simplified model 

Reconstruct 
potentials 

(inverse Monte Carlo) 
Increase 
scale 

Simulation of coarse 
grained model 
(MD,MC,BD,DPD...) 

Tight Binding Method 
!! !
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    The Kohn- Sham Method –   
    The Kohn-Sham Equations   
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Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  
iteratively (self-consistently)  
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Solution of the Kohn-Sham Equations      

Expansion of the Kohn-Sham orbitals in a basis 

Eigenvalueproblem 

Bandstructure 
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Hamiltonian  
matrix elements Overlap integrals 

LCAO (Linear Combination of Atomic Orbitals) 
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Problems 

Kohn-Sham orbitals in periodic systems 

{
!
!! s} Basis atoms 

at
!!"" - ‘Atomic’ Kohn-Sham orbitals:  

{!!""
!
k } - fulfill Bloch’s theorem 

Minimal Basis, i.e., one orbital per electron, is not sufficient 
Results depend on the chosen basis 

Primitive translations {
!
Rl }

All atoms in the system 

    Tight-Binding Formalism   

!!n(
!
r ) == cn

!! i!!"" i (
!
r )

!! ,i
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index of orbital index of atom 

i! i! , j"
!i !i ,"j

H # | i! i! | t | i! j" |== >><< ++ >><<!! !!

!i{ " }orthogonal set  
of functions 

!i "j
n n n n n

i! j"
# $ | H | $ ( c )*c i! | H | j"==<< >>== << >>!!!!

Tight –binding Hamiltonian 

on-site hoping TB-parameters 

NOT ATOMIC  
ORBITALS ! 

    Tight-Binding Hamiltonian   

† †
i! i! i! i! , j" i! j"

!i !i ,"j
H # c c t c c== ++!! !!

creation & anihilation operators 

On-site energies are not atomic eigenenergies 
They include on average the effects  
of neighbors 

Problem: Transferability 
E.g., Si in diamond lattice (4 nearest neighbors)  
             & in fcc lattice (12 nearest neighbors) 

Dependence of the hopping energies on the distance  
                                                                 between atoms 



6!

    Tight-Binding Formalism – Overlap Integrals   

In the general case orbitals will not be an orthonormal set  
and we define the overlap integrals as 

In orthogonal-TB schemes S reduces to the unit matrix. 

One needs to solve 

Parameters to be determined 

Semiempirical Tight-Binding Method 

Tight-Binding Formalism – Parameters   
The TB parameters:  
                                  on-site,  
                                  hopping 
                                  (overlap integrals)  
are usually determined empirically by fitting TB energies  
(eigenvalues) to the ab initio (experimantal) ones.  
One could also try to calculate them directly by performing  
the same calculation for a localized basis set exactly  

e.g., F. Liu, Phys. Rev. B 52, 10677 (1995) 

Simple version of the TB method – universal parameters 

not very transferable and not accurate enough 
allow to extract qualitative physics 

W. Harrison, Electronic structure and the properties of solids  
                     (Dover, New York, 1980) 

Tight-Binding Formalism – Parameters   

Fitting the ab initio band structure 

Wave vector 

LDA (  ) and  
tight-binding (          )  
band structures  
for GaAs  
in the zinc-blende 
structure 

Tight-Binding Formalism – Physical meaning  
of the on-site energies   

† †
i! i! i! i! , j" i! j"

!i !i ,"j
H # c c t c c== ++!! !!

Anderson has shown that there exists a pseudoatomic  
Hamiltonian that has as its eigenstates the basis states         , 
but this Hamiltonian is not an atomic one and depends  
yet again on neighboring atoms. 

| i! >>

i i j j i!
j i ,"

H | i! (T V V | j" j" |V ) | i! # | i!
!!

>>== ++ ++ "" >><< >>== >>##

Similar procedure to the construction of the pseudopotential  

P. W. Anderson, Phys. Rev. Lett. 21, 13 (1968) 
                           Phys. Rev. 181, 25 (1969) 
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Tight-Binding Formalism – Physical meaning  
of the on-site energies   

i i j j i!
j i ,"

H | i! (T V V | j" j" |V ) | i! # | i!
!!

>>== ++ ++ "" >><< >>== >>##
The expression for the pseudo-Hamiltonian of atom i  

In the pseudopotential one projects out core states 

Here one projects out the states of the neighboring atoms  
which overlap with the atomic basis function. 
 
This is where the dependence on the environment comes  
from in this atomic pseudo-Hamiltonian    

Tight-Binding Formalism – Dependence of the 
hopping integrals on atomic distance   

Calculations for systems with distorted lattice  
The dependence of the hopping integrals on the  
inter-atomic distance  

Harrison’s ~d-2 dependence 

t t exp( !r )== !!0Exponential dependence 
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C. Xu et al., J. Phys. Condens. Matter 4, 6047 (1992)  

Tight-Binding Formalism – Dependence of the 
hopping integrals on atomic distance   

LDA (  ) and tight-binding (          ) band structures for GaAs  
in the zinc-blende structure for two different bond lengths 

Tight-Binding Formalism – Dependence of the 
hopping integrals on atomic distance   

Tight-binding hopping integrals  
with the functional dependence  
 
 
(lines) as functions of  
the interatomic distance for GaAs  
in the zinc-blende structure.  
Optimum fits of the LDA  
band structure at selected  
nearest-neighbour distances  
are given by the data points. 

t t exp( !r )== !!0

Minimal sp basis used  

Y. P. Feng, C. K. Ong, H. C. Poon  
and D. Tomanek, J. Phys.:  
Condens. Matter 9, 4345 (1997).  
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Tight-Binding Formalism – Dependence of the 
hopping integrals on atomic distance   

The matrix elements are  
defined whenever r is greater 
than 1.5 Å.  
The distances corresponding  
to the first four neighbor shells  
in the diamond structure are  
marked by short vertical 
lines; each matrix element  
goes smoothly to zero  
between the third and fourth  
neighbor shells. 

Matrix elements 
Highly optimized tight-binding model of silicon 

T. J. Lenosky et al., 
Phys. Rev. B 55, 1528 (1996) 

   & ss! sp! pp! pp"h ( r ), h ( r ), h ( r ) h ( r )

1st 

2nd 3rd 4th 
neighbor 

Tight-Binding Formalism – Band Energy   

“Real” description of solids requires repulsive term 

This energy term is called the band energy, and is 
usually attractive and responsible for the cohesion.  
 
In fact, if atoms get closer their overlap increases, 
the range of the eigenvalues increases and,  
since only the lowest energy states are occupied, the 
energy decreases (bonding increases). 

(to prevent colaps) 

Tight-Binding Formalism – The Total Energy   

However, the TB formalism shown above describes only 
bonding due to the outer electrons.  
 
If one brings two atoms close together, inner shells will  
start to overlap and bring additional energy (in the form  
of a strong repulsion) that is not included in the band  
energy term. 

The total energy will therefore be given as 

an empirical repulsive energy term 

Tight-Binding Formalism – The Repulsive Energy   

In most cases this is modeled simply as a sum of  
two-body repulsive potentials between atoms 

but many-body expressions such as 

(where g is a non-linear embedding function, which can be 
fitted by a polynomial) have also been proposed. 

!  has similar dependence on the Rij as hopping integrals 
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Tight-Binding Formalism – The Total Energy   

Band structure 
energy 

Repulsive  
energy 

Charge transfer  
energy 

The total repulsive energy contains ion–ion repulsion, 
exchange–correlation energy, and accounts for the double 
counting of electron–electron interactions in the band-
structure energy term. 

The last term imposes an energy penalty on large  
inter-atomic charge transfers " Charge transfer energy  

U ~ eV1Typical 

Tight-Binding Formalism – Parametrization of  
                                               the repulsive term    

Using the interpolated hopping integrals, the tight-
binding band-structure energy can be obtained for 
any geometry and inter-atomic distance. 

We then define the repulsive energy as the difference 
between the ‘exact’ binding energy, obtained using  
ab initio calculations, and the tight-binding band-structure 
energy 

Several crystallographic phases of a material are usually  
used 

Structure independent parametrization  
of the repulsive terms 

Tight-Binding Formalism – The Total Energy   

The binding energy (Ecoh), 
repulsive energy (Erep), and 
band-structure energy (Ebs ) 
for GaAs in the zinc-blende 
structure, as functions of the 
interatomic distance. 

Tight-Binding Formalism – Molecular Dynamics   

The molecular dynamics proposed by Car and Parrinello 
‘fictitious Lagrangian’ 

The orthonormality of the occupied states requires the 
following constraints  ji

l! l! ij
l!
c c "==!!

i,j  - indicate occupied states 
l  - indicate atoms 

!  - describes types of localized orbitals 
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Equations of motion for the ionic and electronic coordinates 

Tight-Binding Formalism – Molecular Dynamics   

Lagrange multipliers 

F. S. Khan & J. Q. Broughton, Phys. Rev. B 39, 3688 (1989) 

Tight-Binding Formalism – Molecular Dynamics   

As Ga 

Applications (1) 
Fully relaxed atomic structure of the topmost few layers  
of the GaAs(110) surface. 

Good agreement  
with LDA and  
experiment 

Tight-Binding Formalism – Molecular Dynamics   
Applications (2) 

Ground-state geometries of small semiconductor clusters 

GaAs GaAs2 Ga2As 

GaAs3 Ga3As Ga2As2 

TBMD method is also able to predict the relative 
stability of GaAs clusters. 

Tight Binding Molecular Dynamics Studies  
of Nanotube Growth 

Different stages of the closure of the (10,0) nanotube at 2500 K.  

 2 ps  5 ps  8 ps 11 ps 

E. Hernandez et al., arXiv:cond-mat/0006230 v1 
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Tight Binding Molecular Dynamics Studies  
of Nanotube Growth 

Different stages of the closure of the (10,0) nanotube at 2500 K.  

18 ps 15 ps 

Atomistic simulation of fracture in Silicon   

Fracture: the canonical 
multiscale materials problem 
brittle vs. ductile fracture 

Fracture with Tight-Binding   
Coupled empirical potential (EP) and TB 

~50000 EP atoms and ~1000 TB atoms 
400 A ! 250 A ! 12 A, (80 A ! 65 A shown) 

TB 
Boundary 

EP 

(Bernstein and Hess PRL 2003) 

Melting A Diamond Crystal with  
Tight Binding Molecular Dynamics 
 

Examples of Computational Simulations 
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Melting A Diamond Crystal  
with Tight Binding Molecular Dynamics 

Well beyond its value for jewelry, diamond is invaluable  
as the hardest known substance. 

Fine diamond particles are the ultimate abrasive, and wear 
resistant diamond coatings are used on tools from saw 
blades to surgical instruments. 

But who would consider melting diamond? 

Materials scientists and engineers who are searching for 
cheaper and more robust processing routes to the synthesis  
of diamond coatings could use the thermodynamic phase 
diagram of carbon as a guide. 

The conditions that it takes to melt diamond are  
too extreme for careful laboratory experimentation. 

Melting A Diamond Crystal  
with Tight Binding Molecular Dynamics 

Melting diamond on a computer,  
makes it possible to determine the complete  
pressure-temperature phase diagram. 

Quantum mechanical tight binding (TB) molecular 
dynamics calculations were run with a parallel code  
and an algorithm that scales linearly with the system size. 

A highly efficient implementation permits the calculation  
of the electronic structure and forces for systems of up to 
10 000 atoms 

The empirical parameters for the TB code were 
determined by fits to the results from extensive first 
principles calculations for many static geometries. 

Melting A Diamond Crystal  
with Tight Binding Molecular Dynamics 

A snapshot of 2000 carbon atoms (T>6000 K) 
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Red atoms indicate four-fold 
bonded (diamond-like) atoms 

Blue atoms indicate three-fold  
(graphitic) bonded atoms 

two-fold and five-fold  
coordinated atoms 

Melting A Diamond Crystal  
with Tight Binding Molecular Dynamics 

The large number of three-fold  
atoms is an indication that the  
liquid phase is less dense than  
the four-fold diamond phase. 

By changing temperature and/or  
pressure, the interface between  
the solid and liquid will move  
(e.g., the solid fraction increases  
below the melting point). 

Such simulations permit the accurate determination 
of the melting temperature of diamond as a function 
of pressure. 
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Melting A Diamond Crystal with TB  
Molecular Dynamics -  Significance  

By including the essential quantum nature of the electrons 
and their chemical bonds, the tight binding calculations 
form a natural bridge leading from first principles electronic 
structure calculations to the mesoscopic regime. 

Extension of the quantum mechanical treatment to even 
larger numbers of atoms in order to investigate more  
complex nanoscale phenomena involving extended defects.  
 
This would illuminate the fundamental relationship 
between microstructure and important macroscopic 
materials properties. 

Classical MD is not accurate enough 
Ab initio MD prohibitive (system size) T-B MD 

Tight-Binding Methods - Summary  

The End – Thank You 


