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Kohn-Sham Method  with  
 
Plane-waves and pseudopotentials     
!!Practical aspects of the calculations 

Basics of Molecular Dynamics     
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The Kohn- Sham Method –   
    The Kohn-Sham Equations   
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Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  
iteratively (self-consistently)  

DFT: Implementations of the Kohn-Sham Method   

Fully relativistic 
Semi-relativistic 
Non-relativistic 

Non-periodic 
periodic 

All-electron full potential 
All-electron muffin-tin 
All-electron PAW 
Pseudopotential 

Non-spin-polarized 
Spin polarized 

Beyond LDA  
Generalized Gradient Approximation (GGA) 
Local Density Approximation (LDA) 

GW (quasi-particles) 
EXX (exact exchange) 
sX-LDA 
Time dependent DFT 
LDA+U 

Atomic orbitals 
 
Plane Waves 
 
Augmentation 
Fully numerical  
(real space) 

Gaussians(GTO) 
Slater type (STO) 
Numerical  

Plane waves (FPLAPW) 
Spherical waves  
(LMTO, ASW) 
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Solution of the Kohn-Sham Equations      

Direct methods on a mesh in r-space 

Expansion of the Kohn-Sham orbitals in a basis 

Eigenvalueproblem 

Bandstructure 

{!!""
!
k (
!
r )}

!!n
!
k (
!
r ) == ! c!! (n,

!
k )!!""

!
k (
!
r )

!!
!!

!! '
!! !!""

!
k | ""
!2

2m

!
##2 ++!!KS (

!
r ) | !!"" '

!
k "" !!n(

!
k ) !!""

!
k | !!"" '

!
k

$$

%%
&&
&&

''

((
))
))
c!! '(n,

!
k ) == 0

[H!!!! '(
!
k ) !! ""n(

!
k )S!!!! '(

!
k )]c!! '(n,

!
k ) == 0

det[H!!!! '(
!
k ) !! !!n(

!
k )S!!!! '(

!
k )] == 0

!!n(
!
k )

Hamiltonian  
matrix elements Overlap integrals 

Kohn-Sham  
 
plane-waves formalism 

Kohn-Sham equations in  
pseudopotential formalism 
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Local and nonlocal parts of pseudopotential 
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Pseudopotential for atomic species ! 

Local  
Non-local  
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Pseudopotential  
for a collection  
of atoms 

local part 

non-local part 
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Kleinman-Bylander Separable  
Pseudopotentials    

Fully non-local separable PP 

!
T ++ V̂ ps !! !! i(( ))!! i == 0

Exact for the reference atomic energies  

Approximate for all other energies 

Much easier calculations ( in comparison to semi-local PP)  
of Fourier components  
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Eigenvalue problem – system of equations for  
                                       expansion coefficients    

Fourier transform 
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Kohn-Sham equations in pseudopotential  
plane-wave formalism 

Kohn-Sham Eqs. 
in real space 

Plane-wave formalism 
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Fourier coefficients of the electronic (pseudoelectronic) density 

Methods to solve eigenvalue problem for expansion coefficients 

say ~ 2000, standard diagonalization procedure is used. 

For larger number of coefficients, the modern iterative techniques  
based on direct minimization of the total energy are used. 

Commercial or open source (GNU-license) codes available    
VASP (Univ. Vienna, com.),   CASTEP (Accelrys, com.) 
ABINIT (Univ. de Louvain, GNU), SPINOR (UCSB, GNU)        

Special k-points 

Pseudopotential plane-wave formalism –  
practical aspects 

{
!
G  : 1

2
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G)2 !! Ecutoff }

Number of plane waves  
in the wavefunction  
expansion  N

Number of needed Fourier  coefficients  
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Pseudopotential plane-wave formalism –  
practical aspects 
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Solution of  eigenvalue problem gives N eigenvalues and  
eigenfunctions  
For self-consistent solution of the problem, it is necessary  
to known only occupied states 

Number of occupied states << N 
Traditional methods (based on the solution of eigenvalue  
problem) only practicable for moderate N (say N~2000)   

For N > 2000 (large supercells), reformulation of  
the problem is required  
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Pseudopotential plane-wave formalism –  
practical aspects – Iterative methods 
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Gradient 
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such that the gradients vanish 
Searching procedure ? 
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conjugate gradient 
Davidson method 

Required: effective method to calculate gradient 
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Pseudopotential plane-wave formalism –  
practical aspects 
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Better solution 

Introduce mesh in r-space with 8N points 
Fourier transform wavefunction in G-space into  
wave function in real space 

{
!
ri }

Use Fast Fourier Transform – it costs ~NlogN operations 

Calculate 

Use inverse FFT to obtain  

Total cost ~NlogN  
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Use FFT to obtain local pseudopotential plus Hartree  
on mesh   

Pseudopotential plane-wave formalism –  
practical aspects: local potential 
Calculation of Hartree potential is very cheap: 

How to deal with other parts of local potential?  
Separate local pseudopotential into long-range and  
short range part ps ,! ps ,!v v

loc loc
Z e Z e
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Calculate Fourier coefficient of Coulomb potential  
analytically and of the short range one numerically 
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Pseudopotential plane-wave formalism –  
practical aspects: local potential 
Calculate exchange-correlation potential on the mesh {

!
ri }

using values of (LDA, GGA approximation) 

Compute 

FFT  to get   

Very simple calculation of  
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Pseudopotential plane-wave formalism –  
practical aspects: nonlocal potential 
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Calculation of gradient corresponding to nonlocal  
semilocal pseudopotential is very costly   

Calculation of Fourier coefficients  
always of the order of N2  

Therefore, separable nonlocal pseudopotential  
of the Bylander-Kleinman form 

Local part maybe identical in K-B and semilocal PP 

!!nonloc
K!!B (

!
r ,
!
r ') ==

lm
"" flm,!!

* (
!
r !!
!
X!! ) flm,!! (

!
r '!!
!
X!! )

!!
""

Pseudopotential plane-wave formalism –  
practical aspects: nonlocal potential 

The knowledge of  is sufficient to calculate  

Computational cost proportional to N, but with  
rather large prefactor 
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Pseudopotential plane-wave formalism –  
practical aspects norm conserving PPs 

Computational schemes with norm conserving PPs 
 
Computational burden ~N log N  

Good transferability of the PPs  

Atoms from the first row of Periodic Table require  
kinetic energy cutoff of ~60-70 Ry  

Too many plane-waves required in many applications 
      atoms from the first row of Periodic Table 
      semicore d-states 

Ultra soft pseudoptentials 
Even one atom of this type requires large cutoff 
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Features of the Pseudopotential Method     

Pseudopotential is approximation to all-electron case, but… 
Very accurate 
•Comparable accuracy to AE in most cases 
•Simpler formalism 
 
Low computational cost 
•Perform calculations on ‘real-life’ materials 
 
Allows full advantage of plane-wave basis sets 
•Systematic convergence 
•Easy to perform dynamics 
 

How we solve the Kohn-Sham problem when the systems  
are not periodic: surfaces, interfaces, clusters, molecules…  
and still take advantage of the plane wave formulation  
of the problem 

Molecule Surface 

Plane-wave formalism for systems  
with reduced periodicity 

Plane-wave formalism – Supercell method 

Crystals Surfaces Molecules & Atoms 

Impose periodic boundary conditions to describe extended, 
translationally ordered (periodic) bulk crystals, surfaces, and 
interfaces. Can also use same formalism to describe 
molecules or atoms. 

Empirical Pseudopotential Method 
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Non-local empirical pseudopotential 
Fourier components are treated as empirical parameters 

Local empirical pseudopotentials 

Particularly simple model 

J. Chelikovsky & M. Cohen, “Electronic Structure and Optical Properties  
                                              of Semiconductors”, (Springer, Heidelberg, 1988)  

Very accurate band structure description of elemental (diamond),  
zinc-blende, wurtzite, and chalcopyrite structure semiconductors.  

Ten parameters give very reasonable description of the band structure 
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Properties of Materials  
From static K-S DFT  
calculations 

    The Kohn-Sham Method –Total Energy & Forces   
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Energy of ions 
Total energy 

Forces on  ions 

Equilibrium: Dynamics: !!!!
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!!
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    Materials Properties from Calculations   

•! Geometries of molecules 
•! Crystal structures (packing) 
•! Density 
•! Defect structures 
•! Crystal morphology 
•! Surface structures 
•! Adsorption 
•! Interface structures 

Structural Properties 
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    Calculation of Surface Properties-  
   Surface Potential   

Schematics of surface potential 

Ionization  
potential 

    Calculation of Surface Properties-  
   Surface Potential of W (001)   

W – wolframium = tungsten 

Ionization  
potential 

E. Wimmer, A. J. Freeman,  
J. R. Hiskes and A. J. Karo,  
Phys. Rev. B 28, 3074 (1983) 

CH3 

Cl 

Si 

P P’ 

D D’ 

F’ F 

Methyl Chloride Adsorption on Si(001):  
Ab initio calculations 

Sketches of the six adsorption geometries 
(only relevant Si surface atoms are indicated) 

Cl 
C 

H 
H 

H 

M. Preuss, W. G. Schmidt,  
and F. Bechstedt,  
J. Phys. Chem. B 108, 7809 (2004) 

Energetically 
the most  
favorable 

Methyl Chloride Adsorption on Si(001):  
Ab initio calculations 

HOMO CH3Cl LUMO 

Configuration F 

Distribution of charge for the HOMO and LUMO orbitals  

Configuration D 

M. Preuss, W. G. Schmidt, and F. Bechstedt, J. Phys. Chem. B 108, 7809 (2004) 
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    Materials Properties from Calculations (2)   

•! Compressibility 
•! Elastic moduli 
•! Thermal expansion coefficients 
•! Vibrational properties 
•! Hardness  
•! Fracture toughness 

Mechanical Properties 

Thermodynamic Properties  
•! Binding energies 
•! Pressure induced phase transitions 

    Materials Properties from Calculations (3)   
Electronic, optical, and magnetic properties 

• Electron density distribution - electrical moments 
• Polarizabilities 
• Ionization energies and electron affinities 
• Electrostatic potential, work function 
• Energy band structure - metal, semiconductor,  
  insulator, superconductor 
• Band offsets at hetero-junctions 
• Optical spectra 
• Spin density distribution, magnetic moments,  
   crystalline   magnetic anisotropy 
• Magneto-optical properties (Kerr rotation) 
• NMR chemical shifts 
• Dielectric response 
• Luminescence 

•!  Temperature induced phase transitions 
•!  Phase diagrams 
     (liquid-gas, liquid-liquid, liquid-solid, solid-solid) 

    Materials Properties from Calculations ?  

Thermodynamic Properties 

"!  Thermal conductivity 
"!  Viscosity 
"!  Diffusion constants 

Transport Properties 

Require dynamic treatment of ion movement 

Molecular Dynamics 

Chemical and other properties 

Chemical reaction rates (catalytic properties,   
corrosion, electrochemistry) 
 
Reactivity with surfaces 
 
Photochemical properties 

Chemical Properties –  
Molecular Dynamics needed  
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Molecular Dynamics 
 
!! Classical vs. ab initio 
!! Ehrenfest vs. Born Oppenheimer 
!! Car-Parrinello MD 

Goal – to determine classical trajectories  
            of all atoms in the system 

Molecular Dynamics – What is it ? 

Classical dynamics (given by Newton equations)  
of atoms in the system 

I{ R ( t )}
!

MI

!""RI ==
!
FI!

F
I
== !!"" IVeff ({

!
RI })

Where to get forces on atoms from ? 

At the very heart of any molecular dynamics scheme 
is the question of how to describe - that is in practice how 
to approximate - the interatomic interactions. 

Classical vs. Ab initio Molecular Dynamics 

M
I

!""RI == !!"" IVeff ({
!
RI ( t )})

Potential energy surface 

either obtained from empirical data, or  
obtained from independent  
electronic structure calculations 

Classical – based on predefined potentials 

Ab initio – based on fully quantum mechanical  
                                             calculations  

Potential Energy Surface 
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Classical Molecular Dynamics 

Typically, the full interaction potential is broken up 
into two-body, three-body and many-body contributions, 
long-range and short-range terms etc., which have to be 
represented by suitable functional forms.  

The electronic degrees of freedom are replaced by 
interaction potentials v1 , v2 , etc. and are not featured as 
explicit degrees of freedom in the equations of motion. 

Well established tool to investigate many-body condensed 
matter systems 

Classical Molecular Dynamics 

Very often, the interactions can faithfully be described by  
additive two-body terms 

For example, Argon in liquid phase 
E. Ermakova, J. Solca, H. Huber, and D. Marx,  
Chem. Phys. Lett. 246, 204 (1995). 

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids 
(Clarendon Press, Oxford, 1987; reprinted 1990). 

A lot of monographs, e.g., 

D. Frenkel and B. Smit, Understanding Molecular Simulation - From 
Algorithms to Applications (Academic Press, San Diego, 1996). 

Classical Molecular Dynamics - Drawbacks 

Limitations in applicable phenomena  

Restricted predictive power,  
specifically in simulating bond breaking and forming 

Moderate computation time and possibility to deal with 
large systems. 

world’s record – about 19 billion atoms 

Ab initio Molecular Dynamics 

Very difficult fitting procedure of ab initio results to  
a suitable functional form of interaction potential.  
   It can be done only for extremely small systems.   
   It is difficult to design a well-behaved fitting function. 

Ab initio Molecular Dynamics (AIMD) 

The fitting step can be bypassed  
and the dynamics performed directly by calculating  
the inter-atomic forces (obtained from the electronic  
structure calculated on-the-fly)  
at each time-step of an MD simulation 

The methods are widely applicable and possess potential 
to predict new phenomena and novel materials. 

The methods may cost huge computation time, however 

New Area in Materials Science – Materials Design  

Progress in Computational Techniques 
(new solvers, new optimization techniques, etc.) 

Progress in high-performance computers  
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Ab initio Molecular Dynamics (AIMD) 

Squares: number of publications which 
appeared up to the year n that contain 
the keyword “ab initio molecular 
dynamics" (or synonyms such as  
“first principles MD", “Car-Parrinello 
simulations" etc.) in title, abstract or 
keyword list. 

Circles: number of publications which 
appeared up to the year n that cite  
the 1985 paper by Car and Parrinello 

 Ab initio Molecular Dynamics (AIMD) - Theory 

Thus, the nuclei move according to classical mechanics  
in an effective potential        due to the electrons.  
 
This potential is a function of only the nuclear positions  
at time t as a result of averaging He over the electronic 
degrees of freedom, i.e. computing its quantum expectation 
value                     , while keeping the nuclear positions  
fixed at their instantaneous values              . 

e
ˆ! | H |!<< >>

{
!
RI ( t )}

E
eV

 Ab initio Molecular Dynamics (AIMD) - Theory 

Time-dependent wave equation for the electrons 

Hamiltonian and wave-function are parametrically  
dependent on the classical nuclear positions {

!
RI ( t )}

Procedure of solving simultaneously Eqs.     and  
is very often called “Ehrenfest molecular dynamics“. 
It was never in widespread use for systems with many 
active degrees of freedom typical for condensed matter 
problems 

Ehrenfest molecular dynamics 

In practical calculations only ground state considered 

Electronic Hamiltonian is time-dependent via the 
nuclear coordinates 

The propagation of the wavefunction is unitary,  
i.e. the wavefunction preserves its norm and the set of 
orbitals used to build up the wavefunction will stay 
orthonormal 
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 Born-Oppenheimer AIMD  

An alternative approach to include the electronic 
structure in molecular dynamics simulations 
Straightforwardly solve the static electronic structure 
problem in each molecular dynamics step given  
the set of fixed nuclear positions at that instance of time. 

MI

!""RI == !!"" I E0({
!
RI })

E0({
!
RI }) == min <<!! 0 |

!
He({

"
RI }) |!! 0 >>
!
He({

"
RI })!! 0 == E0({

!
RI })!! 0

-- ground state energy of electrons for  
    instantaneous ionic positions   

E0({
!
RI })

{
!
RI ( t )}

may be calculated using DFT (Kohn –Sham) 
[or Hartree-Fock method]  

    Density Functional Theory (DFT)   

One particle density determines the ground state energy  
of the system for arbitrary external potential 

E[ !! ] == d 3
!
r!! !!(
!
r )!!ext (

!
r )++ F [ !! ]

E[ ! ] E==0 0

ground state density 

ground state energy 

E[ !! ] == d
!
r""ext (

!
r )!!(

!
r )!! ++TS [ !! ] ++U [ !! ] ++ Ex [ !! ] ++ Ec [ !! ]

unknown!!! 

Total energy 
functional 

External  
energy 

Kinetic   
energy 

Classic Coulomb   
energy 

Exchange   
energy 

Correlation   
energy 

 Born-Oppenheimer AIMD (cnt.)  

The electronic structure part is reduced to solving a 
time-independent quantum problem 

The time-dependence of the electronic structure is a 
consequence of nuclear motion, and not intrinsic as in 
Ehrenfest molecular dynamics. 

Ehrenfest vs. Born-Oppenheimer MD 

In Ehrenfest dynamics the time scale is dictated by the 
intrinsic dynamics of the electrons. 

Since electronic motion is much faster than nuclear motion, 
the largest possible time step is that which allows to 
integrate the electronic equations of motion. 

There is no electron dynamics whatsoever involved in 
solving the Born-Oppenheimer dynamics, i.e. they can 
be integrated on the time scale given by nuclear 
motion. 
However, this means that the electronic structure problem 
has to be solved self-consistently at each molecular 
dynamics step. 
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Car- Parrinello Method - Motivation 

R. Car and M. Parrinello, Phys. Rev. Lett 55, 2471 (1985) 

A non-obvious approach to cut down the computational 
expenses of molecular dynamics  

It can be seen as an attempt to combine the advantages 
of both Ehrenfest and Born-Oppenheimer molecular 
dynamics. 

From an algorithmic point of view the main task achieved in 
ground-state Ehrenfest dynamics is simply to keep the 
wavefunction automatically minimized as the nuclei are 
propagated. 

This, however, might be achieved -- in principle –  
by another sort of deterministic dynamics than first-order 
Schrödinger dynamics. 

Car- Parrinello Method - Motivation 
The “Best of all Worlds Method" should  
(i)! integrate the equations of motion on the (long) time scale 

set by the nuclear motion but nevertheless  
(ii)! take intrinsically advantage of the smooth time-evolution 

of the dynamically evolving electronic subsystem as 
much as possible.  

      
     The second point allows to circumvent explicit 

diagonalization or minimization to solve the electronic 
structure problem for the next molecular dynamics step. 

Car-Parrinello molecular dynamics is an efficient method 
to satisfy requirement (ii) in a numerically stable fashion 
and makes an acceptable compromise concerning the 
length of the time step (i). 

Car- Parrinello Method – Lagrangian  

L = µ
i
! d 3r | !! i |

2

"
# + 1

2I
! MI

!RI
2 $ E[{! i},{RI}]+ %ij

i , j
! d 3r! i
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!
r )! j (

!
r )

"
# $! ij

&

'(
)

*+

Lagrangian 

Ficticious ‘masses’  
of the wavefunctions  

Ionic positions 

Ionic masses One particle  
orbitals 

Lagrange multipliers 
to ensure the orthonormality 
of the orbitals   

Kohn-Sham  
Energy Functional 

The corresponding Newtonian equations of motion are obtained from  
the associated Euler-Lagrange equations 

!({
!
RI}) = min{! i}

E[{! i},{
!
RI}]

µ !!! (!r ) = ! !E
!" i

*(
!
r ,t)

+ "ij! j (
!
r ,t)

j
#

MI
!!RI = !" !

RI
E

R. Car & M. Parrinello, PRL 55, 2471 (1985) 

Coupling to some external  
reservoir in order to maintain  
the ionic temperature,   
the so-called ‘Nose’s 
thermostat’ 
  

Born-Oppenheimer surface 

Equations of motion 

(+) 

Car- Parrinello Method – Equations 
of Motion 
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Car- Parrinello Method –  Two temperatures 

According to the Car-Parrinello equations of motion, 
the nuclei evolve in time at a certain (instantaneous) 
physical temperature !! MI

I
""

!"RI
2

A ‘fictitious temperature’ associated to the electronic degrees  
of freedom   !! µµi

i
"" << !!! i | !!! i >>

“Low electronic temperature" or “cold electrons" 
means that the electronic subsystem is close to its 
instantaneous minimum energy 
i.e. close to the exact Born-Oppenheimer surface. 

min{!! i } <<"" 0 |
!
He({

"
RI }) |"" 0 >>

It must be achieved during the simulation process 

Car- Parrinello Method vs.  
Born-Oppenheimer MD  

Comparison of the x-component of the force acting on one 
atom of a model system obtained from Car-Parrinello (solid 
line) and well-converged Born-Oppenheimer (dots) molecular 
dynamics. 

Ab initio Molecula Dynamics: Applications –  
From Materials Science to Biochemistry 
Solids, Polymers, and Materials 

Surfaces, Interfaces, and Adsorbates 
Liquids and Solutions 

Glasses and Amorphous Systems 

Matter at Extreme Conditions 

Clusters, Fullerenes, and Nanotubes 

Chemical Reactions and Transformations 

Biophysics and Biochemistry 

Liquid phases of solids 

Thermal expansion of solids 

Phase transitions liquid # solid 

CPMD 
consortium  

page  

http://www.cpmd.org 
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http://www.fz-juelich.de/nic-series/ 
(150 pages, 708 references) 

CPMD Version 3.3:  
developed by J. Hutter, A. Alavi, T. Deutsch, 
M. Bernasconi, St. Goedecker, D. Marx, M. Tuckerman, and M. 
Parrinello, Max-Planck-Institut für Festkörperforschung and IBM 
Zurich Research Laboratory (1995-1999). 

AIMD – computer codes 

developed and distributed by  
Pacic Northwest National Laboratory, USA. 

CASTEP 
CP-PAW 
fhi98md 
NWChem 

VASP University of Vienna 

Fritz-Haber-Institut, Berlin 

P. E. Blöchl 

Accelrys 

Extensive review (708 references): D. Marx and Jürg Hutter 
                                            http://www.fz-juelich.de/nic-series/ 

Thank you! 


