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e Kohn-Sham Method with

Plane-waves and pseudopotentials

v Generation of norm conserving pseudopotentials (PPs)
v’ Separable (Kleinman-Bylander) PPs
v Unscreening of PPs (= ionic PPs)

v Practical aspects of the calculations

Materials Science:
Examples of Schrodinger Equation?

© Materials are composed of nuclei {Za,Ma,f?‘,} and electrons {7}
- - 1
==> the interactions are known
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Kinetic energy Nucleus-Nucleus Electron-Electron

of nuclei . interaction interaction
Kinetic energy Electron-Nucleus

of electrons interaction
HY = EY

Ab-initio (first principles) Method —
ONLY Atomic Numbers {Z} as input parameters

Density Functional Theory (DFT)
in Kohn-Sham realization

Interacting particles  Independent particles

Idea: consider electrons

as independent particles

N/, N/, 71N moving in an effective
— 0 — potential

‘I”(fl,fz,...,fm:}) ¢1(£l)¢2(£2)”'¢3(£m”)

This reduction is rigorously possible !




DFT- The Kohn- Sham Method The Kohn- Sham Method —

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) The Kohn-Sham Equations
® Schrodinger-like equations with local potential

[System of interacting System of non-interacting electrons
)

electrons with densityp(7 with the same density p(7°) ) oF, [ )\ (9E. [ ]
“Real” system “Fictitious” or Kohn-Sham referencte v, (r)— —_[ dr' f r.., £ £
p(i) T[p] Tg[p]  py(F)=p(F) S
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Elp] = [47,,(F)p(F)+ T [ pI+ULp] +E,[p] +E [ p] i Gk e
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p(7)=2.0% (F)o,(7) ’
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° E[p]= _EZJ drdr' @, (")[2 = () ® These equation are nonlinear and must be solved
i 7 r=r'| iteratively (self-consistently)

The Kohn- Sham Method —
s DFT: Implementations of the Kohn-Sham Method
,/Aufbau‘ principle P
— All-electron full potential GW (quasi-particles)
How to calculate one particle density? I~ All-electron muffin-tin EXX (exact exchange)
I~ All-electron PAW sX-LDA
. — Pseudopotential Time dependent DFT
. A LDA+U
. . Fully relativistic
. unoccupled Semi-relativistic - Beyond LDA
LU MO —— Non-relativistic - Generalized Gradient Approximation (GGA)
£N+1 - Local Density Approximation (LDA)
HOMO [ Y Ly (A +V. (P v, =¢
. 7 ext xc Ve=EVa .
. | | Gaussians(GTO)
" . . Slater type (STO)
. occupied Non-periodic - Atomic orbitals <" )
— periodic -
e ) ) Plane Waves  [pjane waves (FPLAPW)
2 Non-spin-polarized — Spherical waves
81 Spin polarized - Augmentation 4 (LMTO, ASW)
Fully numerical
(real space)




Solution of the Kohn-Sham Equations

@ Direct methods on a mesh in r-space

@® Expansion of the Kohn-Sham orbitals in a basis {Za,;(7)}
9, (F)=NY cy(nk) g o (F)
14

"o . - =
‘ [2 <xa,;I—Zsz+va(r)|xa,;>—e,,(k)<xa,;Ixa,;>}ca.(n,k)=0

Val /
Hamiltonian

matrix elements Overlap integrals

[ oy ()= £,00)S g0 (R)lege(m B =0 |

Eigenvalueproblem det[va(/;) - sn(I?)Sw,(l_c')] =0

=) 8n(k) Bandstructure

Kohn-Sham

plane-waves formalism

Plane-wave formalism

by (F)=,Cs,25(F)
AN

- 1 - o
X5(r)=——=¢exp(ip-r)
? N4
Plane-waves constitute orthonormal system

(x5125) =85
Problem: PP »
@ p continuous variable

=) For periodic systems, one can introduce discrete
values

Plane-wave formalism
Periodic systems

{t_ii} primitive translations characterizing periodicity
{G} - reciprocal lattice vectors én = n151 +nzl_;2 + n35

k € BZ \Wave vectors characterize Bloch States
p=k+G

= 1 N
Z@(")=W6’XP(IG"’) <Zé |756’>=666'

Discrete, orthonormal set of basis functions




Plane-wave formalism

(é) ei(/?+6).?

= 1 iz = 1
P )= 75 ¢ ",,1:(’)=EZCM;
G

Basis — plane waves
[Expansion coefficients [

2L () =7 ]

{G} - reciprocal lattice vectors G, = mby + nyb, + n3by

In practical calculations ¢~ . l=_ =
p (G S(k+G) SEMW} ’

[Kinetic Energy Cutoff

Concept of pseudopotential

Typical electronic potential and wave function

*  When solving the K-S equations for the full system of nuclei and
electrons we find that:
— Close to the nuclei, the potential is dominated by strong
Coulomb interactions
— In interstitial regions the potential is much weaker and
reflects the symmetry of the crystal
A typical wavefunction would look like:
‘*‘_/r)ﬂ Hﬁ — )

e

Strong oscillations in / e~ AV

the core region \ )

The Pseudopotential Concept

IDEA: group all the electrons around the nuclear core into an
effective ionic core, where all the strong oscillations close to the
nuclei are damped, and leave out only the valence electrons that
contribute to the bonding of the solid. Core electrons are left
basically unchanged going from the atom to the solid

Si: 1s2 2s2 2p® 3s2 3p? Si: (pseudo core) 3s2 3p2

@) — (@

14 electrons 4 (valence) electrons
v, 0-"2 v 0=V,
ext - r ext ~ Ups




PSEUDOPOTENTIALS - Basic ldea

The basic idea of the pseudopotential theory:

@ Core electrons are localized and
therefore chemically inactive (inert)

@ Valence electrons determine chemical
properties of atoms and SOLIDS

=3 Describe valence states by smooth wavefunctions

PSEUDOPOTENTIALS - Philips-Kleinman Method

New Method for Calculating Wave Functions in Crystals and Molecules

Jaxes C. Puiiniest axp Lroxarp Krmvuani
Department of Physics, University of California, Berkdey, California

Phillips & Kleinman, Phys. Rev. 116, 287 (1959)

Construction of pseudopotentials from atomic wavefunctions
" ‘V’C> =E, ‘V’6>
A" ‘y/v> =E, ‘y/v> \l//c> -core states ‘l//v> - valence states

@ Orthogonality condition <l//,, II/IC> =0 ‘V/ﬂ /\

leads to oscillations in |, ) SARV}

@ How to get smooth pseudo-valence- wavefunctions \q)v) from
atomic valence wavefunctions ?

© IDEA: Project out oscillations from ‘V/v>

PSEUDOPOTENTIALS - Philips-Kleinman Method

@ First, defi do- -functi =
Corioncs e v neion fo,)=.)+ Zlv.)v. 12,

Me v/
® Second,weact H“|p,)=E,|v,)+ Y E.|v. ), = v
with atomic 3
Hamiltonian on the =E -E . Elv\a. =
pseudo-wavefunction :19:) Vzc‘“% M+ z;’ ey

= Ev ‘¢v>+2(Ec _Ev)‘vle>acv
c
H" ‘¢V>_2(Ec _Ev)‘Wc><'//c |¢v>=Ev ‘¢v>
c
e {ﬁm _Z(Ec - Ev)‘WC><Wc ‘}‘¢v>= E, ‘¢v>
c

@ The pseudo-wave-function fulfills Schrodinger-like equation with

Hamiltonian that is dependent on energy and contains additional

repulsive, nonlocal potential.

® A, =A"+Y (E-E)|v.)v.|

PSEUDOPOTENTIALS - Philips-Kleinman Method
A"|y,)=E,|y,) A,lp,)=E,|p,)

W \ Energies are identical

Effective potential acting on the pseudo-valence electrons

V=V + 3 (E-E)w,)(v.| V,s is weaker than P
c
0 @ Within the core region(0<r < rcz)
) . -Z,
N g The potential V" (r)= et L
| I r
7 N ", and atomic valence wavefunctions are
- lf’v\vz' ¢ r substituted by pseudopotential s and
Voo knot free pseudowavefunction @»
/C/Q @ Outside the core region r>r, _ _erz
S o =Y, Vps - f
Z g —No. of valence @ Construction procedure keeps the energies
electrons in neutral atom of atomic and pseudoatomic states unchanged.

After paper of Philips & Kleinman, various models of pseudopotentials have
been developed. Main weakness: many parameters involved




Parameter Free (Ab-initio) Pseudopotentials —
Norm Conserving Pseudopotentials

@ Density Functional Theory for Atoms — Kohn-Sham equations for atoms

@ Spherical symmetry of atoms is assumed

i P (o I
V(@)=Y R (1Y, @)=Y, Q)
Im Im r
@ For each “I", one-dimensional Kohn-Sham equation
2
[ ;:2 + ] Ks(")}”l(") £u;(r) Atomic units: h =e=m=1

@ Effective Kohn-Sham potential contains all electronic interactions
i I+ 1)

vIa,tKS(r)=_ +vH([pc+pv])+vxc([pc+pv])

Atomic
density

Construction of Norm Conserving Pseudopotentials

@ Construction of pseudo-wavefunctions u,"s (r)from atomic solutions

2 w(r)
—2$+vf‘(r)]u “(r)y=guf*(r) !

The pseudo-wavefunctions u/* (r) have to fulfill certain conditions
. ul*(ry=u,(ry for r>r,
T pps 2.2 ry 22 Pseudo-wavefunctions and
@ J-o | R ()]r dr=_|-0 [ R (r)["r"dr  atomic wavefunctions lead

to identical charge in the
. SNORM CONSERVATION core region r<r.,
& =¢&

1RPS ) iRI ) Idepticgl logarithmic )
dar ~ " _ dr derivatives at cutoff radii
RP*(r) R, (r)
r=ra r=ra

These conditions do not determine the pseudo-wavefunctions uniquely
=) Different types of ab-initio pseudopotentials

Construction of Norm Concerving Pseudopotentials

Older pseudopotentials

BHS pseudopotential G.B. Bachelet, D.R. Haman, and M. Schliiter,
Phys. Rev. B 26, 4199 (1982)

Kerker pseudopotential G.PKerker, J. Phys. C 13, L189 (1980)

N. Troullier & J. L. Martins,
Phys. Rev. B 43, 8861 (1991)

The pseudo-wavefunction in the core region (r <r)

Troullier-Martins-Pseudopotentials

ul(r)= i e"ip[pl(rz)] P; - polynomial of 6t order
Coefficients of the polynomial are determined from:
a) Conditions 1-4
b) Continuity of the first, second, third, and fourth derivative of u}’s in rey
c) Second derivative of ionic pseudopotential should vanish in r = 0

Very good convergence properties !

When pseudo-wavefunctions ufs are established, then proceed to the

next step of pseudopotential construction.

Construction of Norm Conserving Pseudopotentials

@ @ Inversion of the Kohn-Sham equations == Atomic pseudopot.

2
a8
w+n 1 ar ) Note, u* (r) are
22 2 ul® (r) knot free

ps -
vl,atom (i‘) - 81

Atomic pseudopotential contains interaction between valence electrons.
This interaction should be subtracted.

@ @ ® Unscreening procedure
o o @®) = Vi () IONIC PSEUDOPOTENTIAL

Ljion

lton() latom(r) vH([pval]’r) Dxc([pval]’r)

S 7 2]
VIf’,',,,, () - For each angular momentum quantum number “/’




Norm Conserving Pseudopotentials

Comparison of the pseudo-wavefunction| | Components of the ionic
(solid lines) and the corresponding pseudo-potential for angular
all-electron wavefunctions (dashed lines) momentum /= 0,1,2
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Norm Conserving Pseudopotentials

V' on (r) - different component for each “ 1"

=) Non-local pseudopotential <7|V,-f,f | 7'>= VI (F,F")
Vi = 2V lan ) = V0 |11
1
Projection operator <;~’ =Y, (i’)

In Solids: | V2 =Y Y VEW(F-R, -7 )P,
1

L,ion

n,s

Norm Conserving Pseudopotentials

Extensions

e Relativistic effects are extremely important for core electrons
° Dirac equation for atoms
e Schrddinger-like equation for pseudo-valence wavefunctions

e “I” component of the ionic pseudopotential is obtained through the
averaging over “j +" and ‘j -" components

@ Exchange-correlation functional is nonlinear in p=p. + p,

vxc[pc+pv]¢vxc[pc]+vxc[pv]

Equality was assumed, for simplicity,
for the unscreening procedure

=) Nonlinear core correction

Nonlinear Core Correction
Louie et al.,Phys. Rev. B 26, 1738 (1982)

e Unscreening using smooth function of core density
\‘LCC] A

ps _ 1/bs )
v = VI — vH[N) — Uxe [nu +n,

NLCC
c

3 ne(r) forr >
"] exp (Zf:(]alrgi) forr < rNLCC

1

”ETLC‘C(,,)

— Core density
~ - Partial core density
— Valence density

0 0s 1 15 2 25
r(au.)




Nonlinear Core Correction — How it works?

Atomic energy splitting for Fe atom

| Choice of cutoff radius ? ‘

Els'd"] — B{s2d°] _ e
e High sensitivity to cutoff
a5 Atomic
’ [ ] [mr=0.00 e Use of full-core improves
s 2 —|mr=0.10 accuracy but usually
& 151 —|0r=0.40 costs are too high
w Or=0.70
1 —|mr=0.85
05 | |@r=1.10
oL |

NLCC cutoff radius (Bohr)
Cocula et al., JCP 119, 7659 (2003)

Pseudopotential Smoothness & Accuracy

Pseudopotential quality is measured by its transferability,
i.e., ability of the PP to match AE values when put in
different chemical environments

Iron wavefunctions e Move outward cutoff

l_and pseudo-wavefunctions . radius to get smoother

gl T L4V pseudo-wavefunctions
{ - | WF ° Acceptable basis size
| "l T, ° Penalty:

18 . e e decreased

o2 [ S i transferability

I/ © Small cutoff =

1 esharp function
: e expensive to
expand in PWs

Plane-wave formalism

Plane-wave formalism

Kohn-Sham equations in momentum space
° Expansion with respect to basis = Fourier series
e External potential substituted by Pseudopotential

5 . o s . -
{—ZmVz+0H(r)+vxc(l’)+'/i,l,’;,}¢,,,;(i‘)=8,,,;¢’,,,;(") (KS-Eq.)

1 Fourier transformation

Y XA P, o o I, .. o
Y {E(k+G)25(~;,(;.,+1)H(G—G')+1)XC(G—G')+V"s(k+G,k+G')}cni(G)=snl;c",;(G)

Eigenvalue problem — system of equations G
for expansion coefficients Cuic (@)




Pseudopotential in Kohn-Sham Method

o External potential substituted by Pseudopotential

5o . s . .
|:—2mVz+vH(r)+vxc(r)+anmlac(r,r'):|¢nl;(r)=enl;(pnl;(r)
(KS-Eq.)
<F|I71’s

ion

|F) =V,
non-local pseudopotential !!
® External potential (pseudopotential) is non-local !
e |s it compatible with derivation of Kohn-Sham equations?

== Not really, but generalization of the formalism possible

Semilocal Pseudopotentials

Norm conserving pseudopotential — semilocal PP
VIR (F,F) = Y 0l (r)Y,,, ()Y, (F)
Im

ion L,ion

ion 10 ion 1,ion lO sion

VISS(E,F) = 0P (1) 4 3 [07% (1) =02 (1) Y (F)Y,, (F)
Im

Ay,
local in r, nonlocal in angles
Av; is short range

o = v,oc(r)+Zo,(r)|lm><lm|
Im

e Expensive calculations of V”°(k+ G,k +G')

Kohn-Sham equations in
pseudopotential formalism

PS,2 20y _ DS g ps - =,
v (r’r)_ vlac(r)+vnonloc(r’r)
}l_z 2
- - . s - o - -
_EV +3H(r)+vxc(r)+vlzc(rj)+vr1:onloc(r’r') q’nE(r):enI:(pnl;(r)

~
v, () =v,(F)+v  (F)+ol (F)

nonloc

fiz =) - S = =y = r
[—%V +v, (F)+ol  (F,F )}Pn;(")=£nlz‘/’ni(’)

P()= 0% (P (P)

Local and nonlocal parts of pseudopotential

Pseudopotential for atomic species O
VI (F,F) = 0be® (1) + X 07 (1Y), (F)Y,,, (F)
y \m J
Non-local

Local

Pseudopotential s = e O = O
for a collection |V (","9=2Vion’ (F=X,,F'-X,)
a

of atoms
/ local part

VIEF) =Y ol r=X, )+
21

loc

2 2N F =X, DY, (F= X )Y, (F'=X,)
« dm non-local part




Kleinman-Bylander Separable
Pseudopotentials

Fully non-local separable PP

> pS Av ¢lm><Avl¢lm|
VE . =v, (r)+ |4,
k=8 foc % <¢lm |vl |¢lm>

(f+l91’s —e,.)fpi =0

o Exact for the reference atomic energies
® Approximate for all other energies

e Much easier calculations ( in comparison to semi-local PP)
of Fourier components

Kohn-Sham equations in pseudopotential
plane-wave formalism

[Kohn-Sham Eqs]‘\ p EGF%ZC E(@)ei(lﬁé)-?
n Q 6 n

in real space

Fourier transform

0, (G=G) =0, (G-G)+v_(G-G)+v[(G-G")

- ﬁz 72 Ll ] P PLT} [ A ~
5 {a(k+G) 85+ Vi @GN+ 002 (R4 Gl 4G [, = £, 70,6

nonloc nk € nik

Eigenvalue problem — system of equations for .
expansion coefficients ¢,;(G)

4

-1 Y o . =
/’vat(G)=§T Z ¢, :(G+G)c - (G)
0 nkG'

Self-consistent
problem

Pseudopotential plane-wave formalism —
practical aspects
Number of plane waves

in the wavefunction
expansion NV

o1 =0
(G S +GY SE )

Number of needed Fourier cogfficignts
of the local potential? v, (G-G""
oc

- 1 - =
8N @& G, k4G, )" =E

cutoff
max|G-G'|=2G,

P(G) --8N Fourier coefficients required

Pseudopotential plane-wave formalism —
practical aspects

p=(nk)

nonloc
G'

ﬁz r ~\2 ~ ~ 7 -7 i o ~
3 | 5 K468 6,40, (G -G+ o), (k+G,k+G)JcM(G)=s”c”(G)

e Solution of eigenvalue problem gives N eigenvalues and
eigenfunctions

° For self-consistent solution of the problem, it is necessary
to known only occupied states

Number of occupied states << N

° Traditional methods (based on the solution of eigenvalue
problem) only practicable for moderate N (say N~2000)

e For N > 2000 (large supercells), reformulation of
the problem is required

10



Pseudopotential plane-wave formalism —
practical aspects — Iterative methods

p=(nk) i”“(&) =Y, (H(G,G)=¢,8; :)c,(G)
&
Gradient

We are looking for 4= N .. wavefunctions

° mutually orthogonal <,u | ,u'> = 2c;(é)c#,(é) =8,
G

¢ such that the gradients vanish g(”)(é) =0
Searching procedure ?
(n+l) _ (n) (n)
e.g. steepest descent cy =c, +ng (n)
conjugate gradient
Davidson method
Required: effective method to calculate gradient

Pseudopotential plane-wave formalism —
practical aspects
Calculation of p(é) from the formula
pml(é)=gi Y ¢ (G+G)c i (G)
0 niG"

requires ~/V? operations Inefficient !!

Better solution

e Introduce mesh in r-space with 8N points {;‘;}
e Fourier transform wavefunction in G-space into .
wave function in real space @,(r;)  €,(G;) =@, (1)

Use Fast Fourier Transform — it costs ~NlogN operations
e Calculate p(7.) = 2¢;(;‘;)¢”('_’;)

u s jd
e Use inverse FFT to obtain p(G) p(l_’;) - p(Gj)
Total cost ~NlogIN

Pseudopotential plane-wave formalism —
practical aspects: local potential B
p(G)

e Calculation of Hartree potential is very cheap: ¥ (G)~ P
How to deal with other parts of local potential?

e Separate local pseudopotential inzto long-range and2

short range part e ; Z e
9EPA oot () == 22 4 (o () + =)
r \ r )
ps,a
Vjoc,sr (1)

e Calculate Fourier coefficient of Coulomb potential
analytically and of the short range one numerically

DS oo
e Calculate U,M(Gj)
e Use FFT to obtain local pseudopotential plus Hartree
on mesh {7} vll;i(éj)+ UH(éj) - (7))

Pseudopotential plane-wave formalism —
practical aspects: local potential

e Calculate exchange-correlation potential on the mesh { 7,~}
v_.(7;) using values of p(i';) (LDA, GGA approximation)

o Compute g (7.) := [V (F)+ V[ (F)]@,(F.)
° FFT g (%)to get gloc(éj)
84 (G) = 3,0,,(6G=G)e,(G)
P2
@ Very simple calculation of
gM(G)= %“ [f,j,(’;’fé)z%,év]%k(é')

No problem!

11



Pseudopotential plane-wave formalism —
practical aspects: nonlocal potential

Calculation of gradient corresponding to nonlocal
semilocal pseudopotential is very costly

g (G)= 2 ok +Gk+Ge (G)

Calculation of Fourier coefficients
always of the order of N2

=) Therefore, separable nonlocal pseudopotential

of the Bylander-Kleinman form

vnanlac(r l") 22 f}m tx(r X )ﬁma(r X )
a Im
Local part maybe identical in K-B and semilocal PP

Pseudopotential plane-wave formalism —
practical aspects: nonlocal potential

vnonloc(r r') 22 f}m a(r X )f}ma(r X )

a Im

The knowledge of J,4(G) is sufficient to calculate
(a)
nonloc( )
Computational cost proportional to N, but with
rather large prefactor

Pseudopotential plane-wave formalism —
practical aspects norm conserving PPs

Computational schemes with norm conserving PPs

Computational burden ~N log N

Good transferability of the PPs

Atoms from the first row of Periodic Table require
kinetic energy cutoff of ~60-70 Ry

Too many plane-waves required in many applications

atoms from the first row of Periodic Table
semicore d-states
Even one atom of this type requires large cutoff

=) Ultra soft pseudoptentials

Features of the Pseudopotential Method

Pseudopotential is approximation to all-electron case, but...
Very accurate

*Comparable accuracy to AE in most cases

*Simpler formalism

Low computational cost
*Perform calculations on ‘real-life’ materials

Allows full advantage of plane-wave basis sets
*Systematic convergence
*Easy to perform dynamics

12



Empirical Pseudopotential Method

Ao o T = o
%"‘ E(k+G)26&6,+VI§’;”(k+G,k+G') ¢, (G)=¢,(k)c,(G)

Non-local empirical pseudopotential
Fourier components are treated as empirical parameters

Very accurate band structure description of elemental (diamond),
zinc-blende, wurtzite, and chalcopyrite structure semiconductors.

Particularly simple model

+vh

R 5 . .
3 | kG 6 ot Vip 1,(G =G 6,3(6) =, (K)e,1(G)

G

Local empirical pseudopotentials
Ten parameters give very reasonable description of the band structure
J. Chelikovsky & M. Cohen, “Electronic Structure and Optical Properties

of Semiconductors”, (Springer, Heidelberg, 1988)

Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors
of the Diamond and Zinc-blende Structures*

Mazvis L. Connt aNp T. K. BEROSTRESSER
Department of Physics, Unisersity of California, Berkeey, California

Phys. Rev. 141, 789-796 (1966) [cited 1217
:A& o
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