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e Density Functional Theory (DFT) —
the key to the
Computational Materials Science
The Basics

e Kohn-Sham realization of the DFT

Fundamental problem in materials science

A fundamental problem in materials science is
the prediction of condensed matter’s electronic structure

Cgp - molecule

DNA - molecule

Materials Science:
Examples of Schrédinger Equation?

© Materials are composed of nuclei {Z,,,Ma,f?ﬂ,} and electrons {7}
- - 1
==> the interactions are known
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Kinetic energy Nucleus-Nucleus Electron-Electron

of nuclei . interaction interaction
Kinetic energy Electron-Nucleus

of electrons interaction

HY = EY

Ab-initio (first principles) Method —
ONLY Atomic Numbers {Z} as input parameters




Quantum Mechanics of Molecules and Crystals

Molecule or Crystal = a system of nuclei (lons) and electrons

Nuclei — mass M, coordinates X, and momenta P, X = {I_é,,l_éz,...,l_éj\,w /
(M,X,P)
Electrons — (m,x,p) X ={F,,7,,...,F\ }

[H L tU(x,X)+ Nud}

K|net|c energy of electrons Kinetic energy of the nuclei

A Nyt N,
Ta= Zip = _Zivz i\w ! —: = _Z 7Vz

Potential energy = The total Coulomb
energy of nuclei and electrons
U(x,X)=V,(x,X)+V, (x)+Vy(X)
Electron-nucleus

Nucleus-| Nucleus

. —-Zé Electron-Electron
Ve,,(xsX)= 2_,7”-» e’ M, (X)= 2
ialr,-_Ral V(x) zﬂ — a<h b
=

The Adiabatic Approximation (Born-Oppenheimer)

® The Schrédinger equation for the electrons in the presence
of fixed ions

=)

HY,(X,x)=E,(X)¥,(X,x)
3 .4

Parametric dependence
on ionic positions

© The energy levels of the system of ions are determined by solving

[Hy+E(K',X)] x(Q,K',X)=8(Q)x(Q,K',X)

The electronic energy contributes to the potential energy of the ion system.
This implies that the potential energy depends on the state of the electrons.

The Adiabatic Approximation (Born-Oppenheimer)

M. Born & J. R. Oppenheimer, Ann. Phys. 84, 457 (1927)

It is natural to consider the full Hamiltonian of the system
to be the sum of an ionic and an electronic part

H,=T,, +I}NN(X) f{el =T +V, (x’X)+I}ee(x)

en

Quantum Mechanics:
System of N electrons in an external potential

@ Adiabatic approximation — interacting electrons move in the ‘external’
potential of nuclei (ions) at fixed positions

A A 2 {I_él,l_éz,...}
fzi_ﬁez [H T+V,, +V } v.=Y d

" om i , i<j |r r,l
A =7 e ~ - zZZ e
= =V v, (F) —aTh
en - | V- Ra | ext Z ext' i lm g R“ R;, |

0({R }! 1 21 ’r )—0( D) 2’ 2] N)

‘ Schrédinger equation
Many particle wave function N = 107

HY =EY

Ritz Variational Principle = Ground State Energy of the system < >
E, = min<‘{’ | A W) =min(¥|T+V,_, +V,, |'¥) B s
YN
Y(#,7,...,7,) Many-particle wavefunction E[Y]2E,

Full minimization of the functionalE /¥ ] with respect to all
allowed N-electron wave functions




Quantum Mechanics:
System of N electrons in an external potential

Schrédinger equation Exact analytical solutions

HY = EY are not known

even for two electrons !

@ Approximations are needed !

@ Concept of independent particles moving in an effective
potential

Interacting particles  Independent particles

_\//_ _\.//_ \/ Idea: consider electrons
1N 71N Z_  asindependent particles
N/ N/ 71N moving in an effective
—/?\— —/?\— potential
P(F, Ty X ) OENP(X,). .. (X, 1)

Hartree and Hartree-Fock Approximation

Ansatz for the wave-function
Hartree Method

D riree (X%, Xy ) = Q1 (X)P,(Xy) .0y (X))

Hartree-Fock Method

P(x) @) . ey(X)
Oy iy = o] P PR )

0,y 0,(Xy) ... oy

Y¥; - one-electron wavefunction of the
ith level

Hartree-Fock Approximation

<P, . |H|P, ;>
<P >

Sy p=> E[D, . [=

H-F | ¢H—F

1 ..
H=H0+52U(xi,xj)
L]

. 1, -
H0=2H0(l)=z—ivi+Vm(",-) U(gi"’_‘;j)=|a 1-'|
i i r—F

~.

Variational Principle

- Hofp,.(;c,.)+[2jgoj.(xj)U(x,.,fcj)(pj(xj)dzj}p,.(xi)
j=1

_|:ZJ.(pj(55‘])U(i,’)?,)(p:(x,)dfl}(p,(it) = Sigpi(ii)

Spectrum of Electronic Hamiltonian:
What ab initio methods do we have?

Methods for computing
the electronic structure

1

[Ab-initio Methods }

Hartree-Fock l’ Quantum
Method Density Monte Carlo

+ Configuration ‘ Functional Theory

Empirical Methods

\ Interaction
O Existing realizations of DFT
§H-F - neglects completely allow accurate predictions
electron correlation for large systems

§H-F+CI —is able to treat

ONLY few electrons @ Currently the method of

choice in materials science




Density Functional Theory (DFT)
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
@ One particle density — Basic quantity of DFT
p(?)=<¥’(;71,;72,...,FN)|Z&(ﬁ—?)|?’(;71,;§,,‘..,iw)>
=de?z,...,d?N‘I’*(F:Fz,...,FN)'P(F,Fz,...,FN)

@ The DFT is based on two fundamental theorems for a functional
of the one particle density.

® One particle density determines the ground
state energy of the system

@ Modern formulation — constrained-search method of Mel Levy

Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979).

Density Functional Theory — constrained search formulation
Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979).

Functional of the one particle density Flp]= 9rynin <5Up |]A"-|—I}H |'I'p>
0P

The functionaIF[pL searches all many particle functions ¥ that yield
the input density 2(¥) and then delivers the minimum of (T +V,_,

Theorem I fﬁve,,(7)P(7) +F[pl>E,

= o P, - ground state densit:
Theorem IT fﬁ"m(')Po(")JrF[Po] =E, EZ - ground state energy

Let us define function ¥, that minimizes<$”p |f+l}e_z |Y’p>
Fpl=(¥ T4V \¥0)  Flp,1=(¥n1T+V,_ | ¥0)

min

Proof of Theorem I:
[ dv (P +FIp1= [ div, p@)+(#0,1T+V, ¥, )=
= (W2, W +T 4V, 1¥0,) 2 E,

Ritz variational principle]

Density Functional Theory — constrained search formulation

Proof of Theorem II: E,<(v” [}m +T+ [;;_E | q/"/:’f,n>

From variational principle

(P 1V 4TV 1) < (Wl | Vo + T4V, |90
[ v, #py ) +(# N T4V, ¥, ) < [dFv, F)py )+ (P01 +V, 195,
(A) (#IT+V_ 1)< (o 1 T+V,_ w8

min

But, on the other hand, from the definition of ¥”

min

(B) (% IT+V._ 1%,)2(ve 1 T+V_ P8
[(A) & (B) true] = (¥, |T+V._ |¥,)=(wr, |T+V,_ |%%)
Fip g =(w T +V.. 190
[ @0, )p ) +(F N T+V, 1, )= Fip, 1+ [ dFv,,(7)p, )
(@, 1V, +T+V,_|9,)=F[p,]+[div,(F)p,(F)
E,=Flp 1+ [dv ()p, )| g

Density Functional Theory — Constrained Search Formulation
Relation to Ritz Variational Principle
<V |H|\¥>

R inimizati E[¥P]=
The ground-state energy minimization procedure of E[¥] IS

can be divided into two steps
= i 7 7 7 _ . . P % et »

E,\[V] —;,gt;g("’ IT+V,_ +V,, |'1’>—;'gg[gg;t<‘l’ IT+V,_ +V ¥ >]

@ The inner minimization is constrained to all wave functions that give P(iz),

@ while the outer minimization releases this constrain by searching all P(*)

Percus-Levy partition of the N-electron Hilbert space

@ Each shaded area is the sgt of ¥ that
integrate to a particular P(r).

@ The minimization ¥ — p for a particularp
is constrained to the shaded area
associated with this p, and is realized
by one point (denoted by e )
in this shaded area.

@ The minimization p = N is over all
such points.




Density Functional Theory — Constrained Search Formulation
Relation to Ritz Variational Principle

B Elp]=min(U|T+V_+V, %)=
— i : PPy % o\ | =
_f]'iff[(p”_’,f,'<!p |T+V,_ +V,  |¥ >]—

= min|:min<!l7" IT+V_, |W>+jd7vm(?)p(7)] =

PN | Top

= min[F[p] + [dFv,,(F)p(7)] =

= mi’vl Elp]
® p>] %E[P] =F[p] +Id?’Um(;")p(?)]

In @ 2N wave functions of 3N variables ‘

In @ ON E function of 3 variables !!! ‘

Density Functional Theory
PROBLEM: exact functional F/p] is unknown !
One needs a good approximationto F/p/

Flp]=min(¥,|T+V_ |¥,)= (¥, |T+V._|¥,)

- i/p/ +ULp1+{(¥s, V... |¥5,)-ULpl}
Exchange & Correlation E [p]

Classical Coulomb energy
vipl=L [[arar BDE [Flp] =T1p]+Ulp] +E. [ ]|
@ The functional F/p] is universal in the sense that it is independent of
the external potential (field) v, (F) .
Thomas-Fermi-Method gprobably the oldest approximation to DFT)
T " p]= %(37:2)2’3 E f dFlp(H)" Vopl=U[p]

2m —
PROBLEM: T""[p]

Very often these models give even

qualitatively wrong results.

and extensions
§ Thomas-Fermi-Dirac
§ Thomas-Fermi-Weizsacker

Density Functional Theory (DFT)
in Kohn-Sham realization

Interacting particles  Independent particles

_\ //_ _\.//_ </ Idea: consider electrons
71N ZIN_@Z- asindependent particles
\.//_ \.// 71N moving in an effective
/N X potential

WE Tk ) PRI Di(R, )

This reduction is rigorously possible !

DFT- The Kohn- Sham Method
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

W. Kohn & L. Sham (1965) invented an ingenious indirect approach to the
kinetic- energy functional.

They turned density functional theory into a practical tool for
rigorous calculations

The main idea:

[System of interacting )} ) [System of non-interacting electrons}

electrons with densityp(7 with the same density p(7)

“Fictitious” or Kohn-Sham reference
system

“Real” system

pr)  T[p] Ti[p]  ps)=p@)
E[p]=[div,_(F)p(F)+T [ p]+U[p]+E_[p]
® E_[p]=V,[p]-Ulp]+T[p]-T,[p]

@ Exchange-correlation functional contains now the difference between
kinetic energy functional of interacting and non-interacting electrons.




The Kohn- Sham Method —
Kinetic energy functional

How the T([p] looks like ?

Hamiltonian of the non-interacting reference system
N 2 N
Hy=) —— V. +) u(F) v4(F) - local potential
T A
For this system there will be an
exact determinantal ground-state wave function

! det[@,,9,,....0,1 . where ¢; are the N lowest eigenstates

Q =
VN of the one-electron Hamiltonian

6.(F) = €6,(r) The density
—»[m?) =D 9% (Mg,

. -
heo, = '—V2 +0,(F)
2m

The Kohn- Sham Method —
Kinetic energy functional

T s [ p ] - can be defined by the constrained-search formula
N 2
~ he =
T,[pl= Min(®|T &)= Min 1— V1,
S p o—p o—p ; ¢l 2m ¢l
The search is over all single-determinantal functions @D

that yield the given density p .

® The existence of the minimum has been proved by Lieb (1982).
° Ts [p] is uniquely defined for any density.

° Ts[p] #T[p]

Crucial characteristics of the Kohn-Sham Method

The Kohn-Sham Method: Variational Procedure

We cast the Hohenberg-Kohn variational problem in terms of the one-particle
(Kohn-Sham) orbitals

E,=minE[p] =
=min{T.1p]+UIpI+E, [p]+[div,,(7)p(F)}
= min{/ Min{@ |7 1)1 +U1 p] + E, 1 p1+ [dFo_,(F)p(F)}

=min{T,[®]+U[p[®]] +E [ p[®]] + [dFv,(F)p[®I(7)}

{9 />N

= min {Ts[m,—}] +U[plo I +E. [pl{o }+ Zjd?qo,-'(i')vcx,(?)w?)}

The dependence of the density 2 on the orbitals { ¢, } is known

p(F)=Y 0% (F)p(F)

i=1

Variational search for the minimum of E/p] can be equivalently

performed in the space of the orbitals { ¢, }

Derivation of the Kohn-Sham Equations
Performing variational search for the minimum of E/p ] one must
actually constrain orbitals to be orthonormal Jd?ap:(?)goj(7) = 517 (o)

Conservation of the number of particles
Let us define the constrained functional of the N orbitals

QU9 =Elp] -y D¢, [ ) (F)g,(F)

i=1 j=1
where 8ij are Lagrange multipliers for the constrain (® ).

For E/p]to be minimum, it is necessary that 62[{ ¢, }[ =0

5 N N . i 6 6p 5
O _lErp]-SSe [ao (7)0.(F)=0 Note: - o
&p,.(r){ [p1= 23 a0/ (Foe,(7 } " S0 () 8. () ap

The variational procedure leads to equations:

[—f—?’ +vm(?)+vﬂ(?)+vxc(?)]¢i(?) = qugoj(?)
m

j=1

#)=9U ' P(F) SE_[p]
v, (r)=—-= dr - 7 =¢
r op J- r | v,.(7) &

|F=F




Derivation of the Kohn-Sham Equations

In Kohn-Sham method exchange-correlation functional can be split into
separate exchange and correlation functional E _[p]/=E [p]+E_ [p]

E/p/——fzj a7 wr){ZWJ ()

[F—F'|

Exchange energy Correlatlon energy
Exchange Correlat|on
functlonal functlonal potentlal potentlal
i) _9OE [p] é lpl

v (r v(r) + v(r)

Kohn-Sham potential (local potential !)
V. (F)=0,(F)+0,(F)+v (F)+0,(F) (=0, 7))

- w2, o i . .
HKS=—%V +v,,(7) is hermitian = €, is also hermitian

(g;= (o] H lo;))
Unitary transformation of { ¢; / diagonalizes &, ! < K '>
but the density and HKS remain invariant.

The Kohn- Sham Method —
The Kohn-Sham Equations
® Schrodinger-like equations with local potential

2

—ﬁ—V2+vm(r)+v (F)+v (F)+v,(F) |9.(F)=€0,(F
N

2m
= _p? Z
v, (F)==¢ §|r—r 7 J

p(7)=2.0% (F)o,(7) ’

@® These equation are nonlinear and must be solved

» (r)_‘SU_J' , p(F)

-;-.,

iteratively (self-consistently)

The Kohn- Sham Method —
,/Aufbau‘ principle

How to calculate one particle density?

unoccupied
LUMO Ext
HOMO [ En
. occupied
&
&

The Kohn- Sham Method — The Total Energy

{E[pl ———Zjd"co (FIV’@,(F)+U[p]+E [p]+E.[p]+|drv, ,(F)p(?)}

i=1

Yo L
E= 28,—EHd"d"'p(r)_p_,(':)+Ex[p]+E‘,[p]—Id?(vx(r)+vc(r))p(r)

i=1

so-called double counting correction

Sum of the one-particle Kohn-Sham energies]

Ye, =2<¢ I— ‘72 +3 ()@, > Tslpl+IdF19Ks(?)p(?)

=1 i=1

ﬁinergy of the reference system}

differs from the energy of ‘real’ system




The Kohn- Sham Method — Problems

@ Physical meaning of the Kohn-Sham orbital energies 8,- ?
(Note, these energies were introduced as Lagrange multipliers)
© Strictly speaking there is none @

o The Kohn-Sham orbital energy of the highest occupied level
is equal to the minus of the ionization energy,é,,,. = #=—1

o Extension to non-integer occupation numbers 0 < f; < 1
(V)= 0, (F)p,(7) 37E g Janak theorem (1978) ©
© Kohn-Sham energies may be considered as the zero order

approximation to the energies of quasi-particles ©
in the many-particle theory.

@ Correlation energy functional E./p/ (also vc(;') ) is unknown for
non-homogeneous systems

o E_[p]-is known for homogeneous electron gas ©
(constant density)

Density Functional Theory (DFT)
in Kohn-Sham realization

Interacting particles  Independent particles

\.//_ _\//_ </ Idea: consider electrons
1IN ZIN_@Z- asindependent particles
\.//_ AN moving in an effective
AR /?\ potential

WX, Xy X, ) ¢1(£1)¢2(£2)'”¢3(£mz3)

This reduction is rigorously possible !

DFT- The Kohn- Sham Method

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

System of interacting System of non-interacting electrons
electrons with density p(7) with the same density p(7)

“Real” system “Fictitious” or Kohn-Sham reference

p(¥) T[p] T, [p] py(F)=p(¥) system

E[p] =Id?vex,(?)p(F)+Ts[p]+U[pl+Ex[p]+b;lpl
OB X

) M- o
o Tipl==7 Y [d0,(F)V'e(F)
i=1
Q,(F)e,(F)

77

° E[pl=-13 [[ddrg;(7)| 3, 0,(7)

2 j

DFT: Implementations of the Kohn-Sham Method

— All-electron full potential GW (quasi-particles)
I~ All-electron muffin-tin EXX (exact exchange)
I~ All-electron PAW sX-LDA
— Pseudopotential Time dependent DFT
Fully relativistic LDA+U
Semi-relativistic - Beyond LDA
Non-relativistic - Generalized Gradient Approximation (GGA)

- Local Density Approximation (LDA)

—%W VOV v, =€,

Gaussians(GTO)
Slater type (STO)
Numerical

Non-periodic - Atomic orbitals

periodic -
) ] Plane Waves  [pjane waves (FPLAPW)
Non-spin-polarized — Spherical waves
Spin polarized - Augmentation 4 (LMTO, ASW)

Fully numerical
(real space)




Exchange and Correlation Energy

of Homogeneous Electron Gas
@ Homogeneous electron gas (free electron gas or “jellium”)

Wave functions: W(k,F)= ——e*T

Exchange en?/rsgy per unit volume
3(3 2 4/3 _ h
E, =_E[;] ep=£""p

@ Dimensionless parameter
characterizing density:

i

r=—
ag

1[ 3 ]1/3 pin (ap)™ =

Constant electron density: p = N /Q

Exchange energy per particle

1/3
nom __ 33 2 173
em=_Z1"| ¢
wm32] e

1/3
6,’l:om =_§[iz) 1 in [Ry]
2\ 4 ry

€M™ (r,) =-0.91633/r, [Ry]

@ Quantum Monte-Carlo simulations for homogeneous electron gas
D. M. Ceperly & B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)

Parametrization: J. P Perdew & A. Zunger, Phys. Rev. B 23, 5048 (1981)

Correlation
energy 3:3 ()=
per particle

Alnr,+B+CrInr,+Dr, for r,<1
7/(1+ﬂ,\/Z+ﬂzrs) for r, 21

[Ryl

A4,B,C,D,y,p,, B, -fitted parameters

Local Density Approximation (LDA)

In atoms, molecules, and solids the electron density
is not homogeneous

p(r)
p,/ \P1=P(r1)

® The main idea of the
Local Density Approximation:
the density is treated /ocally as constant

i T [ ELNpl= [ o) |

shom — 6,hom +£h0m

Xc X c

GGA - Gradient Corrections to LDA

Gradient Expansion Approximation
D. C. Langreth & M. J. Mehl, Phys. Rev. B 28, 1809 (1983)

|Vp(F)

ESpl= ELPp)+ [dip()C, I =L ]

p(;:)4/3

Generalized Gradient Approximation
J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986)
GGA - <
ESH = [dF £, (p(7),Vp(F))

xc -constructed to fulfill maximal

number of “summation rules”

Exchange-correlation potential can be calculated very easily,
since explicit dependence of E, . on the dengity is known.

O0E

) = Xc

Xc @

Examples of exchange functionals

o Becke 88: Becke's 1988 functional,
® Perdew-Wang 91

® Barone's Modified PW91

° Gill 96

® PBE: The 1996 functional of Perdew, Burke and Ernzerhof

© OPTX: Handy's OPTX modification of Becke's exchange functional

@ TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuser

and also many correlation functionals




Accuracy Benchmarks of the different DTF Functiona

Encrgy difference [meViatom)
g8 & & §

g

0

o °
¢ o.2®

Difference in energy per atom

in the

and in the B-tin phase of Si.

Phys. Rev. B 74, 121102(R) (2006)

Computational Materials Science:
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