\CULTY OF Py Chair of Condensed Matter Physics
j ol l/% = Institute of Theoretical Physics

= S Faculty of Physics, Universityof Warsaw
Mgy e ™

Summer Semester 2014

Lecture

Modeling of Nanostructures
and Materials

Jacek A. Majewski

E-mail: Jacek.Majewski@fuw.edu.pl

QSO OF P Modeling of Nanostructures

AN .
== and Materials
Ws gy ™

Jacek A. Majewski (Nevill Gonzalez Szwacki)

Lecture 2 — March 3, 2014

e Density Functional Theory (DFT) —
the key to the
Computational Materials Science
The Basics

e Kohn-Sham realization of the DFT

Fundamental problem in materials science

A fundamental problem in materials science is
the prediction of condensed matter’s electronic structure

Cgp - molecule

DNA - molecule

Materials Science:
Examples of Schrédinger Equation?

© Materials are composed of nuclei {Z,,,Ma,f?ﬂ,} and electrons {7}
- - 1
==> the interactions are known
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Kinetic energy Nucleus-Nucleus Electron-Electron

of nuclei . interaction interaction
Kinetic energy Electron-Nucleus

of electrons interaction

HY = EY

Ab-initio (first principles) Method —
ONLY Atomic Numbers {Z} as input parameters




Quantum Mechanics:

System of N electrons in an external potential

@ Adiabatic approximation — interacting electrons move in the ‘external’
potential of nuclei (ions) at fixed positions

{R,R,,...}
L X A, [H T+V, +V._ } H=2 fﬁ v
=§'_2mvi g ln=nl
- 5 -Ze S 5 22 %
= a___ =y = ) r = — —
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‘ Schrodinger equation 'P({R AT Py 2, ,r )=V (7 r, Z, ,rN)

HY =EY Many particle wave function N = 10%
Ritz Variational Principle = Ground State Energy of the system P
: 5 . 2 s E/w/=w
Eoznun<\11|H|ly>=nnn<\y\T+Ve,g+ Vot I'¥) v
YN
W(#,7,...,7,) Many-particle wavefunction E[Y]2E,

Full minimization of the functional E /¥ ] with respect to all
allowed N-electron wave functions

Spectrum of Electronic Hamiltonian:
What ab initio methods do we have?

Methods for computing
the electronic structure

L

[Ab-initio Methods }

Hartree-Fock l’ Quantum
Method Density Monte Carlo

+ Configuration Functional Theory

Empirical Methods

\ Interaction
O Existing realizations of DFT
§H-F - neglects completely allow accurate predictions
H F+g|'e°_"°';|°°t"et'at":“ for large systems
§H- —ls ap'e to trea @ Currently the method of
ONLY few electrons L A A
choice in materials science

Density Functional Theory (DFT)
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)
@ One particle density — Basic quantity of DFT
p(F)= < Byl )|25(r —F)| ¥ (FyFy.. ,FN)>
= N[ dF,..,d7 " (FFopo. s F JP(F e 0T )

@ The DFT is based on two fundamental theorems for a functional
of the one particle density.

® One particle density determines the ground
state energy of the system

@ Modern formulation — constrained-search method of Mel Levy

Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979).

Density Functional Theory — constrained search formulation
Mel Levy, Proc. Natl. Acad. Sci. USA, vol. 76, No. 12, p.606 (1979).

Functional of the one particle density F[p]= min <'{/ If"-q-l} N >

The functlonaIF[p] searches all many particle functlons ¥ that yield
the input density () and then delivers the minimum of (7 +V,_,

Theorem I [ div, (F)p(F)+Fp] > E,

- - Py - ground state densit;
Theorem I1 fﬁ"m(")Po(")JrF[Po] =E, EZ - ground state energ))//

Let us define function ¥’ that m|n|m|zes<$" |T+VE |'I/>

min

Flpl =¥ T4V \¥0)  Flp,1= (w0 T+V,_ %)

Proof of Theorem I:
[ v P +FLpI= [ div,, () +(PE, 1T+, 192, )=
=¥

min

W+ T4V, W0 )2 E

\{ Ritz variational prmcmle]




Density Functional Theory — Constrained Search Formulation Density Functional Theory
Relation to Ritz Variational Principle PROBLEM: exact functional F/p] is unknown !
One needs a good approximationto F/p/

B Elp]=min(U|T+V_+V, |¥)= F[p/:;n_,;,:@fﬂ|f+17e_e|Wp>=<w,;,;n|i+li_e|ql;,.”>

= minl in{@r | F+7_ 47, 19} |= =X(p1+ULp] +{(¥0 V... | ¥, )= Ul p]}
= min in (7 747, 19°) + [, (FIp(F) | = i 4P [Exchange & Correlation E,.[p]
e ° Classical Coulomb energy
vip1=L [[ara BOE [F[p] =T1p]+Ulp] +E. [ )]

IF—7'l

=minE[p]
@ it <£E[p] =F[p]+ Id?vm(?)p(?)] @ The functional F/p/ is universal in the sense that it is independent of
the external potential (field) v, (F) .

= min[F[p] + [dFv,,(F)p(7)] =

ext

Thomas-Fermi-Method (probably the oldest approximation to DFT)
T [p]= §(3n2>2’3if aFlp®” VY [pI=Ulp]

2m —
PROBLEM: T""[p]

Very often these models give even

qualitatively wrong results.

In @ 2N wave functions of 3N variables ‘
and extensions

In @ ON E function of 3 variables !!! @ § Thomas-Fermi-Dirac
§ Thomas-Fermi-Weizsacker

The Kohn- Sham Method -

DFT- The Kohn- Sham Method . L. .
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) Kinetic energy functional

W. Kohn & L. Sham (1965) invented an ingenious indirect approach to the How the Ts[p] looks like ?

kinetic- energy functional. ] ) ) )
They turned density functional theory into a practical tool for Hamiltonian of the non-interacting reference system
rigorous calculations N To, & N - .
The main idea: H,= Z——Z Vi 4> vg(#) v4(F) - local potential
. m .
System of interacting . System of non-interacting electrons . : l .
electrons with densityp(7*) with the same density p(r) For this system there wn! be an _
‘Real’ system “Fictitious” or Kohn-Sham referencte | exact determinantal ground-state wave function
pr)y T[p] T, [p] p®=pi) SYStEM @ =——det[d,,p,,....0,] .where ¢ are the N lowest eigenstates
VNV of the one-electron Hamiltonian

E[p]=[div,_(F)p(F)+T [ p]+U[p]+E_[p]
® E [p]=V,[p]-Ulp]+T[p]-T[p]

@ Exchange-correlation functional contains now the difference between
kinetic energy functional of interacting and non-interacting electrons.

¢,(r) = €9,(r) The density

N B =
hs¢i = \__vz + Us(?)
2m




The Kohn- Sham Method —
Kinetic energy functional

T, [ p] - can be defined by the constrained-search formula
— M T R 2
Ts[p]—]éfitg<¢lTld§> Mmz< | v |¢>

The search is over all single-determinantal functions @D
that yield the given density p .

® The existence of the minimum has been proved by Lieb (1982).

° Ts [p] is uniquely defined for any density.
° Ts[p] #T[p]

Crucial characteristics of the Kohn-Sham Method

The Kohn-Sham Method: Variational Procedure

We cast the Hohenberg-Kohn variational problem in terms of the one-particle
(Kohn-Sham) orbitals

E,=minE[p] =
= min{T,[p] +Ul p] +E, [ p] + [dFv,(F)p(F)}
= min{ [ Min(@|71@)14+U 1 p] + E, [ ]+ [aFo,,(F)p(F)}
=min{T,[®]+U[p[®]] +E [ p[®]] + [dFv,(F)p[®I(7)}

=, min_ {Tsl{qo,» H+UIpl{@ I +E [pl{o ] + Zjd?qo,f(?)vm(?)rp,-(?)}

The dependence of the density 2 on the orbitals { ¢; } is known
N

p(7)= X 6% (F b, (7)

Variational search for the minimum of E/p/ can be equivalently
performed in the space of the orbitals { ¢, }

Derivation of the Kohn-Sham Equations
Performing variational search for the minimum of E/p ] one must
actually constrain orbitals to be orthonormal J-dr_"(p:(;")cpj(l_") = Jij (o)

Conservation of the number of particles
Let us define the constrained functlonal of the N orbitals

QI =E[p]- ZZeyIm (F),(F)

i=1 j=1
where 8ij are Lagrange multipliers for the constrain (®).

For E/p]to be minimum, it is necessary that 62[{ ¢, }[ =0

- - ] p 6
[p]- g, f¢(r')lp(r')}=0 Note: ———— = f’ —
&pu{ g 22 J / () 3015

The variational procedure leads to equations:

[ Z—V’+vm(r)+u (F)+v, (r)] 0,(F)=Y.£,0,(F)
m

j=1

- . P(F) .. OE
vu(F)="5 I[ |F=F'] vxc(r)=%

Derivation of the Kohn-Sham Equations

In Kohn-Sham method exchange-correlation functional can be split into
separate exchange and correlation functional E_[p]/=E [p]+E_.[p]
(FIo(F))
9,(7)p } -

EX/p1=—12I dFdF'q’,T‘(F)[Z "l ;_1‘,|

Exchange energy Correlatlon energy
Exchange Correlatlon
functlonal functlonal potentlal potentlal
_90E /pl é lpl

v_(F) v(F) + v.(F)

xc

Kohn-Sham potential (local potential !)
V. (F)=0,(F)+0,(F)+0 (F)+0,(F) (=0, (F) )

A e I e : e
H, =--—V’+v,(F) ishermitian = ¢ is also hermitian
2m v

KS
(g;= (o] H lo;))
Unitary transformatign of { ¢; } diagonalizes & i < s '>

but the density andH s remain invariant.




The Kohn- Sham Method -
The Kohn-Sham Equations

@ Schrodinger-like equations with local potential

. _8U p(7) ‘ SE,[p]) (3E.Ip]
= = d"v X c
UH(r) 5p I r |;:_;‘I| @ Q

2

—

PG v, (F)+0,(F)+0 (F)+0,(F) |p.(F)=€p,(F

2m N
7)=—¢ #
v, (F)=—e sz,nl?—i—f?,, J

p(7)=X.0% (F)o,(7) ]

@ These equation are nonlinear and must be solved
iteratively (self-consistently)

The Kohn- Sham Method —
,/Aufbau‘ principle

How to calculate one particle density?

unoccupied
LUMO Enal
HOMO[* En
. occupied
)
&

The Kohn- Sham Method — The Total Energy

2 N R
{E/p/ = —f—mz [dre;(F)V?0,(F)+UIpI+E [p]+E [p] + jd?vw(?)pﬁ)}

E= Zs,.—%Hd?dF'M+Ex[p]+EL,[p/—j'd?(vx(r)wﬁ))p(i)

Py |F—F'|

so-called double counting correction

Sum of the one-particle Kohn-Sham energies]

N N il—l o N R .
Ye-= <¢i|—%V‘+19Ks(r)|¢,.>=Ts/p1+Jdes(r)p(r)
i=1

i=1

ﬁinergy of the reference system}

differs from the energy of ‘real’ system

The Kohn- Sham Method — Problems

@ Physical meaning of the Kohn-Sham orbital energies 8,— ?
(Note, these energies were introduced as Lagrange multipliers)
© Strictly speaking there is none @

o The Kohn-Sham orbital energy of the highest occupied level
is equal to the minus of the ionization energy,&,,,. = #=—1

o Extension to non-integer occupation numbers 0 < f; <1
(V)= [0, (F)p,(7) g—f =¢ Janak theorem (1978) ©
© Kohn-Sham energies may be considered as the zero order

approximation to the energies of quasi-particles ©
in the many-particle theory.

@ Correlation energy functional E./ p/ (also vc(;) ) is unknown for
non-homogeneous systems

o E_[p]-is known for homogeneous electron gas ©
(constant density)




Density Functional Theory (DFT)
in Kohn-Sham realization

Interacting particles  Independent particles

_\//_ _\.//_ </ Idea: consider electrons
1IN ZIN_@Z- asindependent particles
\.//_ \.// 71N moving in an effective
SN 7X potential

'"P(;C]jzvu’;‘wzw) ¢l(£l)¢2(£2)”'¢3(£m”)

This reduction is rigorously possible !

DFT- The Kohn- Sham Method

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

System of interacting System of non-interacting electrons
electrons with density p(7) with the same density p(7')

“Real” system “Fictitious” or Kohn-Sham reference

p(F) T[p] T, [p] py(F)=p(¥) system

Elp] =Id?v,,x,(?)p(?)+Tslpl+Ulpl+Ex/p]+E}/pI
o PF)=30% (P (F)

B C o D2 o
o TIpl==7 Y [d0,(F)V'e(F)
0,(F)9;(7)

|F—F'|

© E,1pl=-53 [[ e, ) %,

j

o,(7)

DFT: Implementations of the Kohn-Sham Method

— All-electron full potential GW (quasi-particles)
[~ All-electron muffin-tin EXX (exact exchange)
I~ All-electron PAW sX-LDA
— Pseudopotential Time dependent DFT
Fully relativistic LDA+U
Semi-relativistic - Beyond LDA
Non-relativistic - Generalized Gradient Approximation (GGA)

- Local Density Approximation (LDA)

VO, v, =EY,

Gaussians(GTO)
Slater type (STO)
Numerical

Atomic orbitals

Non-periodic -

periodic -
) ] Plane Waves  [pjane waves (FPLAPW)
Non-spin-polarized — Spherical waves
Spin polarized - Augmentation 4 (LMTO, ASW)

Fully numerical
(real space)

Exchange and Correlation Energy

of Homogeneous Electron Gas
@ Homogeneous electron gas (frqe electron gas or “jellium”)

Wave functions: W(E,F) = ﬁeik'; Constant electron density: p =N /Q
Exchange energy per unit volume | Exchange energy per particle
1 1/3
3(3 2 4/3 _ _hom hom __3(3 2 1/3
E.=—|—| e =€ g =——|—| e
e F R w3312
@ Dimensionless parameter 3( 9 1/3 1
characterizing density: g:‘"“ = _7[ 5 ] — in[Ry]
(3 pin@y? = )
(i s €M™ (1) =—0.91633/, [Ry]

@ Quantum Monte-Carlo simulations for homogeneous electron gas
D. M. Ceperly & B. J. Alder, Phys. Rev. Lett. 45, 566 (1980)

Parametrization: J. P Perdew & A. Zunger, Phys. Rev. B 23, 5048 (1981)

Correlation

energy eMm(r) = {
per particle

Alnr,+B+Crnr,+Dr, for r,<1
YA+ Br, +Bor,) for r,>1
A,B,C,D,y,f,,p, -fitted parameters

[Ryl




Local Density Approximation (LDA)

In atoms, molecules, and solids the electron density
is not homogeneous

p(r) ® The main idea of the
P py=p(ry) Local Density Approximation:
1 the density is treated /ocally as constant

i r [ ELpl= [ o) |
s)lcngm — 8;10“1 + £zlom

GGA - Gradient Corrections to LDA

Gradient Expansion Approximation
D. C. Langreth & M. J. Mehl, Phys. Rev. B 28, 1809 (1983)
=y 12
GEA; oy _ pLDA - |Vp(F)|
ESHIpl= ELIpl+ [dip(F)C, o1 =
p(r)
Generalized Gradient Approximation
J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986)
Ep)= | dF ), Vp(¥
v P1=]drf. (p(r),Vp(r))
xc -constructed to fulfill maximal
number of “summation rules”

Exchange-correlation potential can be calculated very easily,
since explicit dependence of E . on the dengity is known.

L

Xc &

Examples of exchange functionals

o Becke 88: Becke's 1988 functional,
® Perdew-Wang 91

© Barone's Modified PW91

° Gill 96

® PBE: The 1996 functional of Perdew, Burke and Ernzerhof

© OPTX: Handy's OPTX modification of Becke's exchange functional

@ TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuser

and also many correlation functionals

Accuracy Benchmarks of the different DTF Functionals

8 8 & & 8

Encrgy difference [meViatom)

g

[ L0A JiPwo1}f Pk JiTpss |f kse |

0

Difference in energy per atom
in the and in the B-tin phase of Si.

Phys. Rev. B 74, 121102(R) (2006)




Exact Exchange Method (EXX)

Exact Exchange for non-homogeneous systems + E_. in LDA or GGA

Main difficulty:
SE, [p]
()

How to calculate the exchange potential V.(F)=

M. Stédele et al., Phys. Rev. B §9, 10031 (1999).

=
i 'l

1 e (F)Q(F))
Elpl==33 ] d?dr'@(r)[Z%}er')

Problem: Explicit dependence of E.[p] (i.e., @;[p] ) on p is unknown

Exact Exchange Method (EXX)

Solution: v, is the first functional derivative of E

OE
=== First order perturbation theory determines exactly x

—_— Apply
chain rule o OE, =25Ex < op; y Sy
dp T o Svgs dp

(T +v)p; = £ from E
Perturbation theory

80,(F) =2¢_’,T(f')¢,.(7') @

Ovys (71 = &7
LI —y
Svgs  Op; vy dp

Exact Exchange Method (EXX) - CONCLUSSIONS

e Systematic improvement in comparison to LDA and GGA ©

e Numerically very costly in comparison to LDA and GGA @

e \ery good basis to search for better correlation energy
functionals

The work is going on ! (J. Perdew) ©

=) New generation of the energy functionals

Hybrid functionals
Hybrid functionals include a mixture of Hartree-Fock exchange
with DFT exchange-correlation

EXAMPLE:

O3LYP: A three-parameter functional similar to B3LYP:
E,. = A'Ex-SP+(1-A) E\F+B*AE,OPT*+C*AE-P+(1-C)EYWN

lead very often to better accuracy with experiments




Extensions of the DFT

e Relativistic DFT
A. K. Rajagopal and J. Callaway, Phys. Rev. B7, 1912 (1973)

e Kinetic energy operator (free Dirac field)
h=ca-p+ PBmc*

e The ground-state energy is a functional ,
of the four-vector current density Ju (%)

Extensions of the DFT —
Spin-polarized systems
U. Von Barth & L. Hedin, J. Phys. C 5, 1629 (1972)

e For example, systems with odd number of electrons
Pr#p, P=prtp
o Energy functional of both spin densities Exc[PT’PU

Alternatively E, [p,m] where

[Spin polarization (magnetization)

OF, . |pgsP-]
Py

o Exchange-correlation potential v, . =
o=T))
e Local Spin Density Approximation (LSDA)

Important for magnetism !

Extensions of the DFT

e Finite - Temperature (7 #0)
N. D. Mermin, Phys. Rev. 137, A1441 (1965)

e Grand canonical ensemble, Q= —kBTlnTr[e(”N_H)/kBT]
© The grand potential of the a system at finite temperature
is a functional of the density in the system at that

temperature.

==p Applications of DFT in statistical physics

Solution of the Kohn-Sham Equations

@® Direct methods on a mesh in r-space

@ Expansion of the Kohn-Sham orbitals in a basis {Za,;(;:)}
0, (F)=NY c(nk) g 0 (F)
14

e . - =
‘ [2 <x,,,;I—Zsz+va(r)|xa,,;>—e,,(k)<xa,;Ixa,,;>}ca'(n,k)=0 ’
P
el /
qullton|an Overlap integrals
matrix elements
/

[ 1H g (0)=€,0)8 1 (B)lege () =0 |

Eigenvalueproblem det[Haa,(E)—sn(E)Sw'(E)]=0
=) Sn(/;) Bandstructure




Solution of the Kohn-Sham Equations —
Survey of Methods involving basis

@ LCAO (Linear Combination of Atomic Orbitals)
All electron & pseudopotential
Semiempirical Tight-Binding Method

@ Plane waves and pseudopotential
EMP - Empirical Pseudopotential Method

@ OPW (Orthogonalized Plane Waves)
All electron, plane waves orthogonalized to core states

Solution of the Kohn-Sham Equations —
Survey of Methods

Multi-scattering Methods (All electron)

Muffin-tin form of the potential used to generate basis X X )
Basis function — Numerically obtained wave function | @ @ @
inside the muffin-tin sphere + .
augmented function outside ® ®

© LAPW [FPLAPW] (Full Potential Linearized Augmented Plane Wave)
Plane waves outside muffin-tin spheres
Considered to be the most accurate method

© LMTO (Linearized Muffin-Tin Orbitals)
Hankel functions outside muffin-tin spheres

© KKR (Kohn - Korringa — Rostoker)
Green’s Function Method

Very important for alloys (VCA, CPA)

Density Functional Calculations in Solids

Total energy of a solid: Emt =E,+ Eion—ion
2
e ZZ,
E . == s
lon—=ion 2 22 | R + ) _,i.‘s' |

=
nn'ss' 1 n Ts

=115

Lattice vectors R, = nd, +nyd, +myd; {d ;3 - primitive translations
{7,} - Basis vectors — positions of atoms in the unit cell

E, (3T 1d) = E, (¢}, {T W d D+ E,,,_;,, (T }:4d;})

Density Functional Calculations in Solids

Equilibrium Force on atom s:
@ Forces on all atoms disappear Ij"s =0 F =_3Em
o7
s

-

=) Equilibrium positions of atoms in the unit cell {7,}

e i 0,5=0
Crystal is stress free Oyg Stress tensor: [ __9E,
B
i (¥) -a vector field (deformation) that describes ob
the displacement of every point in the solid @pelord
Before deformation: 7 After deformation: F +#(r) u =%
Deformation tensor: o axp

= Shape of the unit cell, primitive translations {d}’}

10



Hellmann-Feynman Theorem

are usually calculated using

and ¢
Hellmann-Feynman Theorem
H. Hellmann, “Einfiihrung in die Quantenchemie”
(Denieke, Leipzig, 1937), p.285
R. P. Feynman, Phys. Rev. 56, 340 (1939)
OE _ E)H(ﬂ)
YA | —,—ly(4)
7

W(A) - Ground-state wavefunction of the Hamiltonian fl(ﬂ,)

Only these terms of the Hamiltonian contribute, which are explicitly
dependent on the parameter 4 .

First (convincing) LDA Calculations: Stability of crystals
and pressure induced phase transitions

-7.84 M. T. Yin & M. L. Cohen,
B Silicon Phys. Rev. B 26, 5668 (1982)

— -7.86

E P EQ USEDV)
= ransition 2 1
g Vt( ) _ Vt( )
x,

£ 788 E

p=-3

3 F1Z

2

Q

i=4
w

Interesting prediction:
Under high hydrostatic pressure
and in low temperature silicon
becomes superconducting !

-7.90

-7.92 PR IR I NI
06 07 08 09 10 11 X
Volume Later on confirmed experimentally

o o o
LI .

o o
®. 2

L

LDA calculations for semiconductors:
lattice constants and bulk moduli

Equilibrium lattice
Bulk modulus

Theoretical lattice constant [A]

aP @

constant T - )
S14 .
B, =V Si
InSh, 2.5 i,
1] P
209
3
gos8
x07
=)
206
]
':.-'-_’0.5
00.4 T
56 58 60 62 64 66 £ 04 05 06 07 08 09 10
Experimental lattice constant [A] F  Experimental bulk modulus [Mbar]
Averaged error: 0.46% Averaged error: 4%
Min. error (InP): -0.1% Min. error (InSb): -2.8%
Max. error (AIP): -0.7% Max. error (AlAs): -9.5%

Ground state properties of wurtzite nitride semiconductors

Waurtzite structure % .
/ Basis vectors
Lattice vectors ‘ d,=(0,0,0)
E-Y >

3 =a(1,0,0) @wllc fz:(0,0,uc) UCI
a,=c(0,0,1) op O &=0.9/.02)

ot 1 fy “ H

a¢- Y5950 a 4=0.92.d2410) | o Gation (Ga, Al In)
X3 y @ Anion (N)

a['A] 3.174 3.189 -0.47% 3.091 3.112 -0.67% 3.538 3.544 -0.17%
crA] 5169 5.185 -0.31% 4.954 4.982 -0.56% 5.707 5.718 -0.19%

u 0.3768 0.377 -0.05% 0.3816 0.382 -0.10% 0.379

cla 1.6283 1.626 0.15% 1.6028 1.6009 0.12% 1.613

BO [GPa] 196 195 0.5% 205 202 1.48% 146 139 5.0%
E,,—E,, 6 29 17

[meVi/atom] Theory | | Experiment || Relative error

’ Generally, LDA gives very good geometry of the unit cell ‘




Cohesive energies in semiconductors
Comparison of LDA, EXX, and HF Methods

Cohesive Energy

o Cohesive energy =
Energy of free (separated) atoms —
Energy of solid

Cohesive energy = -- Binding energy

LDA — overestimates (LDA world is
smaller than the real one)
HF -- underestimates,
2, X x ® EXX(GGA) EXX - gives excellent cohesive
energies in semiconductors

Calculated energy [eV]

X HF
L L L

0 1
3 4 5 6 7 8
Experimental energy [eV]

DFT - Calculation of the equation of state
and elastic constants

o Equationofstate- E, (V) or P(V)
=) VO BO Bo !
e Elastic constants

Energy of the strained system

1 1
poE(n)==7 Y it X cpttl K
¢ i,j=1,6 4 ‘i, jk=1,6 A
| \
Second order Third order
Elastic constants Elastic constants

LDA calculations in semiconductors

Valence bands for GaAs as determined
from angle-resolved photoemission
experiments and pseudopotential theory

®| LDA gives very good
description of the occupied
s-p valence bands (4s & 4p)
in semiconductors

A

@ Various methods of solving
Kohn-Sham equations give
very similar results

o

o¢u¢ Expériment
— Pseydopotential theory| X

1A1 WW
foooe

YA T T KX AT

Wave vector

.Energy [eV]
&
>
w
[ |

=
o

]
_/L!
51

LDA calculations in semiconductors — Energy gap

Band structure
of diamond silicon

Kohn-Sham gap

KS _ .KS __KS
EGap = Ecbb — Evie

P

m
[
F

Egep = ENu (V) —£8 (V)

@ Relation of the Kohn-Sham gap
to the quasi-particle energy
(change of system energy

T caused by adding a particle) ?

Energy [eV]

@ Is the Kohn-Sham gap generally
wrong, for description of
one particle excitations ?

A 3 T T A L
Wave vector

Ecapr = ELumo - Enomo
Too small by factor of 2 ® Does the error is caused by the
approximation of the functionals ?

@ For all semiconductors and insulators,
LDA (GGA) give energy gaps that are “The band gap problem”
40%-70% of experimental gaps
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Fundamental band gaps in semiconductors:
Local Density Approximation & Exact Exchange

Fundamental Band Gaps
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DFT (LDA, GGA, EXX) for weakly correlated systems

Accuracy of Common DFT implementations
O Accuracy of geometries is better than 0.1 A

O Accuracy of calculated energies (relative) is usually
better than 0.2 eV
Very often better than 0.01 eV

® Band Gap problem!

@ Unsatisfactory accuracy of discussed approximations
for highly correlated systems
(mostly involving 3d — electrons)

DFT - further developements required

May we reach so-called chemical accuracy within DFT?

© Exact Exchange Kohn-Sham Method - a step in this direction
> Systematic improvement of existing Kohn-Sham schemes
» Computationally very demanding
* Bulk systems up to now
» Implementations for larger systems going on

@ Crucial - Better correlation energy functionals

DFT - further developements required

Density functional theory has revolutionized the way
scientists approach the electronic structure of atoms,
molecules,and solid materials in physics, chemistry,
and materials science

We are not at the end of this way!

Thank you!
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