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Continuous Methods for Modeling !
of Nanostructures!
!
!!k.p method, effective mass approximation, EFT!
!!Shallow donors and acceptors!
!!Quantum wells, wires, and dots!
!!Self-consistent solution!

Ab initio theory of Valence Band Offsets 

    Nanotechnology –  
   Low Dimensional Structures    

Quantum 
Wells 

Quantum 
Wires 

Quantum 
Dots 

A B 
Simple 

heterostructure 

Atomistic methods for modeling of  
nanostructures  

Ab initio methods (up to few hundred atoms) 

Semiempirical methods (up to 1M atoms) 

(Empirical Pseudopotential) 

Tight-Binding Methods 

Continuum Methods  
(e.g., effective mass approximation) 
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Atomistic vs. Continuous Methods 
Microscopic approaches can be applied  
to calculate properties of realistic nanostructures 

Number of atoms in a spherical Si nanocrystal as a function of its radius R. 
Current limits of the main techniques for calculating electronic structure. 
Nanostructures commonly studied experimentally  
lie in the size range 2-15 nm. 

Continuous 
methods Continuum theory- 

Envelope Function Theory 
k.P Method 
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Periodic potential of crystal Non-periodic external potential 
Strongly varying on atomic scale Slowly varying on atomic scale  
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Band structure  
of Germanium 
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Band Structure 

k.P method for the band structure calculations 
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!
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Valence (6) and  
conduction bands (2) 
around k=0 (!) point 
are basis for 8x8 k.p  
band model 

hh (4) 
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k0 
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14x14 k.p 

Band structure  
known in k0,  
 
computed for  
k-points closed  
to k0 
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Envelope Function Theory- Degenerate Bands 

Matrices obtained from k.p method, (e.g., 8 band k.p method) 

3 3 3
(0) (1) (2)

1 1 1

ˆ̂
ab vab ab abH D D k D k kµµ µµ!!
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µµ µµ !!== == ==

== ++ ++"" """"

Periodic potential hidden in the parameters  
                                                       of the Hamiltonian matrix 
 
Parameters of the Hamiltonian determined on the basis  
of the perturbation theory verified by experimental results 
  

8 band k.p Method 

Hamiltonian matrices in both bases used in the calculations 

8 x 8 matrix easily handled numerically 

The most popular  form of the k.p Method 

For analytical purposes one must take further simplifications 
E. O. Kane, The k.p Method , Semiconductors and Semimetals, 
                      Vol. 1, eds. R. K. Willardson and A. C. Beer, 
                       (Academic Press, San Diego, 1966), p. 75. 

One author – one notation 
e.g., Luttinger parameters 1 2
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Crystal potential hidden in the parameters of the k.p matrix 

Electron in an external field 
2ˆ
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Periodic potential of crystal Non-periodic external potential 
Strongly varying on atomic scale Slowly varying on atomic scale  

Which external fields ? 
"!  Shallow impurities, e.g., donors   
"!  Magnetic field B,  
"! Heterostructures, Quantum Wells, Quantum wires, Q. Dots 

2
( )

| |
eU r
r!!

== ""
!

!
B curlA A== ==!!""

! !! !

GaAs GaAlAs 

cbb 

GaAs GaAlAs GaAlAs 

Does equation that involves the effective mass and a slowly varying  
function exist ? 2ˆ

( ) ( ) ( )
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p U r F r F r
m

!!
"" ##

++ ==$$ %%$$ %%&& ''

! ! ! !
( ) ?F r ==
!

Envelope Function Theory – 
Effective Mass Equation 
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Envelope Function Theory- Degenerate Bands 
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Matrices obtained from k.p method, (e.g., 8 band k.p method) 
3 3 3
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The effect of non-periodic external potential can be described by  
 a system of differential equations for the envelope functions 

Periodic potential hidden in the parameters of the Hamiltonian matrix 

Wave function 

Basis theory for studies of  low dimensional systems 

Envelope Function Theory –  
Effective Mass Equation 

J. M. Luttinger & W. Kohn, Phys. Rev. B 97, 869 (1955). 
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(EME) 

EME does not couple different bands 

Envelope  
Function 

Periodic  
Bloch Function 

“True”  
wavefunction 

Special case of constant (or zero) external potential 

!! (
!
r ) Bloch function 

( )U z Fn(
!
r ) == exp[i(kxx ++ ky y)]Fn(z)

Envelope Function Theory - Applications 

a) Magnetic field 
Minimal coupling principle for full Hamiltonian 
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Non-degenerate case -  conduction band electrons 

Landau levels 

Degenerate case of valence band 

b) Donors in semiconductors 

c) Low dimensional semiconductor structures 

Modeling of Nanostructures 
with EMT (EFT) 
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Envelope Function Theory- Donors in semiconductors 
Shallow impurities and doping in semiconductors 

Si
Si

Si

Si
Si

SiP = + -
+

Pentavalent  
Donor impurity 
(e.g., P, As, Sb) 

= Silicon-like + Electron &  
positive ion 

Coulombic  
attraction ! The attractive potential   U (

!
r ) == !!e2

!! |
!
r |

The dielectric constant of the semiconductor 

Donors in III-V semiconductors 
Group IV elements (e.g., Si, Ge) substituting cations (e.g., Al, Ga)  

Donors in Elemental Semiconductor 

Acceptors 
Elements of group III (e.g., Al, Ga) substituting an element  
of group IV (e.g., Si, Ge) 

Envelope Function Theory- Shallow impurities  

Which band (bands) should be considered in the  EFT?  

Ĥ ==
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!
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Shallow impurities (donors and acceptors) can be described by the  
Coulombic potential U(r) 

Donors in Silicon (Germanium)  
For Silicon, there are six equivalent conduction band minima along     axis !!
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Elliptically deformed hydrogen problem  

Six valence bands around k0 = 0  
Acceptors in semiconductors   !! == uvi0(
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Analytical solution is quite difficult, even when approximation  
techniques are used.  

Envelope Function Theory- Donors in III-V semiconductors  
Donors in the III-V semiconductors  
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Hydrogen atom problem 
0cE !!"" -! is the impurity energy with respect  

  to the conduction band edge 
*m m!!
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The energy solutions  
 for this problem are: 

Ground state energy level:  

The wavefunction of the ground state is  

21 ** mRy Ry
m!!

"" ##== $$ %%&& ''
Effective Rydberg 

Donor effective  
Bohr radius 

Envelope Function Theory- Donors in III-V semiconductors  

0c!!

dE

c.b. 

2E
nE

(1 )s

Effective mass theory (+ EFT) predicts that  
the energy levels of shallow impurities are  
independent of the specific donor or acceptor 

(1 )[ ]dE s meV Experiment [meV] 

GaAs 5.72 SiGa – 5.84 
GeGa – 5.88 
SAs – 5.87  
SeAs – 5.79 

InSb 0.6 TeSb - 0.6 

CdTe 11.6 InCd – 14 
AlCd - 14 

Experimental values are generally lower than EMT predictions 
Near the core, the impurity potential is not purely Coulombic and  
the simple model of screening (via the dielectric constant) is not suitable    

Rather large chemical shift for the ground state energies 
Energies of the excited states are nearly independent of the specific donor 

Thermal ionization  
of shallow impurities  
is very easy !  

The donor Bohr radius ~ 100 A (typical lattice constant 5.4 – 6.5 A) 
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Envelope Function Theory- Electrons in Quantum Structures  

A B A A B 

Simple heterostructures Quantum Wells 

A heterostructure is formed when two different materials (A & B) are  
joined together   

Modern materials growth techniques lead to heterostructures  
of extremely abrupt interfaces with interfacial thicknesses  
approaching only one atomic monolayer   

Heterostructures of great technological importance include: SiO2/Si,  
GaAs/AlGaAs, GaInAs/InP, GaSb/AlSb, GaN/AlN, GaInN/GaN, etc.  

The major goal of the fabrication of heterostructures is the controllable  
modification of the energy bands of carriers 

The energy band diagrams for semiconductor heterostructures ? 

e.g., GaAs/GaAlAs InAs/GaSb 

Band lineup in GaAs / GaAlAs  
Quantum Well with Al mole fraction 
equal 20%   

Envelope Function Theory- Electrons in Quantum Structures  

Type-I Type-II 

vbt 
cbb 

A 
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gapE
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gapE

B
gapE
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cbb 
A 

B 
vE!!

cE!!
A
gapE

B
gapE

Various possible band-edge lineups in heterostructures 

GaN/SiC 

(staggered) (misaligned) 

- Valence Band Offset (VBO) vE!! - Conduction band offset cE!!

GaAlAs 
vbt 

cbb 

1.75 eV 1.52 eV 

0.14 eV 

0.09 eV   
GaAs 

VBO s can be only obtained either from experiment or ab-initio calculations 

Envelope Function Theory- Electrons in Quantum Wells  
Effect of Quantum Confinement on Electrons   
Let us consider an electron in the conduction band near      point !!

GaAs GaAlAs GaAlAs 

cbb 

Growth direction (z – direction ) 

Potential           ?  U (
!
r )

U (
!
r )  is constant in the xy plane 

!!c (
!
k ) == !!c0 ++

!2

2m*
!
k 2

U (
!
r ) ==U (z) ==

!!c0             z !!  GaAs

!!c0 ++ !!Ec      z !!  GaAlAs

""
##
$$

%%$$

2 2 2 2

2 2 2 ( , , ) ( ) ( , , ) ( , , )
2 *

F x y z U z F x y z EF x y z
m x y z

!! ""## ## ##$$ ++ ++ ++ ==%% &&%% &&## ## ##'' ((

!

Effective Mass Equation for the Envelope Function F 

( , , ) ( ) ( ) ( )x y zF x y z F x F y F z==Separation Ansatz 
2 222

2 2 2 ( )
2 *

y zx
y z x z x y x y z x y z

F FF F F F F F F U z F F F EF F F
m x y z

!! ""## ####$$ %%&& ++ ++ ++ ==
$$ %%## ## ##'' ((

!

2 222

2 2 2 ( )
2 *

y zx
y z x z x y x y z x y z

F FF F F F F F F U z F F F EF F F
m x y z

!! ""## ####$$ %%&& ++ ++ ++ ==
$$ %%## ## ##'' ((

!

x y zE E E E== ++ ++
22

22 *
x

y z x x y z
F F F E F F F

m x
!!

"" ==
!!

! 22

22 *
y

x z y x y z
F
F F E F F F

m y

!!
"" ==

!!
!

22

2 ( )
2 *

z
x y x y z z x y z

F
F F U z F F F E F F F

m z
!!

"" ++ ==
!!

!

         
22 2

2
2 ~ ,

2 * 2 *
xik xx

x x x x x
F E F F e E k

m mx
!!

"" == ## ==
!!

! !

Effective Mass Equation of an Electron in a Quantum Well   

        
22 2

2
2 ~ ,

2 * 2 *
yik yy

y y y y y
F

E F F e E k
m my

!!
"" == ## ==

!!
! !

22

2 ( )
2 *

zn
zn zn zn

F
U z F E F

m z
!!

"" ++ ==
!!

!



7!

Conduction band states of a Quantum Well   
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in Quantum Well 
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Conduction band states of a Quantum Well   
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!
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!
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!
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!2

2m*
!
k||
2 ++ En

The confinement of electrons in one dimension 
results in the creation of energy subbands En ,  
which contribute to the energy spectrum:    

En - Quantized energy associated with the  
        transverse (perpendicular to the heterostructure)  
        confinement. 

Two quantum numbers, one discrete n and  
another continuous     , are now associated  
with each electron subband   

!
k||

At fixed n, the continuum range of      spans the energy band, which  
Is usually referred to as a two-dimensional subband  

!
k||

If electrons occupy only the lowest level, free motion of electrons is  
possible only in the x,y plane, i.e., in two directions.  
This system is referred to as a two-dimensional electron gas (2DEG)  
The behavior of a two-dimensional electron gas differs strongly  
from that of a bulk crystal.   

Density of States of a Two-Dimensional Electron Gas    
A special function known as the density of states G(E) that gives  
the number of quantum states dN(E) in a small interval dE around 
energy E: dN(E)= G(E) dE  

-! the set of quantum numbers (discrete and continuous)  
-! corresponding to a certain quantum state 
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""== ##$$
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the quantum state  !!

!! == {s,n,
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k||}For 2DEG: 

Spin quantum number Continuous two-dimensional vector 

A quantum number characterizing the  
transverse quantization of the electron states  
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Density of States of a Two-Dimensional Electron Gas    
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Density of States of a Two-Dimensional Electron Gas    

2
*( ) ( )n
n

SmG E E E!!
""

== ##$$
!

Often the density of states per unit area, 
                  , is used to eliminate the size  
of the sample 
( ) /G E S

Each term in the sum corresponds to the contribution from one subband. 

The contributions of all subbands are equal and independent of energy. 

The DOS of 2DEG exhibits a staircase-shaped energy dependence,  
with each step being associated with one of the energy states. 
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(3 ) ( )DG E

Density of states for 2DEG in an  
infinitely deep potential well 
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For large n, the staircase  
function lies very close to  
the bulk curve  (3 ) ( )DG E

2
*m

!!!
2

2 *m
!!!

2
3 *m
!!!

Electron States in Quantum Wires    
To make the transition from a two-dimensional electron gas to  
a one-dimensional electron gas, the electrons should be confined  
in two directions and only 1 degree of freedom should remain, that is,  
one should design a two-dimensional confining potential U(y,z).  

A 

A 
B 

G G 

B
A 

A 

xk

(a) (b) Based on the  
split-gate  
technique 

Uses an etching technique 

Two of the simplest examples of structures providing electron  
confinement in two dimensions 

Electron States in Quantum Wires    

xk

Free movement in the x-direction,  
Confinement in the y, z directions 
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( , )U y zConfinement potential 

Density of states for one-dimensional electrons 
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Electron States in Quantum Dots    

A 

B 
A 

Self-organized quantum dots 

Electrons confined  
in all directions 

2 2 2 2
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m x y z
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Density of states for zero dimensional (0D) electrons (artificial atoms) 
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   Density of States of Electrons in  
Semiconductor Quantum Structures  

A A B Quantum Wells 

A 
B
A 

B Bulk 

Quantum Wires 

Quantum Dots 
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2D 
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0D 
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Effective Mass Theory with Position Dependent  
Electron Effective Mass     
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A Bm m!!
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0z ==

*
Am

* ( )Bm z

Graded structures  

IS NOT HERMITIAN !! 
Symetrization of the kinetic energy operator  

General form of the kinetic energy operator 
with  

IS HERMITIAN ! 

and ARE CONTINOUOS ! 

Effects of Doping on Electron States in Heterostructures     

+ + 

Ec 

+ + EF 
+ + + + + + Ec (z) EF 

1E

Unstable Thermal equilibrium Charge transfer 
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Resulting electrostatic potential  

should be taken into account in the Effective Mass Equation  
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Electrostatic potential can be obtained from the averaged acceptor  
and donor concentrations 

Fermi distribution function 

The self-consistent problem, so-called Schrödinger-Poisson  problem 

3D nano-device simulator - nextnano3 

Calculation of electronic structure : 

" ! 8-band kp-Schrödinger+Poisson equation 
" ! Global strain minimization 
" ! Piezo- and pyroelectric charges 
" ! Exciton energies, optical matrix elements,...  

Calculation of current only close to 
equilibrium with new approach 

Simulator for 3D 
semiconductor 
nano-structures: 

" ! Si/Ge and III-V materials 
" ! Flexible structures & geometries 
" ! Fully quantum mechanical  
" ! Equilibrium & nonequilibrium 
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Dot shape and piezoelectric charges 

No light emission Efficient light emission 

Piezoelectric 
charges 

Localization of 
electron and hole 
wavefunction 

Ab-initio theory of the  
Valence Band Offsets 

 Ab-initio Theory of Valence Band Offsets   
  
       Energy band diagram for selectively doped heterostructures  
       Strained heterostructures: coherent and incoherent growth 
       Formulation of the ab-initio theory of the valence band offsets 
       Macroscopic averaging of microscopic quantities  
       Envelope function as macroscopically averaged wave function 
       Accuracy of the VBO calculations 
       VBO of polar interfaces 
       Model theory of band offsets in semiconductors 

Electrons in Semiconductor Quantum Structures 
The Origin of Quantum Confinement of Electrons  

The periodicity breaking potential originates from the discontinuity  
of band edges in the adjacent materials  

U (
!
r ) ==

!!0                
!
r !! B

!!0 ++ !!E      
!
r !! A

""
##
$$

%%$$
B A 

cbb 

A 
vbt 

How to obtain band discontinuities (offsets) from the ab-initio calculations? 

How does the doping influence the band-lineups? 

Band discontinuities are basic quantities that determine properties  
of the semiconductor quantum structures  
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vE!!

cE!!

Energy band diagram of a selectively doped AlGAAs/GaAs 
Heterostructure before (left) and after (right) charge transfer    

AlGaAs 

GaAs 

VACUUM LEVEL 

vE!!

EF 

A
gE

B
gEA!!

B!!

A
gE

1!!

dl

AL Negatively  
charged  
region 

Positively charged  
region 

A!! B!!and - The electron affinities of material A & B 
The Fermi level in the GaAlAs material is supposed to be pinned  
on the donor level.  
The narrow bandgap material GaAs is slightly p doped. 

B
gE

(0)( ) ( ) ( )U z U z e z!!== ++

Strained Heterostructures:  
Coherent and Incoherent Structures  

An overlayer with lattice constant       is grown on a substrate with lattice 
constant   

La
Sa

L Sa a>>

||
S L

L

a a
a

!! ""
==

Substrate 

Overayer 

Coherent 

Incoherent 

Dislocations 

Overlayer 
biaxially  
strained 

The coherent growth is possible only up to critical thickness 
of the overlayer  

||
L

Sa a==
La!!    - from  

minimum of 
elastic  
energy  

vE!!

cE!!

A
gE

Ab-initio Theory of the Band Offsets    

Material A  Material B  

B
gE

vE

cE

AV BV

B
v BE V!!

A
v AE V!!

V!!

Conduction  
band offset 

Valence  
band offset 

      ( )

B A
c c c

B B A A
v g v g

E E E

E E E E

!! == "" ==

== ++ "" ++

( )B A B A
c v v g gE E E E E!! == "" ++ ""

B A
c g gE VBO E E!! == ++ ""

B A
v v vVBO E E E!!"" == ##

AV BVand are averaged potentials in material A and B, respectively  

PROBLEM: Averaged potential in bulk crystal is unknown !!! 

Note:         is negative here  cE!!

Formulation of the problem    

e.g., GaAs/GaAlAs InAs/GaSb 

Various possible band-edge lineups in heterostructures  

Type-I Type-II 

vbt 
cbb 

A 
B 

vE!!

cE!!

A
gapE

B
gapE

vbt 

cbb 
A B 

vE!!

cE!!

A
gapE

B
gapE

vbt 

cbb 
A 

B 
vE!!

cE!!
A
gapE

B
gapE

GaN/SiC 

(staggered) (misaligned) 

- Valence Band Offset (VBO) vE!! - Conduction band offset cE!!

vE!! cE!!Type-I:  and have opposite signs 

vE!! cE!!Type-II:  and have the same signs 
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Ab-initio Theory of the Band Offsets    

Why the position of the averaged potential is unknown in bulk crystal ? 

NO ABSOLUTE ENERGY SCALE IN INFINITE CRYSTAL !! 

Coulomb interaction  

Averaged crystal potential 

1
r

!

SR LRV V V== ++
Short range 
potential 

Electrostatic potential 

el el ion
LR HV V V !!== ++

Crystal potential 

SR LRV V V== ++

VLR ==VH
el (
!
G == 0) ++V el!!ion(

!
G == 0)

!! !!""
exists but unknown! 

LDA
xcV

VH
el (
!
G)! 1

"
G2

Ab-initio Theory of the Band Offsets    

                        

( ) ( ) ( )

( ) ( )

B A B A
v v v B v A B A

B A
v B v A BS

VBO E E E V E V V V

E V E V V E V!! !! !!

== "" == "" "" "" ++ "" ==

== "" "" "" ++ == ++

From calculations for two separate bulks 
One (or  both) bulk may be strained 

From calculation  
for superlattice 

Two interfaces Superlattice 

Superlattice period 

Heterostructure Interface Growth direction 

Ad BdRelaxation 
Bulk values of distances between atomic planes far from interface 

Ab-initio calculations for superlattice 

Full relaxation of atomic positions in the unit cell 

Atoms at the interfaces relax stronger than atoms in the middle  
of the structure (so-called bulk region)  

Relaxation of the unit cell length along the growth direction 
Takes into account the strain effects 

Ab-initio Theory of the Band Offsets    

!!(
!
r ) == !!el (

!
r ) ++ !!ion(

!
r )

Velst (
!
r ) ==VH (

!
r ) ++Vion

LR(
!
r ) !!2Velst (

!
r ) == !!4!!e2!!(

!
r )

Output of the ab-initio calculations – the microscopic charge density 

changes strongly on the atomic scale  

Correspondingly, the electrostatic potential is also strongly oscillating on  
atomic scale    

!!ion(
!
r ) == Zl ,!!

l ,!!
!! !! (

!
r !!
!
Rl !!

!
!!"" )

How to obtain changes of the potential on the macroscopic scale ? 
 
How to obtain the change in the averaged potential ?  
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Ab-initio Theory of the Band Offsets    
Macroscopic averaging of microscopic quantities    

A. Baldareschi, S. Baroni, and R. Resta,  
Phys. Rev. Lett. 61, 734 (1988). 

Aw

1( ') ( | ' |)2
A

A
A

w z z z z!!""
!!

## == ## ##

'z'
2
Az !!"" '

2
Az !!++

1( '') ( , , '')
S

f z dxdyf x y z
S

== !!

( ) ' '' ( ') ( ' '') ( '')A Bf z dz dz w z z w z z f z== !! !!"" ""

Lateral averaging 
Over the area of the lateral unit cell 
Macroscopic averaging 

With suitable weighting functions  
2A Ad!! ==
2B Bd!! ==

AS!! -! Unit cell volume of bulk  
  material A 

Analogous to electrodynamics,  
transition from microscopic to  
macroscopic fields 

(for heterostructures  
grown along [001] 
directions)  

La
te
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] 3.2 

2.4 

1.6 

0.8 

0.0 

-0.8 

-1.6 

-2.4 Ge Ge Ge Sn Sn Sn 
[001] 

Laterally averaged potential    
Ab-initio calculations of VBO    

Ge/Sn [001] heterostructure 

Distance along the growth direction 

V (z) == 1
S
dxdyV (

!
r )

S
!!

Very similar shape of the laterally averaged density 
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AlSb/GaSb (001) heterostructure 

Macroscopic averaged density and potential    
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Ab-initio calculations of VBO    

( )el z!!
( )elstV z

z [A] 

33.6 Å  

AlAs AlAs

GaAs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ab-initio calculations for superlattices    

(AlAs)   (GaAs)12 12[001]

Laterally and macroscopically averaged wave function  
of the conduction band bottom   

Macroscopically averaged wave function resembles envelope function 

Envelope Function Theory = Continuum theory (on macroscopic scale)   

2| |!!
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Relation between macroscopically averaged density  
and macroscopically averaged electrostatic potential    

Ab-initio Theory of the Band Offsets    
( )z!!
( )elstV z

Az Bz z

( )z!!
2

2
2
( ) 4 ( )elstd V z e z

dz
!! ""== ##

( ) ( )elst B elst AV V z V z!! == ""

( ) ( )AB A Bq E z E z== !!( )
B

A

z

AB
z

q z dz!!== ""

Interface 
Bulk region  
of material A  

Monopole charge  
at the interface 

V!! - Dipole at the interface (provided monopole charge vanishes) 

2 24 ( ) 4 [ ( ) ( )]
B

A

z

A A B B
z

V e z z dz e z E z z E z!! "" ## ""== ++ $$%%
Electric field Dipole 

or 

Accuracy of the VBO calculations    
Better than  Experiment for GaN/GaP :  1.8 +/- 0.6 eV 

Worse than  Theory for InP/Ga0.47In0.53As : 0.31 +/- 0.01 eV 

Comparison with experiment 
1) Simple systems – isovalent heterostructures 

(001) Si/Ge 0.79 eV, 0.76 eV 
Theory Experiment 

0.74 +/- 0.13 eV 

(001) AlAs/GaAs 0.45 - 0.55 eV 0.37 - 0.53 eV 

AlSb/GaSb 0.37 eV 0.40 – 0.45 eV 

2) Complicated heterostructures (heterovalent, polar) 
GaAs/ZnSe Ge/ZnSe SiC/GaN 

Strong dependence of the offsets on the chemical composition  
of the interface  

Ab-initio calculations of VBOs    
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Band Offsets for SiC/AlN and SiC/GaN heterostructure    

[001] SiC/AlN – always  
Type-I heterostructure  

[001] SiC/GaN – Type-I or 
Type-II heterostructure  
depending on the interface 
composition   

VBOs of [001] interfaces 
are determined by  
interface dipole = 
chemistry 

110  indicates nonpolar interfaces of the [110] SiC/AlN or SiC/GaN heterostructures 

GaAs/ZnSe (001) heterostructure-  
Valence Band Offsets  

GaAs ZnSe 

Theory 
One mixed layer [As/Se] -0.62 eV 

One mixed layer [Ga/Zn] -1.59 eV 

Two mixed layers  -1.05 eV, -1.17 eV 

Experiment 
Interface grown in the Se-rich case  -0.58 eV 

cb 

vb 

Interface grown in the Zn-rich case  -1.2 eV 

Eg =1.5 eV Eg =2.8 eV 

Type I - heterostructure 
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Model Theory of Band Offsets in Semiconductors    
Chris G. Van de Walle, Physical  Review B 39, 1871 (1989)  

Semiconductor = Superposition of neutral spherical atoms 

There exists absolute zero of energy in an atom! 

0 
r 

V(r) 

Runs over atoms  
in the unit cell 

Pretty good approximation for homopolar interfaces 
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Main points of the lecture: 
 

MODELING of NANOSTRUCTURES  
& MATERIALS 

 
Lengths & time scales 
Multiscale simulations 

Computational Materials Science –  
Multi-scale Simulations 

"coarse graining" 
the forces among the aggregated pieces can be accurately 
described by a new model with "renormalized" interactions. 

A schematic of the multi-scale challenge  
for mechanical properties of materials 

Computational Materials Science:  
A Scientific Revolution about to Materialize  

The materials science community is on the verge  
of a paradigm shift in the way it does science with the 
promise of building a sturdy bridge across the "valley 
of death" between basic science and technological impact. 

A useful construct for thinking about this potential 
paradigm is "Pasteur's Quadrant." 

D. E. Stokes, “Pasteur's Quadrant, Basic Science 
and Technological Innovation,,  
The Brookings Institution, Washington D.C., 1997 
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Computational Materials Science:  
A Scientific Revolution about to Materialize 

Pasteur's Quadrant 

Due to the complexity of materials systems, progress has 
necessarily proceeded either within the Bohr quadrant or  
Edison’s quadrant 

Realistic simulation is the vehicle  
for moving materials research  
firmly into Pasteur's quadrant. 

experiment and theory done on 
model systems 

research and development  
by trial and error 

Hierarchy of Theoretical Approaches  

Time [s] 

size 10-12 
Ab-Initio  

MD 

Classical MD 

Classical MD 
accelerated 

Monte Carlo 

Level Set 

Continuum Methods 

10-6 

10-3 

1 

10-9 

103 

Atomic 
vibrations 

Atomic 
motion 

Formation 
of 
islands 

Device 
growth 

1nm 1µm 1mm 1m length 
islands device circuit wafer 

DFT 

Materials Properties that require  
dynamical approach 

Thermodynamic Properties 

"!  Thermal conductivity 
"!  Viscosity 
"!  Diffusion constants 

Transport Properties 

Require dynamic treatment of ion movement 

Molecular Dynamics 

Chemical and other properties 

Chemical reaction rates (catalytic properties,   
corrosion, electrochemistry) 

Goal – to determine classical trajectories  
            of all atoms in the system 

Molecular Dynamics 

Classical dynamics (given by Newton equations)  
of atoms (ions) in the system 

{
!!
RI ( t )}

MI

!!""""RI ==
!!
FI!!

F
I
== !!"" IVeff ({

!!
RI })



17!

Classical & Ab initio Molecular Dynamics 

Force acting on ion 

Classical MD 
forces calculated from the effective  
                            (empirical, predefined) potential  

Ab initio MD 
forces calculated from the ab initio calculations  
                            for electrons moving in the field  
                            ions at the instantaneous positions  

Hellmann-Feynman Theorem 

Car-Parrinello Method  !! CPMD code 

!!
F
I
== !!"" IVeff ({

!!
RI })

{
!!
RI ( t )}

Large scale modeling - Coarse-Graining 

For large scale modeling, one may introduce alternative  
approaches using simplified coarse-grained models  
(lattice gas models) 

These models can be treated with the methods used  
commonly in statistical mechanics such as  
         mean-field theory, 
         the cluster variation method (CVM), 
         Monte Carlo methods. 
          
Question: how to provide a link between atomistic  
calculations (ab initio, classical potentials) and the  
potential parameters suitable for coarse-grained  
models. 

Why do we need coarse-grained modeling?  

Polyelectrolyte problem: ions around DNA 

Atomistic MD  
not really possible to  
sample distances  
30 – 40 A from DNA  

Na+ 

Water molecule 

An Example 

Na+ 

All-atom model  Coarse-grained model  

Coarse-grained model for ions around DNA  
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Basics of the Monte Carlo Method 

Macroscopic properties of a systems (i.e., how the whole  
system behaves) are of interest  

In a macroscopic system, it is difficult to treat the motions  
of the all (microscopic) atoms or molecules  

Coarse-graining necessary 
If the time evolution of the system is coarse-grained   
stochastically, one achieves one class of models,  
so-called stochastic models.   

Monte Carlo Method – efficient method to realize this  
numerically on a computer  
Monte Carlo methods provide a powerful way to solve  
numerically the fluctuation or relaxation in a stochastic  
system 

Brownian Motion 
A typical example of Monte Carlo method 

The bigger colloidal particle  
(Brownian particle) moves  
randomly, colliding with  
small solvent particles.   

When one observes it through  
a microscope, one identifies the  
position (or velocity) of the  
Brownian particle only.   

Applying coarse-graining procedure, the other degrees of  
freedom (e.g., the motion of small solvent particles) are  
removed and, finally they can be regarded as a  
random force acting on the Brownian particle.  

Multiscale Simulations of Fracture    

Fracture: the canonical 
multiscale materials problem 
brittle vs. ductile fracture 

The End 
 

Thank you ! 


