

Modeling of Nanostructures and Materials Jacek A. Majewski

Lecture 13 – June 2, 2014

Continuous Methods for Modeling of Nanostructures

- *k.p method, effective mass approximation, EFT
- Shallow donors and acceptors
- Quantum wells, wires, and dots
- Self-consistent solution

Ab initio theory of Valence Band Offsets

e-mail: Jacek.Majewski@fuw.edu.pl

- (Empirical Pseudopotential)
- Tight-Binding Methods
- Continuum Methods

 (e.g., effective mass approximation)

Envelope Function Theory- Degenerate Bands Matrices obtained from k.p method, (e.g., 8 band k.p method) $\hat{H}_{ab} = D_{ab}^{(0)} + \sum_{\mu=1}^{3} D_{ab}^{(1)\mu} k_{\mu} + \sum_{\mu=1}^{3} \sum_{\nu=1}^{3} D_{ab}^{(2)\mu\nu} k_{\mu} k_{\nu}$ Periodic potential hidden in the parameters of the Hamiltonian matrix The effect of non-periodic external potential can be described by a system of differential equations for the envelope functions $\sum_{b=1}^{s} \sum_{\mu=1}^{3} \sum_{\nu=1}^{3} D_{ab}^{(2)\mu\nu} (-i\nabla_{\mu})(-i\nabla_{\nu}) + \sum_{\mu=1}^{3} D_{ab}^{(1)\mu} (-i\nabla_{\mu}) + D_{ab}^{(0)} + U(\vec{r})\delta_{ab} |F_{b}(\vec{r}) = \varepsilon F_{b}(\vec{r})$ • Wave function $\psi(\vec{r}) = \sum_{b=1}^{s} F_{b}(\vec{r}) u_{b0}(\vec{r})$ • Basis theory for studies of low dimensional systems

Envelope Function Theory- Donors in III-V semiconductors
• Donors in the III-V semiconductors $\hbar^2 \vec{L}_2$
Single conduction band around $k_0 = 0$ $\varepsilon_c(\kappa) = \varepsilon_{c0} + \frac{1}{2m^*} \kappa$
$\Psi = u_{c0}(\vec{r})F_c(\vec{r}) \left[-\frac{\hbar^2}{2m^*}\vec{\nabla}^2 - \frac{e^2}{\varepsilon \vec{r} } \right] F_c(\vec{r}) = (E - \varepsilon_{c0})F_c(\vec{r})$ Hydrogen atom problem
• $m \rightarrow m^*$ $E - \varepsilon_{c0}$ - is the impurity energy with respect
•• Coulomb potential reduced by $\frac{1}{\epsilon}$
The energy solutions for this problem are: $E - \varepsilon_{c0} = -\frac{e^4 m^*}{2\varepsilon^2 h^2} \frac{1}{n^2} \text{for } n = 1, 2, K$
Ground state energy level: $E_d = \varepsilon_{c0} - Ry^*$ $Ry^* = Ry \left(\frac{1}{\varepsilon}\right)^2 \frac{m^*}{m}$ $1Ry = \frac{h^2}{2ma_B^2}$ $a_B = \frac{h^2}{me^2}$ Effective Rydberg
The wavefunction of the ground state is $F_c(r) = \frac{1}{\sqrt{\pi a^{*3}}} e^{-r/a^*}$ Donor effective $a^* = \frac{\varepsilon h^2}{m^* e^2} = a_B \varepsilon \frac{m}{m^*}$

Effective Mass Equation of an Electron in a Quantum Wel	
$-\frac{h^2}{2m^*} \left(\frac{\partial^2 F_x}{\partial x^2} F_y F_z + \frac{\partial^2 F_y}{\partial y^2} F_x F_z + \frac{\partial^2 F_z}{\partial z^2} F_x F_y \right) + U(z) F_x F_y F_z = E F_x F_y F_z$	
$E = E_x + E_y + E_z$	
$-\frac{h^2}{2m^*}\frac{\partial^2 F_x}{\partial x^2}F_yF_z = E_xF_xF_yF_z \qquad -\frac{h^2}{2m^*}\frac{\partial^2 F_y}{\partial y^2}F_xF_z = E_yF_xF_yF_z$	
$-\frac{h^2}{2m^*}\frac{\partial^2 F_z}{\partial z^2}F_xF_y+U(z)F_xF_yF_z=E_zF_xF_yF_z$	
$-\frac{h^2}{2m^*}\frac{\partial^2 F_x}{\partial x^2} = E_x F_x \Rightarrow F_x \sim e^{ik_x x}, E_x = \frac{h^2}{2m^*}k_x^2$	
$-\frac{h^2}{2m^*}\frac{\partial^2 F_y}{\partial y^2} = E_y F_y \Rightarrow F_y \sim e^{ik_y y}, E_y = \frac{h^2}{2m^*}k_y^2$	
$-\frac{h^2}{2m*}\frac{\partial^2 F_{zn}}{\partial z^2} + U(z)F_{zn} = E_{zn}F_{zn}$	

Density of States of a Two-Dimensional Electron Gas
$G(E) = 2 \sum_{n,k_x,k_y} \delta[E - E_n - \frac{h^2}{2m^*} (k_x^2 + k_y^2)]$
L_x, L_y - are the sizes of the system in x and y directions
$S = L_x L_y$ - the surface of the system $\sum_{k_x, k_y} (K) = \frac{L_x L_y}{(2\pi)^2} \iint dk_x dk_y (K)$
$G(E) = 2\frac{L_x L_y}{(2\pi)^2} \sum_n \iint dk_x dk_y \delta[E - E_n - \frac{h^2}{2m^*} (k_x^2 + k_y^2)] =$
$=\frac{L_{x}L_{y}}{2\pi^{2}}\sum_{n}\int_{0}^{\infty}2\pi k_{\parallel}dk_{\parallel}\delta(E-E_{n}-\frac{h^{2}}{2m^{*}}k_{\parallel}^{2})=$
$=\frac{L_{x}L_{y}}{\pi}\frac{2m^{*}}{h^{2}}\sum_{n}\int_{0}^{\infty}k_{\parallel}dk_{\parallel}\delta(E-E_{n}-k_{\parallel}^{2}) \qquad \qquad$
$G(E) = \frac{Sm^*}{\pi h^2} \sum_n \int_0^\infty d\varepsilon_{ } \delta(E - E_n - \varepsilon_{ }) = \frac{Sm^*}{\pi h^2} \sum_n \Theta(E - E_n)$
$\Theta(x)$ - Heaviside step function $\Theta(x) = 1$ for $x > 0$ and $\Theta(x) = 0$ for $x < 0$

Ab-initio theory of the Valence Band Offsets

• The narrow bandgap material GaAs is slightly p doped.

Ab-initio Theory of t	he Band Offsets
• Output of the ab-initio calculations – th	e microscopic charge density
$\rho(\vec{r}) = \rho_{el}(\vec{r}) + \rho_{ion}(\vec{r})$ changes strongly on the atomic scale	$\rho_{ion}(\vec{r}) = \sum_{l,\alpha} Z_{l,\alpha} \delta(\vec{r} - \vec{R}_l - \vec{\tau}_{\alpha})$
 Correspondingly, the electrostatic pote atomic scale 	ntial is also strongly oscillating on
$V_{elst}(\vec{r}) = V_H(\vec{r}) + V_{ion}^{LR}(\vec{r})$	$\nabla^2 V_{elst}(\vec{r}) = -4\pi e^2 \rho(\vec{r})$
 How to obtain changes of the potentia 	I on the macroscopic scale ?
How to obtain the change in the avera	ged potential ?

Accuracy of the VBO calculations					
Better than	Experiment for GaN/	/GaP: 1.8 +/- 0.6 eV			
Worse than	Theory for InP/Ga _{0.4}	₄₇ In _{0.53} As : 0.31 +/- 0.01 eV			
Comparison	with experiment				
1) Simple systems – isovalent heterostructures					
	Theory	Experiment			
(001) Si/Ge	0.79 eV, 0.76 eV	v 0.74 +/- 0.13 eV			
(001) AlAs/GaA	As 0.45 - 0.55 eV	0.37 - 0.53 eV			
AlSb/GaSb	0.37 eV	0.40 – 0.45 eV			
2) Complicated heterostructures (heterovalent, polar)					
GaAs/Zn	Se Ge/ZnSe	SiC/GaN			
Strong dependence of the offsets on the chemical composition of the interface					

Computational Materials Science: A Scientific Revolution about to Materialize

- The materials science community is on the verge of a paradigm shift in the way it does science with the promise of building a sturdy bridge across the "valley of death" between basic science and technological impact.
- A useful construct for thinking about this potential paradigm is "Pasteur's Quadrant."

D. E. Stokes, "Pasteur's Quadrant, Basic Science and Technological Innovation,, The Brookings Institution, Washington D.C., 1997

Materials Properties that require dynamical approach

Thermodynamic Properties

Transport Properties

- Thermal conductivity
- Viscosity
- Diffusion constants

Chemical and other properties

• Chemical reaction rates (catalytic properties, corrosion, electrochemistry)

Require dynamic treatment of ion movement

➡ Molecular Dynamics

Large scale modeling - Coarse-Graining

- For large scale modeling, one may introduce alternative approaches using simplified *coarse-grained models* (lattice gas models)
- These models can be treated with the methods used commonly in statistical mechanics such as
 - mean-field theory,
 - the cluster variation method (CVM),
 - Monte Carlo methods.
- Question: how to provide a link between atomistic calculations (*ab initio*, classical potentials) and the potential parameters suitable for coarse-grained models.

Brownian Motion

A typical example of Monte Carlo method

The bigger colloidal particle (Brownian particle) moves randomly, colliding with small solvent particles.

When one observes it through a microscope, one identifies the position (or velocity) of the Brownian particle only.

Applying coarse-graining procedure, the other degrees of freedom (e.g., the motion of small solvent particles) are removed and, finally they can be regarded as a **random force acting on the Brownian particle.**

