

Modeling Nanostructures

Modeling of Nanostructures and Materials Jacek A. Majewski Lecture 12 – May 19, 2014

Continuous Methods for Modeling

Electronic Structure of Nanostructures

Examples of nanostructures
 From atomistic to continuum methods
 k.p methods
 Effective mass approximation
 Envelope Function Theory

e-mail: Jacek.Majewski@fuw.edu.pl

Nanostructures: colloidal crystals

-Crystal from sub-µm spheres of PMMA (perpex) suspended in organic solvent;

- self-assembly when spheres density high enough;

Atomistic methods for modeling of nanostructures

• Ab initio methods (up to few hundred atoms)

- Ab initio methods (up to few hundred atoms)
- **Semiempirical methods** (up to 1M atoms)
 - Tight-Binding Methods

k.p Method- Luttinger-Kohn basis
Bloch functions are orthogonal in the wave vector and band index

$$\int d^{3}\vec{r}\psi_{l}^{*}(\vec{k},\vec{r})\psi_{n}(\vec{q},\vec{r}) = \delta_{nl}\delta(\vec{k}-\vec{q})$$

$$\psi_{n}(\vec{k},\vec{r}) = \exp[i\vec{k}\cdot\vec{r}]u_{n}(\vec{r}) \qquad \int d^{3}\vec{r}u_{l}^{*}(\vec{k},\vec{r})u_{n}(\vec{k},\vec{r}) = \frac{\Omega}{(2\pi)^{3}}\delta_{nl}$$

$$\int d^{3}\vec{r}u_{l}^{*}(\vec{k},\vec{r})u_{n}(\vec{q},\vec{r}) \neq 0 \quad \text{for } \vec{k} \neq \vec{q}$$
Luttinger-Kohn basis

$$\chi_{j}(\vec{k},\vec{r}) = \exp[i(\vec{k}-\vec{k}_{0})\cdot\vec{r}]\psi_{j}(\vec{k}_{0},\vec{r}) = \exp[i\vec{k}\cdot\vec{r}]u_{j}(\vec{k}_{0},\vec{r})]$$

$$\int d^{3}\vec{r}\chi_{l}^{*}(\vec{k},\vec{r})\chi_{n}(\vec{q},\vec{r}) = \delta_{nl}\delta(\vec{k}-\vec{q}) \qquad \text{Luttinger-Kohn basis}$$

$$\sum_{n} \int d^{3}\vec{k}\chi_{n}^{*}(\vec{k},\vec{r})\chi_{n}(\vec{k},\vec{r}') = \delta(\vec{r}-\vec{r}') \qquad \text{is orthogonal and complete}$$
Expansion of the unknown Bloch function in terms of known Luttinger-Kohn functions

$$\psi_{n}(\vec{k},\vec{r}) = \sum_{j} A_{nj}(\vec{k})\chi_{j}(\vec{k},\vec{r})$$

k.P – Method – Band Degeneracies
$\vec{p}_{ab}^{nm} = \left\langle u_{na}^{0} \mid \hat{\vec{p}} \mid u_{mb}^{0} \right\rangle$
$\overline{H_{ab}^n} = \varepsilon_n(\vec{k}_0)\delta_{ab} + \frac{\hbar^2}{2m}\vec{k}^2\delta_{ab} + \frac{\hbar}{m}\vec{k}\cdot\vec{p}_{ab}^{nn} + \sum_{m\neq n}\sum_{c=1}^{g_m}\frac{(\vec{k}\cdot\vec{p}_{ac}^{nm})(\vec{k}\cdot\vec{p}_{cb}^{mn})}{\varepsilon_n(\vec{k}_0) - \varepsilon_m(\vec{k}_0)}$
Band minimum in $\vec{k}_0 \Rightarrow \vec{p}_{ab}^{nn} = 0$
$H_{ab}^{n} = \varepsilon_{n}(\vec{k}_{0})\delta_{ab} + \frac{\hbar^{2}}{2m}\delta_{ab}\sum_{\mu=1}^{3}k_{\mu}^{2} + \sum_{m\neq n}\sum_{c=1}^{s_{m}}\frac{\left \sum_{\mu}k_{\mu}(p_{\mu})_{ac}^{nm}\right \left \sum_{\nu}k_{\nu}(p_{\nu})_{cb}^{mn}\right }{\varepsilon_{n}(\vec{k}_{0}) - \varepsilon_{m}(\vec{k}_{0})}$
$H_{ab}^{n} = \varepsilon_{n}(\vec{k}_{0}) + \frac{\hbar^{2}}{2m} \delta_{ab} \sum_{\mu=1}^{3} k_{\mu}^{2} + \sum_{\mu=1}^{3} \sum_{\nu=1}^{3} k_{\mu} k_{\nu} \sum_{m \neq n} \sum_{c=1}^{g_{m}} \frac{(p_{\mu})_{ac}^{nm}(p_{\nu})_{cb}^{mn}}{\varepsilon_{n}(\vec{k}_{0}) - \varepsilon_{m}(\vec{k}_{0})}$
$H_{ab}^{n} = \varepsilon_{n}(\vec{k}_{0})\delta_{ab} + \frac{\hbar^{2}}{2m}\sum_{\mu=1}^{3}\sum_{\nu=1}^{3}\frac{k_{\mu}k_{\nu}}{m_{\mu\nu}^{ab}}$
$\frac{1}{m_{\mu\nu}^{ab}} = \delta_{ab}\delta_{\mu\nu} + \frac{2}{m}\sum_{m\neq n}\sum_{c=1}^{g_m} \frac{(p_\mu)_{ac}^{nm}(p_\nu)_{cb}^{mn}}{\varepsilon_n(\vec{k}_0) - \varepsilon_m(\vec{k}_0)}$

k.P – Degenerate $\hat{\hat{H}} = \hat{\hat{D}}^{\mu\nu}k_{\mu}k_{\nu}$	Method – Ba ed Valence Ban	and Degenera Id of Cubic Sem	cies iconductors	
$\hat{\hat{H}} = \varepsilon_{v}(0)I + \frac{h^{2}}{2m} \Bigg[$	$Lk_x^2 + M(k_y^2 + k_z^2)$ $Nk_x k_y$ $Nk_x k_z$	$Nk_x k_y$ $Lk_y^2 + M(k_x^2 + k_z^2)$ $Nk_y k_z$	$\frac{Nk_xk_z}{Nk_yk_z}$ $Lk_z^2 + M(k_x^2 + k_y^2)$	
$det(\hat{\hat{H}} - EI) = 0$ These equations can be solved analytically !! T. Manku & A. Nathan, J. Appl. Phys. 73, 1205 (1993) J. Dijkstra, J. Appl. Phys. 81, 1259 (1997) Pretty complicated task				
SIMPLE: Find solutions along a symmetry line, e.g., $\vec{k} \in [k_x, 0, 0]$ Δ -line				

8 band k.p Method
States of group A: $ s+\rangle s-\rangle x+\rangle y+\rangle z+\rangle x-\rangle y-\rangle z-\rangle$ { \overline{u}_{i0} }
Conduction bandValence band $\boldsymbol{\varepsilon}_c(0) \equiv \boldsymbol{\varepsilon}_{c0}$ $\boldsymbol{\varepsilon}_v(0) \equiv \boldsymbol{\varepsilon}_{v0}$
$\hat{\hat{H}}_{ij} = \left\langle i \mid \hat{H}_{0} + \hat{H}' \mid j \right\rangle + \sum_{b}^{B} \frac{\left\langle i \mid \hat{H}' \mid b \right\rangle \left\langle b \mid \hat{H}' \mid j \right\rangle}{\varepsilon_{i} - \varepsilon_{b0}}$
8 x 8 Matrix $\det(\hat{\hat{H}}_{ij} - \boldsymbol{\varepsilon}_i(\vec{k})) = 0 \implies \boldsymbol{\varepsilon}_i(\vec{k})$
• Commonly employed simplifications in $\hat{H}' = \hat{H}_{SO} + \frac{\hbar^2 k^2}{2m} + \frac{\hbar}{m} \vec{k} \cdot \hat{\vec{\Pi}}$
$\hat{\vec{\Pi}} \approx \hat{\vec{p}} \qquad \hat{H}' = \hat{H}_{SO} + \hat{H}^{\vec{k}\cdot\vec{p}} \qquad \hat{H}^{\vec{k}\cdot\vec{p}} = \frac{\hbar^2 k^2}{2m} + \frac{\hbar}{m} \vec{k}\cdot\hat{\vec{p}}$
$\hat{H}_{ij} = \left\langle i \mid \hat{H}_{0} + \hat{H}^{\vec{k} \cdot \vec{p}} \mid j \right\rangle + \sum_{b}^{B} \frac{\left\langle i \mid \hat{H}^{\vec{k} \cdot \vec{p}} \mid b \right\rangle \left\langle b \mid \hat{H}^{\vec{k} \cdot \vec{p}} \mid j \right\rangle}{\varepsilon_{i0} - \varepsilon_{b0}} + \left\langle i \mid \hat{H}_{SO} \mid j \right\rangle$
$\hat{\hat{h}}_{ij}$ Contains part with operators $(\hat{H}_{SO})_{ij}$

$ J,m_J\rangle$	$\langle J, m_J \rangle$	$ \hat{H}_0 + \hat{H}_{SO} J, m_J\rangle$
$\left \frac{3}{2},\frac{3}{2}\right\rangle$	$\frac{1}{\sqrt{2}}(x+\rangle+i y+\rangle)$	$\varepsilon_{\nu_0} + \frac{\Delta_3}{2}$ ε_{ν_0}
$\left \frac{3}{2},\frac{1}{2}\right\rangle$	$-\frac{\sqrt{2}}{\sqrt{3}}(z+\rangle+\frac{1}{\sqrt{6}}(x-\rangle+i y-\rangle)$	$\varepsilon_{v0} + \frac{\Delta}{3} \int \Gamma_8$
$\left \frac{3}{2},-\frac{1}{2}\right\rangle$	$-\frac{\sqrt{2}}{\sqrt{3}}(z-\rangle-\frac{1}{\sqrt{6}}(x+\rangle-i y+\rangle)$	$\varepsilon_{v0} + \frac{\Delta}{3}$
$\left \frac{3}{2},-\frac{1}{2}\right\rangle$	$-\frac{1}{\sqrt{2}}(x-\rangle-i y-\rangle)$	$\varepsilon_{v0} + \frac{\Delta}{3}$
$ 1_2,1_2\rangle$	$\frac{1}{\sqrt{3}}(x-\rangle+i y-\rangle)+\frac{1}{\sqrt{3}}(z+\rangle)$	$\varepsilon_{v_0} - \frac{2\Delta}{3} \mathcal{E}_v$
$ 1_{2}^{\prime},-1_{2}^{\prime}\rangle$	$\frac{1}{\sqrt{2}}(x+\rangle-i y+\rangle)-\frac{1}{\sqrt{2}}(z-\rangle)$	$\varepsilon_{v0} - \frac{2\Delta}{3} \int \Gamma_7$

Envelope Function Theory • When $\langle n\vec{k} U(\vec{r}) n'\vec{k}' \rangle \cong 0$ for $n' \neq n$
then the coefficients of different bands are decoupled. $u_{n0}(\vec{r})$ are periodic functions
$u_{n0}^{*}(\vec{r})u_{n'0}(\vec{r}) = \sum_{m} B_{m}^{nn'} \exp[-i\vec{G}_{m} \cdot \vec{r}] \qquad \text{Fourier series}$ $Fourier coefficients$ $B_{m}^{nn'} = \frac{1}{\Omega_{0}} \int_{\Omega_{0}} d\vec{r} e^{i\vec{G}_{m'}\vec{r}} u_{n0}^{*}(\vec{r})u_{n'0}(\vec{r}) \qquad B_{0}^{nn'} = \frac{1}{(2\pi)^{3}} \delta_{nn'}$ $\langle n\vec{k} \mid U(\vec{r}) \mid n'\vec{k'} \rangle = \sum_{m} B_{m}^{nn'} \left[d\vec{r} e^{i(\vec{k}' - \vec{k} - \vec{G}_{m})\vec{r}} U(\vec{r}) \right]$
$U(\vec{k}) = \frac{1}{(2\pi)^3} \int d\vec{r} e^{-i\vec{k}\cdot\vec{r}} U(\vec{r}) \text{Fourier coefficients of the potential } U$ $\left\langle n\vec{k} \mid U(\vec{r}) \mid n'\vec{k}' \right\rangle = (2\pi)^3 \sum_m B_m^{nn'} U(\vec{k} - \vec{k}' + \vec{G}_m)$

Envelope Function Theory – Effective Mass Equation in Momentum Space $[\varepsilon_{n0} + \frac{\hbar^2}{2m}\vec{k}^2]A_n(\vec{k}) + \sum_{n'} \frac{\hbar}{m}\vec{k} \cdot \vec{p}_{nn'}A_n(\vec{k}) + \int_{BZ} d\vec{k}'U(\vec{k} - \vec{k}')A_n(\vec{k}') = \varepsilon A_n(\vec{k})$
This equation still couples different bands
• Canonical transformation $A = e^{S}B \implies \hat{H}^{(new)} = e^{-S}\hat{H}e^{S}$
New coefficients $S \sim \frac{\hbar}{k} \frac{\vec{k} \cdot \vec{p}_{nn'}}{\vec{k} \cdot \vec{p}_{nn'}} \ll 1$
Case for non-degenerate bands $m E_{GAP}$
$\left(\varepsilon_{n0} + \frac{\hbar^2 \vec{k}^2}{2m} + \frac{\hbar^2}{m^2} \sum_{n'' \neq n} \frac{(\vec{k} \cdot \vec{p}_{nn''})(\vec{k} \cdot \vec{p}_{n''n})}{\varepsilon_{n0} - \varepsilon_{n''0}} \right) B_n(\vec{k}) + \int_{BZ} d\vec{k} \cdot U(\vec{k} - \vec{k}') B_n(\vec{k}') = \varepsilon B_n(\vec{k})$
$\left[\varepsilon_{n0} + \frac{\hbar^2}{2} \sum_{\mu,\nu}^3 \left(\frac{1}{m_{\mu\nu}^*}\right)_n k_{\mu} k_{\nu}\right] B_n(\vec{k}) + \int_{BZ} d\vec{k}' U(\vec{k} - \vec{k}') B_n(\vec{k}') = \varepsilon B_n(\vec{k})$
$\varepsilon_n(\vec{k})B_n(\vec{k}) + \int_{BZ} d\vec{k}' U(\vec{k} - \vec{k}')B_n(\vec{k}') = \varepsilon B_n(\vec{k})$ Effective Mass Equation in Momentum Space

Envelope Function Theory- Transformation of the effective mass equation in momentum space into <i>r</i> -space
$\underbrace{\varepsilon_n(\vec{k})B_n(\vec{k})}_{(a)} + \int_{BZ} d\vec{k} U(\vec{k} - \vec{k})B_n(\vec{k}) = \varepsilon B_n(\vec{k})$
(a) (b)
$(a) = \int_{BZ} d\vec{k} e^{i\vec{k}\cdot\vec{r}} \varepsilon_n(\vec{k}) B_n(\vec{k}) = \varepsilon_{n0} F_n(\vec{r}) + \sum_{\mu,\nu} \alpha_{\mu\nu} \int_{BZ} d\vec{k} k_\mu k_\nu e^{i\vec{k}\cdot\vec{r}} B_n(\vec{k}) =$
$= \varepsilon_{n0} F_n(\vec{r}) + \sum_{\mu,\nu} \alpha_{\mu\nu} \left(\frac{1}{i} \frac{\partial}{\partial x_{\mu}} \right) \left(\frac{1}{i} \frac{\partial}{\partial x_{\nu}} \right) \int_{BZ} d\vec{k} e^{i\vec{k}\cdot\vec{r}} B_n(\vec{k}) =$
$=\varepsilon_{n0}F_{n}(\vec{r})+\sum_{\mu,\nu}\alpha_{\mu\nu}\left(\frac{1}{i}\frac{\partial}{\partial x_{\mu}}\right)\left(\frac{1}{i}\frac{\partial}{\partial x_{\nu}}\right)F_{n}(\vec{r})=$
$= \left[\varepsilon_{n0} + \sum_{\mu,\nu} \alpha_{\mu\nu} \left(\frac{1}{i} \frac{\partial}{\partial x_{\mu}} \right) \left(\frac{1}{i} \frac{\partial}{\partial x_{\nu}} \right) \right] F_n(\vec{r})$
$(a) = \varepsilon_n(\frac{1}{i}\vec{\nabla})F_n(\vec{r}) \qquad \qquad$

