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Band Gaps in Solids

The DFT & the GW Method

DFT- The Kohn- Sham Method

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

electrons with density p(7 with the same density p(7°)
“Real” system “Fictitious” or Kohn-Sham reference
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The Kohn- Sham Method —
The Kohn-Sham Equations

@ Schrodinger-like equations with local potential
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@® These equation are nonlinear and must be solved
iteratively (self-consistently)

Exact Exchange Method (EXX)
[Optimized Effective Potential (OEPXx)]

Solution: v, is the first functional derivative of E

JE
===> First order perturbation theory determines exactly ‘30"
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M. Stédele et al., Phys. Rev. B §9, 10031 (1999).

LDA & GGA Approximations

Local Density Approximation (LDA):
the density is treated /ocally as constant

EP(pl= [dip(F)ee™ (p()

hom hom

hom
Exe “E& +6'

Generalized Gradient Approximation (GGA)
J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986)
GGA - -
ESp)= [dif, (p(7),Vp(F)

xc -constructed to fulfill maximal
number of “summation rules”

Exchange-correlation potential can be OE
calculated very easily, since explicit =) U, = —%
dependence of Exc on the density ¢ is known. §p

The Kohn - Sham Method —
One particle energies

unoccupied
LUMO Enet ks
HOMO | '——¢ oar
N Kohn-Sham Gap
. occupied
&
¢

The occupied states are used to calculate one particle density
(Aufbau principle) and the total energy




The Kohn- Sham Method —

The Kohn- Sham Method — The Total Energy Physical meaning of one particle energies

& &
E[p]=——"Y |dip,(F)V’p.(¥)+U E E dro_(7)p(F
[ lel 2m ;I "o (FV e (F)+ULPI+E [p]+ ”[p“-[ rv”’(r)p(r)} © The Kohn-Sham orbital energy of the highest occupied level

is equal to the minus of the ionization energy,
[ 8max =H= —I }
Sum of the one-particle Kohn-Sham energies] © Extension to non-integer occupation numbers
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so-called double counting correction

ﬁEnergy of the reference system}

differs from the energy of ‘real’ system Janak theorem (1978)

Band structure of metals and semiconductors
Band structure of metals and semiconductors Semiconductors Semi-metal
Silicon Germanium Alpha-Tin
p(F)= %6(@ ~¢&,(k), (k,F)p, (k,F) ~ Exgty fiand 5 TG AR
% I > oy
Band structure of simple metal (Calcium) Fermi energy -E o % V GA1P/
o .
10 TN 4 E -
8| I tal w - @ <
%‘ .nFZ::iaense.rgy lies in a band ' & -dik
T 61 , LA ave UK T LA dave vestsF T A Fahe SOK ST
> E ® Fermi energy must be . . ave vecior lave vector
o F P calculated in each iteration In an ideal pure semiconductors at 0 K there are .
o 4F AN of the self-consistent @ fully occupied valence bands & completely empty conduction bands
LICJ C a procedure separated by the energy gap .
2+ 3 ® Fundamental band gap = Energy difference between
N= _[ d’rp(r) = Ep the lowest unoccupied state and the highest occupied state
Q, ® Fundamental energy gap can be direct (Ge) or indirect (Si)
AXZIWQ LA T X X @ Fermilevel lies in the energy gap
Wave vector O Insulator — like semiconductor with very flat bands and huge energy gap




LDA Band Structure Calculations
in Semiconductors

Valence bands for GaAs as determined
from angle-resolved photoemission

experiments and pseudo-potential theory @ |LDA gives very good
description of the occupied
s-p valence bands (4s & 4p)
in semiconductors

R

Energies [eV] in symmetry points

PP LMTO LAPW EXP.

I,,-12.84 -12.85 -12.78 -13.1

X4-10.36 -10.49 -10.47 -10.75
X3 -6.83 -7.06 -6.72 -6.70
X5 -2.67 -2.83 -2.60 -2.80
Ly 6.66 -6.94 -6.53 -6.70

: o¢ne Expgé
10 Psey

Energy [eV]
o & b

® Various methods of solving
C A T 3 K X A T Kohn-.Sh.am equations give
Wave vector very similar results

Probing the Electronic Structure
by Photoemission

Photoemission

&

Measurements of kinetic

v [energy (and angle) of
photo-emitted electrons
give valence band energies

(N-1)-electrons

Kohn-Sham Method in LDA (GGA) Approximation
Energy Gap of Silicon

Band structure of diamond silicon

Kohn-Sham gap

KS _ .KS
EGap_ cbb

EGap = Ensi (V) —ex° (V)

KS
—Ept

@ Relation of the Kohn-Sham gap
to the quasi-particle energy
(change of system energy
caused by adding a particle) ?

@ Is the Kohn-Sham gap generally
wrong, for description of
one particle excitations ?

X x 1

1 A L K w2
Wave vector

Ecap = ELumo - Enomo
Too small by factor of 2 @ Does the error is caused by the

@ For all semiconductors and insulators, aPProximation of the functionals ?

LDA (GGA) give energy gaps that are % »
40%-70% of experimental gaps The band gap problem

Fundamental band gaps in semiconductors:
Local Density Approximation & Exact Exchange

Fundamental Band Gaps

6 1 1 1 1 1
.1 @ EXX Method leads to

5F A LDA AIN.'g - Kohn-Sham gaps that agree
s ® EXX '/’ very well with experiment
e 4 a1 .
o (2 A =) Large part of the error in
o 3| sic .- B the fundamental gaps
2 4 is connected to the
8 2F SiGa:s/ NAs B approximated functionals
s [GT¢" wm (LDA, GGA)
< 11 @’ ]
© A

0 LA | | |

04 2 3 4 5 6
Exp. band gaps [eV]




Band Gap of Semiconductors in
Exact-Exchange OEP

L R R R

m IDA
A OEPx(cLDA)
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L P. Rinke et al.
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Experimental Band Gap [eV] New J. Phys. 7, 126 (2005)

Band structure of semiconductors:
Local Density Approximation & Exact Exchange Method

. Band structure Dielectric function
4 —\\K Z RN 49
o2l /\ | GaAs — EXX
E g;,—e""" / ’8\30
3 4| ¥< 1] ~a20f rlk — expt.
e 6 ] 1 &
® 2l Gaas 1 Exx] 1or J
s N =l B e N 0 ‘ \ ey
-14f T T 0 2 4 6 8 10

U
Wave vector fo[eV]
GaAs: electron effective mass: LDA=0.03m,, EXP= 0.07my, EXX =0.10m,

® The most pronounced difference between band structure calculated
with LDA and EXX methods — rigid shift of the conduction bands

==) Concerning energy differences — LDA should give valuable predictions

LDA calculations in wurtzite GaN:
Change of A, B, C exciton energy gaps with biaxial strain

- T T —_—
‘ —— theory
- riment
S o Ly
9 A APLEB, 3766 (1996)
s Dingle etal.
o PRB 4, 1211 (1971)
>
S 3.50
g CB
: o =  49°
3.45- | | S
-0.2 0.0 0.2 t‘é?a
biaxial straine |, [ %]

@ Gives a reference scale to determine strain

in an epitaxially grown sample

LDA calculation in wurtzite nitrides:
Energy gap deformation potentials for biaxial strain
and hydrostatic pressure

4 N
dE(A exciton) ‘ 8.2
— de -6.1 . -8.
de ol 61 8 8.0 theory
dE(C exciton _ . expt.
= . 15.8 -17.2 -22.2 p
dE(A excitor) i
dinV -8.0 _gg -9.5
\_ (all datainev) /

[ Very good agreement with experiment]




lonisation Potential and Electron Affinity

lonisation potential:
minimal energy to remove an electron

I=E(N-1) - E(N)

Electron affinity:
minimal energy to add an electron

A=EN)-EN+1)

lonisation Potential for Atoms

| | | | | I | I | | | | | |
0.0
-100 |- 1
E200F —
4
A—A UF
=300 w—¥ KLI 1
=E(N-1)-E(N' 4—& OEPx
I=E(N-1-EN) ®—® LDA
400 PWo1| |
| | | | | | | | | | | | | |

He Be Mg Ca Sr Cu Ag Au Li Na K Rb Cs Zn

E. Engel in A Primer in DFT, Springer 2003

lonisation Potential vs. Kohn-Sham HOMO

® Kohn-Sham: eigenvalue of the highest occupied
Kohn-Sham level Ig¢=—¢gn(N)

e For exact density functional - Ig¢=1=E(N-1) - E(N)
e How this relation is fulfilled for approximate functionals ?

P L . L S . L L B
100 =

27 -200F 9—& OEPx

g 300 [ &8 1DA

= t O— OEPx KS
-40.0 O-O LDAKS
=500 I=-€N(N) n

A T T T T TN T TN T MR NN NN SO N B

He Be Mg Ca Sr Cu Ag Au Li Na K Rb Cs Zn
® Much better for EXX than for LDA!

EXX versus LDA: Zn and Ga Atoms

e prr———— 0.0

5.0

-10.0

I(exp)=-9 39 eV n

Energy [eV]

-~ LDA
— OEPX(cLDA)

-

OEPx(,\ r—oo 1 -
v (r) . ® | Correct asymptotic decay

of potential in DFT-EXX

VLDA(r) =, e~ ir/3

Xc




lonisation Potential - Small Molecules

Kohn-Sham Eigenvalue .
Comparison of

T Kohn-Sham HOMO
a2 oA at with experimental
o B . 8 2] values of ionization
A %- L, potential
3 Y - LiH
ig-lOO—  F C;ffoN - Very good
£ ® CHO agreement
ey 8 for EXX (OEPx) !
150 .HVCO .
N,
T 3 Chom, P,
T B T S T Yy — 116, 8276 (2002)

Band Gap of Semiconductors

Band gap:

E,,=I—-A=E(N+1)-2E(N) + E(N- 1)

=) For solids, E(N + 1) and E(N — 1) cannot be reliable
computed in DFT, yet !

@ |n Kohn-Sham the highest occupied state is exact
= S(N)=-I,=E(N)-E(N-1)
3N+1(N+1)——IN+1—E(N+1) E(N)
E,,={E(N+1)-E(N)}-{E(N)-E(N-1)}

Egp—8N+1(N+1) 8 (N)

Band Gap of Semiconductors

Egap - FN-{—I(N + 1) I\S(N)
= enga(N +1) = engy (N) + enga (N) — ey ()

I\S
Axc Egap
Discontinuity Kohn-Sham gap

@ Forsolids: N>>1 = An(r)—0for N— N+1

= discontinuity in v, upon changing the particle number

hom (Pl BB ) o (1)

on(r) |yy1  On(r)

Band Gap of Semiconductors - Discontinuity in V’

Band gap:  Eg, = EXS + A

& &5 After the addition of an electron
I into the conduction band
KS o (right) the xc potential
s A, | EnN*D and the whole band-structure
ExnlN) XS E,, shift up by a quantity A, .
sﬁ'.\‘) = |
R.W. Godby et al.,
in A Primer in DFT,
Springer 2003
N electrons k N+ 1 electrons  k




The Quasi-particle Concept

Quasiparticle

A(g) quasiparticle-
peak

@ single-particle like excitation
°
Zx

Axle) = € — (e + ilk)

€ . excitation energy
MNe : lifetime
Z, : renormalisation

Spectral | A(r,r';¢) = %Im G(r,v';e) = Z S(NYEr)d(e — €)

function i

Quasiparticle:
@ electron acquires
polarisation cloud
@ new entity electron  polarisation  quasiparticle
cloud

Quasi-particle energies in many-particle theory
L. Hedin & S. Lundquist, Solid State Physics 23, 1 (1969)

@ Energy of quasi-particle = energy of one-particle excitation =
Change of system energy caused by adding a particle to the system
Difference between total energy of a system with N+7 and N particles

. Etot(N+1)_Etot(N)
Dyson equation

m

Ve
TVz—vm(F)—vH(F)+E G(#,FE)—

—jd3”"2(r P E)GF,FE)=8(F —7')

2(?',?";E) -self- energy operator
G(¥,7";E) - one particle Green'’s function
@ Energies of one-particle excitations = poles of G(¥,7"'; E)

can be complex
Real part — energy of the quasiparticle
Imaginary part - Life time

Quasi-particle energies in many-particle theory
Green’s function for a non-interacting system

@ Self-energy operator z - independent on energy

@ Itis possible to introduce one particle functions ug
ﬁz 62 s w s d3“v L N = e
“om +v,,(r)+v,() us(r)+j r Z(r,r Ju (r')=€gu (r)

u (r)u "

® G(,FE)=Y, e 8+15

@ Self-energy operator Y, @)=V (7,7

Quasi-particle energies in many-particle theory
GW- method

Y, (E)===p introduce functions ¥, (F)

e [—V2+v (r)+u,,(r)}wnk(r)+]d3*2(” FSE W -(F)=E Ly o (F)

Re(E ») Im(Enl:)
If one is interested in energies of excitation and not their lifetimes,
one can neglect imaginary part of the self-energy operator lm(Z) =

There exists series expansion for self-energy operator

Take the firstterm Y. (7,7 E)——Jd(oe i@o* G(\*v \E j‘)'W( o)

G, 7FE)=Y "’nk(’i"’nk(") GW - method
nk E—=E; +io" sen(E ; - 1) Hedin & Lundgist

82

W (F,F';0)= Id:’”"s'l(?,i'",a))—

|7"—7'| Screened Coulomb potential
Inverse of dielectric function

Self-consistent solution gives energies of single particle excitations




The GW Method — Green’s Function

G e \We make the problem simpler by
© considering one electron in an
} effective potential

Y, e The effective potential is the

i Coulomb interaction, V, between
the electron and the average of all
the others

e We describe the electron’s motion
with the Green’s function, G

The GW Method -
Screened Coulomb Interaction

e |In order to make the model
better we model the excited
states and their interactions.

e The electron polarizes the
system, making effective
electron-hole pairs.

e This screens the Coulomb
interaction.

e This means that the electron
now interacts with a screened
coulomb interaction, W

GW Approximation - Interacting Quasiparticles

. . W(rr’;o) G is propagator
GW = mteracting
" quasiparticles

Self-Energy:

@ energy response of the system that the quasiparticle experiences due
to its own presence

@ GW:  X(r,r;e)= i /de’e"f"sG(r, vie+ e )W(rr';€)

GW Approximation - Formalism

AT & Wirr'iw) G is propagator
GW interacting

= quasipaniicles } @ $= m
3

GW self-energy: T(r,r';e) = 2% /df’e"‘lﬁG(r. ve+YW(rr;€)

Screened interaction:  W(r.r',¢) = /dr"s_l(r, e — )

Dielectric function: z(r,re) =d(r—v) — /dr”v(r —")xo(r". ¥ €)
Polarisability: xo(r.r';e) = —% /de’G(r. v e —e)G(r.r€)
Quasiparticle equation:  ho(r)es(r) + /dr’Z(r. v €PYihs(r') = ePiig(r)




Quasi-particle energies in many-particle theory
Connection to Kohn-Sham energies

Self-consistent calculations show that ¥, - (F) = @2 (¥)

. N
Kohn-Sham energies Kohn-Sham orbitals

£ =l + (o OB e~ 1015 )

-1

So-called renormalization

3y (E)
2= 1= %E

E=E ;

Enl}'=8r§§+< (r)lz(Enk) ’l) |¢ (r)>Z”E

® Relation between quasi-particle and Kohn-Sham energies

GW Approximation for Solids

Fundamental band gaps in lI-VI semiconductors:

LDA, EXX, and GW calculations
Energy gaps in eV

CdS
= 2021 ., CdSe , CdTe
DE E 14 13 E 1.3 1 2
LDA LDA LDA
38 ZnS @ LDA gives dramatically too small band gaps

@® LDA + GW - large corrections to LDA gaps

- corrected gaps are of order of
EXX gaps
@ EXX + GW - very small correction
of order (0.1 - 0.2 eV)
LDA

=)  Still some work to do !

10.0 e T
[ 1 General improvement
sof | -o GW 1 of the energy gaps
s [ = LDA ] in comparison to
3 sof . a- DFT-LDA
ER: '
S 4of .i, 3
é 2~°:’ - ]
r - L]
0.0+ Mg .
-..i...‘1.‘..|,..||‘..‘|....-
00 20 40 60 80 100 Aulburetal
Expen.memal Band Gap [eV] Solid State Phys. 54 (2000)
Quasi-particle (GW) Band Gaps
T T
40F A
F : igﬁ . i EXX better than
r J +G I .
350 | & conemm 2 LDA I_oa5|s-for
S0k L® OEPx(cLDA) + GW Y * 1 quasi-particle
o 30 Al - .
= [ OEPx=EXX LN calculations
O 25+ A ] i
T Of T (IR -
é’ F 1y I ]
220F A 1
s g 0§
g 15k j i iGaN? 25
2 1R | ]
ok : L | .
r : cm. ZnSe w .
05F : S 7Zn0j - ,
F Cdse ™ ] P. Rinke et al.
(?Jlllllllll Tt L leaaa e by NeWJPhyS
)JO 05 1.0 1.5 20 25 30 35 40 7‘ 126 (2005)

Experimental Band Gap [eV]
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Electronic Structure of Copper
in the GW Approximation

8 -~ — -
6 /
o7 — GW
s 2 ---- DFT-LDA
s &
5 L o000 EXP.
& L
E
-6

Andrea Marini et al., Phys. Rev. Lett. 88, 016403 (2001)

GW Approximation - Merits

® Gives accurate band gaps for many materials
® Allows for calculation of lifetimes
® Successfully applied to

A bulk materials

A surfaces

A nanotubes

A clusters

A defects

A defects on surfaces

Additional reading

® A Primer in Density Functional Theory, C. Fiolhais, F. Nogueira and
M. Marques, Springer 2003 (ISBN 3-540-03083-2).

® “Quasiparticle Calculations in Solids”,
W. G. Aulbur and L. Jénsson and J. W. Wilkins,
Solid State Phys. : Advances in Research and Applications 54, 1 (2000).

® “Electronic Excitations: Density-Functional Versus Many-Body Green’s
Function Approaches”,
G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys. 74, p601 (2002).

® “Combining GW calculations with exact-exchange density-functional theory:
An analysis of valence-band photoemission for compound semiconductors”,
P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt and M. Scheffler,
New J. Phys. 7, 126 (2005).

Band Gaps in Solids

The DFT & the GW Method
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DFT (LDA, GGA, EXX) for weakly correlated systems

Accuracy of Common DFT implementations
O Accuracy of geometries is better than 0.1 A

O Accuracy of calculated energies (relative) is usually
better than 0.2 eV
Very often better than 0.01 eV

May we reach so-called chemical accuracy within DFT?
© Exact Exchange Kohn-Sham Method — a step in this direction

» Systematic improvement of existing Kohn-Sham schemes
» Computationally very demanding

* Bulk systems up to now

¢ Implementations for larger systems going on

® Crucial - Better correlation energy functionals

Failures of LSDA for strongly correlated systems

Band Gap Problem \QB/-

© Positions of the cationic d-bands in semiconductors

are by 3-4 eV too high in energy ﬁ:\m\
=m) overestimation of p-d hybridization d-band
(in Cu d-bands are 0.5 eV too high) ~s-\VB~

© LSDA predicts negative ions (e.g. F) to be unstable

© For strongly correlated systems, LSDA consistently
underestimates the tendency to magnetism
(e.g., cuprates, NiO)

@ For strongly fluctuating systems, LSDA consistently
overestimates the tendency to magnetism
FeAl : M = 0.7 mg (Exp. - paramagnetic)
Sr3Ruy07: M =0.6 mg (Exp. — paramagnetic)

Spin-polarized LDA (LSDA) prediction:
zinc-blende CrAs is ferromagnetic

M. Shirai et al., J. Magn. & Magn.

1 [ | | Mater. 177-181, 1383 (1998)
! =xx Cr-3d states
1
— > Previously nonexistent
-
. L sPin-up |

compound
»Later thin films
grown by MBE
»Curie temperature
larger than 400 K
»Magnetic moment = 3mg
Agreement between
theory and experiment

LT |

Density of states [a.u.]
(=]

;
I

0
=
(=]

4 2 0 2 4
Energy [eV]

Photoemission spectrum of Lag 9,Sr( oTiO3

6% hole doping

Fermi Spectra are Gauss-broadened
(0.3 eV broadening parameter)
to simulate the experimental
accuracy

Intensity [a.u.]

LDA band structure
calculations clearly fail to
5“ reproduce the broad band
observed in the experiment

-1 0 1 lat energies 1-2 eV below
Energy [eV] the Fermi energy.

-3 -2

Exp.: A. Fujimori et al., PRL 69, 1796 (1992)
LSDA: |.A.Nekrasov et al., Euro. Phys.J B 8, 55 (2000)
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Phonon dispersion curves for NiO
Comparison of LDA results with experiment

-

8 e o & @ LDA overestimates
161 ° ® the electronic screening
:|:140 ® e & effects by large amount
|—

- 4 i
5,12_ ° e o o =) causing
510'\./ 9 O the artificial softening of
- 81 LDA optical phonons &
)
= 62e = 2 O lowering of the LO-TO

41 e splitting.

e @,
2]
UX L @ LDA overestimates the

Phonon wave vector value of &€,
by a factor of 6.

Savrasov & Kotliar (2002)

Beyond LDA approach
to correlated electron systems

Hkin A
N g PETTIIN
H_jd PP —A+ V() +

+ %J’d37d37 W EEF e (7 - FYEFE ()

—

v A

H

e—e

H= jd-”?'ﬁ*(?)[—A +V (W )+ H
N 4

corr

HLDA
@ Expansion of field operators in basis Qilm (LMTO, LAPW, ...\
(7 =Y, 2, () Hpp= ), ‘ilm,jl'm',aéﬂéz'm'
ilm ilm,jl'm',o

® How to deal with H, 2

corr

LDA + local Coulomb correlations

7 — 1 rylocal ryLDA 'y
H=H,,, + H - H + H

corr corr res

1 A}
o' ~ ~
o Z Umm PitmoMitm' o
il=l;,m,om'c'

—

——
9J{ Ab-initio correlated electron model
@ Needed basis where interacting orbitals can be identified
2
@ [ can be calculated via constraint LDA: [/ = M

on?
. L d
@ Hund’s rule coupling can be calculated similarly

B LDA+ U: solve H with Hartree-Fock

B LDA+ DMFT: solve #{ with Dynamical Mean-Field Theory

Dynamical Mean-Field Theory
G. Kotliar & D. Vollhardt, Physics Today, March 2004
Time

>

™
DMFT

VI V’
®
‘ Electron reservoir 1 .l

DMTS in the simplest case of an s orbital occupying an atom

@ DMFT replaces the full lattice of atoms and electrons with a single
impurity atom imagined to exist in a bath of electrons

@ DMFT captures the dynamics of electrons on a central atom as it
fluctuates among different atomic configurations, shown here as
snapshots in time.

13



Dynamical Mean-Field Theory — Dynamical Mean-Field Theory —

Basic Mathematical Description Basic Mathematical Description (2)
@ To treat strongly correlated electrons, one has to introduce @ The Anderson impurity model
a frequency resolution for the electron occupancy at a particular o bath__bath t  bath
lattice site H 3 = H o ng oo t 2 Vo gty g +hec.)
@ Green function specifies the probability amplitude to create |2
electron with spin O at site i at time 7' and destroy it at the same @ The hybridization function Aw)= 2 — path
site at a later time 7 vo@— €& o

plays the role of dynamic mean field.

G (T—7") = —<6,-a ()&, (T')>

@ A(w) has to be determined from the self-consistency condition:

-1
@® The dynamical mean field theory (DMFT) can be used to investigate GlA(w)] = 2{(0 - J[A(@)]- tl?}
the full many-body problem of interacting quantum mechanical i

particles or effective treatments such as the Hubbard model 1
Self-energy term X[A(®)]| = A(w) - (G[A(a))]) +w

H=3 156085+ UZ”:T’%
takes on the meaning of a frequency dependent potential

ij,0
LDA+DMFA - Functional Formulation LDA+DMFA - Computational Scheme
A functional of both the charge density and the local Green function LDA+DMFT
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Photoemission spectrum of La g,Sr( ¢ TiO3
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S| T wseen LSDA+DMFT
> dramatically
‘» improves
§ the photoemission
£ spectrum

-3 -2 -1
Energy [eV]

Exp.: A. Fujimori et al., PRL 69, 1796 (1992)
LSDA: |.A.Nekrasov et al., Euro. Phys.J B 8, 55 (2000)

Phonon dispersion curves for NiO
Results of LDA + DMFT
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Importance of correlations
Savrasov & Kotliar (2002) in lattice dynamics of NiO

Dynamical Mean Field Theory

* DMFT is an intrinsically many body electronic theory.

* It simultaneously handles the atomic and band character
of electrons. This is at the heart of correlation physics.

» The approach leads to a non trivial but tractable problem.

» Misses out on spatial correlations. CDMFT can handle them.

* From a curiosity in the early 90’s, it has become now
an indispensable part of the theorists training.

Dynamical Mean Field Theory
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