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Band Gaps in Solids  
The DFT & the GW Method  

DFT- The Kohn- Sham Method    
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965) 
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    The Kohn- Sham Method –   
    The Kohn-Sham Equations   
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Schrödinger-like equations with local potential 

These equation are nonlinear and must be solved  
iteratively (self-consistently)  

Exact Exchange Method (EXX) 
[Optimized Effective Potential (OEPx)]    
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M. Städele et al., Phys. Rev. B 59, 10031 (1999). 

LDA & GGA Approximations    
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Generalized Gradient Approximation (GGA) 
J. P. Perdew & Y. Wang, Phys. Rev. B 33, 8800 (1986) 

xcf -!constructed to fulfill maximal  
 number of “summation rules”  

Exchange-correlation potential can be  
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    The Kohn - Sham Method –   
    One particle energies   

HOMO 
LUMO 

!1
!2

N!
N! ++1

unoccupied 

occupied 

The occupied states are used to calculate one particle density 
(Aufbau principle) and the total energy 

EKS
GAP 

Kohn-Sham Gap 
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    The Kohn- Sham Method –  The Total Energy   
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Sum of the one-particle Kohn-Sham energies 

Energy of the reference system   
 
differs from the energy of ‘real’ system  
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    The Kohn- Sham Method –   
    Physical meaning of one particle energies   

 The Kohn-Sham orbital energy of the highest occupied level  
  is equal to the minus of the ionization energy, 
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Extension to non-integer occupation numbers  
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Band structure of metals and semiconductors 

Band structure of simple metal (Calcium) Fermi energy 

In metals:  
   Fermi energy lies in a band 

Fermi energy must be  
calculated in each iteration  
of the self-consistent  
procedure   
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Band structure of metals and semiconductors 
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Semiconductors Semi-metal 

Si Ge 

Silicon Germanium Alpha-Tin 

Sn!! ""

In an ideal pure semiconductors at 0 K there are  
   fully occupied valence bands & completely empty conduction bands  
   separated by the energy gap 

Fundamental band gap = Energy difference between  
the lowest unoccupied state  and the highest occupied state 
Fundamental energy gap can be direct (Ge) or indirect (Si) 
         Fermi level lies in the energy gap  
Insulator – like semiconductor with very flat bands and huge energy gap 
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LDA Band Structure Calculations  
in Semiconductors 
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Valence bands for GaAs as determined  
from angle-resolved photoemission  
experiments and pseudo-potential theory LDA gives very good  

description of the occupied  
s-p valence bands (4s & 4p)  
in semiconductors  

        PP     LMTO  LAPW   EXP. 
     -12.84  -12.85  -12.78  -13.1 
X1 -10.36  -10.49  -10.47  -10.75 
X3   -6.83    -7.06    -6.72    -6.70 
X5   -2.67    -2.83    -2.60    -2.80 
L1p  -6.66    -6.94    -6.53    -6.70 

Energies [eV] in symmetry points 

Various methods of solving  
Kohn-Sham equations give  
very similar results 

1s!!

Probing the Electronic Structure  
by Photoemission 

Measurements of kinetic  
energy (and angle) of  
photo-emitted electrons  
give valence band energies 

EGAP = ELUMO - EHOMO 
Too small by factor of 2 

Si 

Band structure of diamond silicon 
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 [e

V]
 

Wave vector 

EGAP 

Kohn-Sham Method in LDA (GGA) Approximation  
Energy Gap of Silicon 

KS
GapE KS KS

cbb vbt!! !!== ""
KS
GapE 1( ) ( )KS KS

N NN N!! !!++== ""

Kohn-Sham gap 

For all semiconductors and insulators,  
LDA (GGA) give energy gaps that are  
40%-70% of experimental gaps  

Is the Kohn-Sham gap generally  
wrong, for  description of  
one particle excitations  ? 

Does the error is caused by the  
approximation of the functionals ?    

“The band gap problem” 

Relation of the Kohn-Sham gap  
to the quasi-particle energy  
(change of system energy  
caused by adding a particle) ? 
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Fundamental Band Gaps 
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Fundamental band gaps in semiconductors:  
Local Density Approximation & Exact Exchange  

EXX Method leads to  
Kohn-Sham gaps that agree  
very well with experiment 

Large part of the error in  
the fundamental gaps  
is connected to the  
approximated functionals  
(LDA, GGA)     
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P. Rinke et al.  
New J. Phys. 7, 126 (2005) 

Band Gap of Semiconductors in  
Exact-Exchange OEP 
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GaAs: electron effective mass:  LDA = 0.03m  ,   EXP = 0.07m  ,  EXX = 0.10m 0 0 0

Band structure of semiconductors:  
Local Density Approximation & Exact Exchange Method  

The most pronounced difference between band structure calculated  
with LDA and EXX methods – rigid shift of the conduction bands 

Concerning energy differences – LDA should give valuable predictions 

theory
experiment
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Chichibu et al. 
APL 68, 3766 (1996)
Dingle et al. 
PRB 4, 1211 (1971)

LDA calculations in wurtzite GaN:  
Change of A, B, C exciton energy gaps with biaxial strain  

Gives a reference scale to determine strain  
in an epitaxially grown sample  

LDA calculation in wurtzite nitrides:  
Energy gap deformation potentials for biaxial strain 
and hydrostatic pressure  

Very good agreement with experiment 

GaN  
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dE( C exciton )    
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dE( A exciton )    
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V 0   
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theory 
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AlN  
dE( A exciton )    

de 
= 0 

(all data in eV) 

-8.2  
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Ionisation Potential and Electron Affinity 

Ionisation potential: 
minimal energy to remove an electron 
 
       I = E(N ! 1) ! E(N) 

Electron affinity: 
minimal energy to add an electron 
 
       A = E(N) ! E(N + 1) 

Ionisation Potential for Atoms 

E. Engel in A Primer in DFT, Springer 2003 

Ionisation Potential vs. Kohn-Sham HOMO 
Kohn-Sham: eigenvalue of the highest occupied  
Kohn-Sham level  IKS = !"N(N) 
For exact density functional –   IKS = I = E(N-1) – E(N)   
How this relation is fulfilled for approximate functionals ? 

Much better for EXX than for LDA !  

EXX versus LDA: Zn and Ga Atoms 

Correct asymptotic decay  
of potential in DFT-EXX 
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Ionisation Potential - Small Molecules 

S. Hamel et al.,  
J. Chem. Phys.  
116, 8276 (2002) 

Comparison of  
Kohn-Sham HOMO 
with experimental  
values of ionization 
potential 

Very good  
agreement  
for EXX (OEPx) ! 

Band Gap of Semiconductors 
Band gap:  
                    Egap = I ! A = E(N + 1) ! 2E(N) + E(N ! 1) 

For solids, E(N + 1) and E(N ! 1) cannot be reliable 
computed in DFT, yet ! 

In Kohn-Sham the highest occupied state is exact 

1KS
N N! ( N ) I E( N ) E( N )== !! == !! !!

1 11 1KS
N N! ( N ) I E( N ) E( N )++ ++++ == !! == ++ !!

1 1gapE { E( N ) E( N )} { E( N ) E( N )}== ++ !! !! !! !!

1 1KS KS
gap N NE ! ( N ) ! ( N )++== ++ !!

Band Gap of Semiconductors 

Discontinuity Kohn-Sham gap 

Band Gap of Semiconductors - Discontinuity in Vxc 

After the addition of an electron 
into the conduction band  
(right) the xc potential  
and the whole band-structure 
shift up by a quantity !xc .  
 
            R.W. Godby et al.,  
            in A Primer in DFT, 
            Springer 2003 
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The Quasi-particle Concept 

Spectral 
function 

Quasi-particle energies in many-particle theory   

Energy of quasi-particle = energy of one-particle excitation = 
Change of system energy caused by adding a particle to the system 

Dyson equation 
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can be complex 
Real part – energy of the quasiparticle         
Imaginary part - Life time  

( 1) ( )tot totE N E N++ !!
Difference between total energy of a system with N+1 and N particles  

L. Hedin & S. Lundquist, Solid State Physics 23, 1 (1969) 

Quasi-particle energies in many-particle theory   
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Quasi-particle energies in many-particle theory   
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one can neglect imaginary part of the self-energy operator  Im( ) == 0!!
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Inverse of dielectric function 
Screened Coulomb potential 

Self-consistent solution gives energies of single particle excitations 

GW - method 
Hedin & Lundqist 

GW- method 
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" We make the problem simpler by 
considering one electron in an 
effective potential 
" The effective potential is the 
Coulomb interaction, V, between 
the electron and the average of all 
the others 
" We describe the electron’s motion 
with the Green’s function, G 

The GW Method – Green’s Function 

" The electron polarizes the 
system, making effective 
electron-hole pairs. 
" This screens the Coulomb 
interaction. 
" This means that the electron 
now interacts with a screened 
coulomb interaction, W 

" In order to make the model 
better we model the excited 
states and their interactions. 

The GW Method –  
Screened Coulomb Interaction  

GW Approximation - Interacting Quasiparticles GW Approximation - Formalism 
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Quasi-particle energies in many-particle theory  
Connection to Kohn-Sham energies  
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Relation between quasi-particle and Kohn-Sham energies 

Kohn-Sham orbitals Kohn-Sham energies 

GW Approximation for Solids 

General improvement  
of the energy gaps  
in comparison to  
DFT-LDA 

Aulbur et al.  
Solid State Phys. 54 (2000) 

Fundamental band gaps in II-VI semiconductors:  
LDA, EXX, and GW calculations  

E
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Energy gaps in eV 

LDA gives dramatically too small band gaps 

LDA + GW – large corrections to LDA gaps 
                   - corrected gaps are of order of  
                      EXX gaps 

EXX + GW – very small correction 
                       of order (0.1 - 0.2 eV) 

Still some work to do ! 

P. Rinke et al.  
New J. Phys.  
7, 126 (2005) 

Quasi-particle (GW) Band Gaps 

EXX better than  
LDA basis for   
quasi-particle  
calculations  OEPx = EXX  
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Electronic Structure of Copper  
in the GW Approximation 

Andrea Marini et al., Phys. Rev. Lett. 88, 016403 (2001) 

GW 

DFT-LDA 
EXP. 

GW Approximation - Merits 

Gives accurate band gaps for many materials 

Allows for calculation of lifetimes 

Successfully applied to 

 bulk materials 
 surfaces 
 nanotubes 
 clusters 
 defects 
 defects on surfaces 

A Primer in Density Functional Theory, C. Fiolhais, F. Nogueira and  
M. Marques, Springer 2003 (ISBN 3-540-03083-2). 
 
“Quasiparticle Calculations in Solids”,  
W. G. Aulbur and L. Jönsson and J. W. Wilkins,  
Solid State Phys. : Advances in Research and Applications 54, 1 (2000). 
 
“Electronic Excitations: Density-Functional Versus Many-Body Green’s  
 Function Approaches”,  
 G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys. 74, p601  (2002). 
 
“Combining GW calculations with exact-exchange density-functional theory:  
An analysis of valence-band photoemission for compound semiconductors”,  
P. Rinke, A. Qteish, J. Neugebauer, C. Freysoldt and M. Scheffler,  
New J. Phys. 7, 126 (2005). 

    Additional reading   

Band Gaps in Solids  
The DFT & the GW Method  
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DFT (LDA, GGA, EXX) for weakly correlated systems   

!! Accuracy of geometries is better than 0.1 A 
Accuracy of Common DFT implementations 

!! Accuracy of calculated energies (relative) is usually  
    better than 0.2 eV 
    Very often better than 0.01 eV 

May we reach so-called chemical accuracy within DFT? 

Exact Exchange Kohn-Sham Method – a step in this direction 

"! Systematic improvement of existing Kohn-Sham schemes 
"!  Computationally very demanding 

•! Bulk systems up to now 
•! Implementations for larger systems going on 

Crucial - Better correlation energy functionals 

Failures of LSDA for strongly correlated systems  

LSDA predicts negative ions (e.g. F-) to be unstable  

For strongly correlated systems, LSDA consistently  
underestimates the tendency to magnetism  
(e.g., cuprates, NiO)   

For strongly fluctuating systems, LSDA consistently  
overestimates the tendency to magnetism  
FeAl : M = 0.7       ((Exp. – paramagnetic)  
Sr3Ru2O7: M = 0.6 B   (Exp. – paramagnetic)  

Band Gap Problem 

Positions of the cationic d-bands in semiconductors  
are by 3-4 eV too high in energy 
 

CB 

p-VB 

s-VB 
d-band 

(in Cu d-bands are 0.5 eV too high) 
overestimation of p-d hybridization 
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Spin-polarized LDA (LSDA) prediction: 
zinc-blende CrAs is ferromagnetic 
 M. Shirai et al., J. Magn. & Magn.  

Mater. 177-181, 1383 (1998) 

"!Previously nonexistent  
   compound 
"!Later thin films  
   grown by MBE 
"!Curie temperature  
   larger than 400 K 
"!Magnetic moment = 3 B 
   Agreement between  
   theory and experiment  

EXP 
LSDA 

-3 -2 -1 0 1 
Energy [eV] 
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 [a
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Photoemission spectrum of La0.94Sr0.06TiO3  
6% hole doping 

Exp.: A. Fujimori et al., PRL 69, 1796 (1992) 
LSDA: I.A.Nekrasov et al., Euro. Phys.J B 8, 55 (2000) 

LDA band structure  
calculations clearly fail to  
reproduce the broad band  
observed in the experiment  
at energies 1-2 eV below  
the Fermi energy. 

Fermi 
energy 

Spectra are Gauss-broadened  
(0.3 eV broadening parameter)  
to simulate the experimental  
accuracy 
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Phonon dispersion curves for NiO  

Savrasov & Kotliar (2002) 
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Comparison of LDA results with experiment  

LDA overestimates  
the electronic screening  
effects by large amount    
causing 
  
the artificial softening of 
optical phonons &     

lowering of the LO-TO  
splitting.   

LDA overestimates the  
value of           
by a factor of 6.    
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Beyond LDA approach  
to correlated electron systems   
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ilm jl m
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Expansion of field operators in basis             (LMTO, LAPW, !.) ilm!!

How to deal with             ? ˆ
corrH

LDA + local Coulomb correlations  
LDA                                                  ˆ ˆ ˆ ˆ ˆlocal

LDA corr corr resH H H H H== ++ !! ++

'
' ' '

, , , , ', '

1 ˆ ˆ
2

d

ilm ilm
i l l m m

mm n nU!!

!!

!!
!! !!

!!==
"" 1 ( 1)

2 d dn nU !!

Ab-initio correlated electron model HH  

2

2
( )LDA d

d

E n
n

U
!!

==
!!

Needed basis where interacting orbitals can be identified 

U can be calculated via constraint LDA: 

Hund’s rule coupling can be calculated similarly 

LDA + U: solve HH  with Hartree-Fock 

LDA + DMFT: solve HH  with Dynamical Mean-Field Theory 

Dynamical Mean-Field Theory  

Time 

+ - DMFT 

Electron reservoir  

0 !! !!""

DMFT replaces the full lattice of atoms and electrons with a single  
impurity atom imagined to exist in a bath of electrons 

DMFT captures the dynamics of electrons on a central atom as it  
fluctuates among different atomic configurations, shown here as  
snapshots in time.   

DMTS in the simplest case of an s orbital occupying an atom 

G. Kotliar & D. Vollhardt, Physics Today, March 2004 

V V 
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Dynamical Mean-Field Theory –  
Basic Mathematical Description   

To treat strongly correlated electrons, one has to introduce  
a frequency resolution for the electron occupancy at a particular  
lattice site 

Green function specifies the probability amplitude to create  
electron with spin      at site i at time       and destroy it at the same  
site at a later time  

!! '!!
!!

†ˆ ˆ( ') ( ) ( ')i i iG c c!! !! !!"" "" "" ""## $$ ##

The dynamical mean field theory (DMFT) can be used to investigate  
the full many-body problem of interacting quantum mechanical  
particles or effective treatments such as the Hubbard model    

†

,

ˆ ˆ ˆ ˆ ˆij ji i i
ij i

H t c c U n n!!!!
!!

"" ##== ++$$ $$

Dynamical Mean-Field Theory –  
Basic Mathematical Description (2)   

†
, , ,0,

, ,

ˆ ˆ ( . .)bath bath bath
AIM atomH H n V c a h c!! "" !! "" !! !! """"

!! "" !! ""
##== ++ ++ ++$$ $$

The Anderson impurity model  

The hybridization function   
2

, ,

| |
( ) bath

V!!
!! "" !! ""

## $$
$$ %%

==
&&

''
plays the role of dynamic mean field.  

( )!! "" has to be determined from the self-consistency condition:  

G[!!(!! )] == !! !! "" [!!(!! )]!! t !k{{ }}!
k
"" !!1

(( )) 1[ ( )] ( ) [ ( )]G!! "" ## "" ## "" ## ##$$%% $$ ++Self-energy term  

takes on the meaning of a frequency dependent potential  

Self-consistent cycle of  LDA+DMFA  

A functional of both the charge density and the local Green function  
of the correlated orbital   

!! [!!,G] == T[!!,G]++ V ext (
!
r )!!(

!
r )d 3
!
r ++ 1
2!!

!!(
!
r )!!(

!
r ')

|
!
r ""
!
r ' |

d 3
!
rd 3
!
r '++ Exc[!!,G]!!

!!(
!
r ) , ˆ

LDAH U ilmn !!(
!
r )

DMFA 

LDA+DMFA – Functional Formulation  LDA+DMFA – Computational Scheme  
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Photoemission spectrum of La0.94Sr0.06TiO3  

LSDA 

Exp.: A. Fujimori et al., PRL 69, 1796 (1992) 
LSDA: I.A.Nekrasov et al., Euro. Phys.J B 8, 55 (2000) 

EXP 
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Phonon dispersion curves for NiO  
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Savrasov & Kotliar (2002) 

Results of LDA + DMFT  
2 2 * 2| | /LO TO Z!! !! ""##$$ %%

LDA LDA+ 
DMFT EXP 

*| |Z

!!"" 35.7 

2.17 

7.2 

2.33 

5.7, 6.1 

2.22 

Born effective charge 

Accidental agreement  
with experiment  !! 

Importance of correlations  
in lattice dynamics of NiO  

Dynamical Mean Field Theory 

• DMFT is an intrinsically many body electronic theory. 
 
• It simultaneously handles the atomic and band character 
  of electrons. This is at the heart of correlation physics. 
 
• The approach leads to a non trivial but tractable problem. 
 
• Misses out on spatial correlations. CDMFT can handle them.  
 
• From a curiosity in the early 90’s, it has become now  
  an indispensable part of the theorists training. 
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Thank you ! 


