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• Read every question carefully before answering. The exam consists of three problems, and
a total of 100 points can be earned.

• Make sure to answer every question as completely as possible. When you do calculations,
provide sufficient explanation for all steps.

• Write clearly and structured; unreadable work cannot be corrected.

• Make sure to divide your time into the problems equally, considering the number of points
you can earn for each question. If you think you made a calculational mistake somewhere,
point it out in words, and do not spend too much time correcting, e.g. minus signs.

Problem 1: Depletion interactions (25 points)
Consider two hard planar walls with thickness d and surface area A, where the surface areas A
are aligned parallel to each other. The walls have center-of-mass positions R1 = −[(H + d)/2]ẑ
and R2 = [(H + d)/2]ẑ . Besides the solvent, the medium consists of N2 polymer blobs with
characteristic diameter σ and positional degrees of freedom rN2 = (r1, ..., rN2). For the potential
energy of the system, we assume that the polymers behave as an ideal gas amongst each other,
but they do interact with the planar walls, i.e.,

Φ(R1,R2, r
N2) = ϕ11(H) + Φ12(R1,R2, r

N2),

with wall-wall potential ϕ11(H). The solvent is not explicitly considered because solvent particles
do not interact with polymers or the walls. The canonical partition function of the system is

Z(N1 = 2, N2, V, T ) =
1

2!V2

∫
dR1

∫
dR2

∫
drN2

N2!Λ
3N2
2

exp[−βΦ(R1,R2, r
N2)],

with Λ2 the thermal de Broglie wavelength of a polymer blob, neglecting any internal degrees of
freedom. The semi-grand partition function is Ξ(N1, µ2, V2) =

∑∞
N2=0 exp(βµ2N2)Z(N1, N2, V, T )

with thermodynamic potential βΩ = − ln Ξ(N1, µ2, V, T ).

(a) (5 points) We define the effective interaction potential Φeff(H) as

exp[−βΩ(N1 = 2, µ2, V, T )] =
1

2!V2

∫
dR1

∫
dR2 exp[−βΦeff(H;µ2, T )],

with V an irrelevant constant with dimension volume. Derive a formal expression for Φeff(H)
in terms of µ2, ϕ11(H), and Φ12(R1,R2, r

N2).

(b) (10 points) We assume that the interaction potential between wall and particles is pair-wise
additive Φ12(R1,R2, r

N2) =
∑2

i=1

∑N2
j=1 ϕ12(|Ri − rj |), with a hard sphere-wall potential

ϕ12(z) =

{
∞, z < (d+ σ)/2,

0, z > (d+ σ)/2,

with z, the separation from the centerline of the wall to the centre of a polymer blob. Show
by explicit computation that Φeff(H) = −ΠA(σ −H) for 0 < H < σ and Φeff(H) = 0 for
H > σ. Here, Π is the osmotic pressure of a bulk system of polymer blobs, i.e. the excess
pressure over a reservoir with pure solvent.
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(c) (5 points) Explain the occurrence of the attraction in the so-called depletion potential
Φeff(H) for 0 < H < σ in terms of the entropy of the polymer blobs.

(d) (5 points) We replace the two flat plates by two hard spherocylinders with arbitrary orien-
tations. Describe in words how you would compute the depletion potential as a function of
centre-to-centre separation and orientations of the spherocylinders. For which orientations
do you expect the largest attraction as a function of separation? Explain your answer.

Problem 2: Nematic liquid crystals (35 points)
An inhomogeneous nematic liquid crystal is modelled by the Landau-de Gennes free energy
FLdG[Q] =

∫
drf(Q(r)). The form of the free energy density within the one-constant approxi-

mation at a given temperature T is

f(Q(r)) =
L1

2
∂αQβγ(r)∂αQβγ(r) +A(T − T ∗)Tr[Q(r)2]−BTr[Q(r)3] + C{Tr[Q(r)2]}2,

with Einstein summation convention implied and constants A,B,C, L1, T
∗ > 0. The symmetric

traceless tensorial order-parameter density [Q]αβ =: Qαβ is given by the ensemble average

Qαβ(r) =

〈
3

2N

N∑
i=1

(
ûiαûiβ − 1

3
δαβ

)
δ(r− ri)

〉
,

with (r1, ..., rN ) and (û1, ..., ûN ) the centre-of-mass positions and orientations of the particles in
the liquid crystal (the mesogens), respectively, and N the number of particles. Tr(...) denotes
the trace of a tensor, e.g, Tr[Q(r)2] = Qαβ(r)Qβα(r) .

(a) (5 points) Within the uniaxial approximation, the order parameter is given by

Qαβ(r) =
3

2
S(r)

(
n̂α(r)n̂β(r)−

1

3
δαβ

)
,

with S(r) the scalar order parameter and n̂(r) the director with |n̂(r)|2 = n̂α(r)n̂α(r) = 1.
What do these quantities physically represent? Derive an expression for S(r) that connects
this quantity to the one-body distribution function ρ(r, û) = ⟨

∑N
i=1 δ(r− ri)δ(û− ûi)⟩.

(b) (5 points) Show that within the uniaxial approximation and under the assumption of a
spatially constant director field that FLdG[Q] reduces to

FLdG[S] =

∫
dr

[m
2
|∇S(r)|2 + a(T − T ∗)S(r)2 − bS(r)3 + cS(r)4

]
,

and give the expressions for m, a, b, and c. Why is the cubic term absent for a ferromagnet?

(c) (5 points) Consider the case where S(r) =constant. The free energy in (b) describes a phase
transition at T = TIN. What is the order of this phase transition? Sketch how a system of
15-20 mesogens looks like for T < TIN and T > TIN. Explain your sketches.

(d) (5 points) Determine TIN and the non-trivial value of the order parameter SIN := S(TIN).

(e) (5 points) What is the difference when we quench a system at T > TIN to a temperature
T∗ < T < TIN compared to T < T∗?

(f) (10 points) Take the inhomogeneous system at coexistence T = TIN with S(r) = S(z) and
boundary conditions S(z → ∞) = SIN and S(z → −∞) = 0. Show from the Euler-Lagrange
equation δFLdG[S]/δS(r) = 0 that the order-parameter profile is determined by,

S(z) =
SIN
2

[
1− tanh

(
z

2ξ

)]
.

You may fix the order-parameter profile such that S(z = 0) = SIN/2. Give the expression
for ξ and explain the physical meaning of this quantity.
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Problem 3: Sedimentation of charged macroions (40 points)
Consider charged spherical particles (macroions) with number density profile ρp(r). The par-
ticles reside in a medium consisting of (i) a solvent modelled as a dielectric continuum with
dielectric constant ϵ, and (ii) monovalent cations (+) and anions (-) with density profiles ρ±(r),
respectively. Within a density-functional framework, we approximate the intrinsic Helmholtz
free energy functional as

βF [ρp, ρ±] =
∑
i=p,±

∫
drρi(r){ln[ρi(r)Vi]− 1}+ ℓB

2

∫
dr

∫
dr′

q(r)q(r′)

|r− r′|
.

Here, β−1 = kBT is the thermal energy, ℓB = βe2/(4πϵ) is the Bjerrum length with e the
elementary charge unit, Vi is the thermal volume of species i = ±, p, and eq(r) = e[ρ+(r) −
ρ−(r) + Zpρp(r)] is the total local charge density. Note that each sphere has valency Zp.

(a) (5 points) Discuss briefly but detailed what the various terms in F [ρp, ρ±] represent and
what approximations underlie this functional.

(b) (5 points) Derive the Euler-Lagrange equations that determine the equilibrium density pro-
files of the charged spheres and the ions for arbitrary external potentials V ext

i (r) (i = ±,p).
It is beneficial to treat all types of particles in the grand-canonical ensemble with chemical
potentials µi (i = ±,p).

(c) (5 points) Consider the case where ρ±(r) = 0 (no ions) and Zp = 0 (uncharged spheres). We
consider the settling of the spherical particles under gravity, i.e., we take V ext

p (r) = mgz, for
z > 0 and V ext

p (r) = ∞ for z < 0. Here, m is the buoyant mass of the particles, and g is the
gravitational acceleration. For these conditions, derive an expression for ρp(r) in terms of
the gravitational length ℓg = (βmg)−1 given that the system has height H and surface area
A. Furthermore, there are N number of particles in the system volume. You may neglect
the effects of curved space-time.

(d) (5 points) For ρ±(r) ̸= 0 and Zp ̸= 0 it is useful to introduce the electrostatic potential ψ(r),

ψ(r) =

∫
dr′

eq(r′)

4πϵ|r− r′|
.

Show that the dimensionless electrostatic potential ϕ(r) = βeψ(r) satisfies

∇2ϕ(r) = κ2 sinh[ϕ(r)]− 4πℓBZpρp(r).

[Hint : ∇2r−1 = −4πδ(r)]. Give an expression for κ in terms of 2ρb, which is the total bulk
ion density in the absence of macroions. Discuss what κ physically represents.

(e) (5 points) A bulk system is locally charge neutral, i.e. ∇2ϕ(r) = 0. Show that the osmotic
pressure Π –defined as the excess pressure over a reservoir with just ions– is given by,

βΠ(ρp) = ρp + 2ρb

(√
1 + y2 − 1

)
,

with y := Zpρp/(2ρb). Note that ψ(r) = 0 for a bulk ion reservoir without macroions.

(f) (10 points) Consider the equation of state in (e) for y ≫ 1. Assume that ions are not
subjected to gravity, i.e., V ext

± (r) = 0 for z > 0 and V ext
± (r) = ∞ for z < 0. Use the equation

of hydrostatics Π′(ρp(z)) = −mgρp(z) to show that ρp(z) is a barometric distribution with
an “inflated” gravitational length due to the charge Zp of the macroions. As usual, a prime
denotes differentiation of a function with respect to its argument.

(g) (5 points) Where in the system do you expect the solution from (f) to be valid? What do
you expect for the form of ρp(z) far away from the bottom wall?

⌣̈ END OF EXAM ⌣̈
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