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Chapter 1

Introduction

Statistical Physics B can be seen as a continuation of an introductory course in statistical me-
chanics, such as Statistical Physics A or Termodynamika i fizyka statystyczna R. We assume
that the student is familiar with the foundations of equilibrium statistical mechanics in terms of
the various statistical ensembles. Furthermore, a typical introductory course covers some appli-
cations of ensemble theory to some simple systems, such as ideal (quantum) gases and the Ising
model. The latter is often discussed only in the one-dimensional case or within the mean-field
approximation. Here, we want to expand upon this knowledge to describe the equilibrium prop-
erties of interacting systems and/or systems in an external potential. Finally, we go beyond the
concept of equilibrium systems by considering systems out of equilibrium that are characterized
by non-vanishing fluxes.

1.1 Further reading

These lecture notes are based on various books, lecture notes, articles on this topic. A non-
exhaustive list is shown below:

1. R. A. L. Jones, Soft condensed matter.

2. S. R. de Groot and P. Mazur, Non-equilibrium thermodynamics.

3. J.-P. Barrat and J.-P. Hansen, Basic concepts fot simple and complex fluids.

4. R. Evans, Lecture notes Kramer’s course 2011, DFT: Classical and quantum.

5. D. Chandler, Introduction to modern statistical mechanics.

6. R. P. Feynman, Statistical mechanics: a set of lectures.

7. R. van Roij, Lecture notes for course “Soft Condensed Matter Theory”.

8. P. van der Schoot, Lecture notes for course “Self-organisation in Soft Condensed Matter”.

9. J.-P. Hansen and I. R. McDonald, Theory of simple liquids.

10. J. Israelachvili, Intermolecular and surface forces.

11. P. G. de Gennes and J. Prost, The physics of liquid crystals.

12. J. K. G. Dhont, An introduction to the dynamics of colloids.

13. P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics.
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Chapter 2

Many-body theory of classical
interacting systems

2.1 A quick reminder on classical statistical mechanics

The central object that we will study in these lecture notes is the so-called classical partition
function. For example, in the canonical ensemble where the number of (indistinguisable) particles
N , the volume V , and temperature T are kept fixed, the canonical partition function is

Z(N,V, T ) =
1

N !h3N

∫
dΓ e−βH(Γ), (2.1)

with h the Planck constant, and β = (kBT )
−1, with kB the Boltzmann constant and T (absolute)

temperature. Furthermore, H(Γ) is the (classical) Hamiltonian of the system. The integral is
over the classical phase space Γ which encodes all microscopic degrees of freedom of the particles
in the system. For example, for a system of classical spherical particles they are the positional
degrees of freedom, rN := (r1, ..., rN ) and their conjugate linear momenta pN := (p1, ...,pN ) of
the particles. An ensemble is a subset of the phase space as imposed by macroscopic constraints
(e.g. keeping the volume fixed). The general Hamiltonian for such a system is

H(pN , rN ) =
N∑
i=1

p2
i

2m
+Φ(rN ), (2.2)

with m the mass of a particle, and Φ(rN ) the N -body interaction potential, which gives the
force acting on particle i by all the other particles Fi = −∇riΦ(r

N ). The potential Φ can be
decomposed in terms of one-body, two-body contributions, etc

Φ(rN ) =
N∑
i=1

Vext(ri) +
N∑
i=1

∑
j<i

v(|ri − rj |) + ...

The one-body contribution Vext(ri) is called the external potential, which can be exerted by,
for example, external objects such as walls, or the earth which provides us the gravitational
field upon which particles respond to. For the pair potential v(r), we assume the system to be
isotropic and translationally invariant, as it only depends on the distance between particles (note
that the external potential breaks this symmetry). Examples, are the van der Waals interaction,
electrostatic interactions, etc. It is straighforward to extend Eq. (2.2) for systems with internal
degrees of freedom, such as orientational degrees of freedom, which can be parametrised by, e.g.,
the Euler angles. For now, we do not include forces on particles that are non-conservative (i.e.
forces that do not have a description in terms of a scalar potential).
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The Hamiltonian provides the complete time evolution of a microstate as denoted by a
trajectory in classical phase space (pN (t), rN (t)), via the Hamilton equations of motion,

ṙi =
∂H

∂pi
, ṗi = −∂H

∂ri
, i = 1, ..., N,

together with 6N initial conditions. Note that classical phase space trajectories do not intersect.
Obviously, it is very difficult to solve such a system of coupled differential equations, especially
considering that N ∼ 1023. Here is where Eq. (2.1) comes into play: often we are not interested
in the precise microstate of a system and its time evolution, but instead we are interested in
the macroscopic state (that we observe in daily lives by performing a meaurements). Statistical
mechanics provides the link between the accessible microstates and the macrostates (as described
by thermodynamics), by relating the partition function to the relevant thermodynamic potential.
The thermodynamic potential quantifies for given constraints as set by the ensemble, how much
work the system can perform. In the canonical ensemble, the partition function is related to the
Helmholtz free energy

βF (N,V, T ) = − logZ(N,V, T ), (2.3)

which gives a complete thermodynamic description of the system. Furthermore, in ergodic
systems –systems that are able to explore their whole phase space on the time scale of interest–
measurable observables are given by ensemble averages. In the canonical ensemble, it is defined
as

⟨...⟩ = 1

Z(N,V, T )

∫
dΓ (...)e−βH(Γ),

where the dots denote any observable. Note that ergodicity implies that ensemble averages are
equal to the more “practical" time averages that one obtains in experiment. Furthermore, we
recall some of the thermodynamic relations in the canonical ensemble,

S(N,V, T ) = −
(
∂F

∂T

)
N,V

, p(N,V, T ) = −
(
∂F

∂V

)
N,T

, µ(N,V, T ) =

(
∂F

∂N

)
V,T

,

which follow from the fundamental relation dF = −SdT − pdV +µdN . Here, p is pressure, S is
the entropy, and µ is the chemical potential.

Other ensembles can be obtained via the Legendre transformation which can be used to
“exchange" in the macroscopic constraints intensive variables with their conjugate extensive
variables, or vice versa. Recall that a product a conjugate pair of intensive and extensive
variables denote a form of work, such as mechanical work −pV or chemical work µN . For
example, the thermodynamic potential of the grand-canonical ensemble as characterized by
(µ, V, T ) –the so-called grand potential Ω– can be obtained from the canonical ensemble, by the
Legendre transformation

Ω(µ, V, T ) = F (⟨N⟩, V, T )− µ⟨N⟩, βΩ = − log Ξ(µ, V, T ), (2.4)

with grand-canonical partition function

Ξ =

∞∑
N=0

exp(βµN)Z(N,V, T ). (2.5)

We also list the useful relation (derive it!), dΩ = −SdT − pdV − Ndµ, from which various
thermodynamic relations follow.

Other ensembles are the microcanonical ensemble (N,V, U), where U is the internal energy
and with entropy S the thermodynamic potential; the isobaric-isothermal ensemble (N, p, T )
with the Gibss free energy the thermodynamic potential; and the (N, p, S) ensemble described
by the enthalpy H (apologies for the unlucky standard notation).
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Having given a brief reminder on statistical mechanics that we need in this course, we
investigate Eq. (2.1) a little bit more detail. For example, we note the factor N ! which stems
from the indistinguishability of the particles (making the thermodynamic potential extensive),
and the factor containing h which is there for dimensional reasons. It comes perhaps as a surprise
to see a remnant of quantum mechanics in a classical mechanics. In the next section, we will
show how Eq. (2.1) can be obtained from the quantum-mechanical partition function. People
that are unfamiliar with quantum many-body theory can skip this section. For now, however,
we stress that classical macroscopic observables do not depend on quantum mechanics, and h
drops out from calculations.

2.2 The classical limit

As is derived in an introductory course of classical statistical mechanics, the quantum-mechanical
canonical partition function is given by

Z(N,V, T ) = Tr[e−βĤ ] =
∑
ν

⟨Ψν |e−βĤ |Ψν⟩ =
∑
ν

e−βEν . (2.6)

Here, Tr[...] is a trace over a full set of states, which can be found by solving the equation
Ĥ|Ψν⟩ = Eν |Ψν⟩, with Ĥ the (quantum-mechanical) Hamiltionian. Note that {|Ψν⟩} forms a
complete set spanning the N -particle Hilbert space HN (ν is here a multi-index enumerating the
many-body wave functions). For illustration purposes, we consider spinless particles, for which
we take for Ĥ

Ĥ =
N∑
i=1

p̂2
i

2m
+

N∑
i=1

Vext(r̂i) +
N∑
i=1

∑
j<i

v(|r̂i − r̂j |).

The momentum operators p̂i and position operators r̂i satisfy the canonical commutation rela-
tions [r̂i, p̂i] = iℏI for i = 1, ...N . Furthermore, we denote the position and momentum kets,
which are eigenstates of the position and momentum operator, respectively. E.g., r̂i|ri⟩ = ri|ri⟩
and p̂i|pi⟩ = pi|pi⟩ for i = 1, ..., N . Here v(|r̂i − r̂j |) should be viewed as an “effective" inter-
action potential where electronic degrees of freedom are integrated out, so that we are only left
with the degrees of freedom of the nuclei. See also Chapter 5.

From single-particle kets we can construct N -body kets using (tensor) product states. To
rewrite Eq. (2.6) in terms of a trace over positions and momenta, we need the many-body
position and momentum kets.

|r1, ..., rN ⟩ = 1√
N !

∑
P∈SN

ζP |rP (1)⟩|rP (2)⟩...|rP (N)⟩,

with SN the permutation group of N elements, and ζP = 1 for identical bosons, and ζP = sgn(P )
for identical fermions. The reader is invited to write the above expression for N = 2 for fermions
and bosons to understand the notation. We recall that for one-body position kets, we have the
properties, ∫

dr |r⟩⟨r| = 11, ⟨r|r′⟩ = δ(r− r′),

with 11 the identity operator in the single-particle Hilbert space. The N -body generalisations
are

1

N !

∫
drN |r1, ..., rN ⟩⟨r1, ..., rN | = 1N , (2.7)

⟨r1, ..., rN |r′1, ..., r′N ⟩ =
∑

P∈SN

ζP δ
(
r1 − r′P (1)

)
...δ
(
rN − r′P (N)

)
,
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with 1N the identity operator in the Hilbert space of properly symmetrised N -body wave func-
tions. We obtain similarly many-body momentum kets |p1, ...,pN ⟩ by replacing in above formu-
las ri by pi. Inserting the completeness relation (2.7) two times in Eq. (2.6) gives

Z(N,V, T ) =
∑
ν

⟨Ψν |
∫
drN |r1, ..., rN ⟩⟨r1, ..., rN |e−βĤ

∫
dr′

N |r′1, ..., r′N ⟩⟨r′1, ..., r′N |Ψν⟩

=
1

(N !)2

∫
drN

∫
dr′N ⟨r1, ..., rN |e−βĤ |r′1, ..., r′N ⟩

∑
ν

⟨r′1, ..., r′N |Ψν⟩⟨Ψν |r1, ..., rN ⟩

=
1

(N !)2

∑
P∈SN

∫
drN

∫
dr′N ⟨r1, ..., rN |e−βĤ |r′1, ..., r′N ⟩ζP δ

(
r1 − r′P (1)

)
...δ
(
rN − r′P (N)

)
.

Let us work out ∫
dr′N

∑
P∈SN

|r′1, ..., r′N ⟩ζP δ
(
r1 − r′P (1)

)
...δ
(
rN − r′P (N)

)
(2.8)

=

∫
dr′N

∑
P∈SN

∑
Q∈SN

ζP ζQ|r′Q(1)⟩|r
′
Q(2)⟩...|r

′
Q(N)⟩δ

(
r1 − r′P (1)

)
...δ
(
rN − r′P (N)

)
=

∫
dr′N

∑
P∈SN

∑
Q∈SN

ζP ζQ|r′QP−1(1)⟩|r
′
QP−1(2)⟩...|r

′
QP−1(N)⟩δ

(
r1 − r′1

)
...δ
(
rN − r′N

)
=

∫
dr′N

∑
P∈SN

∑
Q∈SN

ζQP−1 |r′QP−1(1)⟩|r
′
QP−1(2)⟩...|r

′
QP−1(N)⟩δ

(
r1 − r′1

)
...δ
(
rN − r′N

)
=

∫
dr′N

∑
P∈SN

∑
R∈SN

ζR|r′R(1)⟩|r
′
R(2)⟩...|r

′
R(N)⟩δ

(
r1 − r′1

)
...δ
(
rN − r′N

)
= N !|r1, ..., rN ⟩.

Therefore,

Z(N,V, T ) =
1

N !

∫
drN ⟨r1, ..., rN |e−βĤ |r1, ..., rN ⟩.

Using the identity eÂeB̂ = eÂ+B̂+(1/2)[Â,B̂]+..., we can write

e−βĤ = e−β
∑

i p̂
2
i /(2m)e−β[

∑
i Vext(r̂i)+

∑
i

∑
j<i ϕ(|r̂i−r̂j |]) +O(ℏ),

we find

Z(N,V, T ) =
1

N !

∫
drN ⟨r1, ..., rN |e−β

∑
i p̂

2
i /(2m)e−β[

∑
i Vext(r̂i)+

∑
i

∑
j<i ϕ(|r̂i−r̂j |])|r1, ..., rN ⟩+O(ℏ)

=
1

N !

∫
drNe−β[

∑
i Vext(ri)+

∑
i

∑
j<i ϕ(|ri−rj |])⟨r1, ..., rN |e−β

∑
i p̂

2
i /(2m)|r1, ..., rN ⟩+O(ℏ)

=
1

(N !)3

∫
drN

∫
dpN

∫
dp′Ne−β[

∑
i Vext(ri)+

∑
i

∑
j<i ϕ(|ri−rj |])⟨r1, ..., rN |p1, ...,pN ⟩

×⟨p1, ...,pN |e−β
∑

i p̂
2
i /(2m)|p′

1, ...,p
′
N ⟩⟨p′

1, ...,p
′
N |r1, ..., rN ⟩+O(ℏ).

We note that ⟨r|p⟩ = eip·r/ℏ/(2πℏ)3/2 (with Dirac constant ℏ = h/(2π)) and that

⟨r1, ..., rN |p1, ...,pN ⟩ = 1

(2πℏ)3N/2

∑
P∈SN

ζP eip1·rP (1) ...eipN ·rP (N) ,

we find using the same algebraic steps as in Eq. (2.8) that

⟨r1, ..., rN |p1, ...,pN ⟩⟨p′
1, ...,p

′
N |r1, ..., rN ⟩ = N !

(2πℏ)3N
∑

P∈SN

ζP ei(p1−p′
1)·rP (1) ...e(ipN−p′

N )·rP (N) .
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Doing the remaining algebraic steps in similar manner to perform the integral over p′N (giving
an extra factor of N !), we find (omitting O(ℏ))

Z(N,V, T ) =
1

N !h3N

∫
dpN

∫
drNe−βH(pN ,rN ), (2.9)

with H the classical Hamiltonian. One can generalise this calculation also to particles with
internal degrees of freedom, from which we conclude that indeed Eq. (2.1) is the classical
partition function with a prefactor that is consistent with the quantum-mechanical partition
function (even in the presence of interactions and/or an external potential).

2.3 The virial expansion

Let us consider the classical Hamiltonian (2.2), for which we have found the classical partition
function Eq. (2.9). The momentum part factorises and can be computed by the Gaussian
integral

∫
dx exp(−αx2) =

√
π/α, for Re(α) > 0, and we find

Z(N,V, T ) =
Q(N,V, T )

N !Λ3N
, Q(N,V, T ) =

∫
drNe−βΦ(RN ),

with Λ = h(2πmkBT )
−1/2 the thermal de Broglie wavelength and Q(N,V, T ) is the so-called

configurational integral. For example, for an ideal system in the absence of an external potential
Φ = 0 and Q(N,V, T ) = V N . We then obtain the Helmholtz free energy of an ideal gas using
Eq. (2.3)

βfid(ρ, T ) =
βFid(N,V, T )

V
= ρ[log(ρΛ3)− 1], (ideal system),

with ρ = N/V the overall number density and fid the Helmholtz free energy density of an ideal
system. Furtermore, we used extensivity of F . We invite the reader to check that this free
energy results in βE = 3/2, βp = ρ, and βµ = log(ρΛ3) using thermodynamic relations.

For Φ ̸= 0, there are only few occasions where we can calculate Q(N,V, T ) analytically. We
explore one such example in the problems. However, there are some approximative schemes that
can be constructed when ρ is small for pair-wise interacting particles Φ(rN ) =

∑N
i=1

∑
j<i ϕ(rij),

with rij = |ri − rj |. Our scheme is most readily derived in the grand-canonical ensemble, with
partition function (2.5)

Ξ(µ, V, T ) =
∞∑

N=0

zN

N !
QN (V, T ),

with z = exp(βµ)/Λ3 the fugacity and we introduced the notation QN (V, T ) = Q(N,V, T ). We
will not express the grand potential Ω in terms of QN (V, T ) assuming implicitly that the Taylor
expansion ln(1 + x) =

∑∞
n=0(−1)n+1xn/n exists. Using Eq. (2.4), we define

βΩ = −V
∞∑
n=1

bnz
n,

and we find for the first few coefficients,

b1 =
Q1

V
, b2 =

Q2 −Q2
1

2!V
, b3 =

Q3 − 3Q2Q1 + 2Q3
1

3!V
, b4 =

Q4 − 4Q3Q1 − 3Q2
2 + 12Q2Q

2
1 − 6Q4

1

4!V
,

with Q1 = V . In principle, it is possible to derive a general expression for the bi coefficients, see
e.g., the book of Pathria for a discussion. However, it will not lead to any additional physical
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insights for our current purposes, so we will omit it here. Recall that Ω(µ, V, T ) = −p(µ, T )V
because of extensivity and the relation

⟨N⟩ = −
(
∂Ω(µ, V, T )

∂µ

)
V,T

= −z
(
∂Ω(z, V, T )

∂z

)
V,T

,

that

βp(z, T ) =
∞∑
n=1

bnz
n, ρ(z, T ) =

∞∑
n=1

nbnz
n.

Our goal now is to express p in terms of ρ. We expand z =
∑N

n=1 anρ
n and insert in the equation

of ρ(z, T ). Equating both sides gives the relations for the first few coefficients

a1 = 1, a2 = −2b2, a3 = −3b3 + 8b22.

Inserting the expansion ρ(z) in the equation for p(z, T ), we obtain the virial expansion of the
pressure,

βp(ρ, T ) = ρ+B2(T )ρ
2 +B3(T )ρ

3 + ..., (2.10)

with first few coefficients B2(T ) = −b2 and B3(T ) = 4b22 − 2b3. Explicitly writing out gives for
the second virial coefficient

B2(T ) = − 1

2V

∫
dr1

∫
dr2 {exp[−βv(r12)]− 1} = −1

2

∫
dr fM(r),

where we used translational invariance in the second equality and we introduced the Mayer
function fM(r) = exp[−βv(r)] − 1. That is why sometimes the virial expansion is also called
the Mayer expansion. Furthermore, for r large fM(r) ∼ −βv(r). Note that depending on the
temperature depence of fM(r), there is the possibility that B2(T ) changes sign. We define the
so-called Boyle temperature TB as B2(TB) = 0. Furthermore, we find an expression for the
third-virial coefficient,

B3(T ) =
1

3V

∫
dr1

∫
dr2

∫
dr3 fM(r12)fM(r13)fM(r23).

Expressions for higher-order virial coefficients can be obtained with the recipe above.
We can also express the Helmholtz free energy in a virial expansion, which will turn out to

be useful later. We write

fex(ρ, T ) =
F − Fid

V kBT
=

∞∑
n=2

Cn(T )ρ
n,

for the so called excess (i.e., over ideal) Helmholtz free energy density fex(ρ, T ). Using the
thermodynamic relation

βp = −
(
∂F

∂V

)
N,T

= −βf + ρ

(
∂βf

∂ρ

)
T

,

and comparing with Eq. (2.10) gives Cn = Bn/(n − 1) for n > 2. Therefore, we have for the
Helmholtz free energy density

f =
βF

V
= ρ[log(ρΛ3)− 1] +B2(T )ρ

2 +
B3(T )

2
ρ3 + ....

It is interesting to note that B2(T ) is only convergent for interaction potentials ϕ(r) ∼ r−n

with n > 3. Therefore, Coulomb fluids and dipolar fluids consisting of point particles cannot
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be treated in the virial expansion. An example of a “model" potential for which B2(T ) is well
defined, is the so-called Lennard-Jones1 potential

vLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
. (2.11)

Eq. (2.11) is a widely used model potential in classical fluids because it captures the Born
repulsion and Pauli exclusion at short distances (∼ r−12) and the van der Waals attraction
(∼ r−6) at larger distances. Here, ϵ is the “well depth", and σ is a characteristic size. A
simplification of the Lennard-Jones potential is the hard-core Yukawa potential

vY(r) =

∞, r < σ,

− ϵ

(r/σ)
exp

[
−λ
( r
σ
− 1
)]
, r > σ.

An even further simplification is the square-well potential

vSW(r) =


∞, r < σ,

−ϵ, σ < r < λσ,

0, r > λσ.

Finally, one of the simplest model pair potentials is the hard-core or hard-sphere potential

vHC(r) =

{
∞, r < σ,

0, r > σ.

Note that this potential ultimately stems from the Pauli exclusion principle. In the context of a
hard-core potential, σ is called the hard-core diameter. For vHC(r) the virial coefficients Bn(T )
are analytically known up until n = 4,

BHC
2 =

2

3
πσ3, BHC

3 =
5π2

18
σ6, BHC

4 =

[
− 89

280
+

219
√
2

2240π
+

4131

2240π
arccos

(
1√
3

)](
BHC

2

)3
.

Furthermore, note that BHC
n are independent of temperature. Higher-order virial coefficients can

be computed numerically. To accurately describe the hard-sphere fluid up until the liquid-solid
phase transition η ≈ 0.5, with η = (π/6)σ3ρ the volume fraction, we need up until the eight
virial coefficient. Numerically, we find

βp

ρ
= 1+4η+10η2+18.365η3+28.225η4+39.74η5+53.5η6+70.8η7+ ... ≈ 1+

∞∑
n=1

(n2+3n)ηn.

In the last equality sign we made an approximation to the virial expansion for hard spheres. We
can sum the resulting approximate geometric series, and find the so-called Carnahan-Starling
(CS) equation of state,

βpCS

ρ
=

1 + η + η2 − η3

(1− η)3
, (2.12)

with free energy
βFCS

N
= log(ρΛ3)− 1 +

4η − 3η2

(1− η)2
.

The CS free energy turns out to be a very good approximative equation of state. The deviations
from computer simulations are at most 1% in the entire fluid range.

1Although the name suggests that two people contributed in developing this model potential, it is actually
named after one person. Namely, it has been devised by Sir John Edwards Lennard-Jones (1894-1954), who made
important pioneering contributions to the development of modern computational chemistry.
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2.4 Correlation functions in classical systems

We introduce the density operator

ρ̂(r) =
N∑
i=1

δ(r− ri).

The corresponding one-point correlation function, is called the one-body density ρ(r) = ⟨ρ̂(r)⟩.
In the presence of Vext(r) ̸= 0, ρ(r) is spatially varying. However, for Vext(r) = 0 the system is
translationallly invariant and the one-body density is constant ρ(r) = ρ. Furthermore, note the
normalisation

∫
dr ρ(r) = N .

Similarly, we define the two-body density operator as

ρ̂(2)(r, r′) =
∑
i ̸=j

N∑
j=1

δ(r− ri)δ(r
′ − rj),

which naturally defines the two-body correlation function ρ(2)(r, r′) = ⟨ρ̂(2)(r, r′)⟩, with normal-
isation

∫
dr
∫
dr′ ρ(2)(r, r′) = N(N − 1). For all suitable interaction potentials we have that

ρ(2)(r, r′) → ρ(r)ρ(r′) for |r−r′| → ∞. This motivates us to define the dimensionless correlation
function

g(r, r′) =
ρ(2)(r, r′)

ρ(r)ρ(r′)
,

with g(r, r′) → 1 for |r − r′| → ∞. In the absence of an external potential, translational and
rotational invariance requires that g(r, r′) = g(|r− r′|). In this case g(r) is called the radial
distribution function or pair correlation function.

At this point it is good to recap some knowledge from elementary probability theory. For
X and Y continuous stochastic variables with joint probability density p(x, y) and marginal
probability density functions pX(x) =

∫∞
−∞ dy p(x, y) and pY (y) =

∫∞
−∞ dx p(x, y), the condi-

tional probability density function of Y given that X = x is p(y|x) = p(x, y)/pX(x). Because
ρ(2)(r, r′)/[N(N − 1)] is the probability of finding of one particle at r and another one at r′,
and ρ(r)/N is the probability to find one particle at r, it follows that ρ(r)g(r, r′)/(N − 1) is the
probability to find a particle at r given that we know there is particle at r′. In other words, for
isotropic and translationally invariant systems, given a particle at the origin 4πr2ρg(r)dr counts
the number of particles between r and r+dr. In this way the first peak of g(r) can be identified
as a shell of nearest neightbours around a particle located in origin, the second peak to second
nearest neighbours etc. The peaks have an exponentially decaying envelope because of particles
becoming uncorrelated. Other properties of g(r) are that g(r) ≈ 0 for r < σ due to the Pauli
exclusion principle and that for an ideal gas of point particles g(r) = 1.

Using similar techniques as in Sec. 2.3, we find the low-density expansion of the radial
distribution function,

g(r; ρ, T ) = g(0)(r;T ) + ρg(1)(r;T ) + .... (2.13)

where

g(0)(r12;T ) = exp[−βϕ(r12)], g(1)(r12;T ) = exp[−βϕ(r12)]
∫
dr3 fM(r13)fM(r32). (2.14)

At low densities, g(r) is just the Boltzmann weight of the pair potential, which can be understood
intuitively from the interpretation of ρg(r) as a conditional probability.

Another important correlation function is the density-density correlation function G(r, r′)
defined as

G(r, r′) = ⟨δρ̂(r)δρ̂(r′)⟩, δρ̂(r) = ρ̂(r)− ⟨ρ̂(r)⟩.
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It is straightforward to show that G(r, r′) = ρ(2)(r, r′) − ρ(r)ρ(r′) + ρ(r)δ(r′ − r). For homo-
geneous systems we have G(r, r′) = G(r− r′). In this case, we define the Fourier transform
as

G̃(k) =

∫
drG(r)e−ik·r, G(r) =

∫
dk

(2π)3
G̃(k)eik·r.

When the system is also isotropic G(r, r′) = G(|r− r′|), this defines the static structure factor
S(k) via G̃(k) = ρS(k). Note that S(k) is dimensionless. It is possible to express S(k) in terms
of g(r),

S(k) = 1 + ρ

∫
dr e−ik·r[g(r)− 1] + (2π)3δ(k). (2.15)

One can check that S(k) → 1 as k → ∞, and that for an ideal gas S(k) = 1. The first
peak of S(k) at k∗ ∼ 2π/σ corresponds roughly to the first reciprocal lattice wave vector of
the solid. Furthermore, we note that S(k) can be experimentally measured using scattering
experiments. In practice, this means we can neglect the last term in Eq. 2.15. For example,
for an elastic scattering experiment with an incoming plane wave ∼ exp(iqi · r) and an outgoing
wave ∼ exp(iqo · r), it turns out that the scattering amplitude is proportional to S(k) with
k the momentum transferred to the sample. Here k follows from momentum conservation
ℏqo = ℏ(qi + k) and |qi| = |qo|.

2.5 From structure to thermodynamics

Besides providing a quantification for the local structure of a fluid, it turns out that the corre-
lation functions from Sec. 2.4 determine the complete thermodynamics of the system. There
are various ways to establish this connection. First, we focus on systems for which Φ(rN ) only
consists of pairwise-additive interaction potentials. Let us compute the internal energy of the
system

U = ⟨H⟩ =

〈
N∑
i=1

p2
i

2m

〉
+

〈
N∑
i=1

∑
j<i

v(|ri − rj |)

〉

=
3

2
NkBT +

1

2

〈∑
i ̸=j

N∑
j=1

∫
dr

∫
dr′ δ(r− ri)δ(r

′ − rj)v(|r− r′|)

〉

=
3

2
NkBT +

1

2

∫
dr

∫
dr′ ρ(2)(r, r′)v(|r− r′|),

where we used the equipartition theorem and the definition of ρ(2)(r, r′). The factor 1/2 occurs
in the second line to avoid double counting. For homogeneous isotropic systems, we thus find
the so-called caloric route to thermodynamics

U

V
=

3

2
ρkBT +

ρ2

2

∫
dr g(r)v(r).

Another relation can be obtained from the pressure. Using the fact that the system is ergodic,
we can use the virial theorem from classical mechanics,

p = ρkBT − 1

3V

〈
N∑
i=1

∑
j<i

rij ·
∂ϕ(rij)

∂rij

〉
= ρkBT − 1

6V

∫
dr

∫
dr′ ρ(2)(r, r′)(r− r′) · ∂v(|r− r′|)

∂(r− r′)
,

12



where we used the same steps as in deriving the caloric route. Again using that the system is
homogeneous and isotropic, we find the virial route to thermodynamics,

p = ρkBT − ρ2

6

∫
dr rg(r)v′(r),

where we used that for radial symmetric functions F , that r · ∂rF (r) = rF ′(r), with prime
denoting differentiation to the argument. We note that the caloric and virial routes can also be
directly derived from the partition function of a pair-wise interacting classical system. We will
explore this in the problems. Furthermore, note that the caloric and virial route are exact for
pair-wise interacting systems.

The final route to thermodynamic is valid for arbitrary Φ(rN ), which might also include
three-body interactions. We switch to the grand-canonical ensemble, and denote the classical
trace as

Trcl(...) =

∞∑
N=0

1

N !h3N

∫
dpN

∫
drN (...). (2.16)

In this notation, the grand-canonical partition function is Ξ(µ, V, T ) = Trcl{exp[β(µN −HN )},
with HN the N -particle classical Hamiltonian. The probability distribution function in the
grand canonical ensemble is

fN (pN , rN ;N) =
1

Ξ
exp[β(µN −HN )].

Note that Trcl(fN ) = 1 as is required for probability distribution functions. Grand-canonical
averages are given by

⟨...⟩ = Trcl[fN (...)],

From the context it will be clear whether we mean canonical or grand-canonical ensemble av-
erages. In the grand canonical ensemble the one-body and two-body density operators depends
on the number of particles and, therefore, have normalisations∫
dr ρ(r) =

∫
dr ⟨ρ̂(r)⟩ = ⟨N⟩,

∫
dr

∫
dr′ ρ(2)(r, r′) =

∫
dr

∫
dr′ ⟨ρ̂(2)(r, r′)⟩ = ⟨N2⟩ − ⟨N⟩.

From these properties, we find that in the grand-canonical ensemble,∫
dr

∫
dr′G(r, r′) = ⟨N2⟩ − ⟨N⟩2. (2.17)

Our goal is now to relate the number fluctuations to a thermodynamic quantity. We recall that
for a uniform fluid, from the definition of the grand-canonical average we have for α = 0, 1, 2, ...

⟨Nα⟩ = Trcl(fNN) =
1

Ξ
Trcl{Nα exp[β(µN −HN )]} =

1

Ξ
Trcl

{
∂α

∂(βµ)α
exp[β(µN −HN )]

}
=

1

Ξ

∂α

∂(βµ)α
Trcl {exp[β(µN −HN )]} =

1

Ξ

(
∂αΞ

∂(βµ)α

)
V,T

,

where we used that the series in Eq. (2.16) is uniform convergent. We conclude that

⟨N2⟩ − ⟨N⟩2 = 1

Ξ

(
∂2Ξ

∂(βµ)2

)
V,T

− 1

Ξ2

(
∂Ξ

∂(βµ)

)2

V,T

=

(
∂2lnΞ

∂(βµ)2

)
V,T

=

(
∂⟨N⟩
∂(βµ)

)
V,T

.

Furthermore, we have the Maxwell relation(
∂p

∂µ

)
V,T

= −
(
∂2Ω

∂µ∂V

)
T

= −
(
∂2Ω

∂V ∂µ

)
T

=

(
∂⟨N⟩
∂V

)
µ,T

= ρ.
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Combining these two results, we have

⟨N2⟩ − ⟨N⟩2 = V

(
∂ρ

∂(βµ)

)
T

= V

(
∂ρ

∂(βµ)

)
T

= V

(
∂ρ

∂p

)
T

(
∂p

∂(βµ)

)
T

= kBT ⟨N⟩
(
∂ρ

∂p

)
T

.

We recall the definition of the isothermal compressibility

κT = − 1

V

(
∂V

∂p

)
N,T

=
1

ρ

(
∂ρ

∂p

)
T

, (2.18)

and we conclude that
⟨N2⟩ − ⟨N⟩2 = ρkBT ⟨N⟩κT .

Combining with Eq. (2.17) and using that the system is homogeneous and isotropic, gives the
compressibility sum rule ∫

drG(r) = ρ2kBTκT . (2.19)

This general exact result is an example of a susceptibility sum rule. We can express Eq. (2.19)
in terms of the radial distribution function,

1 + ρ

∫
dr [g(r)− 1] = ρkBTκT . (2.20)

Eq. (2.20) is also known as the compressibility route to thermodynamics, and is more general
than the virial and caloric routes. Note that limk→0 S(k) = ρkBTκT which follows from Eq.
(2.15) when neglecting the delta function contribution.

2.6 The Ornstein-Zernike (OZ) integral equation

Now that we have discussed several properties of g(r) and some applications, it is necessary that
we have some tools to compute it. In Eqs. (2.13) and (2.14), we have discussed how to compute
g(r) in terms of a density expansion. Such virial expansions are, however, of limited use when
we are interested in dense fluids. We introduce the indirect correlation function h(r) = g(r)− 1,
which vanishes when particles become uncorrelated. It turns out that h(r) satisfies the celebrated
OZ integral equation

h(r) = c(r) + ρ

∫
dr′ c(|r− r′|)h(r′), (2.21)

which we will derive in the next chapter using density functional theory. We have introduced the
direct correlation function c(r), which for now can be seen as an auxiliary correlation function,
defined by the OZ equation. The name comes from the fact that in some sense c(r) is more
directly related to v(r) as can be seen from the asymptotic behaviour, c(r) ∼ −βv(r) as r → ∞
when the fluid is not close to the critical point. Unlike h(r) it lacks the presence of oscillations.
When c(r) is known, we can compute h(r).

Using the definitions of the Fourier transform, Eq. (2.21) becomes

h̃(k) =
c̃(k)

1− ρc̃(k)
,

and from the definition of S(k), which can be expressed as S(k) = 1 + ρh̃(k), we find

S(k) =
1

1− ρc̃(k)
,

giving an additional interpretation of the direct correlation function.
For now, to compute h(r) from c(r), we need an additional relation, called the closure

relation. Because there is no exact formulation of such a closure relation, we need to resort
to approximations. The accuracy of the approximations can be assessed by comparing, e.g., to
computer simulations. We list a few examples of approximative closure relations below.
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• In the random phase approximation (RPA), we assume that for all r the direct correlation
function takes it assymptotic form, i.e. cRPA(r) = −βv(r). This approximation turns
out the be accurate for fluids consisting of particles with soft cores (e.g., liquid metals,
polymers).

• The mean-spherical approximation (MSA) is an extension of the RPA approximation, but
now includes the effect of a hard-core together with a long-ranged tail. For example, when
v(r) = ∞ for r < σ and v(r) = φ(r) for r > σ. In this case, the MSA approximation is,

gMSA(r) = 0, (r < σ); c(r) = −βv(r), (r > σ).

The MSA approximation often allows for analytical results.

• In the hyper-netted chain (HNC) approximation, we use the approximation

cHNC(r) = gHNC(r)− 1− ln[gHNC(r)]− βv(r).

This scheme turns out to be accurate for systems with long-ranged potentials, like the
one-component plasma (OCP).

• In the Percus-Yevick (PY) approximation, we use

cPY(r) = {1− exp[βv(r)]}gPY(r),

which turns out to be an excellent approximation for hard spheres. Later, we will give
a systematic derivation of the PY approximation. Note that for hard spheres the PY
approximation is the same as the MSA.

In fact, it turns out that one can derive an analytical expression for c(r) within the PY approx-
imation. We find

cPY(r) =


−(1 + 2η)2 + 6η(1 + 1

2η)
2
( r
σ

)
− 1

2η(1 + 2η)2
( r
σ

)3
(1− η)4

, r < σ,

0, r > σ.

It is straightforward to Fourier transform this expression, and therefore, determine S(k). How-
ever, to obtain g(r), we need to resort to numerical calculations. It turns out that the PY
approximation is quantitative in the entire fluid regime up to η ≈ 0.494. Above this volume
fraction, the hard-sphere fluid freezes. Using gPY(r), we can obtain the equation of state using
either the compressibility route (c) or the virial route (v), and we find

βpc
ρ

=
1 + η + η2

(1− η)3
,

βpv
ρ

=
1 + 2η + 3η2

(1− η)2
.

It can be checked that both routes are consistent up until the third virial coefficient. Deviations
occur from the fourth virial coefficient and higher. The inconsistency arises from the PY approx-
imation, one would obtain a fully consistent result if an exact closure was used. Interestingly, we
retrieve the CS equation of state Eq. (2.12) by a suitable linear combination of the above result,
pCS = (2pc + pv)/3. It turns out that for dense fluids, the attractions give rise to a g(r) that is
almost indisguishable from the hard-sphere radial distribution function. Unlike dilute systems,
the correlations in a dense fluid are thus mainly determined by the short-range repulsions.
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2.7 Multi-component systems

The concepts of this chapter up until now focused on one-component systems. It is, however,
straightforward to generalise to multi-component systems. Suppose we have Nα particles of
species α = 1, ..., s. The canonical partition function becomes

Z(N1, ..., Ns, V, T ) =
s∏

α=1

(∫ drNα

(α)

Nα!Λ
3Nα
α

)
exp

[
−βΦ

(
rN1

(1), ..., r
Ns

(s)

)]
,

with rNα

(α) = (r
(α)
1 , ..., r

(α)
Nα

), Λα the thermal de Broglie wavelength of a particle of species α.
Like usual, the Helmholtz free energy is βF (N1, ..., Ns, V, T ) = − logZ(N1, ..., Ns, V, T ). If
we concentrate only on pair interactions, with pair interaction potential between particles of
species α and β with separation vector r, given by ϕαβ(r), we find the generalisation of the
virial expansion

βF

V
=

s∑
α=1

ρα[log(ραΛ
3
α)− 1] +

s∑
α,β

B
(αβ)
2 ραρβ +

1

2

s∑
α,β,γ

B
(αβγ)
3 ραρβργ + ...,

with ρα = Nα/V . For example, the second virial coefficient for a multi-component system is
given by

B
(αβ)
2 (T ) = −1

2

∫
dr {exp[−βvαβ(r)]− 1}.

The multicomponent generalisations of the density operator and two-body density operator are

ρ̂α(r) =

Nα∑
i=1

δ(r− r
(α)
i ),

and we define the density-density correlation function as

Gαβ(r, r
′) = ⟨δρ̂α(r)δρ̂β(r′)⟩,

which defines the partial structure factor Sαβ(k) for homegeneous and isotropic fluids via
G̃αβ(k) = ρSαβ(k) with ρ = N/V the overall average density where N =

∑s
α=1Nα. We

define the two-body density operator as

ρ̂
(2)
αβ(r, r

′) = δαβ

Nα∑
j ̸=i

Nα∑
i=1

δ(r− r
(α)
i )δ(r′ − r

(α)
j ) + (1− δαβ)

Nα∑
i=1

Nβ∑
j=1

δ(r− r
(α)
i )δ(r′ − r

(β)
j ).

Denoting ρα(r) = ⟨ρ̂α(r)⟩ and ρ(2)αβ(r, r
′) = ⟨ρ̂(2)αβ(r, r

′)⟩, we define

gαβ(r, r
′) =

ρ
(2)
αβ(r, r

′)

ρα(r)ρβ(r′)
,

which for homegeneous and isotropic mixtures defines the radial distribution function gαβ(r) =
gβα(r) of a multi-component system. Note that 4πr2ραgαβ(r)dr counts the number of particles
of type α in a range r to r + dr given a reference particle of type β in the origin. The indirect
correlation function defined by hαβ(r) = gαβ(r)− 1 satisfies the multi-component OZ equation,

hαβ(r) = cαβ(r) +
s∑

λ=1

ρλ

∫
dr′ cαλ(|r− r′|)hλβ(r′).
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Chapter 3

Classical density functional theory

3.1 Construction of the density functional

In the previous chapter, we have mainly looked at situations where the one-particle density
is constant (Vext(r) = 0). Here, we will consider the situation when Vext(r) ̸= 0. In this
case we have an inhomogeneous fluid where the density is spatially varying. Such systems are
well described using density functional theory (DFT), and in this Chapter we will set up the
formalism of this method. We will use DFT to describe inhomogeneous hard-sphere fluids from
very dilute to dense systems up until the crystallisation transition. In later chapters, we will
focus on further applications of DFT.

We will work in the grand-canonical ensemble, and we use the same notation as in Sec. 2.5.
Consider the combination u(r) = µ−Vext(r), which is known as the intrinsic chemical potential.
The grand potential can be viewed as a functional of u(r), i.e. Ω = Ω[u], given by

exp(−βΩ[u]) =
∞∑
n=0

1

N !Λ3N

∫
drN exp

{
−β
[
Φ(rN )−

∫
dru(r)ρ̂(r)

]}
. (3.1)

Explicitly, we find by functional differentiation that

ρ(r) = −δΩ[u]
δu(r)

. (3.2)

Because ρ(r) can be obtained from a functional differentiation of Ω[u], clearly it means that
it can be viewed also as a functional of Vext(r). Generalizing the Legendre transformation to
functionals, we define the intrinsic Helmholtz free-energy functional

F [ρ] = Ω[u]−
∫
dru(r)

δΩ[u]

δu(r)
= Ω[u] +

∫
dr ρ(r)[µ− Vext(r)]

Note that we retrieve the bulk result in the limit Vext(r) → 0, with ρ(r) → ⟨N⟩/V . Alternatively,
we can write this functional as an ensemble average

F [ρ] = ⟨KN +ΦN + kBT ln fN ⟩ = Trcl(KN +ΦN + kBT ln fN ), (3.3)

with KN the N -particle kinetic energy, ΦN the N -particle interaction potential (excluding the
external potential), and fN the N -particle distribution function.

In the density-functional approach, we focus purely on functionals of ρ(r) instead of u(r).
One can prove the not so obvious result that for a given ΦN and fixed µ and T that there is
a unique Vext(r) that gives rise to a specific density profile ρ(r). Because fN is a functional of
Vext(r), and therefore any quantity which for given ΦN , T , and µ, is fully determined by fN is
necessarily a functional of ρ(r) and the specific functional dependence is independent of Vext(r).
From Eq. (3.3) it follows that F [ρ] is a unique functional of ρ(r) and has the same form for
every external potential. Let us formalise the above.
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Lemma 1. Let be f be a phase space probability density function with Trclf = 1. We define the
functional

Ω[f ] = Trclf(HN − µN + kBT ln f),

then Ω[f ] ≥ Ω[fN ].

Proof. We recall the definition of fN = exp[β(µN−HN )]/Ξ. We find that Ω[fN ] = −kBT ln Ξ =:
Ω, with Ω the equilibrium grand potential. We conclude that HN −µN = −kBT ln(fNΞ). Using
this relation and that Trclf = 1, we conclude that

Ω[f ] = kBT Trcl(f ln f − f ln fN ) + Ω[fN ].

Rearranging this expression, we find

Ω[f ]− Ω[fN ] = kBT TrclfN

(
f

fN
ln

f

fN

)
= kBT TrclfN

(
f

fN
ln

f

fN
− f

fN
+ 1

)
,

where in the last equality we used that Trclf = TrclfN = 1. Note that f and fN are positive
phase space functions (as they are probability densities), and using the inequality x lnx ≥ x− 1
for x > 0, we conclude that Ω[f ]− Ω[fN ] ≥ 0, which completes the proof.

Using this lemma, we can prove the theorem

Theorem 1. For given ΦN , T , and µ, the quantity F [ρ] is a unique functional of the equilibrium
density ρ(r).

Proof. Assume there is an external potential V ′
ext(r) ̸= Vext(r) that gives rise to the same ρ(r).

We define VN =
∑N

i=1 Vext(ri) and V ′
N =

∑N
i=1 V

′
ext(ri). We define the Hamiltonians

HN = KN +ΦN + VN , H ′
N = KN +ΦN + V ′

N ,

with corresponding equilibrium density distibution functions fN ̸= f ′N

fN = exp[β(µN −HN )]/Ξ, f ′N = exp[β(µN −H ′
N )]/Ξ′.

The corresponding grand potential to f ′N is defined as Ω′, and using the definition,

Ω′ := Ω[f ′N ] = Trclf
′
N (H ′

N − µN + kBT ln f ′N ) < TrclfN (H ′
N − µN + kBT ln fN ), (3.4)

where in the last step we used Lemma 1 for Hamiltonian H ′
N . Using that H ′

N = HN +V ′
N −VN ,

we find that
TrclfN (H ′

N − µN + kBT ln fN ) = Ω + TrclfN (V ′
N − VN ).

Insertion in Eq. (3.4) gives

Ω′ < Ω+

∫
dr ρ(r)[V ′

ext(r)− Vext(r)]. (3.5)

Here we used that

TrclfNVN =

∫
drVext(r)Trcl[ρ̂(r)fN ] =

∫
dr ρ(r)Vext(r). (3.6)

Using similar arguments, we find that

Ω < Ω′ +

∫
dr ρ(r)[Vext(r)− V ′

ext(r)]. (3.7)

Addition of Eqs. (3.5) and (3.7) results in Ω+Ω′ < Ω′ +Ω. This is a contradiction, from which
we conclude that Vext(r) = V ′

ext(r). In other words there is a unique Vext(r) that determines
ρ(r) which then fixes fN Because F [ρ] can be expressed as Eq. (3.3), we have completed the
proof.
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Let us now consider the functional

ΩV [ρ̃] = F [ρ̃]−
∫
dru(r)ρ̃(r), (3.8)

with ρ̃(r) some density profile (not necessarily the equilibrium one). This functional gives rise
to an important variational principle.

Theorem 2. Let ΩV [ρ̃] be the functional defined in Eq. (3.8). Then

δΩV [ρ̃]

δρ̃(r)

∣∣∣∣∣
ρ̃=ρ

= 0, ΩV [ρ] = Ω.

In other words, when ρ̃(r) equals the equilibrium density profile ρ(r), then ΩV reduces to the
equilibrium grand potential. Furthermore, Ω is the minimum value of ΩV [ρ̃].

Proof. The assertion that ΩV [ρ] = Ω follows from Eq. (3.3) and manipulations like in Eq. (3.6).
Explicitly,

ΩV [ρ] = F [ρ]−
∫
dru(r)ρ(r) = TrclfN (HN − VN + kBT ln fN − µN + VN ) = Ω[fN ] = Ω. (3.9)

For the other assumption, we assume the existence of a different density profile ρ′(r) for a given
Vext(r) and Hamiltonian HN . We denote the associated probability density with f ′[ρ′(r)] where
Trclf

′ = 1. Then

Ω[f ′] = Trclf
′(HN − µN + kBT ln f ′) = F [ρ′]−

∫
dru(r)ρ′(r) =: ΩV [ρ

′]. (3.10)

Here, we assumed the existence of another external potential V ′
ext(r) that would give rise to

an equilibrium density ρ′(r) in order that f ′ exists. This ensures the existence of F [ρ′]. Using
Lemma 1, it follows that Ω[f ′] > Ω[fN ] and thus from Eqs. (3.9) and (3.10) that ΩV [ρ] <
ΩV [ρ

′].

The name instrinsic Helmholtz free energy functional is now clear. Namely, we have for the
total Helmholtz free energy the relation

F (N,V, T ) = Ω(µ, V, T ) + µ

∫
dr ρ(r) = F [ρ] +

∫
dr ρ(r)Vext(r),

i.e. it is the part contributing to the Helmholtz free energy that does not depend explicitly on
the external potential. Therefore, the variational principle in Theorem 2, leads to constancy of
the chemical potential µ throughout the inhomogeneous fluid,

µ = Vext(r) +
δF [ρ]

δρ(r)
. (3.11)

Sometimes, δF/δρ(r) is called the intrinsic chemical potental, and generally it is not a local
function of ρ(r).

In the case of an ideal gas ΦN = 0, we can explicitly calculate the intrinsic Helmholtz
functional,

βFid[ρ] =

∫
dr ρ(r){ln[ρ(r)Λ3]− 1}.

Note that this functional of the local form
∫
dr fid(ρ(r)), with fid(ρ) the free energy density of

a bulk ideal gas.
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3.2 Hierarchies of correlation functions

Recall the definition of Ω[u], see Eq. (3.1) and that ρ(r) = −δβΩ/δβu(r). Further functional
differentation of Ω[u] produces the density-density correlation function (see Chapter 2),

G(r, r′) = − δ2βΩ[u]

δβu(r)δβu(r′)
. (3.12)

Higher-order correlation functions can be obtained in a similar matter,

G(n)(r1, ..., rn) = ⟨δρ̂(r1)....δρ̂(rn)⟩ = − δnβΩ[u]

δβu(r1)...δβu(rn)
, n ≥ 2,

with G(2)(r, r′) = G(r, r′). Clearly, Ω[u] is a generating functional for density-density correlation
functions.

A second hierarchy of correlation functions can be obtained from F [ρ]. We define the excess
(over ideal) Helmholtz free-energy functional as Fex[ρ] = F [ρ]−Fid[ρ]. This functional generates
the direct correlation functions defined by

c(1)(r) = −δβFex[ρ]

δρ(r)
, c(2)(r, r′) = − δ2βFex[ρ]

δρ(r)δρ(r′)
. (3.13)

Note that from the definition we have that c(2)(r, r′) = c(2)(r′, r). Higher order direct correlation
functions can be obtained via

c(n)(r1, ..., rn) = − δnβFex[ρ]

δρ(r1)...δρ(rn)
.

We can explicitly write down, using Eq. (3.11)

c(1)(r) = ln[ρ(r)Λ3]− βu(r). (3.14)

We can reexpress this result into ρ(r)Λ3 = exp[βu(r) + c(1)(r)], which shows that −kBTc(1)(r)
acts as an effective one-body potential that determines the equilibrium density profile. A further
functional differentiation of Eq. (3.14) gives

c(2)(r, r′) =
δ(r− r′)

ρ(r)
− β

δu(r)

δρ(r′)
=
δ(r− r′)

ρ(r)
−G−1(r, r′)

The latter equality follows from Eqs. (3.2) and (3.12). Here the functional inverse is defined as∫
dr′′G(r, r′′)G−1(r′′, r′) = δ(r− r′). (3.15)

Compare this definition with the inverse of a matrix A, AikA
−1
kj = δij . We see that the two-body

direct correlation function is roughly the functional inverse of the density-density correlation
function. Using that G(r, r′) = ρ(2)(r, r′) − ρ(r)ρ(r′) + ρ(r)δ(r′ − r) and the definition of the
inhomogeneous indirect correlation function h(r, r′),

ρ(r)ρ(r′)h(r, r′) = ρ(2)(r, r′)− ρ(r)ρ(r′),

we find the inhomogeneous Ornstein-Zernike relation,

h(r, r′) = c(2)(r, r′) +

∫
dr′′ h(r, r′′)ρ(r′′)c(2)(r′′, r′),

which reduces to (bulk) OZ equation for Vext(r) → 0 that was posed without derivation in Sec.
2.6. The OZ equation is thus a natural consequence of having two generating functionals ΩV [u]
and F [ρ] that are linked via a Legendre transform. That is, Eq. (3.15) is equivalent to∫

dr′′
δ2F [ρ]

δρ(r)δρ(r′′)

δ2ΩV [u]

δu(r′′)δu(r′)
= −δ(r− r′).

In field-theoretical treatments of statistical mechanics the hierarchy of direct correlation function
are equivalent to the vertex functions. The OZ relation is therefore very general.
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3.3 Excess functional via integration

In some cases we can obtain Fex[ρ] via integration over some parameter. We provide two
examples.

Integration with respect to the particle density

We define the quantity ρ(r;α) for some parameter α ∈ [0, 1], with ρ(r;α = 0) = ρref(r) for some
reference density profile and ρ(r;α = 1) = ρ(r). We find by integration over α and using the
chain rule for functional differentiation,

Fex[ρ] = Fex[ρref ] +

∫ 1

0
dα
∂Fex[ρα]

∂α
= Fex[ρref ] +

∫ 1

0
dα

∫
dr
∂Fex[ρα]

δρ(r;α)

∂ρ(r;α)

∂α
.

Let us choose a linear path in the space of density profiles ρ(r;α) = ρref(r) + α[ρ(r) − ρref(r)]
and using Eq. (3.13), we find

βFex[ρ] = βFex[ρref ]−
∫ 1

0
dα

∫
dr c(1)([ρα]; r)[ρ(r)− ρref(r)]. (3.16)

By a similar procedure we obtain

c(1)([ρα]; r) = c(1)([ρref ]; r) +

∫ α

0
dα′

∫
dr′ c(2)([ρα′ ]; r, r′)[ρ(r′)− ρref(r

′)]. (3.17)

We thus obtain by combining Eqs. (3.16) and (3.17)

βFex[ρ] =βFex[ρref ]−
∫
dr [ρ(r)− ρref(r)]c

(1)([ρref ]; r)

−
∫ 1

0
dα

∫
dr [ρ(r)− ρref(r)]

∫ α

0
dα′

∫
dr′ [ρ(r′)− ρref(r

′)]c(2)([ρα′ ]; r, r′).(3.18)

This result is independent of the choice of integration path since Fex[ρ] is a unique functional of
the density. Note that for this scheme we need a prescription for the direct correlation functions
and we need to determine the equilibrium density profile.

At this point it is worthwhile to consider the bulk limit, where Vext = 0 and ρ is constant.
In this limit, while taking ρref(r) = 0, we see that Eq. (3.16) reduces to

c(1)(ρ) =

∫ ρ

0
dρ′
∫
dr′ c(2)(ρ′; r, r′) (3.19)

Taking the bulk limit in Eq. (3.14), we find that βµ(ρ) = βµid − c(1)(ρ), and we conclude that
Eq. (3.19) is equivalent to

βρ

(
∂µ

∂ρ

)
T

= 1− ρ

∫
dr c(2)(ρ; r),

which is just a form of the compressibility sum rule that we derived in Chapter 2. Furthermore,
we find in this limit that

βf(ρ) = βfid(ρ) + ρ2
∫ 1

0
dα (α− 1)

∫
dr c(2)(αρ; r), (3.20)

where we used that for any function g, that
∫ 1
0 dα

∫ α
0 dα′g(α′) =

∫ 1
0 dα (1− α)g(α). Use of Eq.

(3.20) is only possible when integration paths are performed in a single phase region.
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Integration with respect to the interaction potential

Assume that the interaction potential is purely pairwise additive, i.e. Φ(rN ) =
∑

i<j v(ri, rj).
When viewed as a functional of ϕ, we find that

ρ(2)(r, r′) = 2
δΩ

δv(r, r′)

We define the one-parameter family of pair potentials

vλ(r, r
′) = v0(r, r

′) + λv1(r, r
′)

By using again functional integration, we find

Fex[ρ] = F ref
ex [ρ] +

1

2

∫ 1

0
dλ

∫
dr

∫
dr′ρ(2)(r, r′;λ)v1(r, r

′).

Note that in this scheme there is no need to determine correlations functions at various densities
after the equilibrium density has been determined. We can write,

Fex[ρ] = F ref
ex [ρ] +

1

2

∫
dr

∫
dr′ρ(r)ρ(r′)v1(r, r

′) + Fcorr[ρ]. (3.21)

The function that incorporates the correlations due to presence of v(r, r′) is given by

Fcorr[ρ] =
1

2

∫ 1

0
dλ

∫
dr

∫
dr′ρ(r)ρ(r′)h(r, r′;λ)v1(r, r

′).

3.4 Approximations for the excess functional

Generally, we do not know the precise form of F [ρ], and it is therefore often necessary to resort
to approximations. We list a few examples.

Local density approximation (LDA)

The simplest approximation is the LDA. Here we make the approximation

F [ρ] =

∫
dr f(ρ(r)),

with f(ρ) the Helmholtz free energy density of the homogeneous bulk system. The LDA is a
good approximation in case the density is slowly varying compared to the dimensions of the
particle. One could, for example, take for f(ρ) the Carnahan-Starling or the van der Waals
form. Note that the LDA is exact for an ideal gas.

Weighted density approximation

An upgrade from the LDA is constructed by the weighted density approximation,

F [ρ] =

∫
dr ρ(r)ψ(ρ̄(r)), ψ(ρ) = f(ρ)/ρ.

Note that ψ(ρ) is the free energy per particle for a bulk system, i.e. ψ(ρ) = F (N,V, T )/N . The
weighted density ρ̄(r) is given by

ρ̄(r) =

∫
dr′w(|r− r′|)ρ(r′),

with weight functions w(r) to be determined. This approximation turns out to be an excellent
way of providing a nearly exact treatment of hard-sphere systems, as we shall see later.
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Virial expansion

We can generalise the virial expansion to inhomogeneous systems. For example, within the
second virial approximation

βF [ρ] = βFid[ρ]−
1

2

∫
dr

∫
dr′ fM(r, r′)ρ(r′)ρ(r′). (3.22)

Here fM(r, r′) = exp[−βϕ(|r− r′|)] − 1 is the Mayer function. This approximation is expected
to be exact in the low-density limit.

Gradient expansion

In the square-gradient approximation, where we allow for density profiels that are not slowly
varying, we set

F [ρ] =

∫
dr
[
f0(ρ(r)) + f2(ρ(r))|∇ρ(r)|2 + ...

]
,

with f0(ρ) the Helmholtz free energy density of a uniform system, and f2(ρ) a to be deter-
mined coefficient. The form of this approximation is constrained by symmetry arguments such
as translational and rotational invariance. One can derive expressions for f2(ρ) by imposing
consistency with the linear response result. We will come back to this when we discuss the
gas-liquid interface. Note that when we truncate above approximation after the first term, we
obtain the LDA. Truncation after the second term is called the square-gradient approximation.

The mean-field approximation and random-phase approximation

Consider the exact result Eq. (3.21). When we neglect correlations and set the reference system
to be an ideal gas, we obtain the so called mean-field approximations

Fex[ρ] =

∫
dr

∫
dr′ρ(r)ρ(r′)v(r, r′).

Sometimes this approximation is also known as the random-phase approximation. This approx-
imation is useful for describing soft-core systems, such as polymer blobs. Furthermore, we will
apply this approximation to the study of fluids with ions.

Density expansions

Now we consider the exact result Eq. (3.18). As a reference system we choose the uniform bulk
fluid with constant density ρb. The grand potential functional in this case becomes

βΩV [ρ] = βΩ[ρb] +

∫
drβVext(r)ρ(r) +

∫
dr

[
ρ(r) ln

ρ(r)

ρb
− ρ(r) + ρb

]
+

∫ 1

0
dα (α− 1)

∫
dr

∫
dr′ c(2)([ρα]; r, r

′)[ρ(r)− ρb][ρ(r
′)− ρb].

We not approximate c(2)([ρα]; r, r′) ≈ c(2)(ρb; |r− r′|) and we obtain the density expansion,

βΩV [ρ] = βΩ[ρb] +

∫
drβVext(r)ρ(r) +

∫
dr

[
ρ(r) ln

ρ(r)

ρb
− ρ(r) + ρb

]
−1

2

∫
dr

∫
dr′ c(2)(ρb; |r− r′|)[ρ(r)− ρb][ρ(r

′)− ρb]. (3.23)

One can show that Eq. (3.23) is equivalent to a functional Taylor expansion of the excess
functional around the uniform bulk density. This type of approximation works quite well in the
case of hard spheres next to a hard wall. However, problems occur when attractions are added,
because then one has the possibility to have surface phase transitions, as we shall discuss later.
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3.5 The Percus’ test particle formulation

Recall the interpretation of the radial distribution function g(r) in terms of a conditional prob-
ably to find a particle between r and r + dr given that there is a particle at the origin. We
can view the particle in the origin as a test particle that exerts an external potential on the
surrounding fluid, given by the interaction potential v(r). We can thus view the density profile
resulting from the test particle as

ρ(r) = ρ(r) = ρbg(r), (3.24)

with ρb the bulk density. Using Eq. (3.14), we find that the density profile satisfies

ρ(r) = ρb exp[−βv(r) + c(1)([ρ]; r)− c(1)(ρb)]. (3.25)

Combining Eqs. (3.24) and (3.25) gives the self-consistency equation

g(r) = exp[−βv(r) + c(1)([ρbg]; r)− c(1)(ρb)]

Using Eq. (3.17) with ρref(r) = ρb, we find

ln g(r) = −βv(r) +
∫ 1

0
dα

∫
dr′ ρb[g(r

′)− 1]c(2)([ρα]; r, r
′). (3.26)

Although this is an exact equation, we still need to perform approximations in order to be
able to calculate g(r). One approximation is c(2)([ρα]; r, r′) ≈ c(2)(ρb; |r − r′|). Recalling that
h(r) = g(r)− 1 and using the OZ equation, Eq. (3.26) can be re-expressed as

g(r) ≈ exp[−βv(r) + g(r)− 1− c(2)(ρb; r)].

which is just the hypernetted chain approximation as introduced in Sec. 2.6.
Alternatively, we can approximate,

exp[c(1)([ρbg]; r)− c(1)(ρb)] ≈ 1 +

∫
dr′ ρb[g(r

′)− 1]c(2)(ρb; r, r
′).

This results in
g(r) ≈ exp[−βv(r)][g(r)− c(2)(ρb; r)],

which is just the Percus-Yevick closure.

3.6 An exactly solvable model: hard rods in one dimension

Other than the ideal gas, there is no other model in three dimensional dimension for which
we have an exact expression for F [ρ]. However, in one dimension it is possible to obtain an
analytical solution for a system of hard rods with length σ in an arbitrary external potential
Vext(z). We find

ΩV [ρ] = Fid[ρ] + Fex[ρ] +

∫
dz [Vext(z)− µ]ρ(z),

where the ideal gas functional is

βFid[ρ] =

∫
dz ρ(z){ln[ρ(z)Λ]− 1}

and the excess functional

βFex[ρ] = −
∫
dz ρ(z) ln[1− t(z)], t(z) =

∫ z

z−σ
dz′ ρ(z′).
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The density profiles satisfy δΩV [ρ]/δρ(z) = 0,

β[µ− Vext(z)] = ln
ρ(z)Λ

1− t(z)
+

∫ z+σ

z
dz′

ρ(z′)

1− t(z′)
.

Up until now we have only considered the case of a one-component system of hard rods. It turns
out that the excess functional of a s-component mixture of hard rods can be expressed as

Fex[{ρi}] =
∫
dzΦ({nα(z)}) (3.27)

with ρi(z) the density profile and 2Ri the length of a rod of species i. The weighted densities
are defined by

nα(z) =
s∑

i=1

∫
dz′ ρi(z

′)w
(α)
i (z − z′), α = 0, 1.

The weight functions capture the geometry of the particles, and are given in one dimension by

w
(0)
i (z) =

1

2
[δ(z −Ri) + δ(z +Ri)], w

(1)
i (z) = Θ(Ri − |z|),

with Θ the Heaviside step function. The first weight function is associated with the “surface"
area of the rod and the second weight function with the “volume" of a rod. The excess free
energy density is then given by

Φ({nα}) = −n0(z) ln[1− n1(z)].

One can check that this expression reduces to the result for uniform hard-rod fluids. Also we
note that the Mayer function of the hard-rod mixture in 1D can be written as

−fij(z) = (w
(1)
i ∗ w(0)

j )(z) + (w
(0)
i ∗ w(1)

j )(z),

with ∗ denoting the one dimensional convolution product.

3.7 Fundamental measure theory

Let us consider s-component hard-sphere mixtures, defined by the interaction potential

vij(r) =

{
∞, r > σij ,

0, r < σij .

Here σi = 2Ri, with Ri the particle radius, and for additive mixtures that we consider here, we
define σij = (σii+σjj)/2. Using the exact result for the excess functional of a hard-rod mixture
in one spatial dimension, Rosenfeld considered whether this exact result can be generalised to
the case of three spatial dimensions. His fundamental measure theory had two main ingredients.
First, he used the exact result in 1D Eq. (3.27). Second, he insisted consistency with the exact
low-density result,

βFex[{ρi}] = −1

2

∑
i,j

∫
dr

∫
dr′ ρi(r)ρj(r

′)fij(|r− r′|), (3.28)

which is a generalisation of Eq. (3.22) to the multicomponent case. Here fij(r) = exp[−βvij(r)]−
1 is the multicomponent Mayer function. For additive hard spheres, we find fij(r) = Θ(Ri +
Rj − r). It turns out we can write

−fij(r) = (w
(3)
i ∗ w(0)

j )(r) + (w
(0)
i ∗ w(3)

j )(r) + (w
(2)
i ∗ w(1)

j )(r) + (w
(1)
i ∗ w(2)

j )(r)

+(w
(2)
i,α ∗ w(1)

j,α)(r) + (w
(1)
i,α ∗ w(2)

j,α)(r),
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with Einstein summation convention implied over repeated Greek indices. Furthermore we
defined the convolution product between two function p and q as

(p ∗ q)(r) =
∫
dr′ p(r− r′)q(r′).

The weight functions are

w
(3)
i (r) = Θ(Ri − r), w

(2)
i (r) = δ(Ri − r), w

(2)
i (r) = r̂δ(Ri − r),

w
(1)
i (r) =

w
(2)
i (r)

4πRi
, w

(1)
i (r) =

w
(2)
i (r)

4πRi
, w

(0)
i (r) =

w
(2)
i (r)

4πR2
i

.

Analogously to the one-dimensional case we define weighted densities. We have four scalar
densities and two vector densities,

nα(r) =
s∑

i=1

∫
dr′w

(α)
i (r− r′)ρi(r

′), α = 0, ..., 3, nα(r) =
s∑

i=1

∫
dr′w

(α)
i (r− r′)ρi(r

′), α = 1, 2.

By using the same form as in the one-dimensional case,

Fex[{ρi}] =
∫
drΦ({nα(r)}), (3.29)

invoking that the low-density result should be obtained Eq. (3.31), and the exact scaled-particle
result

p = lim
Ri→∞

(
µiex
Vi

)
. (3.30)

The functional that satisfies these condition can be found by making the ansatz (motivated by
dimensional analysis),

Φ({nα}) = f1(n3) + f2(n3)n1n2 + f3(n3)n1 · n2 + f4(n3)n
3
2 + f5(n3)n2n2 · n2,

with to be determined coefficients fα(n3). Consistency with the low-density limit constraints
these coefficients to have the form

f1(n3) = n3 +O(n3), f2(n3) = 1 +O(n3), f3 = −1 +O(n3),

f4(n3) =
1

24π
+O(n3), f5 = −1

8
π +O(n3). (3.31)

Eq. (3.30) translates to the scaled particle differential equation,

∂Φ({nα})
∂n3

= −Φ({nα}) +
3∑

α=0

∂Φ({nα})
∂nα

nα +
∑
α=1,2

∂Φ({nα})
∂nα

· nα.

Solving this differential equation with the conditions Eqs. (3.31)

ΦFMT({nα}) = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3
+
n32 − 3n2n2 · n2

24π(1− n3)2
.

Remarkably, the fundamental measure theory as presented here reproduces the free energy
density and the pair correlation function of the uniform hard-sphere mixture within the Percus-
Yevick approximation. The pressure using this scheme is equivalent to PY result within the
compressibility route, and one finds that in the bulk limit that the pressure differs at most
7% from simulations from densities up until freezing. The shortcomings of the theory are,
however, that it does not account correctly for hard-sphere freezing or when the dimensionality

26



of the problem is reduced. The latter notion is called dimensional crossover which means that
the three-dimensional DFT should still be approximately valid for situations at lower effective
dimensionality. In other words the theory should be applicable to fluids confined to narrow slits
(2D), narrow cylinders (1D), or cavities (0D). For example, the 2D limit can can be taken by
setting ρ(r) = ρ2D(x, y)δ(z).

A more pragmatic improvement of Rosenfeld’s fundamental measure theory can be obtained
by replacing Eq. (3.30) by p = pMCSL, where the right-hand side is given by Mansoori-Carnahan-
Starling-Leland (MCSL) equation of state for binary hard-sphere mixtures. This method is
therefore more consistent with the bulk result that Rosenfeld’s original formulation, which vio-
lates that the exact scaled-particle result for the pressure is equal to the thermodynamic pressure,
by the assumption that Fex can be written down in terms of weighted densities. Following the
same procedure as before, one finds the modified excess free energy density,

ΦWB({nα}) = −n0 ln(1−n3)+
n1n2 − n1 · n2

1− n3
+(n32−3n2n2·n2)

n3 + (1− n3)
2 ln(1− n3)

36πn23(1− n3)2
. (3.32)

Notice that only the last term is affected. Using Eq. (3.32) in Eq. (3.29) gives the so-called
White-Bear functional. Improvements to the functional were also constructed by using more
accurate expressions for the MCSL equation of state. This, for example, gives rise to the White
Bear Mark II functional, which is the current state of the art DFT for hard-sphere mixtures. It
is given by,

ΦWBII({nα}) = −n0 ln(1−n3)+
[
1 +

1

9
n23ϕ2(n3)

]
n1n2 − n1 · n2

1− n3
+

[
1− 4

9
n3ϕ3(n3)

]
n32 − 3n2n2 · n2

24π(1− n3)2
,

with

ϕ2(n3) = [6n3 − 3n23 + 6(1− n3) ln(1− n3)]/n
3
3,

ϕ3(n3) = [6n3 − 9n23 + 6n33 + 6(1− n3)
2 ln(1− n3)]/(4n

3
3).

In the White-Bear mark II approach the equilibrium density profiles in simple geometries do
not differ much from the first version of the White Bear approach. However, the increased
self-consistency of the WBII version gives better results for e.g., surface tensions and bending
rigidities.

Irrespective of the version of the fundamental measure theory, there is a big advantage that
correlation function to arbitrary order have the following expression

c
(m)
i1,...,im

(r1, ..., rm) = −
∫
dr

∑
α1,...,αm

∂mΦ

∂nα1(r)...∂nαm(r)
w

(α1)
i1

(r1 − r)...w
(αm)
im

(rm − r).

Note that DFT turned out to be very successful in describing the many-body equilibrium physics
of particles interacting via steric interactions, such as the hard-sphere potential. However, cur-
rently there is no satisfying DFT that describes the many-body physics when long-ranged poten-
tials and their resulting correlations are included. This should be contrasted with homogeneous
fluids, where there are well-defined schemes to incorporate such potentials (e.g., via thermody-
namic perturbation theory).

3.8 Relation with quantum density functional theory

In this chapter we have considered up until now how to apply density functional theory for
classical fluids. However, the original formulation of DFT, which was pioneered by Hohenberg,
Kohn, and Sham, found the applications in quantum systems. Here, one could for example
be interested in the ground state energy of an atom, molecule, or the band structure of a
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crystal lattice. Within the Born-Oppenheimer approximation where the M nuclei are assumed
to be much heavier than the electrons, one needs to solve the time-independent non-relativistic
Schrodinger equation ĤΨ = EΨ, for the N -body (electronic) wave function Ψ(r1, ..., rN ), where

Ĥ = − ℏ2

2m

N∑
i=1

∇2
i −

N∑
i=1

M∑
l=1

Zle
2

|ri −Rl|
+

1

2

∑
i ̸=j

e2

|ri − rj |
=: T̂ + V̂ + Φ̂. (3.33)

For simplicity, we ignore spin degrees of freedom. Here, m is the rest mass of an electron, Zl is
the atomic number of nucleus l, e is the elementary charge unit. The electrons have coordinates
r1, ..., rN , while the nuclei have coordinates R1, ...,RM . Note that in Eq. (3.33), the first term
defines the kinetic energy operator T̂ and the third term is the electron-electron interaction
operator Φ̂. The second term within the Born-Oppenheimer approximation acts as an external
potential because the nuclei are assumed to be stationary, and therefore the quantum dynamics
decouples from that of the electrons. The external potential operator is denoted by V̂ .

Solving the N-body Schrodinger equation is a daunting task, since the wavefunction depends
on 3N degrees of freedom. Similar to the treatment of classsical density functional theory, we
look for a simplification of this problem, by instead focusing on the electron density,

n(r) = ⟨Ψ|n̂|Ψ⟩ =
∫
dr1...drN Ψ∗(r1, ..., rN )n̂(r)Ψ(r1, ..., rN ),

with electronic density operator n̂(r) =
∑N

i=1 δ(r− ri). Similar to the classical DFT, we have a
variational principle for the ground state electronic energy, given by the functional

E = min
ñ
EV [ñ], EV [ñ] =

∫
dr ñ(r)Vext(r) + F [ñ].

The external potential is in this case

Vext(r) = −
M∑
l=1

Zle
2

|r−Rl|
.

The proof is roughly the same as the in the classical case (with some extra details, such as V-
representability 1 and possible degeneracy), and this is called the Hohenberg-Kohn variational
principle. In the case of a non-degenerate ground state EV is minimised by any of the ground
states electron densities. Here, F [ñ] is a unique functional of the electron density that does not
depend on the external potential, defined by the Levy constrained method

F [ñ] = min
α

⟨Ψ̃α
ñ|T̂ + Φ̂|Ψ̃α

ñ⟩.

In other words, we have to search over all many-body wavefunctions Ψ̃α
ñ that integrate to the

electron density ñ(r). Just like in the classical case, F [n] is not known explicitly. It is standard
practice to seperate the Coulomb piece from F [n],

F [ñ] = G[ñ] +
e2

2

∫
dr

∫
dr′

ñ(r)ñ(r′)

|r− r′|
.

In contrast to classical DFT, in the quantum case the kinetic energy is not exactly known. In this
case, G[ñ] thus contains kinetic contributions and so-called exchange-correlation contributions
defined by substracting the kinetic contribution from G[ñ].

1V-representability categorizes whether a positive function ñ(r), with
∫
drn(r) = N is a possible ground state

electron density for some Vext(r).
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Finally, we mention that the above formulation of quantum DFT focuses only on the ground
state of the system at T = 0 K. The generalisation to finite temperature has been performed by
Mermin. He showed that there is a unique functional F [n] independent of Vext(r), such that

ΩV [n] =

∫
dr [Vext(r)− µ]n(r) + F [n]

is minimum and equil to the equilibrium grand potential Ω when n(r) is the equilibrium electron
density in the presence of Vext(r). It is clear that the form is the same as the classical case, but
now

F [n] = Tr[ρ̂Q(T̂ + Φ̂ + kBT ln ρ̂Q)].

Here, we defined the grand-canonical density matrix

ρ̂Q =
exp[−β(Ĥ − µN̂)]

Tr{exp[−β(Ĥ − µN̂)]}
,

with Tr(...) the quantum-mechanical trace and N̂ =
∫
dr n̂(r) the total number operator. The

electron density in the finite-temperature case is

n(r) = Tr(ρ̂Qn̂).

We see that the finite temperature quantum DFT has the same form as the classical DFT.
Furthemore, we remark that although we have worked here in first quantization, one could
equally well formulate the above within the language of second quantization.
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Chapter 4

Phase behaviour

4.1 The liquid-gas phase transition

Up until now we have focused mainly on hard-sphere systems in bulk and in the presence of
an external potential. In this chapter, we will consider what happens when we add attractive
contribution to the interaction potential in the microscopic Hamiltonian. We shall see that the
presence of attractions can lead to condensation, i.e., there can be a phase coexistence between
a dilute gas and a dense liquid. Such a gas-liquid phase transition is absent when the particles
are purely repulsive (and it does not matter whether this repulsion is short or long-ranged).

As an example, let us consider the Lennard-Jones fluid with interaction potential given by
Eq. (2.11). The idea now is to approximate this potential by a reference part desribed by
hard spheres plus a perturbation. Recall that we have accurate expressions for the hard-sphere
reference part at our disposal. A rough approximation is

vLJ(r) ≈

vHS(r), r < σ,

−4ϵ
(σ
r

)6
, r > σ.

(4.1)

A splitting like this in a known reference part and a long-ranged perturbation is not unique.
We will come back at this point at the end of this section. However, for now we will focus on
the simplest prescription possible to understand the qualitative behaviour of having attractions.
Using, for example, Eq. (3.21) in the homogeneous limit and by neglecting correlations Fcorr[ρ] =
0, we find for the Helmholtz free energy density,

f(ρ, T ) = fHS(ρ)−
ρ2

2

∫
dr 4ϵ

(σ
r

)6
= fHS(ρ)− 16ϵυ0ρ

2 =: fHS(ρ)− aρ2,

with υ0 = (π/6)σ3. Although we have a very accurate expression for fHS(ρ) in the form of
the Carnahan-Starling formula, we opt here for a simpler route. First, we note that if we have
a given sphere with volume υ0 in the system, then the volume available for a second sphere
V − 8υ0. Neglecting, multi-particle overlaps, we can therefore approximate the configurational
integral as

Q(N,V, T ) =

∫
drN exp

−β N∑
i=1

∑
j<i

vHS(rij)

 ≈ V (V − 8υ0)(V − 2 · 8υ0)...[V − (N − 1)8υ0]

= V N

(
1− N2

2

8υ0
V

+ ...

)
≈
(
V − N

2
8υ0

)N

=: (V −Nb)N .
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In the last approximation we used than 8υ0 ≪ V . Calculing from Q(N,V, T ) the contribution
to the Helmholtz free energy, we find the so-called van der Waals free energy density,

βf(ρ) = ρ

(
log

ρΛ3

1− bρ
− 1

)
− βaρ2. (4.2)

We can interpret b as one half of the excluded volume between two spheres, and a is a measure
for the attractions. Both constants are independent of ρ and T . However, this depends on the
scheme of how we establish the reference system (i.e., the hard-core diameter). In general, a
and b depend on temperature and density.

Let us compute the pressure:

p = −
(
∂F

∂V

)
N,T

= −f + ρ

(
∂f

∂ρ

)
T

=
ρkBT

1− ρb
− aρ2 (4.3)

This celebrated equation of state was derived by van der Waals in 1873 when the existence of
atoms and molecules was not yet accepted!

A careful investigation of the equation of state p(ρ, T ) for a fixed T (i.e. isotherms), reveals
that there for T < Tc there is a regime for which (∂p/∂ρ)T < 0: the isothermal compressibility
would be negative (recall Eq. (2.18)). However, this is not possible because the compressibility
is a measure for the number fluctuations in the system as we have seen in Chapter 2 and is
therefore always a positive quantity. We conclude that there is a thermodynamic instability.
The critical temperature Tc denotes the lowest temperature for which the isotherm does not
exhibit such a thermodynamic instability and separates two regimes for which thermodynamic
instabilities occur or not. At T = Tc, there is an inflection point in the pressure isotherm at the
critical density. At the critical point (ρc, Tc) we thus have(

∂p

∂ρ

)
T

= 0,

(
∂2p

∂ρ2

)
T

= 0.

In the van der Waals model the critical point can be analytically determined, and we find

ρcb =
1

3
, kBTc =

8a

27b
.

From Eq. (4.3) we conclude that the thermodynamic stability criterion (∂p/∂ρ)T > 0 is equiva-
lent to

(
∂2f/∂ρ2

)
T
> 0 where isotherms of the free energy density are convex. The locus of all

points ρ(T ) for which
(
∂2f/∂ρ2

)
T
= 0 is called the spinodal. Within the spinodal, where the

system is absolutely unstable, and we find that isotherms of the free energy are concave.
We shall see that the presence of a spinodal for T < Tc implies that the system can lower its

total free energy by phase separation of the homogeneous system with density ρ and volume V
into a dilute gas with density ρg with volume Vg and a dense liquid of density ρl with volume Vl.
Let us demonstrate this explicitly and consider the Helmholtz free energy of the phase-separated
(ps) system Fps = V fps = Vlf(ρl)+Vgf(ρg), omitting surface terms. In the canonical ensemble,
N and V are fixed, so we have a constraint on the volume, V = Vl + Vg and a constraint on the
number of particles ρV = ρgVg + ρlVl. Using these constraints, we find

fps(ρ, T ) = f(ρg, T ) +
ρ− ρg
ρl − ρg

[f(ρl, T )− f(ρg, T )], ρg ≤ ρ ≤ ρl.

Note that fps(ρ, T ) linearly interpolates between densities f(ρg, T ) and f(ρl, T ). We conclude
that if f(ρ, T ) contains a part that is concave, there is a density regime where the system can
lower its total free energy with fps(ρ, T ) < f(ρ, T ) for a given ρ with suitably chosen densities
ρg and ρl. The coexisting densities of gas and liquid are set by the condition that the total free
energy Fps of the system is minimised. Graphically, it can be seen that this occurs when

∂f

∂ρ

∣∣∣
ρ=ρg

=
∂f

∂ρ

∣∣∣
ρ=ρl

=
f(ρl)− f(ρg)

ρl − ρg
.
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The first equality is none other than a statement that the chemical potentials are equal µ(ρg, T ) =
µ(ρl, T ) =: µco(T ). The second equality follows from the condition of equal pressure p(ρg, T ) =
p(ρl, T ), which can be rewritten using Eq. (4.3) to

p(ρg, T )− p(ρl, T ) = 0 ⇒ (ρg − ρl)

[
µco(T )−

f(ρl, T )− f(ρg, T )

ρl − ρg

]
= 0.

We conclude that for T < Tc the total free energy density is given by fps(ρ, T ) for ρg ≤ ρ ≤ ρl and
f(ρ) otherwise. The lines ρg(T ) and ρl(T ) form the gas branch and liquid branch, respectively,
of the so-called binodal or coexistence curve. When ρ < ρg the system is in the gas phase and
for ρ > ρl in the liquid phase. For ρg ≤ ρ ≤ ρl we have gas-liquid coexistence.

For T > Tc, it follows that f(ρ, T ) is always convex, the system would always increase its
total free energy upon phase separation fps(ρ, T ) > f(ρ, T ) for any choice of ρl and ρg. The
homogeneous system has the lowest free energy and there is no phase separation for T > Tc.
The recipe we described above is often denoted as the common-tangent construction. In a plot
of p versus V it can be shown that this construction is equivalent to the Maxwell construction
when we consider p as a function of V .

Finally, we remark on the somewhat arbitrary splitting into a reference hard-sphere part and
attractive part (Eq. (4.1)), which gave us constant parameter b in the van der Waals equation
of state. In other words, this splitting does not properly take into account the “softness" in the
repulsive part of vLJ(r). A different choice was derived by Barker and Henderson (BH). This
scheme was developed for general potential v(r) with a steep repulsive part and an attractive
tail. Furthermore, they defined σ as v(r = σ) = 0, as in e.g., the Lennard-Jones potential.
Recall the first-order result of thermodynamic perturbation theory (Problem 2.8),

F (N,V, T ) = F0(N,V, T ) +
V ρ2

2

∫
dr g0(r)v1(r). (4.4)

Within the BH scheme, we have

v0(r) =

{
v(r), r < σ,

0, r > σ,
v1(r) =

{
0, r < σ,

v(r), r > σ,

The reference system is then approximated as a hard-sphere fluid with hard-core diameter d
given by

d =

∫ ∞

0
dr {1− exp[−βv0(r)]}.

Note that now the hard-sphere reference part is temperature dependent within this scheme (but
not density dependent). Furthermore, it can be shown that the convergence of this scheme is
rather slow, such that quantitative results can only be obtained within second-order thermody-
namic perturbation theory.

An improvement of this scheme is the Weeks-Chandler-Andersen (WCA) prescription that
focuses on potentials for which r∗ is defined as the minimum of v(r) with v(r∗) = −ϵ. In the
Lennard-Jones case we have r∗ = 21/6σ. In the WCA scheme,

v0(r) =

{
v(r) + ϵ, r < r∗,

0, r > r∗,
v1(r) =

{
−ϵ, r < r∗,

v(r), r > r∗.

Similar to the BH scheme, the reference part is not exactly known. We make the exact factor-
ization (see Problem 2.7), g0(r) = exp[−βv(r)]y(r), with the cavity function y(r). In the WCA
scheme, we approximate y ≈ yd(r), with yd(r) the cavity function of a hard-sphere system with
hard-sphere diameter d and hard-sphere potential vd(r). Here, d is determined by the condition∫

dr yd(r) {exp[−βv0(r)]− exp[−βvd(r)]} = 0.

In contrast to the BH scheme d becomes dependent on T and ρ. Consequently, the van der
Waals parameter b becomes T and ρ dependent, but also a, see the second term in Eq. (4.4).
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4.2 The lattice gas and the Braggs-William approximation

The van der Waals model discussed in Sec. 4.1 with constant a and b is an example of a mean-
field model, where fluctuations around the average density are neglected. We have discussed how
some of the correlations can be introduced via the scheme of thermodynamic perturbation theory,
with suitable soft-core reference systems. However, going to higher orders in thermodynamic
perturbation theory becomes progressively more difficult, where often three-body correlation
functions are needed. An alternative framework to include the effect of fluctuations is via field-
theoretical methods. From a didactic point of view, it is good to first introduce these methods in
the language of so-called lattice models which approximate a real fluid with continuous degrees
of freedom.

In the lattice gas description, we assume a lattice with N lattice sites. Each lattice site
i = 1, ..., Ns can be occupied with a particle, characterised by the occupation number ni ∈ {0, 1}.
The total number of particles is N =

∑Ns
i=1 ni. The fact that each lattice site can host at most

one particle reflects the repulsion due to the Pauli-exclusion principle. Attractive interactions
and an external potential are incorporated via the Hamiltonian

H({ni}) = −1

2

∑
i ̸=j

εijninj +

Ns∑
i=1

Kini.

Here ϵij = ϵji > 0 is the attractive interaction strength between sites i and j and Ki acts as an
external potential. Note that this Hamiltonian is equivalent to the Ising model. The canonical
partition function is

Z(N,V, T ) =
∑

n1,...,nNs=0,1

exp[−βH({ni})]δN,
∑Ns

i=1 ni
,

with δi,j the Kronecker delta. The constraint can be removed by going to the grand canonical
ensemble

Ξ(µ, V, T ) =

∞∑
N=0

exp(βµN)Z(N,V, T ) =
∑

n1,...,nNs=0,1

exp

{
−β

[
H({ni})− µ

Ns∑
i=1

ni

]}
,

To get some insights in the lattice-gas model we take only nearest-neighbour interactions and
set ϵij = ϵ for sites i and j nearest neighbours and 0 otherwise. Furthermore, we set Ki = 0 for
all i. In this case we have a (discrete) translational invariance of the underlying Hamiltonian.
We make the fluctuation expansion, ni = ⟨n⟩+ n′i. The Hamiltonian becomes

H({ni})− µ

Ns∑
i=1

ni = −1

2
ε

Ns∑
i=1

z∑
j(i)=1

ninj − µ

Ns∑
i=1

ni

= −1

2
εzNs⟨n⟩2 − εz⟨n⟩

Ns∑
i=1

n′i − µNs⟨n⟩ − µ

Ns∑
i=1

n′i +O({n′2i }) ≈
1

2
εzNs⟨n⟩2 − (µ+ εz⟨n⟩)

Ns∑
i=1

ni

The mean-field (MF) partition function becomes

ΞMF(N,V, T ) = exp

(
−1

2
βεzNs⟨n⟩2

) ∑
n1=0,1

...
∑

nNs=0,1

exp

[
β(µ+ εz⟨n⟩)

Ns∑
i=1

ni

]

= exp

(
−1

2
βεzNs⟨n⟩2

) Ns∏
i=1

∑
ni=0,1

exp [β(µ+ εz⟨n⟩)ni]

= exp

(
−1

2
βεzNs⟨n⟩2 +Ns log {1 + exp [β(µ+ εz⟨n⟩)]}

)
=: exp[−βΩMF(µ, V, T )]
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We find the mean-field grand potential

ΩMF(µ, V, T ) =
1

2
εzNs⟨n⟩2 −NskBT ln

[
1 + eβ(µ+εz⟨n⟩)

]
,

with the average number of particles given by the self consistency equation

⟨n⟩ = −
(
∂Ω/Ns

∂µ

)
V,T

=
1

1 + e−β(µ+εz⟨n⟩) . (4.5)

We obtain the mean-field Helmholtz free energy via a Legendre transform FMF(N,V, T ) =
ΩMF(µ, V, T ) + µ⟨N⟩. We find

FMF(N,V, T ) = NskBT [n lnn+ (1− n) ln(1− n)]− 1

2
εzNsn

2 =: Nsf̃ , (4.6)

with n = N/Ns. From the second law of thermodynamics, we know that ∂µ/∂N ≥ 0, so the
spinodal is given by ∂2f̃/∂n2 = 0. For the critical point, we have in addition that ∂3f̃/∂n3 = 0
and we find nc = 1/2 and kBTc = εz/4. The binodal can be computed by the condition that
the chemical potential and pressure should be equal. Note that the treatment of the lattice
gas model is a bit different than the Ising model. The reason is that the number of particles
and therefore also the volume fraction within the canonical ensemble is a conserved quantity. In
contrast, in the grand-canonical ensemble Eq. (4.5) is equivalent to ∂ΩMF/∂⟨n⟩ = 0. This should
not come as a surprise, as we can compare this result to density functional theory. Furthermore,
note the resemblance of Eq. (4.6) with Eq. (4.2).

4.3 Gaussian integrals

Consider the multi-dimensional Gaussian integral,

Z(J) =

∫ ∞

−∞
dx1...

∫ ∞

−∞
dxM exp

−1

2

M∑
i,j=1

(xi − x∗i )Aij(xj − x∗j ) +

M∑
i=1

Jixi


= exp

(
M∑
i=1

Jix
∗
i

)∫ ∞

−∞
dx1...

∫ ∞

−∞
dxM exp

−1

2

M∑
i,j=1

xiAijxj +
M∑
i=1

Jixi

 ,

with x∗ a constant vector. The second line is obtained by making the coordinate transformation
x → x+x∗. Moreover, the matrix A is a positive definite matrix (i.e., has positive eigenvalues).
Without loss of generality we take A to be symmetric, since any antisymmetric part will not
contribute to the integral. Furthermore, one notes that the argument of the exponent within
the integral is a quadratic form with minimum determined by

∂

∂xk

1

2

M∑
i,j=1

xiAijxj −
M∑
i=1

Jixi

 = 0 ⇒
M∑
j=1

Akjxj − Jk = 0.

This motivates us to perform a coordinate transformation (completing the square),

x = A−1 · J+ y,

with unit Jacobian. The integral is transformed into

Z(J) = exp

1

2

M∑
i,j=1

Ji(A
−1)ijJj +

M∑
i=1

Jix
∗
i

∫ ∞

−∞
dy1...

∫ ∞

−∞
dyM exp

−1

2

M∑
i,j=1

yiAijyj


(4.7)
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Note that any antisymmetric part of A will not contribute to the integral. Every real, symmetrix
matrix can be diagonalised with an orthogonal matrix OTO = I, i.e., A = OΛOT, where
Λ = diag(λ1, ..., λM ). We define yet another coordinate transformation, yi =

∑m
j=1Oijzj , which

has also unit Jacobian, giving,

M∑
i,j=1

yiAijyj =
M∑

i,j,k,m=1

zkOikAijOjmzm =
M∑

k,m=1

zk(O
TAO)kmzm =

M∑
k=1

λkz
2
k

Hence, the remaining integral in Eq. (4.7) can be factorized

∫ ∞

−∞
dy1...

∫ ∞

−∞
dyM exp

−1

2

M∑
i,j=1

yiAijyj

 =

M∏
i=1

∫ ∞

−∞
dzi exp

(
−1

2
λiz

2
i

)
=

(2π)M/2

(
∏M

i=1 λi)
1/2

= (2π)M/2(detA)−1/2

We conclude that

Z(J) = (2π)M/2(detA)−1/2 exp

1

2

M∑
i,j=1

Ji(A
−1)ijJj +

M∑
i=1

Jix
∗
i


Next, let us define the average

⟨...⟩ = 1

Z(0)

∫ ∞

−∞
dx1...

∫ ∞

−∞
dxM (...) exp

−1

2

M∑
i,j=1

(xi − x∗i )Aij(xj − x∗j )


Note that

⟨xi⟩ =
1

Z(J)

∂Z(J)

∂Ji

∣∣∣∣∣
J=0

= x∗i .
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