
UITNODIGING

voor het bijwonen van de 
openbare verdediging van 

mijn proefschrift

Collodial dispersions of 
repulsive

nanoparticles

op maandag 19 september 
2016 om 16:15 uur in de 

Senaatszaal van het 
Academiegebouw 

Domplein 29 te Utrecht

en de aansluitende receptie

Jeffrey Everts

Colloidal dispersions of 
repulsive nanoparticles

Tunable effective interactions, phase behaviour and anisotropy

 
Colloidal dispersions of repulsive nanoparticles  

 
Jeffrey Everts   

 2016 Jeffrey Everts



Colloidal dispersions of repulsive nanoparticles: tunable
effective interactions, phase behaviour and anisotropy

J. C. Everts



test

e
PhD thesis, Utrecht University, September 2016
Cover design by Yolanda Everts
ISBN: 978-90-393-6617-2
Gedrukt door Ipskamp Drukkers, Enschede



Colloidal dispersions of repulsive
nanoparticles: tunable effective
interactions, phase behaviour and

anisotropy
Colloïdale dispersies van repulsieve nanodeeltjes: afstembare

effectieve wisselwerkingen, fasengedrag en anisotropie

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof. dr. G. J. van der Zwaan,
ingevolge het besluit van het college voor promoties in het openbaar
te verdedigen op maandag 19 september 2016 des middags te 4.15 uur

door

Jeffrey Christopher Everts

geboren op 1 april 1988 te Roermond



Promotor: Prof. dr. R. H. H. G. van Roij



Contents

Publications iii

1 Introduction 1
1.1 The classical world under the microscope . . . . . . . . . . . . . . . . . 1
1.2 Electrostatics of ionic systems . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Charged colloidal suspensions and their tunability . . . . . . . . . . . . 7
1.4 Rod-like systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Density-induced reentrant melting of colloidal Wigner crystals 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Crystallization criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Comparison with experiments . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 24
Appendix: Relation between constant-potential and binary-adsorption model 25

3 Demixing in a binary mixture of repulsive charged colloids 27
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Binary cell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Spinodal instabilities and crystallization estimates . . . . . . . . . . . . 31
3.4 Sedimentation profiles within the local density approximation . . . . . 35
3.5 Suggestions on improving the LDA result . . . . . . . . . . . . . . . . . 39
3.6 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Alternating strings and clusters in suspensions of charged colloids 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Summary of experimental observations . . . . . . . . . . . . . . . . . . 45
4.3 Spherical cell approximation . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Two-body approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Speculation on alternating string and cluster formation in binary systems 53
4.6 Open questions on dumbbell formation in one-component systems . . . 55
4.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



Contents

5 Tuning colloid-interface and colloid-colloid interactions by salt partitioning 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Single-particle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Charge regulation and colloid-interface interaction . . . . . . . . . . . . 65
5.4 Lateral colloid-colloid interactions of interfacially trapped colloids . . . 69
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Appendix: Some simple analytical solutions . . . . . . . . . . . . . . . . . . 75

6 Colloid-interface interactions in the presence of multiple ion species 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Density functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 System and experimental observations . . . . . . . . . . . . . . . . . . 81
6.4 Colloid-interface interactions . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 Ion dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 A Landau-de Gennes theory for hard colloidal rods: defects and tactoids 99
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Landau-de Gennes free energy . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Bulk properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Isotropic-Nematic interface . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5 Radial hedgehog defect . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.6 Confined hard rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.7 Nematic droplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.8 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 121
Appendix: Euler-Lagrange equations for rods in square confinement . . . . . 122

8 Summary 125

Bibliography 129

Samenvatting voor iedereen 143

Dankwoord 149

About the author 151

ii



Publications

The content of the following chapters is based on the following publications:

• J. C. Everts, N. Boon and R. van Roij, Density-induced reentrant melting of colloidal
Wigner crystals, Phys. Chem. Chem. Phys., 18, 5211 (2016) (Chapter 2).

• J. C. Everts, M. N. van der Linden, A. van Blaaderen, and R. van Roij, Alternating
strings and clusters in suspensions of charged colloids, Soft Matter, 12, 6610 (2016)
(Chapter 4).

• J. C. Everts, S. Samin and R. van Roij, Tuning colloid-interface interactions by salt
partitioning, Phys. Rev. Lett. 117, 098002 (2016) (Chapter 5).

• J. C. Everts, M. T. J. J. M. Punter, S. Samin, P. van der Schoot and R. van Roij, A
Landau-de Gennes theory for hard colloidal rods: defects and tactoids, J. Chem. Phys.,
144, 194901 (2016) (Chapter 7).

• J. C. Everts and R. van Roij, Demixing in a binary mixture of repulsive charged colloids,
in preparation (Chapter 3)

• J. C. Everts, S. Samin and R. van Roij, Salt effects on the lateral interaction of wetting
colloids at an oil-water interface, in preparation (Chapter 5)

• J. C. Everts, N. A. Elbers, J. E. S. van der Hoeven, S. Samin, A. van Blaaderen and R.
van Roij, Colloid-interface interactions in the presence of multiple ion species: charge
regulation and dynamics, in preparation (Chapter 6)

Other publications by the author:

• W. Beugeling, J. C. Everts and C. Morais Smith, Topological phase transitions driven
by next-nearest-neighbor hopping in two-dimensional lattices, Phys. Rev. B, 86, 195129
(2012).

• S. Cantekin, Y. Nakano, J. C. Everts, P. van der Schoot, E. W. Meijer, and A. R.
A. Palmans, A stereoselectively deuterated supramolecular motif to probe the role of
solvent during self-assembly processes, Chem. Comm., 48, 3803 (2012).

• P. J. M. Stals, J. C. Everts, R. de Bruijn, I. A. W. Filot, M. M. J. Smulders, R.
Martin-Rapun, E. A. Pidko, T. F. A. de Greef, A. R. A. Palmans and E. W. Meijer,
Dynamic supramolecular polymers based on benzene-1,3,5-tricarboxamides: The influ-
ence of amide connectivity on aggregate stability and amplification of chirality, Chem.
Eur. J., 16, 810 (2010).

iii

http://pubs.rsc.org/en/content/articlelanding/2016/cp/c5cp07943h#!divAbstract
http://pubs.rsc.org/en/content/articlelanding/2016/sm/c6sm01283c#!divAbstract
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.098002
http://scitation.aip.org/content/aip/journal/jcp/144/19/10.1063/1.4948785
http://scitation.aip.org/content/aip/journal/jcp/144/19/10.1063/1.4948785
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.195129
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.195129
http://pubs.rsc.org/en/Content/ArticleLanding/2012/CC/c2cc17284d#!divAbstract
http://onlinelibrary.wiley.com/doi/10.1002/chem.200902635/abstract;jsessionid=462F498919CCFA6EC7AF0A17B903FB3A.f02t04
http://onlinelibrary.wiley.com/doi/10.1002/chem.200902635/abstract;jsessionid=462F498919CCFA6EC7AF0A17B903FB3A.f02t04




1 Introduction

We introduce the notion of nanoparticles and colloids and set out the general concepts that
we will use in this thesis. The length scales and theories that are important in understanding
suspensions of charged spherical and charge-neutral rod-shaped colloids are discussed.

1.1 The classical world under the microscope

Whenever we zoom in on a piece of matter, various building blocks can be observed
depending on the length scale that one is looking at. For example, if we consider snow,
we observe ice crystals on a mesoscopic scale, which in turn consist of water molecules
arranged in some lattice on the nanoscale. The water molecules themselves consist of
atoms, which are built up of protons, neutrons and electrons. When we zoom in even
further than this, we find quarks and particles that mediate their interactions, such
as gluons. The conceptual complexity of the governing theories almost seems to be
inversely proportional to the relevant length scale that one is looking at, ranging from
classical physics on the largest length scales, to quantum mechanics or quantum field
theory on the subnanometer scales, and (who knows) string theory or quantum gravity
for even smaller length scales.

Going back to our example of snow, we see that the ordering and structure of the
ice crystals that make up these aggregates can actually be quite complex, and can be
understood by using classical physics. The complexity in structure arises because of the
interplay of many smaller building blocks [1], that may or may not be actually quantum
objects. This should be contrasted to, for example, the relative “simple” structure of a
water molecule being “just” two hydrogen (H) atoms bound to a single oxygen (O) with
a H-O-H bond angle of 104.55 degrees [2], which can only be understood by applying
quantum mechanics [3]. We can find a rough estimate whether quantum effects are
important by using the thermal de Broglie wavelength Λ [4], which for a particle with
mass m without any internal degrees of freedom is given by

Λ =
h√

2πmkBT
, (1.1)

1



Chapter 1. Introduction

with kB = 1.38064852... · 10−23J K−1 the Boltzmann constant, the Planck constant
h = 6.626070040...·10−34 J·s and T temperature. When Λ is larger than the particle size
or interparticle spacing, classical physics breaks down. When we apply this hypothesis
to spherical particles of diameter D with mass density ρ = 1 − 10 kg m−3, we find
that Λ/D ∼ 10−9 − 10−4, for D ranging from 10 nm to 1 µm at room temperature.
Particles with sizes in this range are thus essentially classical, and can be viewed under
the (optical) microscope. This is the so-called colloidal regime, and the particles with
these sizes are called colloids (particle sizes of a few microns) as coined by Graham
[5], or nanoparticles (particle sizes of a few nanometers)1. The concept of a colloidal
particle can be very broad: these can be metallic or polymeric spheres, but also fat
droplets, red blood cells or ice crystals, as long as they fall in the correct range of
particle sizes.
Often viewed as models for atomic systems when they are spherical and charged,

they can be described by classical statistical physics: because colloidal particles are
almost always suspended in a medium (often a liquid), Brownian motion occurs [6, 7],
which allows them to explore all of their phase space, such that the ergodic principle
applies (except for glasses). Their shape is, however, not limited to that of a sphere:
the advances in chemical synthesis make it possible to synthesize colloids with all kinds
of shapes and material properties [8]. Unlike atoms, the intrinsic particle properties
are thus highly tunable. Magnetic colloids can, for example, be produced, which show
collective behaviour when driven by an alternating external magnetic field [9], forming
magnetic snake-like swimmers. Another example is that of a sphere with a hemisphere
that is negatively charged, while the other hemisphere is positively charged. Named
after the two-faced god in Roman mythology, this is the so-called (dipolar) Janus
particle, which can self-assemble into chains [10], clusters [11] and rings [12]. Shape
can also have a large impact on the phase behaviour. For example, in Ref. [13] the
phase diagram is constructed by changing the shape of a particle from a hard cube to
a hard sphere by a gradual truncation of the edges, giving rise to various non-trivial
crystalline phases and close-packed structures. Finally, colloidal particles also show
possible applications in material science, being promising candidates for e.g. photonic
bandgap materials [14]. These examples show that colloids are more than just a classical
analogue of an atom, even from a fundamental point of view.
Not only the shape and material properties of the colloidal particles matter, but also

the properties of the medium plays an important role. This is why colloids are almost
always investigated as a colloidal dispersion. For example, fat droplets in water is
called milk, red blood cells in water (together with some other “stuff”) is blood, water
droplets in air form a cloud, and gold nanoparticles in a glass is known as cranberry
glass2. The above examples show liquid-liquid, solid-liquid, liquid-gas, and glass-solid

1Because the particle size as such is not a fundamental parameter in the theories that we will consider
in this thesis, we do not make a strict distinction between nanoparticles and colloids, and just view
them as the same type of classical systems that could be mapped onto each other by a suitable
rescaling of the length scales that will be discussed later.

2This is an expensive red-coloured glass that obtains its colour due to the presence of gold nanopar-
ticles, as was found out by Faraday [15]. Microscopically, the rubyish colour comes from the
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1.2. Electrostatics of ionic systems

dispersions, respectively, and many more types of dispersions can be considered, as
long as the colloidal particles are immiscible with the surrounding medium (which is
often the case if the colloidal particle is a solid). Not only does the medium affect the
colloid, for example, by making them charged as we shall see later, the colloidal particles
themselves can also affect the medium. As an example we will consider a suspension
of colloidal particles in a (molecular) liquid crystalline medium. Topological defects
are generated in the liquid crystalline phase due to the presence of the colloids, that
can range from disclination loops and point defects [18], to director field realizations
of mathematical knots [19]. These examples show that the tunability of the particle
properties and that of the medium make colloidal dispersions interesting systems to
study, which often reveal surprising phenomena.

Out of the endless possibilities of colloidal systems, we will focus in this thesis on
repulsive colloidal spheres and rods. The repulsions can be short-ranged (such as hard
spheres or hard rods), but we will also consider repulsions of a tunable range and
strength for like-charged spheres in an electrolyte solution. To establish the necessary
knowledge to understand these systems, we will first focus on the electrostatics of ionic
systems, and how these concepts translate to charged colloidal dispersions. Finally, we
briefly discuss hard rod-like systems and their phase behaviour, ending with an outline
of this thesis.

1.2 Electrostatics of ionic systems
The medium in which the colloidal particles reside consist often of a solvent with
ions residing in it. Being actually (at least) a quaternary solvent-ions-colloid mixture,
the solvent is often described as a structureless medium, characterized by a dielectric
constant ε at temperature T . The Coulomb pair interaction Φc(r) between two like-
charged monovalent ions separated by a distance r larger than the hard-core separation,
is then given by

βΦc(r) =
βe2

4πεvacεr
, (1.2)

with εvac = 8.854187817...·10−12 F·m−1 the vacuum permittivity and e = 1.6021766208...
C the elementary charge. Eq. (1.2) defines a length scale for which the Coulomb in-
teraction between these two ions equals the thermal energy β−1 = kBT , which is the
Bjerrum length λB = βe2/4πεvacε. It is therefore a measure for the strength of the elec-
trostatic interaction: if λB is small, the Coulomb interaction is weak, if λB is large, the
interaction is strong. At room temperature, we find λB = 55.6/ε [nm]. For a medium
with a high dielectric constant, such as water (ε = 80), we find λB = 0.7 nm, while
an oil with ε = 2 gives λB = 28 nm. The effects of these various values can be seen

adsorption of visible light that originates from the collective oscillation of the free (conduction-
band) electrons, the so-called surface plasmon resonance [16], for optimal particle sizes of 5-60 nm
[17]. This mechanism should be contrasted to the adsorption of photons with the correct energy
that promotes bound electrons from a ground state to an excited state, that gives the colour to,
for example, dyes.

3
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Figure 1.1: Schematic presentation of a charged wall at z < 0 with positive surface charge density σ, that
results from the adsorption of positive ions P+ to neutral sites S. The resulting (dimensionless) electrostatic
potential φ(z) and ion densities ρ+(z) for the positive ions P+ and ρ−(z) for the negative ions N− are

then shown to decay with a decay length called the Debye screening length κ−1.

on, for example, table salt NaCl, where the Na+ and Cl− in a crystalline state have a
centre-to-centre separation of 0.28 nm. Compared to the above Bjerrum lengths, we
conclude that it is easier to dissociate NaCl in water, but is much harder to do so in
an oil.
Ignoring fluctuations in local density, and assuming that the ions are homogeneously

distributed, we learn from the Poisson equation

∇2φ(r) = −4πλB[ρ+(r)− ρ−(r)], (1.3)

that the electrostatic potential φ(r)/(βe) is constant, since the density of positive ρ+(r)
and negative ions ρ−(r) are constant in space. For non-trivial potential profiles at the
mean-field level, let us consider the canonical example of a charged surface with surface
area A positioned in an electrolyte solution at the xy plane at z = 0, with a positive
surface charge density eσ. In Fig. 1.1 we show schematically this system.
Because σ > 0, negative ions will accumulate near the surface, while positive ions are

depleted from it. The resulting diffuse ion layer together with the surface charge form
two types of layers containing ionic charges, and is hence called the electrical double
layer. Its width determines the range of the Coulomb interactions in an electrolyte
solution. Because the range is smaller than it would be in the absence of ions, we say
that the electrostatic potential is being screened.
The surface charge density is of the same nature as the (bulk) ions, because micro-

scopically it stems from the ionic adsorption on, or ionic desorption from the surface,
and therefore, σ depends on the salt concentration ρs. The fact that a surface charge
density in a broader sense depends on the thermodynamic state of the system is called

4



1.2. Electrostatics of ionic systems

charge regulation. Let us for simplicity assume that only the cations can adsorb on
sites that reside on the colloidal surface. The entropy of the ions, the Coulomb interac-
tions and the coupling between bulk and surface can be captured within the so-called
intrinsic Helmholtz free energy functional using classical density functional theory [20]

βF [ρ±]

A
=
∑
α=±

∫ ∞
−∞

dz {ρα(z) ln[ρα(z)Λ3
α]− 1}+

1

2

∫ ∞
−∞

dz Q(z)φ(z)

+σ[ln(σa2) + Fb] + (σm − σ) ln[(σm − σ)a2], (1.4)

where Λα is the thermal de Broglie wavelength of an ion with sign α, Q(z) = ρ+(z)−
ρ−(z) + σδ(z), a is a microscopic length scale associated with the area occupied by
a surface site, and σm is the surface density of chargeable sites. Finally, Fb is a free
energy of binding given by the internal partition sum

exp (−βFb) =
1

Λ3
+

∫
υb

d3r exp[−βHb(r)], (1.5)

assuming a classical binding HamiltonianHb(r) that describes the adsorption of positive
ions on the charged surface. According to Eq. (1.5) an ion is defined as being adsorbed,
if it resides within a binding volume υb near the surface.

The system with the surface is assumed to be in osmotic contact with a reservoir
with salt concentration 2ρs and we gauge the electrostatic potential to be zero in this
reservoir. For this reason, it makes sense to consider the osmotic ensemble in which
the ions are treated grand-canonically, via the Legendre transformation

Ω[ρ±, σ] = F [ρ±, σ]− A
∫
dz

{∑
α=±

uα(z)ρα(z) + u+(z)σδ(z)

}
, (1.6)

where uα(z) = µα − Vext(z), with the ion chemical potential µα = log(ρsΛ
3
α). For the

external potential Vext(z) we use the hard-wall potential

Vext(z) =

{
∞, (z < 0),

0, (z > 0).
(1.7)

Within mean-field the density profiles are found by δΩ[ρ±, σ]/δρ±(z) = 0, which result
in the Boltzmann distributions, ρ±(z) = ρs exp[∓φ(z)] for z > 0, which combined with
Eq. (1.3) gives the Poisson-Boltzmann equation

φ′′(z) = κ2 sinh[φ(z)], (z > 0), (1.8)

with κ =
√

8πλBρs and a prime denotes the derivative with respect to z. The boundary
conditions follow by appropriate use of Gauss’ law,

φ′(0+) =− 4πλBσ, (1.9)
φ′(z →∞) =0. (1.10)

5



Chapter 1. Introduction

Eqs. (1.8)-(1.10) are solved by,

φ(z) = 2 ln
1 + C exp(−κz)

1− C exp(−κz)

(κz�1)−−−−→ 4C exp(−κz). (1.11)

The asymptotic behaviour for κz � 1 shows that κ−1 is a length scale for which φ(z) is
being screened (shown schematically in Fig. 1.1), hence it is called the Debye screening
length. It is also the decay length for the diffuse ion layer, as can be seen by evaluating
the densities with Eq. (1.11). The integration constant C can be derived by evaluating
∂Ω[ρ±, σ]/∂σ = 0, which results in the Langmuir adsorption isotherm

σ =
σm

1 + exp[βFb − βµ+ + φ(0+)]
. (1.12)

Another, but equivalent, way to derive σ is by applying the law of mass action to
the charging of a single site S by adsorption of a positive ion P+, according to the
equilibrium S+P+ � SP+ with equilibrium constant K. This results in

σ = σm

{
1 +

K

ρs
exp[φ(0+)]

}−1

= σm

{
1 +

K

ρ+(0+)

}−1

. (1.13)

Comparison of Eq. (1.12) with Eq. (1.13) provides the relation K = ρs exp[βFb−βµ+],
or in other words,

K =

{∫
υb

d3r exp[−βHb(r)]

}−1

. (1.14)

For the approximation Hb(r) = εb, this results in K = υ−1
b exp(βεb), giving insight in

the microscopic nature of K. Furthermore, we see that K depends only on temperature
and on material properties through εb. The integration constant C can be derived from

4C

1− C2
=

4πλBσm
κ

[
1 +

K

ρs

(
1 + C

1− C

)2
]−1

, (1.15)

which can be solved analytically in principle, but the expression is lenghty. Hence, for
a given ρs, we can find C, and from this not only the surface potential follows,

φ(0+) = 2 ln

(
1 + C

1− C

)
, (1.16)

which depends on ρs, but also σ by using Eq. (1.13). This should be contrasted to
other boundary conditions, such as (i) the constant-charge boundary condition where σ
is a given constant, but φ(0+) depends on ρs, and (ii) the constant-potential boundary
condition where φ(0+) is fixed and σ varies as function of ρs (and is thus also a form
of charge regulation).
Finally, we define the Gouy-Chapman length ξ = (2πqλBσ)−1, which is the distance

for which the Coulomb interaction of a single counter ion of valency q with the charged

6



1.3. Charged colloidal suspensions and their tunability

plate in the absence of other ions equals kBT . Using ξ, we can define the (Netz-Moreira)
coupling parameter Ξ = q2λB/ξ = 2πq3λBσ. Within a field-theoretical treatment of
ionic systems in the presence of charged surfaces, it can be shown that the Poisson-
Boltzmann theory is actually the saddle point theory with respect to a fluctuating
electrostatic potential. Systematic corrections to the mean-field solution can be found
by a weak coupling expansion in terms of Ξ [21], in a similar spirit to the loop expansion
in quantum field theory in terms of ~ [22]. The same Ξ is also the relevant parameter
in a strong coupling expansion [23, 24]. Therefore, Ξ is a measure for the importance
of electrostatic correlations, and these become more important for high surface charges
and/or multivalent ions, giving rise to phenomena such as like-charge attraction and
the formation of highly correlated two-dimensional layers of ions close to a charged
surface [25]. Throughout this thesis, however, we will only focus on monovalent ions
such that Ξ� 1 and therefore Poisson-Boltzmann theory applies.

1.3 Charged colloidal suspensions and their tunability
Having discussed a single charged plate in an electrolyte, we now go to the more
complex situation of a colloidal suspension. For charge-regulating particles, it is more
convenient to retain the particle nature of the colloids and to not use density profiles
to describe them, as was done for the ions. There are two main differences compared
to the charged plate. First of all, the non-linear Poisson-Boltzmann equation is much
harder to study than for a single charged plate. Even for a fixed configuration of
colloids, solving the full three-dimensional Poisson-Boltzmann equation (with suitable
boundary conditions),

∇2φ(r) = κ2 sinh[φ(r)], r ∈ outside colloids (1.17)
∇2φ(r) = 0, r ∈ inside colloids, (1.18)

requires a lot more numerical effort than for a single charged plate. To illustrate
qualitatively the behaviour of the above equations, we solved the Poisson-Boltzmann
equation Eqs. (1.17) and (1.18) in Fig. 1.2 for a two-dimensional system of constant-
potential spheres with surface potential φ0 = 3 at various κ−1, showing that the spatial
structure of the various screening clouds not only depends on the precise local config-
uration of colloids, but also on the Debye screening length via ρs. For small screening
lengths the double layers do not overlap and the system can be viewed as a hard-sphere
system with an “inflated” hard-core diameter (Fig. 1.2(a)). By increasing κ−1 some
double layers start to overlap (Fig. 1.2(b)-(c)), and if the particles are sufficiently
far apart, the system can still be viewed as hard-sphere like. Significant double layer
overlapping occurs when κ−1 is increased even further (Fig. 1.2(d)), while at very long
screening lengths the double layer overlapping is so significant that the screening ions
are homogeneously distributed throughout the sample (Fig. 1.2(e)). Such a system is
essentially a one-component plasma: a system of charged point-particles in a homoge-
neous neutralizing background. This example shows that it is not hard to imagine that
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Chapter 1. Introduction

(a) (b) (c) (d) (e) a = 0.01a = 0.1a = 0.5a = 1a = 5

Figure 1.2: Numerical results for the net ionic charge density (ρ+ − ρ−)/ρs with ρs the reservoir salt
concentration, to visualize the double layers of twelve two-dimensional constant-potential colloids of radius
a and surface potential φ0 = 3 in a box of 20a × 20a for various Debye lengths κ−1. By decreasing
ρs the particles can be tuned (a) from hard-sphere like to (b)-(d) a suspension with increasing double
layer overlaps and (e) a one-component plasma where the extended double layers from a homogeneous

background.

charge-regulating particles have a surface-charge distribution that does not only de-
pend on salt concentration and the dielectric constant of the surrounding medium, but
also on the precise configuration of colloids and hence on the (local) density. Moreover,
these are properties that can be tuned. Finally, we also see from the dependence on lo-
cal density and κ−1, that the value of the electrostatic potential at particle separations
where the double layers start to overlap depends on the thermodynamic state. This is
the Donnan potential, and can be seen as the mean potential difference compared to a
hypothetical ion reservoir with no colloids in it.
Secondly, colloidal particles undergo Brownian motion by the random “kicks” of

the surrounding solvent (or gas), and should therefore be viewed as thermal systems as
opposed to the (stationary) plate of the example in the previous section. If we denote a
fixed colloidal configuration byRN = (R1, ...,RN), we can write down a grand potential
functional in the same spirit as for the single charged plate Ω[ρ±, {σi}Ni=1;RN ]. From
the minimum condition minρ±,σi Ω[ρ±, {σi}Ni=1;RN ] we obtain the ionic grand potential
in the external field of N colloids, which defines the many-body effective Hamiltonian

Heff(RN) = Hbare(R
N) + min

ρ±,σi
Ω[ρ±, {σi}Ni=1;RN ], (1.19)

with Hbare(R
N) a non-electrostatic (many-body) Hamiltonian that can include the

effects of, for example, hard-sphere repulsions and van der Waals attractions. From
Eq. (1.19) the free energy F = F (N, V, T, µs) can be extracted

exp(−βF ) =

∫
dRN

N !VN exp[−βHeff(RN)], (1.20)

with V the thermal volume of a colloid that results from the integration over internal
degrees of freedom and the momenta. It is straightforward to extend the above formal-
ism to describe also non-trivial dielectric profiles of the medium (such as an oil-water
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1.4. Rod-like systems

(a) (b) (c) (d) (e)

Figure 1.3: A few examples of phases that rod-like systems can form, ranging from (a) an isotropic fluid,
to (b) a nematic state, and (c) smectic phase, (d) plastic crystal, and finally (e) a crystal.

interface), various shapes etc. Both the effective Hamiltonian and the free energy of
the system will be studied in this thesis, within a suitable approximation depending
on the specific application.

1.4 Rod-like systems

The phases of a system with spherical particles that interact via an isotropic pair
potential can range from a (dilute) gas, via an isotropic liquid, to an ordered crystal
upon increasing the density. The ordering of the particles can be completely described
by the positional ordering of their centre-of-masses. In the case of rods many more
phases can be formed, because the particle orientation is a new degree of freedom,
such that also orientational order can occur without the need of positional order (or
vice versa). For example, an isotropic liquid is found for rods whenever the system is
completely translational and rotational symmetric (Fig. 1.3(a)). When the rods break
rotational symmetry by aligning towards a common direction, the phase is called a
nematic state (Fig. 1.3(b)). It is different from, for example, a ferromagnet, since
every rod can be rotated by 180 degrees without change the state of the system, which
is called up-down symmetry. When translational symmetry is broken in one direction,
the state is called a smectic phase (Fig. 1.3(c)), which is easily recognized by the
formation of layers, in which the rods behave as a two-dimensional fluid. The smectic
and nematic phase are liquid crystal phases. If, however, the rotational symmetry stays
intact, but translational symmetry is broken in all three dimensions, a plastic crystal is
formed, as shown in Fig. 1.3(d) for rods that position their centre-of-masses in a cubic
lattice, with every lattice site occupied by a rod with a random orientation. When
both rotational and translational symmetry is broken in all dimensions, the crystalline
phase is formed (Fig. 1.3(e)). More phases than these can be found depending on the
dimensionality of the broken rotational and positional degrees of freedom [26], but we
will not discuss them here.

With the exception of the plastic crystal that needs long-ranged repulsion, all phases
can occur in hard-rod systems. The excluded volume interactions of such systems are

9



Chapter 1. Introduction

elegantly captured in the so-called Onsager theory [27], which is essentially a second
virial theory where the rods interact via hard-core repulsions. Within density functional
theory, we ascribe a density field ρ(r, ω̂), viewing each orientation ω̂ as a distinct species,
to find the grand potential functional

βΩ[ρ] =

∫
drdω̂ρ(r, ω̂){log[ρ(r, ω̂)V ]− 1− µ+ Vext(r, ω̂)}

− 1

2

∫
drdω̂dr′dω̂′f(r, ω̂, r′, ω̂′)ρ(r, ω̂)ρ(r′, ω̂′), (1.21)

with the Mayer function of a hard-sphere potential φHS(r, ω̂, r′, ω̂′) given by

f(r, ω̂, r′, ω̂′) = −1 + exp[−βφHS(r, ω̂, r′, ω̂′)], (1.22)

and Vext(r, ω̂) an external potential that can be used to, for example, describe hard
walls or external fields. Although we will not try to attempt to solve it in this thesis,
the appropriate Euler-Lagrange equation can be found to be

log[ρ(r, ω̂)V ]−
∫
dr′dω̂′f(r, ω̂, r′, ω̂′)ρ(r′, ω̂′) + Vext(r, ω̂) = βµ. (1.23)

A numerical solution to this non-linear integral equation for bulk is rather straightfor-
ward [28], however, a lot more numerical effort is needed to describe for example an
isotropic-nematic interface [29]. The situation becomes even more complex for systems
that host topological defects, confined systems or liquid-crystalline droplets. There-
fore, it is desirable to have a simplification for this theory to extract useful qualitative
behaviour. We will propose such a theory later in this thesis.

1.5 Outline of this thesis
The above concepts will be applied in this thesis to repulsive colloidal particles. The
main part will be about charged colloids that are suspended in an oily environment.
Already in one-component systems such dispersions give interesting phase behaviour,
as we shall see in Chapter 2. There we lay out various frameworks to give accurate
predictions for the crystallization transition that is driven by electrostatic repulsions.
Moreover, we will show how the macroscopic phase diagram can give information on
the microscopic charging mechanism of a single colloid. In Chapter 3, we make the sys-
tem more complex by considering binary mixtures of charge-asymmetric colloids. We
find demixing in such a system, which may have direct consequences in sedimentation
profiles. In Chapter 4, we investigate whether a binary mixture can form alternating
strings or compact clusters, via a directional effective pair potential. For this to occur
it turns out that charge regulation and many-body effects are important. In Chapter
5 we take a step back in complexity regarding the many-body nature of a colloidal dis-
persion by investigating only a single charge-regulating sphere. Instead, we make the

10



1.5. Outline of this thesis

medium more complex by considering the presence of an oil-water interface. We calcu-
late the effective interaction of an oil-dispersed particle with such an interface and show
that the nature of the colloid-interface interaction is highly tunable by salt. Finally,
we investigate the lateral colloid-colloid interaction for particles that penetrate the oil-
water interface. In Chapter 6, we show how the effective colloid-interface potential is
changed when multiple ion species are present in the medium and how this interaction
is influenced by various charge-regulation mechanisms. Finally, the influence of ion
dynamics will be discussed in view of recent experiments. In Chapter 7, we consider
anisotropy in the particle shape, by constructing an effective Landau theory for hard
rods that mimicks Onsager theory, but needs a lot less numerical effort to solve. We
apply this theory to topological defects and liquid crystalline droplets (tactoids).
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2 Density-induced reentrant
melting of colloidal
Wigner crystals

Electrostatic repulsions can drive crystallization in many-particle systems. For charged
colloidal systems, the phase boundaries as well as crystal structure are highly tunable by
experimental parameters such as salt concentration and pH. By using projections of the
colloid-ion mixture to a system of (soft) repulsive spheres and the one-component plasma
(OCP), we study the hitherto unexplained experimentally observed reentrant melting of
electrostatically repelling colloids upon increasing the colloid density. Our study shows that
the surface chemistry should involve a competition between adsorption of cations and anions
to explain the observed density-induced reentrant melting.

2.1 Introduction
Crystalline ordering is observed in systems with building blocks as small as electrons
[30, 31], and as big as granular particles [32]. The crystallization of a many-body
system is a direct result of the forces between the particles, and relating these forces
to the observed ordering in the system is a challenging problem in general. For ex-
ample, crystallization can be driven by attractive interactions between the individual
components, such as in the gas-crystal transition for a Lennard-Jones system below
the triple-point temperature [4]. A purely repulsive interaction can also result in crys-
talline order, a text-book example being the self-assembly of colloidal hard spheres into
a face-centered cubic crystal at high densities [33–35]. In systems of charged particles,
where Coulomb interactions are pivotal for understanding the crystallization transition,
the inherent structure may also either form due to the attractions between oppositely
charged species [36], or due to mutual repulsion between like-charged particles. Crystal-
lization due to electrostatic repulsions has been studied extensively for colloidal systems
[37–44]. These colloidal Wigner crystals [45] are very interesting from a engineering
perspective as they can have extraordinary optical [46] or mechanical properties [47].
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Chapter 2. Density-induced reentrant melting of colloidal Wigner crystals

Due to the relatively large size of the particles, the transition to a crystal can be stud-
ied using an optical microscope. Interestingly, the charge of these particles is usually
not fixed, but regulated [48–50], as it results from the chemical equilibrium between
the ionizable surface and the ions in the solvent [51], which causes the effective forces
between the particles to be highly tunable by experimentally controllable parameters.
The ordering of the particles therefore shows strong dependence on parameters such
as pH and salt concentration. This opens up a vast parameter space in which various
crystalline structures can be found.
In earlier studies the formation of charge-induced crystallization was described within

Poisson-Boltzmann theory [52] in the spherical- cell approximation. The resulting elec-
trostatic potential and ionic diffuse screening layer around the central particle are then
mapped through a renormalized colloidal charge to effective one-component systems for
which the phase diagram is known empirically from e.g. simulations of point-Yukawa
particles [53]. Recently, it was shown that the cell approach can also be used to define
a mapping to a one-component plasma (OCP) [54], such that the freezing criterion for
the classical OCP can be applied. Combining explicit models for the surface chemistry
of the colloidal particles with the OCP mapping yields a model that fits very well with
experiments and provides insight not only at the level of molecular details of the charg-
ing mechanism and the equilibrium constant, but also at the macroscopic scale of phase
diagrams [54]. In this work we build on Ref. [54] by considering how various crystal-
lization mechanisms affect the phase diagrams of colloidal particles that are subject to
charge regulation. We will also connect our theoretical results with the experimental
phase diagrams of Refs. [49, 55, 56]. We will highlight the well-understood reentrant
melting as function of salt concentration, and the less understood reentrant melting as
function of colloid density. We will show here that the latter can only be explained
by a sufficiently strong density dependence of the colloidal charge and the screening
length [49, 56], that results from a binary adsorption model.

2.2 Model
Our description of the colloidal suspension invokes the spherical cell approximation as
was introduced by Alexander et al. in 1984 [57]. In this approximation the suspension
is divided into spherical cells, each containing one colloidal particle of radius a. These
cells are all identical with radius R, which is related to the colloidal packing fraction via
η = (a/R)3. Within mean-field theory the ion-density profiles ρ±(r) are related to the
electrostatic potential φ(r)/(βe) by ρ±(r) = ρs exp[∓φ(r)], with r the radial coordinate,
e the proton charge, β−1 = kBT the thermal energy and ρs the salt concentration of a
reservoir with which the system is assumed to be in osmotic equilibrium. Notice that
varying ρs is equivalent to varying the chemical potential of the ions. Apart from the
particle radius a, there are two length scales in our problem. These are the Bjerrum
length λB = βe2/4πεvacε and the Debye screening length κ−1 = (8πλBρs)

−1/2. Here
εvac is the vacuum dielectric constant and ε is the relative dielectric constant in the
solvent. Combining the mean-field density profiles with the Poisson equation results
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Figure 2.1: The full curves represent (a)the particle charge Z and (b) the dimensionless surface potential
φ0 as function of packing fraction η for various values of the equilibrium constant K−, while keeping
K+a

3 = 1 and the total number of surface sites M = 107 fixed. The dashed lines in (a) are the result
of a constant-potential system where we chose φ0 such that the resulting Z coincides in the dilute limit.
The reverse is done in (b) but then for a constant-charge system that has a Z such that the resulting φ0
coincides in the dilute limit. The lines for K−a3 = 107 are essentially the same as for the limit K−a3 →∞,

in which no anions can adsorb.

in the non-linear spherically symmetric Poisson-Boltzmann (PB) equation

d2φ

dr2
+

2

r

dφ

dr
= κ2 sinh[φ(r)], r ∈ [a,R], (2.1)

with boundary conditions φ′(a) = −ZλB/a2 and φ′(R) = 0, where a prime denotes a
radial derivative and Ze is the colloidal charge. From the solution of the PB equation
the surface potential φ0 = φ(a) and the Donnan potential φD = φ(R) are found self-
consistently once Z is known. Here we do not only consider the constant-charge case
where Z is a known input parameter, but we will also calculate Z self-consistently
for charge regulation cases where we consider an associative charging mechanism in
which a single surface site S can be occupied by negative ions N− and positive ions
P+. These are governed by the reactions S + P+ � SP+ with equilibrium constant
K+ = [S][P+]/[SP+] and S+N− � SN− with equilibrium constantK− = [S][N−]/[SN−].
This results in an adsorption isotherm that relates the surface charge to the surface
potential [51] via

Z

M
=

K− exp(−φ0)−K+ exp(φ0)∑
σKσ exp(zσφ0) +K+K−/ρs

, (2.2)

with z± = ±1, which reduces to the familiar Langmuir form

Z

M
=

1

1 +K+/ρs exp(φ0)
, (2.3)

in the limit whereK− →∞. HereM is the number of sites available for adsorption and
we will set it to M = 107, which is equivalent to roughly one surface group per 1 nm2
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Chapter 2. Density-induced reentrant melting of colloidal Wigner crystals

for a micron-sized particle. Note that high values forK±/ρs yield little tendency for the
ions to adsorb, while small values for K±/ρs results in a significant fraction of occupied
surface groups. In Figure 2.1 we plot some results for (a) Z and (b) φ0 obtained from
the cell model as function of η for M = 107, a/λB = 100 and κa = 0.1. We see that
the colloidal particle always discharges as function of η, while the corresponding φ0

increases or is approximately constant for the case in which both positive as well as
negative ions can adsorb. The observed constant potential in the latter case is because
both the chargeabilities Y± = κaM/(8πK±a

3) are much larger than unity for these
parameters, as we shall show in the Appendix.
From the cell model it is possible to extract effective pair potentials, which we will use

in various freezing criteria. The best known route towards an effective pair potential
for (highly) charged particles uses charge renormalization [58, 59] in combination with
DLVO theory [60, 61] . An effective charge Z∗ is defined by extrapolating the linear
screening solution fitted to the numerical solution for the far-field electrostatic potential
to r = a [57],

Z∗ =
tanhφD
κ̄λB

[
(κ̄2aR− 1) sinh(κ̄R− κ̄a) + (κ̄R− κ̄a) cosh(κ̄R− κ̄a)

]
. (2.4)

Here κ̄−1 is a colloid-density dependent screening length given by κ̄2 = κ2 coshφD.
From this so-called renormalized charge Z∗, we can define the effective DLVO pair
potential

βUDLVO(r) =


∞, r < 2a,(
Z∗ exp(κ̄a)

1 + κ̄a

)2
λB exp(−κ̄r)

r
, r ≥ 2a.

(2.5)

We remark here that this DLVO-based method is known to become inaccurate for dense
systems [62–67], due to many-body effects resulting from a significant overlap between
double layers with the hard core of other particles. Nevertheless, in case the double
layers constitute a relatively thin shell around the individual particles, the DLVO form
is deemed accurate.
Alternatively, one can choose to calculate effective point-Yukawa charges by fitting

the linearized solution for the “far-field” electrostatic potential in the cell to the non-
linear solution that follows from the Poisson-Boltzmann model. By extrapolating the
linear solution to r = 0 , an effective Yukawa point charge Q can be identified in the
origin [67], which is found to depend on the cell-boundary parameters via

Q =
tanhφD
κ̄λB

[κ̄R cosh(κ̄R)− sinh(κ̄R)] . (2.6)

Using this effective point charge, the effective pair interaction can be expressed as the
sum of the non-electrostatic hard-core repulsion and a Yukawa potential

βUY(r) =

∞, r < 2a,
Q2λB exp(−κ̄r)

r
, r ≥ 2a.

(2.7)
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2.3. Crystallization criteria

By means of computer simulations of these point particles [67] it has been confirmed
recently that this approach yields a very accurate estimate for the colloid-colloid pair-
correlation functions and the pressure for both dilute and dense colloidal systems when
compared with a mixture of colloids and ions.

2.3 Crystallization criteria
There are various approaches towards determining the location of the charge-induced
crystallization transition that we will discuss in this work. As it has been proposed
earlier by other authors, it is tempting to view the charged system as an effective
hard-sphere system, with an effective hard-core diameter σeff that is larger than the
original diameter of the particle due to the electrostatic repulsions [68–71]. This can,
for example, be achieved by defining the second virial coefficient B2 = (1/2)

∫
dr{1−

exp[−βUDLVO(r)]} and imposing the second virial coefficient of the hard-sphere fluid
B2 = (2/3)πσ3

eff. By using that the hard-sphere system crystallizes at packing fraction
(π/6)σ3

effρ > 0.5 [35], we arrive at the freezing criterion B2ρ > 2, with ρ the colloid
density.
Another approach that does not rely on any pair potential can be found by comparing

the osmotic pressure Π to that of a system of hard spheres. Within the cell model, the
osmotic pressure is given by summing the ionic and the hard-core contributions. This
results in βΠ/ρ = 2ρs(coshφD − 1)/ρ+ (1 + η+ η2− η3)/(1− η)3, where we have used
the Carnahan-Starling expression for the second term. The criterion βΠ/ρ > 13 can
now be applied in analogy to the hard-sphere system.
Both hard-sphere like criteria that are described above are expected to be accurate at

high salt concentration, where the double layers and hence the repulsive interactions are
short-ranged. On the other hand, when the interactions are longer ranged the effective
hard-core model is expected to break down and other approaches are needed. Recent
work describes a method to map the suspension to a system of point-Coulomb particles
in a neutralizing background. The latter system is known as the one-component plasma
(OCP). The mapping to an OCP constitutes a partitioning of the full ionic charge
into individual double layers that (partially) neutralize the charged particles and a
homogeneous background of ionic charge that neutralizes the remaining charge. Within
the cell model, this background is identified as the ionic charge density on the cell
boundary, ρ+(R) − ρ−(R). It defines an equivalent OCP-point charge ZOCP via the
charge-neutrality requirement, i.e., ZOCP = −[ρ+(R) − ρ−(R)]/ρ, such that the OCP
coupling parameter ΓOCP = Z2

OCPλBρ
1/3, which is the dimensionless parameter that

fully characterizes the OCP, takes the form

ΓOCP =
1

16π2

tanh2 φD
κ̄λB

(κ̄D)5, (2.8)

where we used the mean interparticle distance D = ρ−1/3, given within the cell model
by D3 = 4πR3/3. For ΓOCP < 106 the OCP is in the disordered fluid state, yet
for ΓOCP > 106 it favours a body-centered cubic (BCC) crystalline state [72, 73].

17



Chapter 2. Density-induced reentrant melting of colloidal Wigner crystals

The empirical criterion ΓOCP > 106 was very recently shown to be very successful in
describing experiments on colloidal systems [54] and is an attractive option due to its
simplicity.
The OCP, however, does not feature a face-centered cubic (FCC) phase, such that it

cannot capture the experimentally observed BCC-FCC phase transition. The effective
Yukawa point charges defined by Eq. (2.6) and Eq. (2.7) form an alternative approach
to calculating the freezing lines in a charged colloidal system. We can use the Lin-
demann criterion for the effective pair potential [74] and find that crystalline order is
expected if the so-called Yukawa coupling parameter

ΓY ≡ βUY(D)

[
1 + κ̄D +

1

2
(κ̄D)2

]
(2.9)

exceeds 106. Eq. (2.9), together with Eq. (2.6) can be expanded in powers of κD to
find

ΓY =
1

16π2

tanh2 φD
κ̄λB

[
(κ̄D)5 +O((κ̄D)7)

]
. (2.10)

Interestingly, up to 5th order in κ̄D this is just the coupling parameter ΓOCP from
Eq. (2.8) obtained by mapping the cell model to the one component plasma (OCP).
Point-Yukawa particles, however, do exhibit an FCC phase at sufficiently large κ̄D, so
it is interesting that the fluid-crystal lines from the OCP and point-Yukawa criteria
coincide within numerical accuracy. Computer simulations of Yukawa systems [75, 76]
have shown that the fluid-crystal transition (either to FCC or BCC) is accurately
described by the condition

log[βUY(D)] = 4.670− 1.0417κ̄D + 0.1329(κ̄D)2 − 0.01043(κ̄D)3 + 0.0004343(κ̄D)4

− 0.000006924(κ̄D)5, (2.11)

for 0 < κ̄D < 12, which is up to minor deviations equivalent to the Lindemann criterion
of Eq. (2.9). The criterion for the transition between a BCC to an FCC phase was
found to be

log[βUY(D)] = 97.65− 151.469499κ̄D + 106.626405(κ̄D)2 − 41.67136(κ̄D)3 (2.12)
+ 9.639931(κ̄D)4 − 1.3150249(κ̄D)5 + 0.09784811(κ̄D)6 − 0.00306396(κ̄D)7,

for 1.85 < κ̄D < 6.8. We remark that instead of the point-Yukawa approach we could
also have used UDLVO(r) as was done in Ref. [53]. Recent work, however, has shown
that DLVO-based approaches underestimate the effective repulsion at high packing
fractions, even if combined with methods such as charge renormalization. Indeed,
UDLVO(r) was not able to accurately describe the experiments in Ref. [54]. The point-
Yukawa approach therefore yields a more direct and accurate route to the effective
screened-Coulomb interactions at any density.
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Figure 2.2: (a) Phase diagram in the (η, κa) representation for particles that acquire their charge through
cationic adsorption only. We fix the Bjerrum length λB = 0.01a and equilibrium constant K+a

3 = 1. The
full lines stem from the extrapolated point charge Q of the cell model, which was used as the point-Yukawa
charge in the computer simulation criterion from Ref. [76]. For this criterion, it is possible to obtain the
crystal-crystal transition line from a FCC to BCC lattice. The dashed-dotted line is obtained by applying
the Lindemann criterion for point-Yukawas (ΓY = 106); this line overlaps with the result of a OCP criterion
(ΓOCP = 106). The dashed line uses a second virial coefficient result (B2ρ = 2). Finally the dotted line
uses an osmotic pressure criterion (βΠ/ρ = 13). A dotted grey line indicates the region below which the
hard-sphere like criteria using B2 and Π are expected to fail. (b) Same as full lines in (a), but now we
allow negative ions to adsorb, tuned by the equilibrium constant K−. Notice that the full blue line is the
same as in (a), yet here we use dotted lines for the FCC-BCC transitions for clarity. We use the same color

coding as in Fig. 2.1.

2.4 Phase diagrams

To get a better idea of the reliability of the various crystallization criteria for colloidal
particles that are subjected to charge regulation, we will compare them first for the
case when only positive ions can adsorb (K− → ∞). In Fig. 2.2(a), we plot a few
phase boundaries in the (η, κa) representation for a variety of crystallization criteria
for a/λB = 100 and K+a

3 = 1, featuring FCC, BCC and fluid phases. Note that only
η < 0.5 is shown. For these system parameters, we see that the BCC only appears
in a finite “pocket” of in intermediate packing fractions 10−3 . η . 10−1 and 10−1 .
κa . 1. The fluid-BCC line and the fluid-FCC line at κa & 1, as predicted by the
Lindemann criterion Eq. (2.9), are very close to the slightly more accurate simulation-
based criterion of Eq. (2.11) for all κa. Notice furthermore that the FCC-BCC line is
connected only to the fluid-crystal line of Eq. (2.11). Finally, as was mentioned in the
previous section, the Lindemann criterion Eq. (2.9) is indeed equivalent to the OCP
criterion of Eq. (2.8): we found that they essentially overlap within the numerical
accuracy, and hence we have drawn them as a single line.

The good predictive power of the OCP-like criteria of Eqs. (2.8) and (2.9) does
not come as a surprise for the regime of κa < 1, where the screening length is large
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compared to the particle size. However, the good quality of the OCP criterion of Eq.
(2.8) at κa > 1 and even at κa > 10 is quite striking. Likewise, it should not come
as a surprise that the hard-sphere freezing criteria based on B2ρ > 2 of the DLVO
potential and the osmotic pressure Π > 13kBTρ of the cell model perform well at
κa > 10 and reasonably well at κa ≈ 1. However, at κa < 1 they deviate substantially
and are, therefore, not capable of predicting the empirical OCP-type criteria in this
weak screening regime. In particular, the hard-sphere like criteria cannot capture the
“back-bending” of the crystallization line to high η at κa . 10−1, which is caused
by the discharging of the particles at low salt concentrations, such that repulsions
weaken and melting occurs [53, 54]. The hard-sphere like criteria actually do show
this bending-back phenomenon far below the scale of Fig. 2.2(a). The “up-bending”
of the crystallization line to high η at κa & 10−1 is due to the reduced repulsions
which comes from the enhanced screening of the (increasing) colloidal charge. The
resulting shape of the crystallization line of Fig. 2.2(a) describes a fluid-BCC-fluid or
fluid-BCC-FCC-fluid phase sequence upon increasing κa at fixed η ∈ (10−3, 10−1), a
reentrant melting that was also found in the constant-potential calculations of Ref. [53]
and in the experiments and calculations of Ref. [54]. However, particles described by
the adsorption isotherm Eq. (2.3) cannot account for the reentrant melting that was
observed in Ref. [49] upon increasing the colloid density. Below we will show that an
extension of the existing theories to include adsorption of a second ionic species does
give rise to such a density-induced reentrant melting phenomenon.
On the basis of the superior performance of the OCP-based rather than the hard-

sphere based crystallization criteria, we will now only consider the criteria of Eqs.
(2.11) and (2.12), which includes input from Eq. (2.7). We focus on the effect of
anionic and cationic adsorption by setting K+a

3 = 1 as before, together with setting a
finite equilibrium constant K− (rather than the K− →∞ limit which prevents anionic
adsorption).
In Fig. 2.2(b) we show a set of phase diagrams, again in the (η, κa)-representation,

for a variety of K−, showing fluid, BCC, and FCC states as expected. However, the
crystallization lines at finite K− all exhibit a regime of κa where the phase sequence
fluid-BCC-fluid appears upon increasing η. This density-induced reentrant melting is
absent in the line for K− →∞, which is the lowest-lying curve in Fig. 2.2(b). In other
words, the feature of a reentrant fluid with increasing colloid concentration depends
crucially on the existence of multiple charging mechanisms. Finally, we remark that for
results with a non-zero K−1

− , the crystallization boundary at η = 0.5 is not correctly
predicted because point particles do not exhibit hard-sphere crystallization.
We now try to rationalize the occurrence of a reentrant fluid as function of ρ. For

this we investigate the OCP criterion, since it approximates the freezing lines of the
Yukawa result (Eq. (2.11)) accurately and it has the added advantage of providing a
physical mechanism. In order to get a reentrant fluid, ΓOCP must be non-monotonous
as function of density. For this we calculate

∂ΓOCP

∂ρ
= ΓOCP

(
1

3
ZOCPρ

−1 + 2
∂ZOCP

∂ρ

)
, (2.13)
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Figure 2.3: (a) The OCP coupling parameter ΓOCP (see Eq. (2.8)) as function of packing fraction η
for a charging mechanism S + P+ � SP+ with equilibrium constant K+ = [S][P+]/[SP+] (dashed lines),
compared to a constant-potential system (full lines) with a chosen surface potential such that Z (shown in
(b)) coincides in the dilute limit. Observe that only for constant-potential particles ΓOCP can intersect the
dotted grey line ΓOCP = 106 twice, showing that these systems exhibit reentrant melting as function of η.
This is because constant-potential particles have the strongest tendency to decrease ZOCP for η & 10−3,
as can be seen in the inset of (a) where ZOCP as function of η is shown for the highest and lowest surface
potential. This decrease in ZOCP occurs because constant-potential particles have a larger tendency to

discharge, which is shown in (b) where we plot Z as function of η.

and investigate its sign. The first term in Eq. (2.13) is always positive. In the dilute
limit the first term dominates in Eq. (2.13), hence ΓOCP increases with ρ. Compressing
the system tends to reduce the mutual repulsions, the particles discharge and this
reduces ZOCP. This effect is not strong enough to drive ∂ρΓOCP < 0 for particles that
acquire their charge through adsorption of only a single ion species. However, ZOCP

has a much stronger tendency to decrease for η & 10−3 if the particles have significant
adsorption affinities for both cations and anions, and therefore have a fairly constant
surface potential. This is illustrated in Fig. 2.3(a), where ΓOCP is shown (with ZOCP

in the inset) as function of η for particles on which only positive ions can adsorb, and
we compare these quantities with constant-potential particles. Indeed, we see that
ΓOCP can intersect the line ΓOCP = 106 twice as function of η for constant-potential
particles. This can be rationalized from the fact that these type of particles have a
larger tendency to discharge for η & 10−3 as is shown in Fig. 2.3(b), which reveals Z as
function of η for constant-potential particles and for particles that acquire their charge
by cationic adsorption. We conclude that for constant-potential particles the second
term in Eq. (2.13) can become sufficiently negative for a reentrant fluid to occur.

2.5 Comparison with experiments

To verify our approach towards reentrant melting in suspensions of charged colloids,
we compare our results with experiments on poly(methyl methacrylate) spheres (a =
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1 µm) in a solvent mixture of 20% cis-decaline and 80% cyclohexylbromide where a
hitherto unexplained reentrant fluid was observed upon varying ρ, see Ref. [49, 56].
We use a Bjerrum length that is close to the experimental value a/λB = 125 and
vary the values of κa and K±a

3 until good agreement with the experimental phase
boundaries was obtained. It should be noted that in the parameter regime where we
found a good fit, the last term in the denominator of Eq. (2.2) is small compared to the
other terms in the denominator. This effectively means that we can only determine
the ratio of K+/K− rather than their individual values. Moreover, notice that Eq.
(2.2) is independent of ρs in this limit if φ0 is taken as an input parameter. This
means that the calculated fluid-crystal boundary can also be explained by a constant-
potential system for all salt concentrations. The experimentally obtained fluid-BCC
phase boundary at η = 0.0415 and that of the BCC-reentrant fluid phase at η = 0.1165
are represented by the dashed vertical lines in Fig. 2.4(a) and (b). The full vertical
lines represent the corresponding phase boundary as predicted from our theory, using
κa = 0.6 andK−/K+ = 51 as fit parameters, for which the dimensionless zeta potential
reads φ0 = 1.96. Given that our theory is capable of predicting a reentrant fluid phase,
it should not come as a surprise that we can fit the two experimentally observed phase
boundaries in terms of these two fit parameters rather accurately.

Interestingly, however, the structure of various state points in both fluid phases
and the BCC phase was also investigated in Ref. [49] by means of simulations of a
system with a pairwise DLVO potential of the form of Eq. (2.5). The contact potential
UDLVO(2a) ≡ εc and the effective screening length κ̄−1 were obtained from fits to the
experimentally observed radial distribution function, and are represented by the open
symbols in Fig. 2.4(a) and (b), respectively, where the error bars stem from Ref.
[49]. The parameters εc and κ̄a for the crystal are shown as filled symbols, and were
obtained from estimations by using the Yukawa phase diagram. The full curves in Fig.
2.4 (a) and (b) represent our prediction of κ̄−1 and εc, given within our calculation by
εc = UY (2a), with the fit parameters obtained from the phase boundaries as discussed
above. The agreement is very satisfactory and is an indication that the underlying
charging mechanism indeed involves a competing cation and anion process.

Further evidence for the predictive power of the present theory is provided by com-
paring the experimentally observed fluid-FCC phase boundary of the very same system
but at a much higher salt concentration, as presented in Ref. [55]. Although no reen-
trant fluid was found here we can check whether K−/K+ = 51 that was determined
for the parameters in Fig. 2.4 is also able to describe this experiment. At large κ, we
have κ̄ ≈ κ and for this reason we use for κa the value of κ̄a = 2.5 as was determined
from the simulations in Ref. [55]. In Fig. 2.5 a plot is shown for the state points of
the fluid (open symbols) and FCC crystal (filled symbols). For completeness we also
add the state points of Fig. 2.4. We find a very good agreement of the fluid-FCC state
points with the phase diagram calculated from the cell model with K−/K+ = 51. In
Ref. [55] the radial distribution function g(r) of these state points could be described
by Monte-Carlo simulations with a DLVO contact potential of βεc = 140. However, we
find a slightly higher contact potential from our cell model calculations, βεc ≈ 200.
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Figure 2.4: Comparison of the phase boundaries (fluid-BCC-fluid) and Yukawa parameters from Ref. [47].
The full grey lines are obtained from a cell-model calculation using a = 0.6, a/�B = 125, K�/K+ = 51
(equivalently �0 = 1.96), while the dashed grey lines are from experiments. The equivalent contact value
✏c of the pair interaction potential from the cell model is shown as the full blue line in (a) and we compare
them with Monte-Carlo simulations of Ref. [47] using a DLVO potential, shown as the symbols. Open
symbols correspond to fluid state points, while filled symbols are BCC state points. A similar comparison
is made in (b) for ̄a, with error bars calculated from the data provided in Ref. [47]. We remark that the
values of ✏c and ̄ for the BCC state points in Ref. [47] were estimated using the Yukawa phase diagram

and not directly determined from simulation.
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OCP point charge. When the colloids are charged by ad-
sorbing a single ion species, it is not enough to make
@��OCP < 0. However, for constant potential particles
and hence particles with a charging mechanism given by
Eq. (2) with K+ not too large, the tendency for dis-
charging is large enough, see Fig. 3, which compares Z
as function of ⌘ for particles on which only positive ions
can adsorb with constant potential particles. Hence, the
second term in Eq. (13) is su�ciently negative for a reen-
trant fluid to occur.

V. COMPARISON WITH EXPERIMENTS

To verify our approach towards reentrant melting in
charged systems, we compare our results with experi-
ments poly(methyl methacrylate) spheres (a = 1 µm) in a
solvent mixture of 20% cis-decaline and 80% cyclohexyl-
bromide where a hitherto unexplained reentrant fluid was
observed upon varying ⇢, see Ref. [18, 24]. We use a
Bjerrum length that is close to the experimental value
a/�B = 125 and vary the values of a and K±a3 until
good agreement with the experimental phase boundaries
was obtained. It should be noted that in the parameter
regime where we found a good fit, the last term in the
denominator of Eq. (2) is small compared to the other
terms in the denominator. This e↵ectively means that
we can only determine the ratio of K+/K� rather than
their individual values. Moreover, notice that Eq. (2) is
independent of ⇢s in this limit if �0 is taken as an input
parameter. This means that the calculated fluid-crystal
boundary can also be explained by a constant potential
system for all salt concentrations (�0 = 1.96).

The experimentally obtained fluid-BCC phase bound-
ary at ⌘ = and that of the BCC-reeentrant fluid phase at
⌘ = are represented by the dashed vertical lines in Fig.
4 (a) and (b). The full vertical lines represent the corre-
sponding phase boundary as predicted from our theory,
using a = 0.6 and K�/K+ = 51 as fit parameters. In
Ref. [18] the structure of various state points was inves-
tigated by fitting the pair correlation function g(r) with
data obtained from simulations with a DLVO potential.
To compare the DLVO parameters with our mapping to
point-Yukawa particles we calculate ✏c = UY (2a) and
compare these to the simulations. The result is found
as the blue line and the circles in Fig. 4(a) respectively.
We do the same with ̄a in Fig. 4(b), where we calcu-
lated the error bars for the simulation data from the data
provided in Ref. [18]. We see that the agreement is good.

The same experiment has been performed with the
same system parameters, but at a higher salt concen-
tration in Ref. [45]. Now no reentrant fluid was found
and the crystalline structure was found to be FCC at suf-
ficiently high ⌘. We therefore check whether the K�/K+

that was determined for the parameters in Fig. 4 is also
able to describe this experiment. At large , we have
̄ ⇡  and for this reason we use for a the value of
̄a = 2.5 as was determined from the simulations in Ref.

[45]. In Fig. 5 a plot is shown for the state points for the
fluid (open symbols) and FCC crystal (filled symbols).
For completeness we also added the state points of Fig.
4. We find a very good agreement of the fluid-FCC state
points with the phase diagram calculated from the cell
model with K�/K+ = 51. The g(r) of these state points
could be described by Monte-Carlo simulations with a
DLVO potential with �✏c = 140. We however find a
slightly higher contact potential from our cell model cal-
culations of �✏c ⇡ 200.
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Figure 5. The phase diagram calculated from the cell model
mapping to point-Yukawa particles with K�/K+ = 51 (or
equivalently �pK = pK� � pK+ = 1.7). We added the ex-
perimentally obtained state points for a fluid-FCC transition
(Ref. [45]) and a reentrant fluid phase (Ref. [18]), which is
shown magnified in the inset.

VI. DISCUSSION AND CONCLUSIONS

We investigated various crystallization criteria that are
based on hard spheres and point particles. We have seen
that the point-particle criteria are reliable in a large pa-
rameter regime, while the considered hard-sphere criteria
should only be trusted at high salt concentrations. More-
over, we have seen that adsorption of multiple ion species
on the colloidal surface may explain the occurrence of a
reentrant fluid at fixed reservoir salt concentration, but
at varying packing fraction. In contrast, the crystal phase
is always reentrant as function of salt concentration for
the charge regulation mechanisms that we investigated.
We tested this result with experiments and found good
agreement with the phase boundaries.

There are some caveats with the experiments as we
described above. In particular, we always assume that
the density of colloids is varied at a fixed reservoir salt
density ⇢s and hence a fixed a. In other words, all our
calculations are performed grand canonically. However,

Figure 2.5: The phase diagram calculated using the cell model in combination with Eqs. (2.11) and (2.12),
where we use the parameters a/�B = 125 and K�/K+ = 51 (or equivalently �pK = pK��pK+ = �1.7)
. The experimentally obtained state points of the fluid-FCC transition from Ref. [53] are shown as the
open and filled diamonds for the fluid and FCC phase, respectively. The reentrant fluid phase of Ref. [47]
are labeled by the open circles, while the BCC state points are shown as filled circles. A zoomed-in version
of the phase diagram around these BCC state points are shown in the inset, to emphasize the reentrant

nature of the phase transition.
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Figure 2.4: Comparison of the phase boundaries (fluid-BCC-fluid) and Yukawa parameters from Ref. [49].
The full grey lines are obtained from a cell-model calculation using κa = 0.6, a/λB = 125, K−/K+ = 51
(equivalently φ0 = 1.96), while the dashed grey lines are from experiments. The equivalent contact value
εc of the pair interaction potential from the cell model is shown as the full blue line in (a) and we compare
them with Monte-Carlo simulations of Ref. [49] using a DLVO potential, shown as the symbols. Open
symbols correspond to fluid state points, while filled symbols are BCC state points. A similar comparison
is made in (b) for κ̄a, with error bars calculated from the data provided in Ref. [49]. We remark that the
values of εc and κ̄ for the BCC state points in Ref. [49] were estimated using the Yukawa phase diagram

and not directly determined from simulation.

6

OCP point charge. When the colloids are charged by ad-
sorbing a single ion species, it is not enough to make
@⇢�OCP < 0. However, for constant potential particles
and hence particles with a charging mechanism given by
Eq. (2) with K+ not too large, the tendency for dis-
charging is large enough, see Fig. 3, which compares Z
as function of ⌘ for particles on which only positive ions
can adsorb with constant potential particles. Hence, the
second term in Eq. (13) is su�ciently negative for a reen-
trant fluid to occur.

V. COMPARISON WITH EXPERIMENTS

To verify our approach towards reentrant melting in
charged systems, we compare our results with experi-
ments poly(methyl methacrylate) spheres (a = 1 µm) in a
solvent mixture of 20% cis-decaline and 80% cyclohexyl-
bromide where a hitherto unexplained reentrant fluid was
observed upon varying ⇢, see Ref. [18, 24]. We use a
Bjerrum length that is close to the experimental value
a/�B = 125 and vary the values of a and K±a3 until
good agreement with the experimental phase boundaries
was obtained. It should be noted that in the parameter
regime where we found a good fit, the last term in the
denominator of Eq. (2) is small compared to the other
terms in the denominator. This e↵ectively means that
we can only determine the ratio of K+/K� rather than
their individual values. Moreover, notice that Eq. (2) is
independent of ⇢s in this limit if �0 is taken as an input
parameter. This means that the calculated fluid-crystal
boundary can also be explained by a constant potential
system for all salt concentrations (�0 = 1.96).

The experimentally obtained fluid-BCC phase bound-
ary at ⌘ = and that of the BCC-reeentrant fluid phase at
⌘ = are represented by the dashed vertical lines in Fig.
4 (a) and (b). The full vertical lines represent the corre-
sponding phase boundary as predicted from our theory,
using a = 0.6 and K�/K+ = 51 as fit parameters. In
Ref. [18] the structure of various state points was inves-
tigated by fitting the pair correlation function g(r) with
data obtained from simulations with a DLVO potential.
To compare the DLVO parameters with our mapping to
point-Yukawa particles we calculate ✏c = UY (2a) and
compare these to the simulations. The result is found
as the blue line and the circles in Fig. 4(a) respectively.
We do the same with ̄a in Fig. 4(b), where we calcu-
lated the error bars for the simulation data from the data
provided in Ref. [18]. We see that the agreement is good.

The same experiment has been performed with the
same system parameters, but at a higher salt concen-
tration in Ref. [45]. Now no reentrant fluid was found
and the crystalline structure was found to be FCC at suf-
ficiently high ⌘. We therefore check whether the K�/K+

that was determined for the parameters in Fig. 4 is also
able to describe this experiment. At large , we have
̄ ⇡  and for this reason we use for a the value of
̄a = 2.5 as was determined from the simulations in Ref.

[45]. In Fig. 5 a plot is shown for the state points for the
fluid (open symbols) and FCC crystal (filled symbols).
For completeness we also added the state points of Fig.
4. We find a very good agreement of the fluid-FCC state
points with the phase diagram calculated from the cell
model with K�/K+ = 51. The g(r) of these state points
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mapping to point-Yukawa particles with K�/K+ = 51 (or
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perimentally obtained state points for a fluid-FCC transition
(Ref. [45]) and a reentrant fluid phase (Ref. [18]), which is
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VI. DISCUSSION AND CONCLUSIONS

We investigated various crystallization criteria that are
based on hard spheres and point particles. We have seen
that the point-particle criteria are reliable in a large pa-
rameter regime, while the considered hard-sphere criteria
should only be trusted at high salt concentrations. More-
over, we have seen that adsorption of multiple ion species
on the colloidal surface may explain the occurrence of a
reentrant fluid at fixed reservoir salt concentration, but
at varying packing fraction. In contrast, the crystal phase
is always reentrant as function of salt concentration for
the charge regulation mechanisms that we investigated.
We tested this result with experiments and found good
agreement with the phase boundaries.

There are some caveats with the experiments as we
described above. In particular, we always assume that
the density of colloids is varied at a fixed reservoir salt
density ⇢s and hence a fixed a. In other words, all our
calculations are performed grand canonically. However,

Figure 2.5: The phase diagram calculated using the cell model in combination with Eqs. (2.11) and (2.12),
where we use the parameters a/λB = 125 andK−/K+ = 51 (or equivalently ∆pK = pK−−pK+ = −1.7)
. The experimentally obtained state points of the fluid-FCC transition from Ref. [55] are shown as the
open and filled diamonds for the fluid and FCC phase, respectively. The reentrant fluid phase of Ref. [49]
are labeled by the open circles, while the BCC state points are shown as filled circles. A zoomed-in version
of the phase diagram around these BCC state points are shown in the inset, to emphasize the reentrant

nature of the phase transition.
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2.6 Discussion and conclusions
We investigated various crystallization criteria that are based on hard spheres, the
OCP and Yukawa point particles. We have seen that the point-particle criteria are
reliable in a large parameter regime, while the considered hard-sphere criteria should
only be trusted at high salt concentrations. Moreover, we have seen that adsorption
of multiple ion species on the colloidal surface can explain the occurrence of a density-
induced reentrant fluid at fixed (reservoir) salt concentration. In contrast, the crystal
phase is always reentrant as function of salt concentration for the charge regulation
mechanisms that we investigated. We tested this result against the experiments of
Refs [49, 55, 56] and found good agreement with the phase boundaries.
There are some caveats, however. In particular, we assume that the density of

colloids is varied at a fixed reservoir salt concentration ρs and hence a fixed κa. In
other words, all our calculations are based on the grand-canonical treatment of the
salt. However, in experiments the ions are often treated canonically and the salt
concentration is expected to change with the density of colloids. In Ref. [56], this
effect has been accounted for by defining κ̃2 = 8πλBρion, where ρion = Zρ+ 2ρ̃s and ρ̃s
the initial salt concentration without colloids. Here the authors interpreted the value
of the inverse screening length determined from simulations of DLVO particles as κ̃,
while this is κ̄ within our treatment. This latter quantity does depend on colloidal
density even if the ions are treated grand canonically. However, since κ̄ 6= κ̃ in general,
we should perform our calculations in the canonical ensemble, by fixing the initial salt
concentration and changing κ accordingly if η is varied. Nevertheless, we expect that
this will not change the qualitative features of our result and this may only alter the
precise values of the εc and κ̄ obtained from the cell model. This means that the density
dependent Z and κ that was observed in Ref. [49, 56] can still be attributed to an
underlying charge regulation mechanism where multiple ions are involved, regardless
of this caveat. Finally, we note that there are experimental systems for which the
grand-canonical treatment is justified, see for example Ref. [54].
As an outlook we wish to state that our work also suggests that microscopic details

of charging mechanisms can possibly be inferred from macroscopic measurements of
phase boundaries and/or structural mesoscopic measurements of g(r). The model that
we presented here provides a simple of way to investigating these charge regulation
effects, which are sometimes underestimated in charged colloidal suspensions.
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2.6. Discussion and conclusions

Appendix: Relation between constant-potential and
binary-adsorption model
In this Appendix we rationalize the constant potential behaviour that was observed in
Fig. 2.1(b). Typically, only a small fraction of the surface sites actually contains an
ion, i.e. [SP+], [SN−]� [S], and in this case we may approximate Eq. (2.2) as

y = Y+ exp(−φ0)− Y− exp(φ0), (2.14)

where y = ZλB/(κa
2) and Yα = κaM/(8πKαa

3) are the dimensionless charge density
and chargeability [54] respectively, and we assume the surface to be positively charged,
i.e. Y+ > Y−. The point of zero charge is given by φ̄0 = log(Y+/Y−)/2. Expanding Eq.
(2.14) around this iso-electric point, gives

y = −2
√
Y+Y−[φ0(η)− φ̄0] +O{[φ0(η)− φ̄0]3}, (2.15)

and we also find |(φ0(η)− φ̄0)| < |y/√4Y+Y−|, with ∆φ0 = (φ0(η)− φ̄0). We are now
interested in the maximal deviation ∆φ0 = φ0(η ↓ 0)− φ̄0. To estimate it, we use the
Gouy-Chapman relation and use it for our colloids. In this case, y = 2 sinh(φ0/2). This
relation underestimates the charge at infinite dilution that comes from the cell model,
but it is still a good estimate. This results in

y < 2 sinh(φ̄0/2) < (Y+/Y−)1/4 − (Y−/Y+)1/4 , (2.16)

and thus |∆φ0| < 1
2

(
Y 3
−Y+

)−1/4
< 1/(2Y−), showing that significant chargeabilities

for both the dominant (+) as well as the competing (-) charge mechanism will lead
to constant-potential like behaviour. For the light blue curves in Fig. 2.1(b) we have
|∆φ0| = 0.07, while the estimate in Eq. (2.16) gives |∆φ0| = 0.13. The red curve
has |∆φ0| = 0.001, while Eq. (2.16) gives |∆φ0| = 0.0001. The blue curve is not at
constant potential anymore, since |∆φ0| > 1, and this is supported by Eq. (2.16) which
gives |∆φ0| = 102. Indeed the linearization in Eq. (2.15) breaks down, and the system
is not described by a constant potential.
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3 Demixing in a binary
mixture of repulsive
charged colloids

Phase separation in a binary mixture of repulsive charged colloidal spheres is investigated
within the binary cell model. This approach allows for the investigation of charge-regulation
effects, such as cationic adsorption on the colloidal surface or constant-potential boundary
conditions. The repercussions of the spinodal instabilities on sedimentation profiles are
discussed within the local-density approximation in the context of the colloidal Brazil nut
effect.

3.1 Introduction
Colloidal suspensions are characterized by a large size asymmetry between the basic
constituents: the colloids are large compared to the solvent molecules and the ions
surrounding it. In such suspensions the solvent is often approximated as a dielectric
continuum, and on the mean-field level the ions are coarse-grained and treated on the
level of their density profiles, such as in Poisson-Boltzmann (PB) theory. The ions
can have large impact on the effective colloid-colloid interactions. It is, for example,
known that ionic correlations can induce an attraction between like-charged colloids
[77]. Interestingly, an effective attractive contribution to the free energy can also occur
on the mean-field level, which can lead to phenomena such as gas-liquid separation.
This was theoretically found within linear screening theory [63] where the cohesive
energy originates from the so-called volume terms. These are one-body contributions
to the many-body effective potential that do depend on the colloid density, but not
on the colloidal centre-of-mass coordinates. Interestingly, the gas-liquid separation
was absent in the spherical-cell model [66], which automatically includes non-linear
screening effects that are absent in linear screening theory, at the expense of losing
the multi-centered nature of the colloidal particles. Interestingly, an approach that
combined the cell and linear-screening model showed that a gas-liquid separation could
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Chapter 3. Demixing in a binary mixture of repulsive charged colloids

still be possible [78], although to date there is still no strict consensus whether such an
instability can really occur in one-component suspensions of charged colloids.
Binary colloidal suspensions are even more complex, since the two species can differ in

size and in charge, and this can lead to, for example, the formation of various colloidal
analogues of ionic crystals for oppositely charged colloids [36, 79–84]. In contrast,
purely repulsive charge-asymmetric mixtures have a tendency to demix. This can be
understood if we draw an analogy with the known phase separations in binary hard-
sphere systems [85–88], and in charged mixtures of He++ and H+ in the atmosphere
[89]. Such a phase separation is rather unexpected: the repulsions in one of the two
phases is always stronger than in the mixed state. Even so, spinodal instabilities
were shown to exist in binary Yukawa systems within the hypernetted chain closure
to the Ornstein-Zernike equations [90], but only when a non-additivity parameter is
introduced. The non-additivity parameter was also needed in computer simulations of
charged macroions in the primitive model1 to fit the simulated effective pair potentials
accurately [91], and this approach turned out to be very successful. Based on Ref.
[89] for the He++ and H+ mixture, we can hypothesize that the non-additivity is due
to a less efficient charge neutralization in the mixture than in the pure phases. This
argument is, however, vague and we are not aware of any microscopic derivation of the
non-additivity parameter from first principles. Furthermore, it was shown that a binary
mixture of charged colloids within many-body linear screening theory is actually an
additive Yukawa system [92], and these contributions to the two-body terms of the free
energy should be added to the one-body volume terms. Furthermore, using again the
analogy with binary hard spheres, we mention that non-additivity is not required for
hard spheres to demix. The demixing for additive hard spheres can be understood from
packing arguments: although the repulsions in the pure phase of the large particles are
stronger, the packing is more efficient, leading to a high-density crystalline phase of
large particles in coexistence with a fluid with predominantly small particles [88]. This
lack of a need for non-additivity in binary hard-sphere mixtures is the reason that we
are not convinced about the requirement of non-additivity in Yukawa systems for a
spinodal instability to occur. However, to show that non-additivity is not needed one
needs simulations or theories that go beyond the hypernetted-chain approximation of
Ref. [90].
The possibility for phase separation in a mixture of charged colloids is not only

investigated theoretically: phase separation is also experimentally observed [93–96].
When charge regulation is included, micro-phase separation can even occur [97], which
will be discussed more in depth in the next chapter. Furthermore, understanding the
bulk phase behaviour is necessary to understand, for example, sedimentation of binary
charged colloids [98–101], for which the precise sedimentation profiles could hint to
an underlying phase separation, and is therefore also of relevance in sedimentation
experiments.
This motivates us to have a closer look at phase separation in binary suspensions of

1In the primitive model ions are treated as charged hard spheres, but the solvent is a dielectric
continuum.
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3.2. Binary cell model

repulsive charged colloids. Most approaches to these systems [92, 102] are based on ef-
fective pair potentials of the Yukawa type. In this chapter we will, however, focus on the
phase behaviour of binary mixtures of charge-asymmetric repulsive colloidal particles
on the level of Poisson-Boltzmann theory within the cell approximation, which makea
it easier to include the effects of charge regulation. We will provide the framework of
calculating thermodynamic properties in such a model in Sec. 3.2 and we investigate
the possibility for phase separation of charge-asymmetric, but size-symmetric particles
in Sec. 3.3. We will conclude this chapter by applying our theory to a binary colloidal
suspension in an external gravitational field in Secs. 3.4, and make comparisons with
recent experiments [103]. We conclude with suggestions to improve on the LDA result,
which can be important close to a binodal or spinodal.

3.2 Binary cell model
We consider a binary mixture of charged colloids with radii ai, particle numbers Ni and
densities ρi for i = 1, 2. We describe every fixed configuration of colloids within the
spherical-cell approximation [57, 104], where every colloid is situated in a spherical cell
with radius R, with the cells filling the system volume. Consequently, we may relate
the packing fraction ηi to the number fraction xi = Ni/(N1 + N2) via ηi = xi(ai/R)3.
Within the spherical-cell approximation, the free energy F per unit volume V is given
by

βf(ρ1, ρ2, T, µs) =
2∑
i=1

ρi{ln(ρiVi)− 1 + min
ρi±,Zi

βωi[ρ
i
±, Zi]}+ βfHS. (3.1)

Here Vi is the colloidal thermal volume and fHS is an excess free energy describing the
hard-sphere repulsions, and as usual β−1 = kBT is the thermal energy. The grand
potential ωi[ρi±, Zi] of a single cell for i = 1, 2 is given by

βωi[ρ
i
±, Zi] =∑

α=±

∫
ai<r<R

drρiα(r)

[
ln
ρiα(r)

ρs
− 1

]
+

1

2

∫
ai<r<R

dr Qi(r)φi(r) + βωsurf,i(Zi), (3.2)

with ρi±(r) the ion density profiles in a cell of type i, eZi is the total colloidal charge (e
being the elementary charge), Qi(r) = ρi+(r) − ρi−(r) + (Zi/4πa

2
i )δ(r − ai) and where

φi(r)/(βe) is the electrostatic potential for a cell of type i. The term ωsurf(Zi) encodes
for the type of boundary conditions that we impose on the colloidal surface. We will
consider constant-charge (CC), constant-potential boundary conditions (CP), and a
single cationic adsorption model (CR). The CP case and CR case describe charge-
regulating colloids. For all the various cases, we have

βωsurf,i(Zi) =


0, (CC),

Zi

[
lnZi + ln

(
Ki

ρs

)]
+ (Mi − Zi) ln(Mi − Zi), (CR),

−Ziφi(ai), (CP).

(3.3)
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Note that the CP case in Eq. (3.3) is just a Legendre transformation. The CR case
describes a lattice gas with Mi surface sites that can become charged via cationic
adsorption, Si + P+ � SiP+, with equilibrium constant Ki = [Si][P+]/[SiP+]. In the
remaining we set Mi/107 = 4π for i = 1, 2, which corresponds to 1 surface site per nm2

for a micronsized colloid.
From the Euler-Lagrange equations δωi[ρi±, Zi]/δρi±(r) = 0, we find the Boltzmann

distributions ρi±(r) = ρs exp[∓φi(r)]. Together with the Poisson equation for φi(r), it
results in the Poisson-Boltzmann equation

φ′′i (r) +
2

r
φ′i(r) = κ2 sinh[φi(r)], (3.4)

where κ−1 = (8πλBρs)
−1 is the Debye screening length. Henceforth, a prime denotes the

derivative with respect to the radial coordinate r. We express global charge neutrality
by the boundary condition xφ′1(R) + (1 − x)φ′2(R) = 0, where x = x1. Notice that in
our formulation a single cell is not necessarily charge neutral, however the weighted
average of all the cells is, in contrast to the approach in Ref. [105]2. Moreover, we
impose the continuity condition φ1(R) = φ2(R) =: φD, with φD/(βe) the Donnan
potential. Finally, we have the boundary conditions,

φ′i(ai) =


−ZiλB

a2
i

, Zi given constant, (CC),

−MiλB
a2
i

{
1 +

Ki

ρs
exp[φi(ai)]

}−1

, (CR),
(3.5)

φi(ai) = constant, (CP), (3.6)

where we derived the CR boundary condition using Eq. (3.3) from ∂ωsurf,i/∂Zi = 0
and we used Gauss’ law applied to the colloidal surface. For the CP case we can find
the charge by evaluating Zi = −a2

iφ
′(ai)/λB when φi(r) is known.

We determine the minimized functional,

min
ρi±,Zi

βωi[ρ
i
±, Zi] =

1

2
Ziφi(ai) + 4πρs

∫ R

ai

dr r2{φi(r) sinhφi(r)− 2[coshφi(r)− 1]}

+


0, (CC),

−Ziφi(ai)−Mi ln

{
1 +

ρs
Ki

exp[−φi(ai)]
}
, (CR),

−Ziφi(ai), (CP).

(3.7)

From the free energy Eq. (3.1) with insertion of Eq. (3.7), we can extract various
thermodynamic properties. The osmotic pressure is given by Π = −(∂F/∂V )N1,N2,T,µs ,
which results in

βΠ = ρ+ ρs

[
2(coshφD − 1)− κ−2

2∑
i=1

xi|φ′i(R)|2
]

+ βpHS, (3.8)

2In our case one does not need to perform a minimization procedure with respect to the cell radii.
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with pHS the excess (hard-sphere) pressure and ρ = ρ1 + ρ2 the total colloid density.
The colloidal chemical potential µi = (∂F/∂Ni)Ni 6=j ,T,µs takes some more numerical
effort to calculate

βµi = ln ηi +
∂

∂ηi

2∑
j=1

ηjβωj

(
ai
aj

)3

+ βµHS,i, (3.9)

with µHS,i the excess (hard-sphere) chemical potential of species i. From Eq. (3.9)
we determine the possibility for demixing by calculating the spinodal. The spinodal is
given by the condition det(∂µi/∂ρj) = 0, and the critical point can be determined from
Eq. (3.8) by the condition, ∂Π(xsp, ηsp)/∂xsp = 0, with (xsp, ηsp) being points situated
on the spinodal. Phase coexistence between a phase α and a phase β can be calculated
from diffusive and mechanical equilibrium,

µi

(
ρ

(α)
1 , ρ

(α)
2

)
= µi

(
ρ

(β)
1 , ρ

(β)
2

)
, (i = 1, 2), (3.10)

Π
(
ρ

(α)
1 , ρ

(α)
2

)
= Π

(
ρ

(β)
1 , ρ

(β)
2

)
, (3.11)

respectively. The resulting curve for i = α, β given by ρ(i)
2

(
ρ

(i)
1

)
in the

(
ρ

(i)
1 , ρ

(i)
2

)
plane

is called the binodal, but also other representations are possible (such as in the plane
of chemical potentials).

An added advantage of the cell model is that we can give a crude estimate whether
crystallization can occur. Since we define the cell radius according to the the point for
which a Donnan potential can be defined, there is a simple mapping to the OCP, that
is given by

Γ =
1

16π2

(κD)5

κλB
sinh2 φD, (3.12)

where D3 = 4πR3/3 (see Chapter 2). The system crystallizes for Γ > 106 and this
crystallization estimate interpolates between the one-component limits η1 → 0 or η2 →
0 of the suspension.

3.3 Spinodal instabilities and crystallization estimates
For simplicity, we will only focus on the phase behaviour of charge-asymmetric colloidal
species that have the same colloid radii for all i, ai = a. We can therefore use the
Carnahan-Starling expression βfHS/ρc = (4η − 3η2)/(1 − η)2 for the excess part of
the free energy, from which also βpHS/ρc = (1 + η + η2 − η3)/(1 − η)3 and µHS,i =
(8η − 9η2 + 3η3)/(1 − η)3 for all i follow. In the remainder of the text, we will set
κa = 0.1 and a/λB = 100, which are typical values for charged colloids in oil with
ε ∼ 8. First, we investigate the effect of a charge asymmetry in the CC case. In
Fig. 3.1 we find the spinodals and their critical points for various charge combinations
(Z1, Z2). Furthermore, we plot the crystallization estimate using Γ > 106 together with
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Figure 3.1: Phase separation for a binary charge-asymmetric, but size-symmetric, colloidal dispersion of
constant-charge particles of radii a. The Debye length κ−1 is given by κa = 0.1 and the Bjerrum length
λB by a/λB = 100. A mixture of colloids of type i with charge Zi and volume fraction ηi are shown to
demix within the binary cell model, for various charge asymmetries Z1/Z2 as indicated by the spinodals
(blue lines). The black diamonds are the critical points and the grey dashed lines are tie lines for the
Z1 = 500, Z2 = 100 case. In red we show a crystallization estimate based on mapping the binary cell
model to a one-component plasma, which is accurate for the one-component limits η1 → 0 or η2 → 0.

Eq. (3.12). We clearly see that there is a spinodal for the charge asymmetries (Z1, Z2) =
(1000, 100), (500, 100) and (250, 100), and the extend of the demixing region is reduced
when this asymmetry between Z1 and Z2 is larger. Interestingly, the formation of a
pure 1-phase is within our theory always associated with crystallization, as was also
found in experiment [96]. Indeed, this supports the analogy with phase separation in
binary-hard sphere systems, where the better packing of particles in the pure phases is
preferred over a reduced repulsion in the mixed phase [88]. The demixing occurs in a
large region of the (η1, η2) plane due to the long-ranged screening of the interactions,
since κa = 0.1. This is different from the experiments of Ref. [96], which have been
performed in water and are thus systems with a much smaller screening length.
Surprisingly, these findings are based on a theory that is constructed for fluids. So

strictly speaking, the spinodal instability within the cell model results is a fluid-fluid
demixing. The spherical-cell approximation cannot predict crystallization in itself: we
need mappings to other theories for that, see Chapter 2. Apparently, the packing in a
pure high-charged fluid is still better than the packing in a mixed state, presumably
because of the long-ranged interactions involved. Such a situation is different from
hard spheres, where the fluid-fluid coexistence turned out to be metastable [87].
In Fig. 3.1, the one-component system of low-charged particles (species 2) did not

crystallize, however, if we increase Z2, they can also crystallize. The OCP mapping
then interpolates the two crystallization boundaries as can be seen in Fig. 3.2(a).
However, since the theory is meant as indication, it is hard to assess how the crystal-
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3.3. Spinodal instabilities and crystallization estimates

crystal coexistence (if any) will look like in a true system. For this we need more
accurate mappings of the cell model to simulation results, but unfortunately, we are not
aware of simulation work on repulsive charged particles that relates the crystallization
boundaries to the values of the respective effective pair interactions evaluated at the
typical interparticle distance (which are known for one-component systems, see Chapter
2).

In Fig. 3.2(a) we also compare the various boundary conditions (CC, CR, and CP),
see Eqs. (3.5) and (3.6). For a proper comparison, we choose the parameters such
that Z1 and Z2 from the CP and CR calculation match the charges for the CC case
(Z1, Z2) = (750, 250) in the dilute limit. The resulting charges (CP and CR) are shown
in Fig. 3.2(b)-(e) as function of η1 and η2. We see that the demixed region of the
CR case is larger than the CC case. Alhough the charges in the demixed region are
lower than that of the CC case due to discharging of the particles, it turns out that the
charge asymmetry becomes larger compared to the dilute limit. Along the diagonal
η2 = η1 in the (η1, η2) plane, we find for η1 = 10−5, 10−4, 10−3, 10−2 and 10−1 that
Z1/Z2 = 3, 3.1, 4, 8.6 and 40, respectively. Larger charge asymmetries are associated
with a larger tendency for demixing, as was shown in Fig. 3.1, explaining the larger
region for phase separation for the CR case compared with the CC case. Finally, iso-Zi
(i = 1, 2) lines seem to coincide with the tie lines (iso-Π lines), compare Fig. 3.2(a)
with Fig. 3.2(d) and (e). This means that phases in coexistence with each other nearly
have the same charges.
For the CP case the line det(∂µi/∂ηj) = 0 is more extended than the spinodal of the

CC and CR cases. There is a demixing region where the tie lines cross the spinodal
line, and the larger extent of this region is because of the larger charge asymmetries
at these volume fractions than the CR and CC case. There is, however, also a region
where the tie lines do not seem the cross the “spinodal”, this is clarified in Fig. 3.2(f),
where a few iso-Π lines are plotted in the (η1, η2) plane. There is a region where these
lines bend to higher volume fractions of species 1 or 2, and Π can become also negative
at high (η1, η2). The latter observation is associated with attraction, because species
2 is negatively charged for these thermodynamic state points, while species 1 stays
positive, see Fig. 3.2(b)-(c). The bending of the isolines to higher η1 or higher η2

is associated with a spinodal that bends towards low η1 or low η2. On the eye, this
seems like a gas-liquid separation, but for smaller volume fractions we see that the
spinodal is dominated by the ideal gas contributions, det(∂µi/∂ηj) ∼ (ηiηj)

−1 > 0.
This ensures that there are no spinodal instabilities in the one-component limits. This
is also expected, since the one-component cell model does not predict a gas-liquid
separation in charged colloidal suspensions [66].
The large extension of the “spinodal” for the CP case is, however, not well understood.

Certainly it has to do with the tendency of species 2 becoming negative and the fact
that Z1 increases again for an increasing η2 at fixed η1, see Fig. 3.2(b). This non-
monotonous behaviour of Z1 is easily understood mathematically within the cell model,
because increasing η2 has two effects. (i) The value of φD is increased, and since the
surface potential is fixed, it is easier to reach this asymptotic value at the cell boundary
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Figure 3.2: (a) Phase separation in a binary mixture of charge-asymmetric, but size-symmetric, colloids
of species i = 1, 2, for constant-charge (CC) particles, a single cationic-adsorption charge-regulation model
(CR) and a constant-potential model (CP). All calculations are at κa = 0.1, a/λB = 100, with κ−1 the
Debye length and λB the Bjerrum length. The blue lines are the spinodals, red lines are crystallization
estimates, the grey dashed lines are tie lines for the CR case, and the black diamonds are the critical
points. In all curves the charges in the dilute limit equal Z1 = 750 and Z2 = 250 (by suitable tuning the
surface potentials (CP) or equilibrium constants (CR)), as shown by the colormaps in (b)-(c) for the CP
case and in (d)-(e) for the CR case. To understand the “strange” form of the CP spinodal, we also show
the constant-osmotic pressure lines for the CP case in (f), which are the same as the tie lines, with Π the
osmotic pressure and υ0 the colloidal volume (which is the same for i = 1 and i = 2. Note that Π can
become negative and that it has a non-trivial density dependence in contrast to the CR and CC cases, see

the tie lines in (a) and in Fig. 3.1, respectively.
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3.4. Sedimentation profiles within the local density approximation

in a cell of type 1. The slope at the colloid is therefore smaller in absolute value and the
particle discharges. (ii) Introducing more particles of species 2 decreases R, and this
results in charging by a similar reasoning to (i). Physically, we can understand these
two phenomena by recalling that the constant-potential model is an approximation to
a binary adsorption model (see previous chapter). Above reasons (i) and (ii) can then
be interpreted physically as, (i) particles discharge to reduce mutual repulsion and (ii)
the ions that are desorbed from particle species 2 become available for species 1. These
cations can readsorb to particles of species 1 due to mass action. We believe that (a) Z2

becoming negative and (b) the non-monotonous behaviour of Z1 as function of η1 and
η2 are the reasons why Π shows the bending behaviour to higher ηi, a phenomenon that
is absent for the CR and CC cases. The resulting instability should therefore not be
viewed as demixing, and we speculate that it hints towards a tendency for microphase
separation, which was also observed in experiment [97]. This hypothesis will be tested
in the next chapter, where we shall indeed see that constant-potential particles can
microphase separate in clusters and alternating strings. Finally, our calculations show
that the CC case has a larger tendency to crystallize than the CR case, which in turn
has a larger tendency to crystallize than the CP case. Indeed, particle discharging can
impede crystallization, as we have already seen in the previous chapter.

3.4 Sedimentation profiles within the local density
approximation

In this section we will investigate how demixing of the bulk reveals itself in sedimenta-
tion profiles. In a sedimentation experiment a colloidal suspensions is put in a capillary,
and depending on the buoyant mass the particles settle to (i) the bottom if the mass
density of the particles is larger than that of the solvent (sedimentation), or (ii) to the
top of the capillary when the mass density is lower than that of the solvent (cream-
ing). The sedimentation profiles in these experiments can possibly have non-trivial
stackings, even for simple phase diagrams [106]. Charged colloids, in contrast, show
also non-trivial behaviour. For example, the density profiles can be more extended
than the barometric distribution due to a charge separation between bottom and top
of the capillary that results in a macroscopic electric field [107, 108]. Furthermore,
sedimentation experiments on charged colloids are interesting because information on
the charge regulation mechanism can possibly be inferred from measurements of the
colloid-density profile [109].

Theoretically, it has been shown that binary systems of charged colloids can segregate
because of the formation of an inhomogeneous macroscopic electric field [99]. The
segregation can manifest itself as the colloidal Brazil nut effect: larger particles float
on top of smaller particles in the case of sedimentation, or are found beneath the smaller
particles in the case of creaming. In other words, their height distribution is opposite
to the distribution that one expects based on buoyancy alone. The colloidal Brazil nut
effect was experimentally observed for large and small charged polymethylmethacrylate
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Figure 6.3: Density profiles (volume fraction ÷i versus distance z from the top wall of
the capillary) for large (green) and small (red) particles in two systems (corresponding
to system 2 in Table 6.1) with overall volume fractions (a) ÷̄ = 0.02 and (b) ÷̄ = 0.07.
The solid lines through the data points are meant to guide the eye. The data points are
an average of 7 stacks. The arrows indicate the mean heights hL and hS of the large
and small particles (Eq. 6.8). The straight solid line and label indicate the slope ÷Õ

L(z),
from which we tried to obtain ZL/(Ÿ‡L) (Eq. 6.9) [170]. (c) and (d) show the same data
on a semilogarithmic plot (ln(÷i) versus z). The solid lines and their labels indicate the
slopes ln (÷i(z))Õ = ≠1/Li expected theoretically [33, 174] (see Eq. 6.4), calculated from
LL = 0.71 µm and LS = 1.39 µm. See Fig. 6.1 for an overview of the capillary; the wall
onto which the particles sediment is located at z = 0.

(a) (b)

Figure 3.3: Experimentally observed sedimentation profiles (taken from Ref. [103]) for large (L, radius
aL = 0.99 µm) and small (S, radius aS = 0.79 µm) PMMA particles with gravitational lengths LS =
1.39 µm and LL = 0.71 µm, with charge number of the large particles ZL ∼ 450− 750 and for the small
particles ZS ∼ 250. (a) and (b) differ in overall volume fraction η̄. The mean height hi is indicated by
arrows, showing that (a) is an example of the colloidal Brazil nut effect, while (b) is on the transition
between Brazil nut and non-Brazil nut. The experiments are conducted in CHB with dielectric constant

ε = 7.92 and Debye screening length κ−1 = 6 µm.

(PMMA) particles in cyclohexylbromide (CHB) [103], see Fig. 3.3. Interestingly, by
tuning the overall colloid density (without changing the type of particles or medium),
one can go from a situation where the colloidal Brazil nut effect was observed to a
situation where it was absent. As measured from the top of the capillary by the
coordinate z (the density of CHB is larger than that of PMMA), the smaller particles
where present at low z, while the larger particles were present at higher z at low overall
density, see Fig. 3.3(a). The mean height of large particles hL in this particular case
is larger than that of small particles hS > hL, where

hi =

∫∞
0
dz zηi(z)∫∞

0
dzηi(z)

, (i = L, S). (3.13)

At larger overall densities, this situation changes: at large z the small particles become
again the dominant species, such that hS ≈ hL, see Fig. 3.3(b). We tried to see if these
phenomena could be captured using the theory of Ref. [99], but for the experimental
parameters we found no numerical solution. This can now be rationalized in light of
the previous sections, because at these charges the particles demix. Furthermore, the
reentrance of the low-charged particles being the majority species at a given z has not
been found for other system parameters where a numerical solution was possible for
the theory in Ref. [99].
This motivates us to have a look at the cell model calculations in an external gravi-

tational field. For this we consider an external potential for the colloids, Vext,i(r), with
i = 1, 2. The free energy of the cell model Eq. (3.1) is treated within a local density
approximation (LDA) for the colloids and their charges, followed by a Legendre trans-
form to a grand-canonical (rather than a canonical) description of the colloids. The
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3.4. Sedimentation profiles within the local density approximation

corresponding grand potential density functional is

ΩLDA[ρ1, ρ2] =

∫
dr

[
f({ρj(r)}2

j=1) +
2∑
i=1

ρi(r)(Vext,i(r)− µi)
]
, (3.14)

where we introduced the colloid chemical potential µi. The equilibrium density profiles
can now be found by minimizing this functional, which is equivalent to solving the
Euler-Lagrange equations for i = 1, 2,

µi − Vext,i(r) =
∂

∂ρi(r)
f({ρj(r)}2

j=1), (3.15)

which follow from δΩLDA[ρ1, ρ2]/δρi(r) = 0. We choose the external potential βVext,i =
z/Li, with Li = (βmig)−1 the gravitational length, mi the buoyant mass and g = 9.81
m2/s the gravitational acceleration. The interpretation of the z direction depends on
the buoyant mass: (i) for creaming z = 0 corresponds to the top of the capillary, and
(ii) for sedimentation z = 0 is the bottom of the capillary. Both are captured within
our formalism.

In order to include phase separation in the LDA model, we need the binodal, which
can be calculated from Eqs. (3.10) and (3.11). The binodal is shown for the (Z1, Z2) =
(750, 250) CC case in Fig. 3.4(a). The binodal has an asymmetric shape, and this is
also observed for charged silica particles in water [96], but with the difference that the
more asymmetric side is towards the higher-charged (crystalline) phase, rather than the
fluid phase. Currently, we do not understand this qualitative difference. An example of
a sedimentation profile as calculated from (3.15) is shown in Fig. 3.4(b) and (c) in the
full lines for parameters L1 = 0.7a, L2 = 1.4a and (Z1, Z2) = (750, 250), where we take
into account the phase separation. The two plots differ in overall packing fraction. The
phase separation manifests itself as a discontinuous jump in the density profiles, and we
observe a segregation of particles: particles of type 2 reside dominantly at low z, while
particles of type 1 reside mainly at large z. Since L2/L1 = 2, it is an example of the
colloidal Brazil nut effect: the mean height hi satisfies h2 > h1 although m2 < m1. For
z > 250a the system is essentially a one-component system of type 1, and the density
decays exponentially with a decay length of (Z1 +1)L1 for η1 > (1/3)(a/λB)(κa)2/Z1 =
4 · 10−4, which is known from a Donnan equilibrium model [107]. We observe therefore
that this scaling is reproduced by the cell model. Furthermore, there should be a
crossover to a linear regime and a barometric regime, however, this occurs beyond the
scale of the plots of Fig. 3.4(b) and (c), and we also found this within our theory (not
shown in figure). For the same initial conditions ηi(z = 0) and parameters, we also
calculate the sedimentation profile for the (Z1, Z2) = (250, 100) (dotted lines in (b) and
(c)), where phase separation is not expected at these volume fractions, see Fig. 3.1.
We again find the colloidal Brazil nut effect, showing that segregation within the LDA
is not necessarily a consequence of an underlying phase separation.
The LDA results, however, show a significant discrepancy with the experiments.

Not only the shapes and extent of the sedimentation profiles shapes are not accurately
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Figure 3.4: (a) Same as Fig. 3.2, which shows the spinodal (blue) and the critical point (black diamond)
for the CC case where Z1 = 750 and Z2 = 250. For clarity we have not shown the crystallization estimate
based on the one-component plasma. Instead we show some of the binodal points (grey circles) and with
tie lines (grey dashed). The full grey line is meant to guide the eye. The sedimentation path of Fig.
3.3(a) is shown in (a) in green, and Fig. 3.3(b) is shown in orange. For clarity of presentation, we only
include the data for z > 10 µm. The arrows indicate an increase in height z. (b) Sedimentation profiles
for gravitational lengths L2 = 1.4a and L1 = 0.7a (which means that i = 1 is higher charged and has a
higher buoyant mass than i = 2). The dotted grey vertical line is the z for which phase coexistence occurs,
which in a local-density approximation results in a discontinuous “jump” in the sedimentation profiles. For
the same set of parameters and the same η1,2(z = 0) as the full lines, we also plot the sedimentation
profiles in the dotted lines for (Z1, Z2) = (250, 100), showing that segregation is not necessarily associated
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(b), but with a different overall density. The parameters in (b) and (c) are indicative for the system of Fig.

3.3 regarding the charges and buoyant masses.
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3.5. Suggestions on improving the LDA result

predicted, but also the observation that the lower charged particles are “reentrant” as
the majority species at larger z is not reproduced for suspensions at a larger overall
volume fraction, compare Figs. 3.4(a) and (b). Including charge regulation cannot
amend this problem (at least within the LDA), since the demixing regions are similar
to the the CC case. We note that the comparisons with the CP case should only be
made in the region where there is a well-defined demixing, which can be seen from the
shape of the iso-Π lines, as was discussed in the previous section.
We reveal the poor performance of the LDA result to explain the experiments of

Fig. 3.3 by plotting and comparing the experimental sedimentation paths with the
calculated one for (Z1, Z2) = (750, 250) in Fig. 3.4(a). We observe a “back-bending”
phenomenon in the (η1, η2) plane that extends within the spinodal, which is absent
in the LDA result (see insets in Fig. 3.4(b) and (c)). Note that we did not use the
exact experimental parameters, which means that the spinodal can be shifted if we
would use the exact experimental values for a2/a1, κ−1 and λB. However, this would
not solve the discrepancy between theory and experiment, since we did not see a large
sensitivity of the sedimentation profiles to these parameters. We conclude that the
experimentally measured sedimentation profiles cannot be explained on the LDA level.
Finally, we note that charge regulation seems to be unimportant within LDA, because
sedimentation paths approximately coincide with iso-Zi lines (i = 1, 2), compare Figs.
3.2(b)-(e) with Fig. 3.2(a). Comparison of the experimentally measured sedimentation
paths in Fig. 3.4(a) with Figs. 3.2(b)-(e), however, suggests that charge regulation can
be important for the experimentally measured profiles.

Based on these discussions, we hypothesize that the LDA breaks down close to a
spinodal instability: an interface between the two demixed phases can develop with a
correlation length that is between that of the hard-core diameter and the Debye screen-
ing length. In the latter case, it is clear why the LDA breaks down, and we therefore
suggest to go beyond a local description to describe the experimentally observed sed-
imentation profiles. However, we have confidence that the LDA is accurate when no
demixing occurs, an assertion that is based on successful comparisons of calculated
sedimentation profiles within the LDA with experiments of one-component colloidal
dispersions [108, 109].

3.5 Suggestions on improving the LDA result

In this section we sketch how we can go beyond the LDA for a binary mixture of
charge-asymmetric repulsive colloids, and we discuss if the various possibilities are
worth investigating. To improve on the LDA result, we consider first the square-
gradient approximation, given by the grand potential functional

Ωsq[ρ1, ρ2] = Fsq[ρ1, ρ2] +
2∑
i=1

∫
drρi(r)[Vext,i(r)− µi], (3.16)
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where the instrinsic Helmholtz free energy functional reads

Fsq[ρ1, ρ2] =

∫
dr

[
f({ρj(r)}2

j=1) +
2∑
i=1

f ii2 ({ρj(r)}2
j=1)|∇ρi(r)|2

]
. (3.17)

For demonstration purposes we neglected any coupling of gradients between two dif-
ferent colloid species. Clearly, square-gradient theory goes beyond a local description
of the colloids. An expression for the density-dependent square-gradient coefficients
f ii2 can be derived by matching the square-gradient theory to linear response theory of
small density fluctuations [20], to find

βf ii2 (ρ1, ρ2) =
1

12

∫
dr r2c

(2)
ii (r; ρ1, ρ2), (3.18)

for i = 1, 2. Here we introduced the direct correlation functions of the uniform fluid
c

(2)
ij (r; ρ1, ρ2). It is meaningful to estimate the coefficients f ii2 (ρ1, ρ2) because they are
a measure for the correlation length for the interface between two demixed phases. We
do this by using the binary hard-core Yukawa fluid in the low-density limit. In this
case the direct correlation function equals the Mayer function

c
(2)
ij (r; ρ1, ρ2) = exp[−βφijY (r)]− 1, (3.19)

with pair interaction for a hard-core Yukawa fluid φijY (r). Clearly, using Eq. (3.24) in
Eq. (3.18) shows that the square-gradient coefficients of a hard-core repulsive Yukawa
fluid are negative, and therefore, the square-gradient expansion for such a system is ill
defined. Attractions are needed for a well-defined gradient expansion and one could
argue that these can be provided by the volume terms known from linear screening
theory. However, these terms will give contributions to the direct correlation function
multiplied by a Dirac delta function δ(r), because of their one-body nature. Volume
terms will therefore not contribute to Eq. (3.18), showing that the square-gradient
theory is also ill defined for the cell model, even when we include corrections from
linear screening theory.
In contrast to the cell model, a non-local extension of the linear screening model is,

however, more straightforward. Without specifying the precise form of the bulk free
energy per unit volume flin of the many-body linear screening result, we can write the
decomposition [92]

flin(ρ1, ρ2) = w1(ρ1, ρ2) + w2(ρ1, ρ2), (3.20)

where w1 are the volume terms and w2 is a two-body term that consists of the classical
trace over the pair potential of a binary hard-core Yukawa fluid. If we use the local
density approximation for w1 and the random-phase approximation (RPA) for w2, we
find the excess Helmholtz free energy functional

Fex[ρ1, ρ2] =

∫
dr w1(ρ1(r), ρ2(r)) +

1

2

∑
i,j

∫
dr

∫
dr′ρi(r)ρj(r

′)φijY (r− r′). (3.21)
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3.5. Suggestions on improving the LDA result

The RPA is a standard approximation for long-range pair potentials, however, there
is one drawback: within many-body linear screening theory the Yukawa parameters
also depend on density [92], and therefore, there is an ambiguity in the interpretation
of the second term in (3.21). Moreover, if we evaluate the direct correlation function
by functional differentiation of the functional (3.21) with respect to the colloid density
profiles,

c
(2)
ij (r− r′) = −β δ

2Fex[ρ1, ρ2]

δρi(r)δρj(r′)
, (3.22)

we find that it will not have the correct asymptotic behaviour c(2)
ij (r) ∼ −βφijY (r), which

can be understood from the non-trivial density dependence of the Yukawa parameters
in φijY (r). These problems are circumvented if we instead use a density expansion
around a reference bulk fluid with bulk densities ρb1, ρb2 and grand potential Ωb. Such
a procedure is standard in classical DFT [20], and we find

Ω[ρ1, ρ2] =Ωb +
2∑
i=1

∫
dr Vext,i(r)ρi(r) + β−1

2∑
i=1

∫
dr

[
ρi(r) ln

ρi(r)

ρbi
− ρi(r) + ρbi

]
− (2β)−1

∑
i,j

∫
dr

∫
dr′c

(2)
ij (r− r′; ρb1, ρ

b
2)
[
ρi(r)− ρbi

] [
ρj(r

′)− ρbj
]
, (3.23)

The functional (3.23) turns out to be successful in the description of interfacial and
wetting properties of a binary non-additive point Yukawa fluid close to a hard wall, with
state points in the vicinity of a fluid-fluid binodal [110]. Now there are no problems
with the density dependence of φijY (r) in Eq. (3.23), because c(2)

ij (r) is evaluated at
a bulk reference density. An example of a simple closure for the direct correlation
functions is

c
(2)
ij (r− r′; ρb1, ρ

b
2) =

∂2βw1(ρb1, ρ
b
2)

∂ρbi∂ρ
b
j

δ(r− r′)− βφijY (r− r′; ρb1, ρ
b
2). (3.24)

With the closure of Eq. (3.24), the Euler-Lagrange equations read for i = 1, 2

ρi(r) = ρbi exp

{
−βVext,i(r) +

2∑
j=1

∫
dr′c

(2)
ij (r− r′; ρb1, ρ

b
2)[ρj(r

′)− ρbj]
}
. (3.25)

The reference bulk densities can be found by fixing the overall densities ρ̄i, which equal
ρ̄i = (1/V )

∫
drρi(r). Clearly, the exponent in Eq. (3.25) has a non-trivial density

dependence, since its sign not only depends on the sign of Eq. (3.24), but also on
the sign of the local-density deviation from the uniform bulk reference densities. Since
the transition between a Brazil-nut and non-Brazil nut effect depends crucially on the
overall density in the capillary, we believe that Eq. (3.25) is an interesting route to
take. Furthermore, the functional (3.23) contains microscopic information of the bulk
phase behaviour, because the volume and many-body corrected additive Yukawa terms
are used to construct c(2)

ij (r). Indeed, Eq. (3.25) is a well-defined non-local extension
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Chapter 3. Demixing in a binary mixture of repulsive charged colloids

beyond the LDA in contrast to the square-gradient expansion. Finally, we note that
it is also engaging to make comparisons with non-additive point Yukawa systems, for
which a simple RPA closure of the type (3.21) (without the volume term) would suffice.
The parameters (the charges and screening length) in such a model are easily corrected
for non-linear and many-body effects via the extrapolated point charge method [67] or
charge-renormalization methods [58] discussed in Chapter 2, but then applied to the
binary cell model.

3.6 Conclusions and outlook
We have shown within a binary cell model that phase separation occurs for repulsive
charge-asymmetric colloids. The region of phase separation is larger when charge reg-
ulation is included, although the spinodal is not well-defined for all volume fractions
in the case of constant-potential particles. In the LDA we have seen that phase sepa-
ration in sedimentation profiles results in a density jump, and we have also seen that
segregation of the colloidal species in sedimentation-diffusion equilibrium (“layering”)
is possible without demixing in the bulk. The LDA, however, cannot explain recent
experiments, probably due to an underlying correlation length that is on the order of
κ−1. Therefore, the LDA breaks down if phase separation occurs. We proposed two
non-local theories beyond the LDA, by (i) using a density expansion together with
linear screening theory, or (ii) using a non-additive hard-core Yukawa model within the
RPA corrected by the binary cell model to include many-body, non-linear and, possibly,
also charge-regulation effects. For these two routes, it is important to first compare
the bulk phase diagram of linear screening theory and the non-additive Yukawa model
with the binary cell model to draw meaningful conclusions. This is left for future work.
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4 Alternating strings and
clusters in suspensions of
charged colloids

We report the formation of alternating strings and clusters in a binary suspension of repulsive
charged colloids with double layers larger than the particle size. Within a binary cell model
we include many-body and charge-regulation effects under the assumption of a constant
surface potential, and consider their repercussions on the two-particle interaction potential.
We find that the formation of induced dipoles close to a charge-reversed state may explain
the formation of these structures. Finally, we will touch upon the formation of dumbbells
and small clusters in a one-component system, where the effective electrostatic interaction
is always repulsive.

4.1 Introduction
A common theme in soft condensed matter physics and biological physics is the forma-
tion of large ordered structures from smaller building blocks [111, 112] that are some-
times analogs of ordered phases in (hard) condensed matter. These structures can be
macroscopic in size, such as bulk (liquid) crystals [26, 113], plastic crystals [114, 115],
quasicrystals [116, 117] and ferrofluids [118], but also mescoscopic structures are found,
such as the double-stranded helix in DNA molecules [119], the secondary (and ternary)
structures in proteins [120], micelles and membranes [111], and periodic structures in
block copolymers [121]. In this chapter, we will show that like-charged colloidal spheres
can form also mesoscopic structures, such as alternating strings and clusters, which we
will investigate both in experiment and in theory.

In general, charged colloidal particles are interesting due to their highly tunable
effective interactions [43, 122]. For example, their charge is often highly adaptable since
its microscopic origin is due to the ionic adsorption on or desorption from the colloidal
surface, a phenomenon called charge regulation [51], and there are many possibilities
for tuning the dielectric and screening properties of the surrounding medium [123]. Not
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Chapter 4. Alternating strings and clusters in suspensions of charged colloids

only energetic effects (Coulomb interactions) are thus important, but also the entropic
effects of the (adsorbed and bulk) ions, which can be taken into account by integrating
them out of the partition sum [64, 78, 124–127]. For low electrostatic potentials, the
resulting effective interaction between pairs of colloids is of the Yukawa type, and the
strength and range can be tuned by varying temperature, the salt concentration and
density of particles. Taken together with the attractive van der Waals force, which
can be significantly reduced by matching the dielectric constants of the particles and
solvent in the visible range of frequencies [128], the effective pair potential is known as
the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential [60, 61].
Just adding an additional colloidal species can already induce local ordered struc-

tures in charged colloidal systems, as was shown in Ref. [97] for a binary system of
positively charged sub-micron polystyrene and silica spheres. These particles could
become negatively charged, however, as a function of surfactant concentration due to
charge regulation, but the exact concentration for which this occurs is different for the
two species. Hence, clusters were observed when only one of the two species became
negatively charged, since opposite charges attract.
If the charge itself is inhomogeneously distributed on the particle surface, it can be

shown that the effective interaction can be decomposed in multipoles [129–132], which
provide to leading order monopole-monopole (DLVO), monopole-dipole and dipole-
dipole interactions. These inhomogeneities can have a large impact on the self-assembly,
as we shall see in this chapter. The fact that higher order moments of the charge
distribution are important, was already hinted towards in Ref. [133]. Here a binary
mixture of colloidal species that are both positively charged was considered such that
one expects (at least on the mean-field level) a repulsive effective monopole-monopole
interaction. However, when an external electric field is applied, dipoles are induced on
these particles, that can drive the formation of various structures, showing that the
dipole-dipole interaction can become more important than the monopole-monopole
interaction, see for experimental examples Refs. [36, 134]. Moreover, theoretical work
shows that a long-range repulsion, combined with a short-distance attraction, can lead
to a regime where microphase separation occurs instead of bulk phase separation [135–
139], which will be a theme here as well.
An external electric field is not the only way to induce dipole moments in charged

colloidal particles. For example, for a binary mixture of oppositely charged particles it is
known that dielectric effects can give rise to string formation [140]. In the calculation of
Ref. [140], however, salt was not included, which appears to be a severe approximation
in systems where charge regulation plays a significant role.
Charge-regulating particles usually discharge when the interparticle distance is re-

duced [125, 141], which weakens electrostatic repulsion. When the particle surroundings
are anisotropic, this will lead to an inhomogeneous charge distribution, and hence to
a self-induced dipole moment. The adjective “self” is used here to make a distinction
with dipoles that are, for example, induced by an external electric field. Self-induced
dipoles will turn out to be important for the formation of alternating strings and
clusters in a binary system of colloidal particles. The particles that we will study
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are positively charged for one-component suspensions in the low-polar solvent cyclo-
hexylbromide (CHB), as was shown earlier by electrophoresis measurements [142]. In
low-polar solvents the electrostatic interactions can play an even more important role
than in water, since the Coulomb interactions are stronger (dielectric constant is lower)
and the screening lengths are longer [123, 143]. We will show that a combination of
charge regulation and an asymmetry in the charge distribution of both species can lead
to a short-distance attraction on top of the long-range repulsion. This rationalizes the
formation of the observed strings, while more compact clusters are formed when one
of the two species becomes (almost) negatively charged in bulk. We close this chapter
with open questions on the observation of dumbbells in one-component systems [103],
that were also earlier observed [144] and for which self-induced dipoles do not seem to
give an explanation.

4.2 Summary of experimental observations
In this chapter we will investigate a system of binary charged colloids within the
spherical-cell and two-body approximation. Our motivation to study these systems
stems from recent experiments on binary charged colloids in Chapter 2 of Ref. [103].
Two types of positively charged PMMA particles (dielectric constant εc = 2.6), which
we will denote by green and red because of the dyes used, were suspended in the solvent
cyclohexylbromide (CHB) (dielectric constant εo = 7.92) at room temperature T , and
at Debye length of κ−1 = 6 µm. The green (g) particles (radius ag = 0.99 µm) are larger
than the red (r) particles (radius ar = 0.79 µm). This system is the same as sample 6 in
Ref. [142], meaning that the green particles underwent a locking procedure, and hence
have a higher charge than the red particles [142]. The measured surface potentials at
volume fractions ηr = ηg = 0.028 are φg = 6.5 ± 0.1 and φr = 3.29 ± 0.09 (in units
of kBT/e, with kBT the thermal energy and e the proton charge), with corresponding
charges Zg = 1015±40 and Zr = 153±9 in units of e [142]. The following observations
were made [103]:

(i) In an inhomogeneous mixture of red and green particles, alternating strings con-
sisting of red and green particles were spontaneously formed. It was found that single
particles and the strings remain positively charged. In Ref. [103] it was hypothesized
that a patch of opposite charge is induced on the lower-charged red particle when a
higher-charged green particle approaches, which leads to an effective close-distance at-
traction. (ii) When the (inhomogeneous) binary suspension is brought into contact
with water, the formation of alternating strings was enhanced and they become more
rigid. Moreover, alternating clusters were formed close to the CHB-water interface.

These observation are summarized in Fig. 4.1, which we have taken from Ref. [103].
In (a) we clearly see the formation of the alternating strings, and that their formation
is enhanced when the suspension is brought into contact with an “ion sink” such as
water (Fig. 4.1(b)). Close to the oil-water interface extended, alternating clusters were
found (Fig. 4.1(c)).

To model this system, we will consider constant-potential colloids, because these
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Figure 2.4: Alternating strings formed in binary suspensions of large (green) and small (red) particles in a system (a) without
deionised water; two days after mixing. (b) In contact with deionised water; 0.2 mm from CHB-water interface, ≥ 6.5 hours after
mixing. (c) Extended clusters near CHB-water interface; ≥ 4.5 hours after mixing. Particles are adsorbed to the CHB-water
interface, making the interface clearly visible; the water phase is on the right, the CHB phase, containing the clusters, is on the left.
Scale bars indicate 10 µm.

Figure 4.1: Alternating strings formed in binary suspensions of large (green, with radius ag = 0.99 µm)
and small (red, with radius ar = 0.79 µm) particles in CHB (a) without deionised water; two days after
mixing, (b) in contact with deionised water; 0.2 mm from CHB-water interface, ∼ 6.5 hours after mixing,
and (c) where extended clusters are found near the CHB-water interface; ∼ 4.5 hours after mixing. Particles
are adsorbed to the CHB-water interface, making the interface visible; the water phase is on the right,
the CHB phase, containing the clusters, is on the left. Scale bars indicate 10 µm. Image taken from Ref.

[103].

particles have the largest tendency to discharge as function of density, as was seen in
Chapter 2. Therefore, they form a good candidate to study the effective interactions
between self-induced dipoles. Also it can be can shown that constant-potential particles
can be described by a charge regulation model in which the surface acquires its charge
by cationic and anionic adsorption of ions (Chapter 2), and it is known that the particles
from Ref. [103] are known to adsorb H+ and Br− ions that are present in CHB by
decomposition of the solvent.
Our approach to describe these experiments will be as follows. First, we will in-

vestigate the many-body charging and discharging properties of particles as function
of volume fraction and ionic strength within the binary cell model. Next we will in-
vestigate the effective interaction potential within the two-body approximation with a
special emphasis on the self-induced dipole moments. We will show that many-body
corrections, which we will perform by using effective surface potentials, are needed to
describe the experiments.

4.3 Spherical cell approximation
We will first investigate the charge regulation properties of the binary suspension dis-
cussed in Section 4.2 . For this we use the spherical-cell approximation [57, 58, 104, 145,
146]: every colloid of type i = r, g is situated in a spherical cell of type i with radius R,
and the cells fill the whole system volume, such that 4πR3/3 = V/(Nr +Ng), with Ni

the particle number of the respective species and V the volume. Consequently, we may
relate the volume fraction ηi = Ni(4π/3)a3

i /V to the number fraction xi = Ni/(Nr+Ng)
via ηi = xi(ai/R)3. The ionic density profiles around a particle of species i are described
by the Boltzmann distributions ρi±(r) = ρs exp[∓φi(r)], with 2ρs the ion concentration
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Figure 4.2: Colloidal charges for the (a) red particles Zr using a constant surface potential of φr = 4.4
and (b) green particles Zg using a constant surface potential of φg = 6.7 at κ−1 = 6 µm and at a lower
ionic strength of κ−1 = 10 µm in (c) and (d), respectively. We see that the lower charged particle can
become negatively charged at sufficiently high packing fractions of both red (ηr) and green (ηg) particles,
as indicated in blue in (a) and (c). The green particle is always positively charged as can be seen in (b)

and (d).

in a (hypothetical) ion reservoir in osmotic contact with the suspension. Together with
the Poisson equation for φi(r), it gives the spherically symmetric Poisson-Boltzmann
equations

φ′′i (r) +
2

r
φ′i(r) = κ2 sinh[φi(r)], r ∈ [ai, R], (4.1)

with κ−1 = (8πλBρs)
−1/2 the Debye length and λB = e2/4πεvacεokBT the Bjerrum

length, where εvac is the permittivity in vacuum, and εo the relative dielectric constant
of the oily medium. Throughout this chapter, we will use the value for CHB, εo =
7.92. Naively, one would argue based on this number that ion-ion correlations are
important in this system. However, because the ion density is low (∼ 10−10M), we are
still in the ideal-gas regime, and therefore Poisson-Boltzmann can be applied without
even the need of including Bjerrum pair formation (see, for example Fig. 4 in Ref.
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Chapter 4. Alternating strings and clusters in suspensions of charged colloids

[147]). Denoting x = xg, we express global charge neutrality by the boundary condition
xφ′g(R) + (1−x)φ′r(R) = 0. Note that in our formulation a single cell is not necessarily
charge neutral, however, the weighted average of two types of cells is neutral, in contrast
to the approach in Ref. [105]. This has the added advantage that no minimization to
the cell radii is needed and that numerical problems are circumvented when the colloids
tend to be oppositely charged. Moreover, we impose the continuity condition φr(R) =
φg(R) ≡ φD, with φD/βe the Donnan potential that is found self-consistently. Finally,
we also impose constant-potential boundary conditions: φi(ai) = φi, and by applying
Gauss’ law, we can evaluate the charge Zi = −a2

iφ
′
i(ai)/λB. Note that in the constant-

potential approximation the colloidal particles resemble active capacitors because they
adjust their charge to ensure that their surface potential is constant. Furthermore,
assuming a constant potential is a very good approximation for a charge-regulation
model for which cations and anions can simultaneously adsorb on the colloidal surface
(Chapter 2), which is thought to be relevant for the types of particles that we consider,
see Ref. [142].
First, we tried to use the measured values of the surface potentials φg = 6.5 ± 0.1

and φr = 3.29± 0.09 at ηr = ηg = 0.028 to determine the dependence of Zr and Zg on
overall packing fraction and composition. For this condition, we found that Zr < 0,
while it was established that all species in the suspension are positively charged at
this state point. For this reason, we instead use the experimentally measured charges
Zr = 153 and Zg = 1015 at ηr = ηg = 0.028 as known quantities and determine the
surface potentials that gave the best correspondence, yielding φg = 6.7 and φr = 4.4,
which is in reasonable agreement with the experimentally determined zeta potentials.
Using these values of φr and φg for all state points we determine Zr and Zg as a

function of ηr and ηg from the binary cell model. The resulting Zr and Zg are presented
in Fig. 4.2, in (a) and (b) for κ−1 = 6 µm, and in (c) and (d) for κ−1 = 10 µm. We
see that the green particle has always a relatively high positive charge, while the red
particle can discharge appreciably and even become negative if ηr and/or ηg are tuned
to higher values. Moreover, when the ionic strength is reduced, there is a larger region
for which Zr < 0.
For the experimentally reported packing fractions ηr = ηg = 0.028, we show in Fig.

4.3 how the charges Zr and Zg vary with ionic strength. We see that charge inversion
occurs at ρs ≈ 7 · 10−11 M, which is about three times lower than the initial salt
concentration ρs ≈ 2 · 10−10 M. This inversion can also be achieved at a higher ρs for
larger ηr and ηg, as can be deduced from Fig. 4.2.

4.4 Two-body approximation
The spherical symmetry in the cell-model calculations of the previous section cannot di-
rectly explain the formation of the alternating strings, since this requires directionality
that breaks the spherical symmetry. The simplest extension is the two-body problem,
which was investigated earlier within linear Poisson-Boltzmann [148] and later within
non-linear Poisson-Boltzmann theory [149]. Therefore, we now consider two colloids
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Figure 4.3: Colloidal charges for green particles Zg (radius ag = 0.99 µm) and red particles Zr (radius
ag = 0.79 µm) as a function of salt concentration ρs at packing fractions ηr = ηg = 0.028 and constant
surface potentials φg = 6.7 (green particles) and φr = 4.4 (red particles). The dotted line indicates the

line Z = 0. Highest plotted value of ρs corresponds with κ−1 = 6 µm.

with radii ai, surface potentials φi and centre-of-mass coordinates Ri (i = r, g) that are
a distance d = |Rr −Rg| apart, dispersed in a solvent with monovalent positive and
negative ions described by the density profiles ρ±(r). The solvent is again assumed to
be in osmotic contact with a reservoir characterized by a total ion concentration 2ρs,
with Bjerrum length λB and Debye screening length κ−1. When we denote the region
outside the two colloids by R, the system is described within mean-field theory by the
grand potential density functional

βΩ[ρ±; d] =
∑
α=±

∫
R
d3r ρα(r)

[
ln

(
ρα(r)

ρs

)
− 1

]

+
1

2

∫
R
d3r Q(r)φ(r)−

2∑
i=1

φi

∫
Γi

d2r σi(r), (4.2)

with the total charge density (in units of e) Q(r) = ρ+(r)−ρ−(r) +
∑

i∈{r,g} σi(r)δ(|r−
Ri| − ai) and eσi(r) the colloidal surface charge density of sphere i, and φ(r) the di-
mensionless electrostatic potential. Note that we performed a Legendre transformation
to an ensemble where the surface potentials φi are fixed, as we will consider constant-
potential boundary conditions below. The Euler-Lagrange equations δΩ/δρ±(r) = 0
yield the equilibrium density profiles ρ±(r) = ρs exp[∓φ(r)] for r ∈ R. Together
with the Poisson equation for the electrostatic potential, this results in the non-linear
Poisson-Boltzmann equation

∇2φ(r) = κ2 sinh[φ(r)], r ∈ R, (4.3)
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Chapter 4. Alternating strings and clusters in suspensions of charged colloids

together with the constant-potential boundary conditions supplied for the colloidal
surfaces Γi for i = r, g,

φ(r) = φi, r ∈ Γi. (4.4)

Far from the colloids we assume that the electric field vanishes, and inside the colloid
the Laplace equation ∇2φ(r) = 0 is to be satisfied. From the solution of the closed set
of Eq. (4.3) and (4.4), it is then straightforward to obtain the charge densities eσi(r)
by evaluating

n · [εc∇φ|in − εo∇φ|out]/εo = 4πλBσi(r), r ∈ Γi, (4.5)

with n the outward-pointing unit surface normal, and εc = 2.6 the dielectric constant of
the colloid (PMMA). Note that for the constant-potential boundary condition that we
use, the first term in the square brackets in Eq. (4.5) vanishes. The effective interaction
Hamiltonian of the colloidal pair can then be found by

H(d) = ϕHS(d) + min
ρ±

Ω[ρ±; d], (4.6)

where the first term is the bare non-electrostatic colloid-colloid potential, for which we
take a hard-sphere potential with contact distance ar + ag, while the last term is the
Legendre-transformed equilibrium ionic grand potential. This leads to

βH(d) = βϕHS(d)− 1

2

2∑
i=1

φi

∫
Γi

d2r σi(r) + ρs

∫
R
d3r
{
φ(r) sinhφ(r)− 2[coshφ(r)− 1]

}
.

(4.7)

Finally, we calculate the total charge Zi and the dipole moment pi of a colloidal particle
with respect to Ri, defined by

Zi =

∫
Γi

d2r σi(r),

pi =

∫
Γi

d2r (r−Ri)σi(r), i = 1, 2. (4.8)

Note that the definition of the dipole moment requires a specific point of reference that
we set to Ri, because pi is only independent of the reference point for charge neutral
particles. In Fig. 4.4 we plot (a) the interaction potential Φ(d) = H(d) − H(∞)
for the surface potentials φg = 6.7 and φr = 4.4 that were determined from the cell
calculations, and we also show the charge Zi (left inset in (a)), the dipole moment
pi = piẑ (right inset (a)), where ẑ is the unit vector pointing in the same direction as
Rr − Rg, and the charge distributions eσi(ϑ) for various separations d ((b)-(d)). As
can be seen in Fig. 4.4(a), Φ(d) is repulsive for d & 2 µm at these parameter values,
which is reflected also in the equal sign of the charges Zr and Zg for both red and
green species for all d and the anti-aligned induced dipole moments (although the red
particle does acquire a small negative charge density at its southpole for small enough
d, which can be seen in Fig. 4.4(b)). Close to the point where both particles touch,
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Figure 4.4: Interaction potentials between a red and green particle of radius ar = 0.79 µm and ag =
0.99 µm, respectively, at Debye lengths κ−1 = 6 µm as a function of their center-to-center distance d for
(a) surface potentials φg = 6.7 and φr = 4.4 and (e) φg = 5.5 and φr = 1.2. In the left insets we plot the
total charge Zi (i = r, g) normalized by the absolute value of the charge Z∞i at d → ∞. In (a) we have
Z∞g = 1356 and Z∞r = 582 , while in (e) we have Z∞g = 1005 and Z∞r = 152 for the full lines. In the right
inset we plot the dipole moments pi normalized by the absolute value of the maximum dipole moment
pmax
i . The corresponding charge distributions are plotted in (b)-(d) for φg = 6.7 and φr = 4.4 and in

(f)-(h) for φg = 5.5 and φr = 1.2. The dashed vertical grey line in (a) and (e) indicate the distance below
which hard-sphere repulsion sets in, while the horizontal dashed grey line in (b)-(d) and (f)-(h) indicates

σi(ϑ) = 0.

d . 2 µm, we see an attraction that is accompanied by the alignment of the induced
dipoles, while the particles remain positively charged.

However, this calculation does not include many-body effects. This can be seen from
the observation that for d large the particles have charges Z∞r = 582 and Z∞g = 1356
which are larger than the charges determined from the cell model at the experimentally
measured packing fractions, and these charges are even much higher when d is on the
order of the inter-particle distance d = 3 − 5 µm. To include the fact that particles
discharge when the density is increased, we set the charges of the pair at infinite
distance to coincide with the charges determined from the cell model calculations at
ηr = ηg = 0.028 from which we find approximate “effective” surface potentials φg = 5.5
and φr = 1.2. When we use these parameters to determine Φ(d) shown in Fig. 4.4(e),
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Figure 4.5: Effective interaction potentials Φ as a function of surface-to-surface distance ∆d for various
configurations of red particles, with surface potential φr = 1.2 and radius ar = 0.79 µm and green particles
with surface potential φg = 5.5 and radius ag = 0.99 µm at Debye length κ−1 = 6 µm. In (a) we show
as the dashed orange line the interaction between a red-green dumbbell and a green particle approaching
the green part of the dumbbell. We abbreviate this by rg-g. We compare this effective interaction with the
green-green (g-g) repulsion as the full line. Similarly, we show in (b) the r-r and gr-r repulsion and in (c)
the effective interactions r-g, gr-g and rg-r that feature short-range attraction and long-range repulsion.

we see a much stronger “short-distance” attraction than in Fig. 4.4(a), which extends
to distances on the order of a few microns, beyond which the long-range repulsion
sets in. The attraction is again accompanied by the alignment of the induced dipoles,
shown in the inset of Fig. 4.4(e). In fact, at lower d we even see that Zr < 0,
although Zr + Zg > 0 at contact, so that the resulting dumbbell is positively charged.
We emphasize that although the effective potential of Fig. 4.4(e) resembles in some
sense the DLVO potential, the situation here is rather different. The short-distance
attraction here is not due to the Van der Waals attraction which is induced by electronic
polarization, but occurs here purely due to ionic electrostatics. This is also reflected
by the micron-range of the present attraction, which is much longer than that of a
typical van der Waals attraction.
Finally, we calculated the effective interaction potential between a red-green dumb-

bell and a red or green particle in Fig. 4.5, with φr = 1.2 on the “red” part of the
dumbbell and φg = 5.5 on a “green” surface. We always let the spherical colloid ap-
proach the dumbbell along its symmetry axis, such that we can still exploit cylindrical
symmetry. When we determine Φ as a function of the surface-to-surface distance ∆d
we see in Fig. 4.5(a) that the “rg-g” repulsions between a red-green dumbbell and a
green colloid approaching the green part of the dumbbell is little different from the “g-g”
(green-green) repulsion. In contrast, the “gr-r” repulsion between a green-red dumbbell
and a red particle is rather different: Fig. 4.5(b) shows that red particles are more
strongly repelled from the red parts of the dumbbell than the “r-r” repulsion between
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4.5. Speculation on alternating string and cluster formation in binary systems

two single red particles. The “r-g” attraction between red and green particles shown in
Fig. 4.5(c) is however similar to the red-green and red attraction “rg-r”, with the only
difference that the net free energy gain is larger at contact for the interaction between
single red and green particles. The “gr-g” repulsion at large d between a green-red
dumbbell and a green particle is, however, stronger than the r-g and rg-r repulsion at
large d and the energy barrier is higher. The calculation as presented in this section
and the previous one will now be related to the experiments of section 4.2.

4.5 Speculation on alternating string and cluster
formation in binary systems

Using the results from the binary cell model of section 4.3 and the two-body calculations
of section 4.4, we can now give an explanation for the observation of the alternating
strings and clusters from section 4.2. In Fig. 4.4(b), we have seen that a short-distance
attraction is produced by matching the charges of the two colloids at d → ∞ to the
charges as obtained from the binary cell model of Fig. 4.2, emphasizing the important
role of many-body effects in this system. The energy barrier is, however, quite high,
∆E ∼ 80 kBT . For an attempt frequency per particle of ν = 1 s−1, the production rate
of a red-green dumbbell per particle present in the system is ν exp(−β∆E) ∼ 10−35 s−1,
which is too low compared to the experimental time scales.

Similar to the reasoning why the short-distance attraction can be enhanced by in-
cluding discharging due to many-body effects, we hypothesize that the energy barrier
can be sufficiently lowered if we allow for variations in the local volume fraction. To
demonstrate this, we use the charges as obtained from the binary cell model of Fig.
4.2 at κ−1 = 6 µm and κ−1 = 10 µm as function of ηr + ηg with ηr = ηg. Using
effective surface potentials to match the charges of the cell model to the charges within
the two-body approximation at d → ∞, we determined ∆E in Fig. 4.6(a) for various
state points. Furthermore, we plot the corresponding (bulk) charges in Fig. 4.6(b).
We see that (local) variations in the volume fraction can lower ∆E through particle
discharging, and in particular the energy barrier is lowest when the red particle is close
to being charge neutral. If the total (local) volume fraction is twice as large, we find
∆E ∼ 10 kBT , with a corresponding production rate per particle of a red-green dumb-
bell ∼ 10−5 s−1, which means that a single green-red dumbbell is produced within ∼ 6
hours per particle, close to the experimentally observed time scales. The production
rate is even larger at a higher local volume fraction, showing the sensitivity of the
energy barrier to the local colloid density. At a slighly lower ionic strength, we see that
the energy barrier is even only a few kBT , see Fig. 4.6, and that charge inversion of
the red particle occurs above ηr + ηg ∼ 0.6.
Because of a short-distance attraction which is accompanied by the alignment of the

net dipole moments of the two particles, we speculate that we find strings instead of
(spherically symmetric) clusters. Moreover, van der Waals forces are only important on
length scales of a few nanometers, which is much smaller than the range of attractions

53



Chapter 4. Alternating strings and clusters in suspensions of charged colloids

2r + 2g

0.05 0.1 0.15

-
"

E

0

25

50

75

2r + 2g

0.05 0.1 0.15
Z

g
,
Z

r

0

200

400

600

800

1000

(b)(a)

Zr

Zg

Figure 4.6: (a) Energy barrier that separates a regime of short-distance attraction and long-range repulsion
for various state points using the bulk charges from the binary cell model of Fig. 4.2 with ηr = ηg. The
lines are used to guide the eye. The upper line is for κ−1 = 6 µm, while the lower one (two points at the
bottom) is for a lower ionic strength, κ−1 = 10 µm, and in (b) we plot the corresponding charges of red
(Zr) and green (Zg) particles. The full lines are for κ−1 = 6 µm and the dashed lines are for κ−1 = 10 µm,

and the symbols match the state points of (a).

set by κ−1 we observe here. Furthermore, it is important that the alignment of the
dipole moments occurs at a larger d than the one for which charge inversion of the red
particle takes place, see section 4.3. This implies that the energy barrier for a particle
with an aligned dipole moment is lower, and hence, it is more probable for particles
approaching an existing dumbbell along its symmetry axis. Other possibilities, say an
approach of a particle not exactly along the symmetry axis of an existing dumbbell,
can have an energy barrier that is only a few kBT higher, and may therefore also occur,
rationalizing why the bond angle within a string is not always 180 degrees. An ion sink
such as water reduces the energy barrier even more (compare bottom symbols and top
symbols in Fig. 4.6(a)), explaining the more extended strings in Fig. 4.1(b) compared
to Fig. 4.1(a).
Why (extended) clusters are found near the oil-water interface can also be understood

from our calculations. Close to the interface, we observed a larger local density, and
hence from Fig. 4.6, we find that ∆E is even lower than it would be in bulk (filled
circle). The energy barriers between various angles on which a particle can approach
a green-red dumbbells may differ only by a few kBT and hence all of them can occur
within an appreciable timescale, explaining the clusters. We hypothesize that there
is still a small energy barrier, because the clusters were linearly extended and not
spherically symmetric. Although it is not clear how much the ionic strength is reduced
due to the presence of the water phase, our results do suggest that a larger Debye length
will indeed promote the formation of the clusters through charge regulation, in line with
Ref. [97]. Finally, the relatively favourable rg-r and gr-g interactions support the fact
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Figure 2.5: Clusters (mostly dumbbells) formed in a suspension of locked PMMA
particles (‡ = 2.23 µm) in CHB; 0.3 mm from CHB-water interface, two days after
sample preparation. Image size: 125.1 µm ◊ 31.3 µm.

enhanced formation of clusters in the presence of water. Previous work showed
that the water phase may take up ions from the CHB phase [40], reducing the
ionic strength and thus changing the particle interactions. A lower ionic strength
corresponds to a larger (Ÿ‡)≠1 and may lead to a lower charge on the particles
through particle discharging [29]. It seems unlikely that water itself plays a role
in string formation, as we also observed clusters and strings in suspensions made
with purified CHB in samples in which no water phase was present (Fig. 2.4a).

Further information on the mechanism of cluster formation could come from
analysis of the attachment processes. We succeeded in capturing a few of the rare
attachment events with confocal microscopy. We prepared a sample containing
the binary suspension and deionised water and put this vertically, with the water
phase on top and gravity pointing along the length of the capillary. The particles
(having a lower density than CHB) sedimented towards the CHB-water interface.
We recorded movies of ≥ 1000 frames at a rate of ≥ 1 frame per second. By careful
inspection of the movies we were able to find rare attachment events where a green
particle and a red particle approached each other and attached. Fig. 2.6 shows
two series of images depicting attachment events. In the first series (Figs. 2.6a–d)
a green member of a green-red dumbbell attaches to a red particle, which is part
of a alternating string. Note that the red member of the green-red dumbbell
is not visible in frames a and b and only barely visible in frames c and d. In
the second series (Figs. 2.6e–h) a single red particle attaches to a green particle,
which is part of a green-red dumbbell. In both cases the white arrows indicate
the two attaching particles in the frame right before and right after attachment.
Dynamically, the attachment was simply visible as a transition from two particles
moving rather independently of each other to two particles moving coherently
and staying at short distance from each other (see movies in the supplementary
information [95]). A more detailed investigation of these events would be needed
to better understand the mechanism of cluster and string formation.

Figure 4.7: Clusters (mostly dumbbells) formed in a suspension of locked PMMA particles (radius a =
1.12 µm) in CHB at a distance 0.3 mm from CHB-water interface, two days after sample preparation. The

scale bar indicates 10 µm. Image taken from Ref. [103].

that the strings and clusters are alternating, although more calculations are needed to
study the height of the barrier that separates the long-range repulsions from the shorter
ranged attractions, for example, also within a true three-dimensional geometry, where
the cylindrical symmetry cannot be exploited.

4.6 Open questions on dumbbell formation in
one-component systems

In previous experiments [144] dispersions of sterically stabilized charged PMMA par-
ticles in CHB were compressed by centrifugation, and subsequently the system was
followed over several months. A significant fraction of the particles was observed to
form small clusters during the centrifugation step. The fraction of clustered particles
decreased in time due to spontaneous dissociation of the clusters, as the ionic strength
in the dispersion increased due to decomposition of the solvent CHB. Similar behaviour
(cluster formation and dissociation) was found when the particles were pressed together
by an electric field [144].

Interestingly, in a one-component dispersion of green particles with radius a =
1.12 µm and surface potential φ0 = 4.6 (system 7 in Ref. [142]), the formation of
dumbbells similarly to the system of Ref. [144] was also observed [103], provided that
the system was brought into contact with a water phase, see Fig. 4.7, where a few
green-green dumbbells are shown. This observation cannot be explained by the two-
body approximation of the previous section, because we found that the r-r and g-g
interaction between a pair of the same species is always repulsive. There are now a few
possible scenarios that we will consider. The first one is that adding a water phase ad-
jacent to the oil-phase generates a Donnan potential [150] across the oil-water interface
due to ion partitioning, and hence a local electric field near the interface is generated
that may induce dipole moments on the particles that in turn generate an attraction
when these are aligned. However, we do not observe any alignment of the dumbbells
in a preferred direction, so this seems an unlikely mechanism.

The second one is that the water phase acts as an ion sink that increases κ−1 in the
oil, leading to discharging of the green particles. The repulsions then become weaker
and this may render the van der Waals attraction to be more important, such that the
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observed clusters could be a consequence of microphase separation within conventional
DLVO theory [138, 139]. To test this hypothesis, we estimate the strength of the van
der Waals interaction ΦVdW between two equal-sized spheres within Hamaker-de Boer
theory, which describes the pair potential (neglecting retardation and screening) as

βΦVdW(d) = −AH
3

[
a2

d2 − 4a2
+
a2

d2
+

1

2
ln

(
1− 4a2

d2

)]
. (4.9)

As is well known, this expression fails at very short distances d ≈ 2a where the atom-
atom Born repulsion plays an important role, and for large distances where retardation
becomes important due to the finite speed of light. In general, a cutoff for the surface-
to-surface distance of 0.16 nm [128] is used to estimate the maximum attraction that
is possible due to van der Waals. We approximate the Hamaker constant AH by the
static contribution within Lifschitz theory [151], such that

βAH =
3

4

(
εo − εc
εo + εc

)2

, (4.10)

which gives the lower bound βAH = 0.2, since we neglected the (positive) contribution
from the summation over all frequencies . On this basis, we then estimate that the
attraction on closest approach ΦVdW ∼ −100 kBT . However, the PMMA particles in
the experiments have a steric layer that reduces the van der Waals attraction even
further (closest approach ∼ 10 nm), which makes the van der Waals attraction at
“contact” even weaker, namely ∼ −2 kBT . To test whether this attraction is strong
enough to overcome the electrostratic repulsions, we used for all state points a spherical
cell model with a surface potential φ0 = 4.6 [142]. From it we determined effective
surface potentials to be used within the two-body approximation with the condition
that the two-body Z(d) coincides with the cell model result for d → ∞. In Fig. 4.8
we show the resulting pair potentials Φ(d) with the van der Waals attraction of Eq.
(4.9) added and with Z(d) in the inset. We see that the screening length in oil must
be increased to κ−1 ∼ 50 µm for a (metastable) bound state to occur with an energy
barrier of ∼ 5 kBT . For a stable bound state the ionic strength must be reduced even
further through the uptake of ions by the water phase. In Fig. 4.8 we show for example
the resulting Φ for κ−1 = 100 µm, showing a stable bound state separated from the
bulk with an energy barrier of ∼ 1 kBT .
Note that the values of κ−1 are quite large, but can give still rise to a sufficient charge

Z for the colloids within a two-body approximation. One could think that such long
Debye lengths are rather unrealistic in a true many-body suspension, where the spheres
would be completely discharged at such a state point. However, we stress that κ−1 is
the Debye length of the reservoir. We have only performed many-body corrections
to the surface potential, but not to the Debye length. In principle, this can be taken
into account within the cell model by defining κ̄2 = κ2 cosh(φD), such that κ̄−1 is
the screening length at the cell boundary. This is also the quantity one needs to use
in Debye-Hückel theory to correct for non-linear effects with charge renormalization
[58] and κ̄−1 can therefore be seen as an effective screening length due to double layer
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Figure 4.8: Colloid-colloid effective pair potentials Φ as function of surface-to-surface distance ∆d for
two colloids of radius a = 1.12 µm at various Debye screening length κ−1 . A sphere-sphere van der
Waals attraction has been added with Hamaker constant AH = 0.2 kBT , while for ∆d < 10 nm there is a
hard-sphere repulsion to model the effect of steric layer with a thickness of 5 nm. For each κ−1, we used
an effective surface potential that gives a Z that coincides at ∆d→∞ with the result of a spherical-cell

model where we used a surface potential φ0 = 4.6 for all state points.

overlaps. Indeed, for a reservoir screening length of κ−1 = 100 µm at η = 0.02 and φ0 =
4.6, we find using the cell model κ̄−1 = 13 µm, a numerical value that is maybe more
intuitive in a true many-body system regarding the values of Z involved. Therefore,
the calculation as performed in Fig. 4.8 is maybe a poor estimate for the range of
the interactions. However, because the charges are not so sensitive to ρs in the dilute
limit, Fig. 4.8 is a good estimate for the height of the energy barrier, which is more of
interest at this stage.

Finally, Fig. 4.7 shows that the dumbbells seem to order in a plastic crystal, at a
volume fraction η ∼ 0.02. We test this hypothesis by calculating the OCP coupling
parameter Γ for this system within a cell model for κ−1 = 6 µm. The procedure for
such a calculation can be found in Refs. [54] and in Chapter 2, where it is shown
that Γ > 106 is a reliable freezing criterion. We found that decreasing ρs at fixed ηg
reduces Γ, so the presence of water will actually impede crystallization. However, we
remark that within such a calculation we assume that each lattice point is occupied by a
single particle, while dumbbells have a larger charge and hence their existence tends to
increase Γ. In fact, we find that our results are rather sensitive to the precise values of
the parameters such as κ−1, the local colloid density and the charges of the constituent
particles. Hence, we could not precisely assess whether the system is in a crystalline
state or not within the theory. However, considering the reported surface potential for
these particles φ0 = 4.6 [142] we see that Γ varies between Γ = 260 at κ−1 = 6 µm, to
Γ = 137 at κ−1 = 10 µm and Γ = 70 at κ−1 = 15 µm, For the metastable bound state at
κ−1 = 50 µm in Fig. 4.8, however, we find Γ = 3.1, and hence according to the theory
the system is actually far from being crystalline for repulsions that can be overcome
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Chapter 4. Alternating strings and clusters in suspensions of charged colloids

by a small van der Waals attraction of ∼-2 kBT . However, given the sensitivity to κ−1

there is certainly a possibility that the system is close to a crystallization transition.
Therefore, another alternative explanation is that the dumbbell formation can be seen
as the formation of a Wigner crystal with a double occupancy of particles for some of
the lattice sites, which shows a striking resemblance to the one discussed in Ref. [152]
for a much shorter-ranged repulsion.
The precise mechanism for the formation of these dumbbells is thus still an open

question. However, we are tempted to favour the multiple-occupancy crystal over
the formation of a (meta-)stable dimer state by a residual van der Waals attraction.
Namely, in the latter case one needs (i) finetuning of the system parameters to enter
a regime in which clusters would form and (ii) one would also expect higher order
clusters. For a multiple occupancy crystal, however, no finetuning is needed as it can
be driven purely by repulsions. Secondly, higher order occupancy of lattice sites is
limited in this case by the hard-core and electrostatic repulsion of the particles. It is
therefore conceivable that many-body effects not only select the lattice spacing, but
also the mean occupancy number of the lattice sites. It is interesting to investigate
the dumbbell formation systematically in experiments and theory, which we will both
leave for future work.

4.7 Discussion and conclusion
We investigated a system of size- and charge- asymmetric colloids with constant-
potential boundary conditions. We found that within the two-body approximation
it is possible to have a net attraction between the two like-charged particles that in-
duces the formation of alternating strings if (i) the charge of one of the two particles
is low enough and (ii) the induced dipole moments are aligned. We studied many-
body effects in the effective pair interaction by using effective surface potentials that
stem from a spherical-cell model, providing short-distance attractions through charge
regulation. Moreover, another additional feature is the formation of aligned induced
dipoles that may favor alternating strings over compact clusters. Such strings are not
to be expected from standard DLVO theory where the charge is assumed to be spatially
constant over the colloidal surface. Moreover, we have shown that enhanced cluster
formation is expected to occur upon lowering the ionic strength of the binary suspen-
sions, which enlarges the regime of composition and overall packing fraction in which
the colloids are found to be oppositely charged.
It would be interesting to investigate the induced-dipole interactions in a true many-

body system, although this is a challenging problem in general. Perhaps an engaging
way to tackle this is through the Car-Parinello like simulation techniques first proposed
by Fushiki [153] and Löwen et al. [154, 155], which offers the possibility to include the
effects of deformed ionic screening clouds and the fact that the effective potential be-
tween N colloids depends on the many-body configuration of colloids through charge
regulation. We hypothesize that these effects are of utmost importance for the forma-
tion of alternating strings and clusters in binary suspensions of charged colloids at the
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large screening lengths in these systems. This is left for future work. Finally, we have
speculated that dimers and trimers found in single-component dispersions of PMMA
particles can be seen as the result of a multiple-occupancy Wigner crystal, and also
this hypothesis can be tested with the methods of Refs. [153–155].
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5 Tuning colloid-interface
and colloid-colloid
interactions by salt
partitioning

We show that the interaction of an oil-dispersed colloidal particle with an oil-water interface
is highly tunable from attractive to repulsive, either by varying the sign of the colloidal charge
via charge regulation, or by varying the difference in hydrophilicity between the dissolved
cations and anions. In addition, we investigate the yet unexplored interplay between the
self-regulated colloidal surface charge distribution with the planar double layer across the
oil-water interface and the spherical one around the colloid. Our findings explain recent
experiments and have direct relevance for tunable Pickering emulsions.

5.1 Introduction
Colloidal particles experience a deep potential well when they intersect fluid-fluid inter-
faces. They therefore adsorb strongly to such interfaces, self-assembling into structures
such as two-dimensional monolayers [156] or particle-laden droplets in Pickering emul-
sions [157, 158]. The free energy gain caused by the reduction of the fluid-fluid surface
area is γπa2(1 + cos θ)2 ' 103 − 107kBT , where γ is the fluid-fluid surface tension, the
particle radius a is typically between 10 − 103 nm, θ is the three-phase contact angle
and kBT is the thermal energy [156]. With the exception of nanoparticles [159, 160],
the binding is essentially irreversible and hardly prone to physicochemical modifica-
tions such as the pH or salt concentration. Only strong mechanical agitation is able to
detach micron-sized particles from the interface [161]. However, the recovery of par-
ticles from fluid-fluid interfaces is an essential step for the realization of applications,
such as in biofuel upgrade [162], “dry water” catalysis [163] and gas storage [164].

An alternative route to overcome the difficulties associated with strong adsorption
was offered in Refs. [150, 158], which show that charged poly(methylmethacrylate)
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(PMMA) particles that stabilize water-cyclochexylbromide (CHB) Pickering emulsions
are (almost) non-wetting (cos θ → −1), such that the colloidal particles reside essen-
tially in the oil phase. The crucial ingredient of this system is the relatively “polar”
oil which solvates a small but significant amount of charge that stabilizes the colloids
[158, 165]. Within a modified Poisson-Boltzmann theory, qualitative agreement was
found with the experimental out-of-plane structure of the particles, provided a small
degree of wetting was assumed [150, 166].
Very recent experiments on the same system by Elbers et al. [167] revealed that the

colloidal particles in fact do not penetrate the water-CHB interface, but are trapped at
a finite ∼ nanometer distance [167], completely circumventing the irreversible wetting
effects described above. Additionally, these non-touching particles were easily detached
from the oil-water interface by the addition of an organic salt [167], while at the same
time reversing the sign of the colloidal charge, see Ref. [167]. Interestingly, this tun-
ability offers an appealing route for controlled destabilization of Pickering emulsions.
The authors of [167] hypothesized that the trapping mechanism is due to a force bal-
ance between an attractive image-charge and a repulsive van der Waals (VdW) force,
as proposed by Oettel [168]. While correctly predicting the non-touching behaviour,
this argument cannot explain how the particle-interface interaction can be tuned from
attractive to long-ranged repulsive by adding salt.
The findings of Ref. [167] show that whether a particle ever arrives at the inter-

face is subtle and tunable. In this chapter, we show that the interaction between a
charged colloidal particle and the oil-water interface consists not only of well-known
image-charge [169, 170] and dispersion forces [168, 171], but also of particle-ion forces
that can be tuned between strongly repulsive and strongly attractive by (i) varying
the sign of the particle charge and (ii) by varying the difference between the degree
of hydrophilicity of the cations and anions. This difference determines not only the
distribution of ions among the water and oil phases (“ion partitioning”), but also the
sign of the Donnan potential that spontaneously forms between the water and oil bulk
phases (not unlike the potential at a PN junction) [150, 172–176]. In fact, our calcula-
tions show contrary to a common assumption [168, 177–179] that the low but non-zero
ion concentrations in oil are crucial and should not be neglected [49, 54, 142, 143, 180–
182], even if the ions initially present in the oil strongly prefer to be in the water phase
[172–176, 183–190]. We explicitly show this not only by investigating colloid-interface
interactions for non-touching colloids, but also by investigating the lateral interactions
of interfacially trapped colloids using a cylindrical cell model. More specifically, we
will evaluate the stress tensor on the cell boundary in Sec. 5.4.

5.2 Single-particle model

To describe the coupling between the particle, oil-water interface, and ions, we will
focus for simplicity on a single oil-dispersed charged colloidal sphere of radius a = 1 µm,
charge Ze, and dielectric constant εc = 2.6 (PMMA) with its center at a distance d
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Figure 5.1: (a) Geometry of a colloidal sphere with radius a = 1 µm and a dielectric constant εc = 2.6
at a distance d from an oil-water interface, with the position on the colloidal surface indicated by the polar
angle ϑ. The oil and water are characterized by dielectric constants εo = 7.92 and εw = 80, respectively.
The self-energies f− = 10 and f+ = 6 in units of kBT determine the degree of ion partitioning of the
ions among the two solvents. An exemplary numerical result for the electrostatic potential for a positively
charged sphere at d = a is shown along the z direction at fixed r in (b), with the Donnan potential φD
indicated, and as a surface plot in (c). We set the charge-regulating equilibrium constant K+a

3 = 1
(pK+ = 8.8) and the screening length in oil κ−1o = 10 µm.

from a planar oil-water interface1 that separates the oil (CHB) phase (z > 0, dielectric
constant εo = 7.92) from the water phase (z < 0, dielectric constant εw = 80), as
sketched in Fig. 1(a). Since εc < εo < εw, the VdW interaction between particle and
the oil-water interface is repulsive [168, 171] for d > a. This repulsion is significant
only for d − a . 10 nm given the Hamaker constant of ∼ −0.3 kBT [167]. However,
the repulsion is sufficiently strong to impede adsorption to the interface [168]. Since
εo < εw the image charge potential Φim(d) = −β−1Z2λoB(εw − ε0)/[4d(εw + ε0)] (where
β−1 = kBT ), which holds in the absence of salt for εc = εo but which was shown to be
accurate within a few percent also for non-index-matched colloidal particles [177], is
attractive regardless the sign of Z for oil-dispersed colloidal particles, but is repulsive
when the particles are dispersed in the water phase [170]. Here, λoB = βe2/4πεvacεo is
the Bjerrum length in oil. A force balance between the image and VdW force shows
that it is possible to trap the particle at a finite, but small, distance from the interface
[167, 168], circumventing the non-tunable nature of the wetting effects. Incorporating
the VdW force in our theory (unlike Ref. [150]), we show how screening and ion
partitioning makes the trapping mechanism highly tunable.
We use the framework of classical density functional theory to construct the grand

potential functional Ω[ρ±, σ; d], with ρ±(r) the density profiles of (non-surface-bound)
monovalent ions and σ(r) the particle surface charge density. Denoting the region
outside the particle by R and its surface by Γ, Ω is given by

1We neglect any possible interfacial deformations [191]. In the experiments of Ref. [167] no significant
interfacial deformation was observed in a two-dimensional setup.
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βΩ[ρ±, σ; d] =
∑
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∫
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[
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)
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∫
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ln[±σ(r)a2] + ln
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K±
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)
+ βV±(z)

}
+ [σm∓σ(r)] ln

{
[σm ∓ σ(r)]a2

})
The first term is the ideal gas grand potential of the ions coupled to the external
potential Vα(z) = β−1fαΘ(z) (α = ±), with Θ(z) = [1 + tanh(z/2ξ)]/2, ξ ∼ 10−3a
the interface thickness and ρws the bulk density in water. The preference of ions for
water or oil is modeled by the energy cost β−1fα to transfer a single ion from the water
to the oil phase. To mimic that cations are typically less hydrophilic than anions, we
set (f+, f−) = (6, 10). The electrostatic energy is described within mean-field theory
in the second term, with the total charge density Q(r) = ρ+(r) − ρ−(r) + σ(r)δ(|r −
dez| − a), and the electrostatic potential φ(r)/βe = 25.6 φ(r) mV. The last term
describes the free energy of a two-dimensional binary lattice gas of neutral and (either
positively or negatively) charged groups, with a maximum charge density σma2 = 106

(one charged group per nm2). The non-electrostatic free energy of binding an ion is
characterized by kBT ln(K±/1 M), with equilibrium constant K± = [S][X±]/[SX±] (or
pK± = − log10(K±/1 M)) that describes the adsorption of a negative or positive ion
X± to a neutral surface site S, i.e. S + X± � SX±.
From the Euler-Lagrange equations δΩ/δρ±(r) = 0 we find the equilibrium profiles

ρ±(r) = ρs(z) exp[∓φ(r)±Θ(z)φD], where ρs(z) = ρws for z < 0 and ρs(z) = ρos for z >
0, where ρos = ρws exp[−(f+ +f−)/2] the bulk ion density in oil. We defined the Donnan
potential φD/βe, with φD = (f− − f+)/2, which is the potential difference between
the bulk oil and water phases due to ion partitioning. Combining our expressions for
ρ±(r) with the Poisson equation for the electrostatic potential, we obtain the Poisson-
Boltzmann equation for r ∈ R,

∇ · [ε(z)∇φ(r)]/εo = κ(z)2 sinh[φ(r)−Θ(z)φD], (5.2)

where ε(z) = (εo − εw)Θ(z) + εw. Furthermore, κ(z)2 = 8πλoBρs(z), with κ−1(z → ∞)
the Debye screening length in the bulk oil κ−1

o . We fix κ−1
o = 10a, close to typi-

cal experimental results, from which the screening length in water follows as κ−1
w =√

εw/εo exp[−(f+ + f−)/4]κ−1
o = 0.58a, which is on the high side but convenient for

our numerical calculation, while the precise value of κ−1
w is unimportant for the physics

in oil discussed below, as we shall see later. Inside the dielectric colloid the Poisson
equation reads ∇2φ = 0. On the colloidal surface, we have the boundary condition
n · [εc∇φ|in − εo∇φ|out]/εo = 4πλoBσ(r), with n an outward pointing normal vector
and where σ(r) follows from δΩ/δσ(r) = 0 [125], resulting for r ∈ Γ in the Langmuir
adsorption isotherm [51],

σ(r) = ±σm
{

1 +
K±
ρos

exp[±(φ(r)− φD)]

}−1

. (5.3)
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Eqs. (6.3)-(6.7) are solved numerically for φ(r), from which ρ±(r) and σ(r) follow,
and after insertion in Eq. (5.1) the effective colloid-interface interaction Hamiltonian
H(d) := minρ±,σ Ω[ρ±, σ; d], given by

βH(d) =

∫
R
d3r ρs(z)

{
φ(r) sinh[φ(r)−Θ(z)φD]− 2(cosh[φ(r)−Θ(z)φD]− 1)

}
− 1

2

∫
Γ

d2r σ(r)φ(r)− σm
∫

Γ

d2r ln

{
1 +

ρos
K±

exp[∓(φ(r)− φD)]

}
, (5.4)

Note that H(d) does not contain the colloid-interface VdW repulsion, which can be
added separately, see the end of Sec. 5.3.

5.3 Charge regulation and colloid-interface interaction
An example of the resulting potential distribution around a positively charged colloid
can be found in Fig. 5.1(b)-(c), which reveals how φ(r) approaches its asymptotic
value φD at z → ∞ for various axial distances r from the colloid, revealing a strong
coupling between the spherical and planar geometry of the colloid and the interface,
respectively. Since f+ < f− (and hence φD > 0), the oil side is positively charged
and the water side is negatively charged. This strong coupling is further illustrated
in Fig. 5.2, where the (scaled) ion density is plotted for distances d = 10a, 5a and
1.5a, in (a)-(c) for a positively charged colloid, and in (d)-(f) for a negatively charged
colloid. Upon approaching the interface, the colloidal double layer deforms as ions are
stripped by the water phase, since they dissolve better in water. As a consequence, the
initially planar double layer at the water side strongly deforms as well. This double
layer destruction was investigated earlier for a dense laterally averaged monolayer [166],
but here we laterally resolve the spatial structure of the double layers for the first time,
even with charge regulation taken into account.
Interestingly, the surface charge distributions σ(ϑ) of negative and positive charge

regulating colloids, shown in the insets of Fig. 5.2, are not related by σ(ϑ) ↔ −σ(ϑ)
because the anti-symmetry is broken by f+ 6= f−. Here ϑ is the polar angle defined
in Fig. 5.1(a). For d � κ−1

o , the colloidal double layer has spherical symmetry, and
σ(ϑ) is constant. Close to the interface, however, we unravel an intricate interplay
between mass action and image-charge effects, which for f− > f+ enhance each other
for positive colloids, and counteract each other for negative colloids. The enhanced
cation (reduced anion) concentration close to the interface enhances (reduces) |σ(ϑ)|
at the south pole ϑ = π for positive (negative) colloids by mass action. The image-
charge effect, in contrast, is independent of the charge sign and allows charge-regulating
colloids to lower their electrostatic energy by increasing |Z| when the colloid approaches
a medium with a higher dielectric constant. Indeed, close to the interface the dielectric
effect dominates and for negative colloids the south pole is actually higher charged
(ϑ = π) than the north pole (ϑ = 0), see inset in Fig. 5.2(f), in contrast to the case
farther from the interface (Fig. 5.2(d),(e)). The interplay of mass action and dielectric
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Figure 5.2: Double layer destruction for a charged colloid with radius a = 1 µm, with self-energies
(f+, f−) = (6, 10) and screening length κ−1o = 10a. In (a)-(c) the colloid is positively charged (Z > 0),
and in (d)-(f) it is negatively charged (Z < 0). In both cases the equilibrium constant is K±a3 = 1
(pK± = 8.8), and ρ0s = 9.3 ·10−11 M and ρws = 2.8 ·10−7 M. We introduced a cut-off for the color coding
to make the spatial variation of the scaled net ion density [ρ+(r) − ρ−(r)]/ρos clearly visible. The insets

show the colloidal charge distribution a2σ(ϑ).

effects is also seen in the total colloidal charge Z =
∫

Γ
d2r σ(r), which depends on d

as shown in the insets of Fig. 5.3 for low and high |Z| in (a) and (b), respectively.
This is not only of interest for (f+, f−) = (6, 10), but also for f+ = f− = 0 (blue
curves), to isolate the image-charge effects by switching off ion partitioning. Mass
action thus increases (decreases) |Z(d)| when Z > 0 (Z < 0), while dielectric effects
always increase |Z(d)|. The image-charge effect is weak at low |Z|, but strong enough to
drive negatively charged colloids even more negative close to the interface. Combined
with ion partitioning, this yields a minimum in |Z(d)| for negative colloids if the charge
is sufficiently high (Fig. 5.3(b)).
In Fig. 5.3 we plot the colloid-interface interaction potential Φ(d) = H(d)−H(∞),

which is repulsive for Z < 0 (red curve) and attractive for Z > 0 (green curve) provided
that f+ < f−. The blue curves, for f+ = f− = 0, show a much smaller |Φ(d)|, showing
that the particle-interface interaction is dominated by ionic rather than image-charge
like effects. We also compare Φ(d) to that of constant-charge particles (dashed-dotted
curves), for which the second term in Eq. (5.1) is absent, showing only quantitative
differences, meaning that only the sign of the colloidal charge determines the colloid-
interface interaction to be attractive or repulsive. Hence, an extended charge regulation
mechanism that allows colloids to change the sign of their charge as function of e.g. the
salt concentration, allows one to tune attractions into repulsions or vice versa. If the
VdW interaction is repulsive, a trapped colloid near the interface can be pushed towards
the bulk, because the repulsion has a much longer range (κ−1

o ) than the range of the
VdW repulsion. Our calculations also reveal that it is possible to impede adsorption
in the case of an attractive VdW interaction, since for φD > 0 and Z < 0 (or as we
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Figure 5.3: Colloid-interface potential Φ(d) for oil screening length κ−1o = 10a. The full curves are
the results of a charge regulation boundary condition with equilibrium constants (a) pK± = 5.8 and (b)
pK± = 8.8. The red (green) curves are for a negative (positive) colloid with self-energies (f+, f−) =
(6, 10), the blue curves are for f+ = f− = 0 and are independent of the sign of Z. The dashed-dotted
red and green curves are for constant-charge particles with a charge coinciding with the charge of the full
curves at d → ∞. The insets show the absolute charge |Z(d)|. The orange (Z > 0) and purple (Z < 0)
full curves show the approximation Φ̃(d), the dashed purple and orange curves represent Z(∞)φ0(d), and

the blue dashed-dotted curve represent the dielectric contribution Φdi(d) (see text).

shall see later also for φD < 0 and Z > 0) there is a wetting-preventing energy barrier
whose location and height can be tuned by the magnitude of |Z| and/or φD. This
is similar to how water-dispersed colloids are repelled from an oil-water interface by
image-charge repulsions, however in this case the strength of the repulsions are only
tunable by changing the magnitude of Z [170].

To further analyze the colloid-interface interactions, we consider Φ̃(d) = Z(∞)φ0(d)+
Φdi(d), with φ0(z) the (analytically available) Gouy-Chapman-like electrostatic poten-
tial without any colloid present [176] (see Appendix) as plotted in Fig. 5.1(b) (black
full line), and Φdi(d) = Φ(d)|f+=f−=0, the purely dielectric numerically obtained inter-
action potential. In this empirical approximation for Φ(d), φ0(d) acts as an external
(electric) potential for a colloid with charge Z(∞). The full orange and purple curves
in Fig. 5.3 show that Φ̃(d) is a good approximation for Φ(d). Hence, κ−1

o is the relevant
length scale for the colloid-interface interaction, confirming that Φ(d) is insensitive to
the precise value of κ−1

w . However, the dashed ones, which only represent Z(∞)φ0(d),
and thus ignore the image-charge-like effects, are in fact also quantitative, except for
charge-regulating particles close to the interface. It turns out that Φ̃ approximates Φ
for constant-charge particles perfectly if |Z| is low, as is seen in Fig. 5.3(a) from the
regime where the full orange and purple curves coincide with the dashed-dotted green
and red curves, respectively.
To estimate whether Z(∞)φ0(d) or Φdi(d) is dominant, we equate both terms in

absolute value at contact, |Z(∞)φ0(a)| = Φdi(a), and approximate Φdi(a) ≈ Φim(a)
with εw � εo. The latter approximation gives an upper bound for the image-charge
attractions, since salt will enlarge screening if no ion partitioning is included. We find
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that ion partitioning dominates image charges when |Z(∞)|λoB/4a is small compared
to |φD|, as is the case in Fig. 5.3(a). In Fig. 5.3(b), we have |Z(∞)|λoB/4a ∼ |φD|, such
that dielectric effects and ion partitioning are both important, although the dielectric
effects are significant only for d < κ−1

o . For |Z(∞)|λoB/4a � |φD|, dielectric effects
would dominate; however, it is hard to enter this regime experimentally, as it would
require either fine-tuning the self-energies fα to obtain extremely small Donnan poten-
tials or particle charges exceeding O(104) in oil. Hence, the tunable Donnan potential
is important in most experimental setups, and can be measured [192]. Moreover, we
note that changing the sign of Z(∞) is equivalent to interchanging f+ ↔ f−, changing
only the sign of φD, showing that the nature of the particle-interface interactions can
also be tuned by changing the type of salt. Finally, when multiple ions are included,
φD will depend not only on the self-energies, but also on the bulk ion concentrations
[176], extending even further the tunability options. We will focus on the influence of
multiple ion species in Chapter 6.
Before ending this section, we will comment on how the shape of Φ(d) changes, when

a repulsive VdW interaction is added, given by

ΦVdW(d) = −AH
6

[
1

d/a− 1
+

1

d/a+ 1
+ ln

(
d/a− 1

d/a+ 1

)]
, (5.5)

for a sphere of radius a at a distance d from a planar interface, with AH the Hamaker
constant [171]. Eq. (5.5) reduces to ΦVdW(d) = −AH/[6(d/a− 1)] for d/a− 1� 1. In
Fig. 5.4 we show how the results of Fig. 5.3 change with the VdW potential added. As
explained before, we indeed see that ΦVdW is only important for small d, but it is strong
enough to impede adsorption of the colloid on the oil-water interface. This also shows
that the location of the minimum depends on the magnitude of the colloidal charge,
which is also expected when only the image charge potential is taken into account,
see Ref. [168], since such a force balance also give rise to a equilibrium distance that
depends on Z. Moreover, in Fig. 5.4 we see for small Z that there is a no mimimum
in Φ(d). This is because the image forces scale like Z2 while the colloid-ion forces scale
like Z, therefore the image forces cannot provide enough attraction to overcome the
VdW repulsion when |Z| is reduced.
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Figure 5.4: Contributions to the colloid-interface potential as a function of the surface-to-surface sepa-
ration d− a in units of the colloidal diameter a = 1 µm, where d is the center-to-surface distance between
sphere and interface. The full lines are the same colloid-interface potential Φ(d) as is plotted in Fig. 5.3
for the charge regulation cases. The black full line is the van der Waals interaction ΦVdW with Hamaker
constant βAH = −0.3 and the dashed-dotted lines show Φ(d)+ΦVdW(d), showing that the Van der Waals
forces give significant additional repulsion only for d−a . 10−2a = 10 nm, but strong enough to overcome

the attractions induced by the Donnan potential for Z > 0.

5.4 Lateral colloid-colloid interactions of interfacially
trapped colloids

Having discussed colloid-interface interactions, we end this chapter with colloids that
can penetrate an oil-water interface. A part of the colloidal surface is then exposed to
the water phase, while the remaining part is exposed to the oil phase. Such systems have
received a great deal of attention in recent years, both in experimental [179, 193–197],
and in theoretical work [156, 177, 178, 198–203], showing dipolar interactions between
the trapped colloids within Debye-Hückel theory [199], with logarithmic corrections to
it when charge renormalization is included [178].

In the theoretical treatments up to now one often neglects the ions in the oil phase,
assuming effectively unscreened Coulomb interactions or a vanishingly small surface
charge in the oil phase. This approximation is actually more suitable for colloids
trapped at an air-water interface, because the small ion concentration in oil cannot
always be neglected, as we have seen in the previous section. To our best knowledge,
the only work where salt is explicitly taken into account for colloids that penetrate an
oil-water interface is Ref. [204], where two colloids within the Derjaguin approximation2
are studied at an oil-water interface. Although different Debye screening lengths are
taken into account for the two media, the Donnan potential across the interface and
the dielectric contrast between particle and the two media are not taken into account.
Furthermore, in all theoretical approaches the small, but finite width of the interface

2In this approximation one looks at very small colloid-colloid distances, so that the colloids can be
approximated by flat plates [205]
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has not been taken into account.
There is ample discussion in the literature whether the interaction goes “through”

the oil, or “through the water phase”. This nomenclature is often used by saying that
if one changes something in phase X (X being either oil or water), which gives some
observable effect, one assumes that the interaction “goes through phase X”. For example,
if a two-dimensional interfacial crystal melts by the addition of salt to the water phase,
then one assumes that the interaction is going “through the water phase”. Whenever
it goes “through” the oil, one attributes this due to the relatively small amount of
residual charges on the oil-exposed part of the colloidal surface, which are screened
relatively weakly compared to the high surface charge at the water side. For example,
for the experimentally observed colloidal Wigner crystals formed at the interface in
Refs. [193, 195], it is assumed that the interaction goes through the oil, because these
crystals seem to be very robust to changes at the water side of the oil-water interface.
However, there is still no consensus regarding this matter, because recent experiments
showed a small electrolyte dependence at the water side [179, 206].
This motivates us to investigate whether high surface charges and high screening are

important or low surface charges and weak screening for the colloid-colloid effective
potential. Our goal here is to shed some light on this by a simple calculation within a
cylindrical cell model. We not only include ion partitioning, screening of the two phases,
and interfacial effects, but also many-body effects within a colloidal monolayer at the
interface. Moreover, we consider that the particle may not be positioned necessarily
equatorially at the interface, which has not been investigated in detail in the literature
up until now.
The PB equation that has to be solved is identical to the one posed in Eq. (5.2),

with the main difference that we now solve Eq. (5.2) for a cylinder with a finite radius
R, but still with an “infinite” length that extends to the bulk oil and water phase.
Similarly to the spherical cell model that we have used in the previous chapters of this
thesis, R is related to the surface packing fraction via ϕ = (a/R)2. The key quantity
that we use to assess the relative importance of oil and water phases is the stress tensor
σij(r), which can, for example, be derived by applying Noether’s theorem to Eq. (5.4),

σij(r) = σmax
ij (r) + σosmij (r), (5.6)

where we introduced the Maxwell stress tensor σmax
ij (r),

βσmax
ij (r) =

ε(z)

4πεoλoB

[
∂iφ(r)∂jφ(r)− 1

2
|∇φ(r)|2δij

]
, (5.7)

and the osmotic part σosmij (r) given by

βσosmij (r) = −2ρs(z){cosh[φ(r)− φDΘ(z)]− 1}δij. (5.8)

Whereas it is meaningful to talk about the local stress within a cylindrical cell
model, we note that the total force acting on a colloid residing in such a cell, which
can be found by integrating the stress tensor over a closed oriented surface, equals
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Figure 5.5: (a) Various contributions to the reduced stress tensor σ̃rr(z) for a colloidal monolayer de-
scribed within a cylindrical cell model with surface packing fraction ϕ = 0.01. The particles have radius
a = 1 µm positioned at d = 0 at an interface between oil (dielectric constant εo = 2) and water (dielectric
constant εw = 80), with a Donnan potential across the interface of φD/(βe) = 2, and the Debye screening
length in water is always κ−1w = 0.3a. The oil-exposed side can become positively charged with equilib-
rium constant Koa

3 = 102 for the blue lines at screening length in oil κ−1o = 10a, while it is uncharged
Koa

3 →∞ for the grey lines with κ−1o = 100a. The water-exposed side has always an equilibrium constant
of Kwa

3 = 104. We see that the full σ̃rr has an osmotic (dotted) and a Maxwell (dashed) contribution
that are both significant in oil, but for the water side only the osmotic part gives a significant contribution
(see bottom inset). The osmotic part is reduced almost to zero when no charges in oil are present as seen
in the top inset. The vertical dotted yellow line indicates the oil-water interface. In (b) we plot the surface
charge density σ(ϑ) for the oil-exposed side, and in (c) for the water-exposed side separately, because of
the order of magnitude difference. Furthermore, in order to resolve σ(ϑ) close to the oil-water interface,

we show a zoomed-in version of σ(ϑ) in (b) and (c).

zero by the assumption of cylindrical symmetry. Therefore, we choose to investigate
at first instance σrr(r = R, z). Upon inspection of Eq. (5.7) we see, however, that
the Maxwell stress tensor only contains derivatives with respect to z, because a single
cell is globally charge neutral by construction. This means that even a colloid-free cell
has a non-zero rr component to the stress tensor σ0

rr(r = R, z) because of the Donnan
potential that is developed across the interface. The back-to-back double layer at
the oil-water interface also gives rise to a non-zero osmotic part. These colloid-free
contributions to the stress tensor would only lead to a constant as function of colloid-
colloid distance in force calculations of colloids within a two-body approximation, and
henceforth, we find it more meaningful to investigate instead the reduced stress tensor
σ̃rr(z) = σrr(r = R, z) − σ0

rr(r = R, z). Similar to Eq. (5.6), we define the reduced
Maxwell and osmotic part of σ̃rr(z) by σ̃max

rr (z) and σ̃osmrr (z), respectively.
In contrast to previous sections, we do not fix f+, f− and κ−1

o , but we fix equivalently
κ−1
o , κ−1

w and φD. We also modify the model in Sec. 5.2 to accomodate for the fact
that there is a different equilibrium constant for the colloidal particle in water Kw and
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in oil Ko. This accounts for non-electrostatic effects in the adsorption process on the
colloidal surface which depends on the type of solvent, while the electrostatic ones are
taken into account by the difference in dielectric constants between oil and water. We
take into account cationic adsorption only, we fix the surface packing fraction ϕ = 0.01
and set3 εo = 2. Unless stated otherwise, the other parameters are taken the same as
in previous sections.
First, we investigate the various contributions to σ̃ij(z) for the parameters κ−1

o = 10a,
κ−1
w = 0.3a, φD = 2 in Fig. 5.5, showing in (a) how the osmotic contribution compares

to the Maxwell part for Kwa
3 = 104 and Koa

3 = 102 (blue line) and Koa
3 =→ ∞

(grey line). As one would expect, we see from σ(r) that the colloidal surface is more
strongly charged in water than in oil, and there are no surface charges at the oil
side for Koa

3 =→ ∞. At the water side, the osmotic part gives always the largest
contribution. At the oil side it is the Maxwell part, unless the oil-exposed part of the
colloidal surface is charged, which gives rise to a significant osmotic part. Close to
the oil-water interface σ(ϑ) increases at the oil-exposed side and at the water-exposed
side, which can be rationalized according to the dielectric and mass-action effects of
the previous section. However, there is also an interfacial effect: close to the interface
the oil-exposed side increases in charge because of the dielectric profile that we use,
and similar reasonings hold for the water-exposed side.
Although the charge is much lower in oil, the longer screening length gives rise to

a larger contribution to the stress in oil than in water, where the screening length is
much smaller for a higher charged surface. The stress at the water side seems to be
more concentrated close to the interface, while it is more extended in the oil phase.
Surprisingly, this still holds in the absence of oil-exposed colloidal surface charges, which
can be seen from the grey line in Fig. 5.5(a). In addtition, we find |

∫
z<0

dz σ̃rr(z)| <
|
∫
z>0

dz σ̃rr(z)| suggesting that the electrostatics in oil is more important. Maybe
counter-intuitive for no colloidal charges at the oil-exposed side, this has already been
suggested by Frydel [178] and later investigated in Ref. [203] to explain the weak
electrolyte dependence at the water side on the stability of interfacial colloidal crystals.
It was found that electrical field lines that penetrate from the water, through the colloid
and to the oil, gives rise to an apparent oil-exposed surface charge, because of the
dielectric mismatch of the colloid and the surrounding media. The apparent surface
charge is by definition zero for εc → 0, however, within our cell model we actually find
that in this limit there is still a contribution to σ̃rr(z > 0). This suggests that not only
the dielectric mismatches are relevant, but also many-body effects, since they can alter
the field line distribution at the oil-exposed colloidal surface. We take this effect into
account by using a cell model, in contrast to the single-particle picture of Ref. [203].
Finally, we check the sensitivity of σ̃rr(z) to various parameters in our model, as

is shown in Fig. 5.6. In (a) we show the influence of κ−1
o revealing that σ̃rr(z) is

reduced when less ions are present in the oil. Moreover, the positive contribution that
is dominated by the osmotic part is decreased more than the Maxwell part. The water

3This is a formality to ensure that the colloid can penetrate the interface. Typically this value
corresponds to solvents like decane or octane.
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Figure 5.6: Same as in Fig. 5.5, but now we vary in (a) the Debye screening length in oil, (b) the Debye
screening length in water, (c) the Donnan potential and (d) the position d of the centre-of-mass of particle
as measured from the oil-water interface at z = 0. Again we zoom in on the water side to resolve the
narrow peak close to the oil-water interface in the insets. We also zoom in on the oil side for (c) and (d)
in the top insets. In (c) we emphasize the small contribution to σ̃rr(z) at φD = 0 indicated by the arrow,

which is much higher than at the water side.
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side is hardly influenced, as can be seen in the inset. In (b) we show the same plot,
but now by varying κ−1

w , and we observe that only the water side is influenced. In (c)
we show that φD can affect the sign of σ̃rr(z). Even when φD = 0, we see, however,
that the oil side is more important as is shown in the inset by the black arrow. Finally,
in (d) we show how σ̃rr(z) changes when the particle is brought from the bulk water,
through the interface, to the bulk oil. If the particle is in bulk water, the reduced stress
vanishes, but it is increased at the water and oil side upon increasing d. When the
particle is in bulk oil, there is a significant contribution to the reduced stress, because
of the long-ranged extension of the colloidal double layer.
Is the interaction going through the oil or through the water? Based on these cal-

culations, it is tempting to say that it goes “through the oil”: long screening lengths
and thus extended double layers have a stronger influence on the colloid-colloid effec-
tive potential than a high surface charge density that is weakly screened. We expect,
however, that such a picture would break down if the interparticle separation would
be smaller than κ−1

w . However, this is often a regime with very high surface coverage
ϕ and is not expected to be important for long-ranged repulsive colloids.

5.5 Conclusions
Our work shows the importance of a low, but non-zero salt concentration in oil for
colloidal dispersions in an oil-water medium. We showed that tuning the sign of the
colloidal charge or of the Donnan potential can change attractive colloid-interface inter-
actions into repulsions for colloids that cannot penetrate the oil-water interface. This
sheds light on the very recent experimental studies by Elbers et al. [167, 207], who not
only showed that adding a salt with f+ < f− to the oil changes Z > 0 to Z < 0, but
also that particles are repelled from the interface to the bulk. Our calculations support
this observation, since attractions become repulsions (Fig. 5.3) upon changing the sign
of the colloidal charge, if a suitable charge regulation mechanism is provided. We will
explore this further in the next chapter. Moreover, the range of the repulsion is of
the order κ−1

o , much larger than the range of the VdW repulsion, that was proposed
earlier as the responsible mechanism [168]. Our findings also have a yet unexplored
repercussion in the case of a VdW attraction, since the Donnan potential impedes ad-
sorption of oil-dispersed colloids by a salt-tunable energy barrier for Z(∞)φD < 0.
The Donnan-potential mechanism proposed here should help in designing tunable and
reversible Pickering emulsions, which can be applied in drug delivery and food process-
ing [208, 209], but also for novel experiments where an ion flux can induce repulsive
or attractive surface-specific interactions depending on the surface chemistry of the
suspended particles [210].
Finally, for colloids that can penetrate the oil-water interface, we found that the

lateral colloid-colloid effective interactions are dominated by the electrostatics in the
oil phase, where we showed also the relevance of many-body effects. For future work,
we will focus on the nature of the lateral interactions within a cylindrical cell model
and the two-body approximation. The first can be, for example, investigated by the R
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dependence of the grand potential of a cylindrical cell. Within a two-body approach
the type of interaction can directly be assessed from the decay of the colloid-colloid
effective interaction potential, for which the methods of Chapter 4 can be used. This
approach needs, however, a full three-dimensional calculation, since no symmetry can
be exploited for two colloids trapped at an oil-water interface4.
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ing the project on colloid-interface interactions. Sela Samin is thanked for his general
insights and collaboration on this project, and his numerical expertise that helped
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Appendix: Some simple analytical solutions
For completeness, we present some simple analytical solutions to the theory of Sec.
5.2.

No colloids

If there are no colloids, and in the limit that ξ ↓ 0, the Poisson-Boltzmann equation is
analytically solvable. The boundary value problem reduces to

φ′′(z) =

{
κ2
w sinh[φ(z)], z < 0,

κ2
o sinh[φ(z)− φD], z > 0.

(5.9)

Equivalent to the boundary condition φ′(z) = 0 for z → ±∞, we can impose charge
neutrality of the bulk fluids, this gives us the boundary conditions limz→−∞ φ(z) = 0
and limz→∞ φ(z) = φD. Together with these boundary conditions, the solution can be
found to be

φ(z) =


2 log

{
1 + Cw exp[κwz]

1− Cw exp[κwz]

}
, z < 0

2 log

{
1 + Co exp[−κoz]

1− Co exp[−κoz]

}
+ φD, z > 0,

(5.10)

with integration constants Cw and Co. Moreover, φ is continuous at z = 0 and there
is a continuity condition for the dielectric displacements, εwφ′(0−) = εoφ

′(0+). If we

4Actually, an attempt to such a calculation has already been performed in Ref. [202], but there the
dielectric constant of the colloid, ion partitioning and screening in both media have not been taken
into account. What is actually more severe at first sight, is that they only took into account the
Maxwell stress tensor and “forgot” the osmotic part in the force calculations. Surprisingly, they
did, however, get good agreement with experiment. We can understand this from our calculations,
because for non-charged oil-exposed colloidal surfaces, there is only an osmotic contribution at the
water side, see Fig. 5.5(a). This stress is very localized, and can therefore be neglected. Their
approach, however, breaks down when the oil-exposed side is charged.
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define χ := κwεw/(κoεo), then the integration constants can be compactly written as

Cw =
χ+ cosh(φD/2)−

√
1 + χ2 + 2χ cosh(φD/2)

sinh(φD/2)
, (5.11)

and

Co =

√
1 + χ2 + 2χ cosh(φD/2)− 1− χ cosh(φD/2)

χ sinh(φD/2)
. (5.12)

Finally, we find the density profiles

ρ±(z) =


ρws

[
1∓ Cw exp(κwz)

1± Cw exp(κwz)

]2

, z < 0

ρos

[
1∓ Co exp(−κoz)

1± Co exp(−κoz)

]2

, z > 0.

(5.13)

Single colloid with a fixed charge, without salt

The colloid-interface interaction can analytically be derived for a single colloid with
fixed charge Z in the limit where ρs = 0. For ξ ↓ 0 this amounts to solving the Laplace
equation ∇2φ(r) = 0 for r ∈ R\Γ together with the boundary condition.

n · ∇φ(r) = −Zλ
o
B

a2
, r ∈ Γ, (5.14)

where we assumed that εc = 0. Taking the correct dielectric contrast into account
would give small corrections to the colloid-interface potential close to the interface, as
was shown in Ref. [177]. There are continuity conditions εo∂zφ(r, 0+) = εw∂zφ(r, 0−)
and φ(r, 0+) = φ(r, 0−) for all r, with r the radial coordinate in cylindrical coordinates.
The Laplace equation is then easily solved by the method of images. We place an image
charge at z = −d with charge number Zimage = (εo − εw)/(εo + εw)Z. The solution to
the Laplace equation is then

φ(r, z) = λoB

[
Z√

r2 + (z − d)2
+

Zimage√
r2 + (z + d)2

]
, (5.15)

only valid for d > a and z > 0. The effective colloid-interface potential in this case is

βΦ(d) =
1

2

∫
Γ

d2r σφ(r, z) =
Z2λoB

4d

εo − εw
εo + εw

, d > a, (5.16)

where we used σ = Z/(4πa2) and we ignored an overall constant. Note that the force
from such a potential is attractive towards the interface since typically εo < εw.
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6 Colloid-interface
interactions in the
presence of multiple ion
species

We investigate colloid-interface interactions of a non-touching positively charged colloid
dispersed in an apolar medium in which multiple types of ions are dissolved. We investigate
the effects of various charge-regulation mechanisms on the effective interaction potential,
including the influence of multiple ion species in oil and in water. The colloid-ion forces,
which can be understood by the ion distributions without any colloidal particle present,
are investigated within Poisson-Nernst-Planck theory to qualitatively understand the exper-
imentally observed salt-dependent dynamics of non-touching colloidal particles.

6.1 Introduction
Many electrolyte solutions in living systems contain multiple ion species like Na+, K+,
Mg2+ and Cl−. The concentration of these ions and their affinity to bind to specific
proteins determine the intake of ions from the extracellular space to the intracellular
one [112]. In this example the concentration of multiple ion species is used to tune
various biologial processes, however, this scenario is not only limited to living systems,
but they can also be important for ionic liquids [211], batteries [212], electrolytic cells
[176], and even colloidal systems [167, 207, 213], as we shall show in this chapter.

To be more specific, we will focus on an oil-water system, where oil-dispersed colloids
are found to be trapped near the oil-water interface, without penetrating it, due to a
force balance between a repulsive van der Waals and an attractive image-charge force
between colloid and interface [168, 171]. In Chapter 5 we showed within a single-
particle picture that the interaction of such a non-touching colloid with an oil-water
interface is highly tunable from attractive to repulsive for large enough distances by
changing the sign of the product ZφD, where Ze is the colloidal charge and φD/βe the
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Donnan potential. Tunability of these colloid-ion forces will also be a central subject
in this chapter.
Tuning the interaction potential through ZφD is quite general, however, due to global

charge neutrality, the salt concentrations in a binary mixture of positive and negative
ions cannot be varied independently; in other words, ZφD is always of a definite sign
for a given choice of two ions. This motivates us to extend the formalism of Chapter 5
by including multiple ion species. Including at least a second salt compound where one
ion species is the same for two salts (e.g., Cl− in a mixture of NaCl and KCl), allows us
to independently vary the ion concentrations. Because of this independence, it is then
possible to tune the sign of the colloidal charge by changing the salt concentration
of one the two species. Furthermore, for more than two types of ions, the Donnan
potential depends not only on the difference in the degree of hydrophilicity between
the various species [173], but also on the bulk ion concentrations [176]. This leads to
tunability of the magnitude, and possibly even the sign of the Donnan potential. We
apply our theory to experiments, where trapped colloids near an oil-water interface
could be detached by the addition of an organic salt to the oil phase [167, 207, 213].
As a first step, we will set up the density functional that we will consider in this

chapter in Sec. 6.2. We will do this in full generality, by first working out the minimal
example of only one salt species, and later, by adding a second salt with an anion that is
same as the other salt. In Sec. 6.3 we describe the experiment that we want to explain.
In Sec. 6.4, we explore the equilibrium effective colloid-interface interaction potentials
as function of salt concentration. In Sec. 6.5, we look at the influence of ion dynamics
within Poisson-Nernst-Planck theory and investigate how the system equilibrates if no
colloid is present. We conclude this chapter by explaining how our results can explain
the recent experiments of Elbers et al. [167, 207, 213], where multiple ion species were
needed to detach colloids from an interface between cyclohexylbromide (CHB) and
water.

6.2 Density functional
Consider two halfspaces of water (z < 0, dielectric constant εw = 80) and oil (z > 0,
dielectric constant εo) at room temperature T . We approximate the dielectric profile by
ε(z) = (εo− εw)Θ(z) + εw, with Θ(z) = [1 + tanh(z/2ξ)]/2 and ξ the interface thickness
which is situated at z = 0. Since we take ξ to be small, we can interpret Θ as the
Heaviside step function within the numerical accuracy. The N+ species of monovalent
cations andN− species of monovalent anions can either be present as free ions in the two
solvents, which can be described by density profiles ρi,α(r) (i = 1, ..., Nα, α = ±) with
bulk densities in water (oil) ρwi,α (ρoi,α), or are bound to the surface of a charged colloidal
sphere (dielectric constant εc, radius a, distance d from the interface) with areal density
σi,α. The colloidal surface charge density eσ(r) is given by σ =

∑N+

i=1 σi,+ −
∑N−

i=1 σi,−.
The ions can partition among water and oil, which is modeled by the external potentials
Vi,α(z) = β−1fi,αΘ(z) (where β−1 = kBT ) where the self-energy fi,α is defined as the
energy cost in units of kBT to transfer a single ion from the water to the oil phase.

78



6.2. Density functional

The effects of ion partitioning and charge regulation can elegantly be captured within
the grand potential functional Ω, given by

Ω
[
{ρi,±, σi,±}N±i=1; d

]
=F

[
{ρi,±, σi,±}N±i=1; d

]
(6.1)

−
∑
α=±

Nα∑
i=1

∫
d3r
[
µi,α−Vi,α(z)

][
ρi,α(r) + σi,α(r)δ(|r−dez|−a)

]
,

with µi,α = ln(ρwi,αΛ3
i,α) the chemical potential of the ions, and intrinsic Helmholtz free

energy functional F , given by

βF
[
{ρi,±, σi,±}N±i=1; d

]
=
∑
α=±

Nα∑
i=1

∫
R
d3r ρi,α(r)

{
ln
[
ρi,α(r)Λ3

i,α

]
− 1
}

+
1

2

∫
R
d3r Q(r)φ(r)

+
∑
α=±

Nα∑
i=1

∫
Γ

d2r

(
σi,α(r)

{
ln[σi,α(r)a2] + ln

(
Ki,αΛ3

i,α

)}
+ (6.2)

[σmθi,α − σi,α(r)] ln
{

[σmθi,α − σi,α(r)] a2
})

,

where the region outside the colloid is denoted by R and its surface is denoted by Γ.
The first term is an ideal gas contribution with an external potential. The mean-field
electrostatic energy is described by the second term which couples the total charge
density Q(r) =

∑N+

i=1 ρi,+(r) −∑N−
i=1 ρi,−(r) + σ(r)δ(|r − dez| − a) to the electrostatic

potential φ(r)/βe = 25.6 φ(r) mV. The final term is the free energy of an (N++N−+1)-
component lattice gas of neutral groups and charged groups, with a surface density of
chargeable groups σma2 = 106 (one chargeable group per nm2) and θi,α is the fraction
of chargeable groups available for an ion of type (i, α). A neutral surface site Si,α
can become charged via adsorption of an ion Xi,α

i , i.e., Si,α + Xα
i,α � Si,αXα

i,α with an
equilibrium constant Ki,α = [Si,α][Xα

i,α]/[Si,αXα
i,α] and pKi,α = − log10(Ki,α/1 M).

From the Euler-Lagrange equations δΩ/δρi,α(r) = 0 we find the equilibrium pro-
files ρi,±(r) = ρwi,± exp[∓φ(r) + fi,αΘ(z)]. Combining our expressions for ρi,α(r) with
the Poisson equation for the electrostatic potential, we obtain the Poisson-Boltzmann
equation for r ∈ R,

∇ · [ε(z)∇φ(r)]/εo = κ(z)2 sinh[φ(r)−Θ(z)φD], (6.3)

where we used bulk charge neutrality to find the Donnan potential φD/βe given by,

φD =
1

2
log

[∑
i ρ

w
i,+ exp(−fi,+)∑

i ρ
w
i,− exp(−fi,−)

]
. (6.4)

We introduced κ(z)2 = 8πλoBρs(z), with

ρs(z) =
1

2

∑
α=±

Nα∑
i=1

ρoi,α exp[(αφD + fi,α)Θ(−z)], (6.5)
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where the Bjerrum length in oil is given by λoB = e2/4πεvacεokBT . Notice that κ(z) = κo
for z > 0, with κ−1

o the screening length in oil. Finally, the bulk oil densities are related
to the bulk water densities as

ρwi,α = ρoi,α exp[(αφD + fi,α)]. (6.6)

Inside the dielectric colloid the Poisson equation reads ∇2φ = 0. On the colloidal
surface, r ∈ Γ, we have the boundary condition n · [εc∇φ|in− εo∇φ|out]/εo = 4πλoBσ(r),
with a charge density described by the Langmuir adsorption isotherm for r ∈ Γ.

σi,α(r) =
σmθi,α

1 +Ki,α/ρoi,α exp{α[φ(r)− φD]} , (6.7)

which follows from δΩ/δσi,α(r) = 0.
Eqs. (6.3)-(6.7) are solved numerically for φ(r) using the cylindrical symmetry, and

generic solutions were already discussed in the case of a single adsorption model in
Chapter 5. From the solution we determine ρα(r) and σ(r). These in turn determine
the effective colloid-interface interaction Hamiltonian

H(d) = ΦVdW(d) + min
{ρi,±,σi,±}i=1,...,N±

Ω
[
{ρi,±, σi,±}N±i=1; d

]
, (6.8)

for which we also include a van der Waals sphere-plane potential ΦVdW using macro-
scopic Lifschitz theory with Hamaker constant AH . Eq. (6.8) can then be evaluated
to

βH(d) = −βAH
6

[
1

d/a− 1
+

1

d/a+ 1
+ ln

(
d/a− 1

d/a+ 1

)]
− 1

2

∫
Γ

d2r σ(r)φ(r) (6.9)

+

∫
R
d3r ρs(z){φ(r) sinh[φ(r)−Θ(z)φD]− 2(cosh[φ(r)−Θ(z)φD]− 1)}

−
∑
α=±

Nα∑
i=1

σmθi,α

∫
Γ

d2r ln

(
1 +

ρoi,α
Ki,α

exp{−α[φ(r)− φD]}
)
,

which we will investigate for experimental parameters of Table 6.1 to be explained in
the next section.

Table 6.1: System parameters
System εo η Z ρTBA+

∣∣
Z=0

[µM] (κo
∣∣
Z=0

)−1[µm]
1 7.92 0.01 +930 1-5 ∼ 1
2 5.6 0.01 -280 n.a. n.a.
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Figure 6.1: Schematic overview of the experimental system that we will consider. The solvent CHB
decomposes giving rise to HBr and a decomposition product X, with HBr in equilibrium with H+ and Br−

ions. In addition to HBr, we also include the organic salt TBAB, so that the concentration of Br− is not
necessarily equal to the H+ concentration. TBAB is in equilibrium with free TBA+ and Br− ions, and all
ions can partition between water and oil. For simplicity we do not take into account the equilibria between
the undissociated salts and the free ions. The colloid with radius a and distance d from the interface has a
charge Ze. On the colloidal surface there are two types of binding sites, Sa and Sb, of which the former can
bind a Br− ion with equilibrium constant KBr− and the latter can bind H+ ion with equilibrium constant
KH+ . We assume that TBA+ cannot bind to the colloidal surface. There are also colloids in the bulk that
are separated from the two-dimensional monolayer at the interface by a zone void of colloids (not shown

for clarity).

6.3 System and experimental observations

In this chapter, we consider two experimental systems from Ref. [167]. Both systems
are suspensions with colloids of a = 1.4 µm and εc = 2.6. For system 1, the solvent
is cyclohexylbromide (CHB), and for system 2, CHB/cis-decalin. There are different
colloidal charging mechanims for both systems, such that the particles in system 1
are positively charged, and negatively charged for system 2, see Table 6.1. Here, η is
the colloidal volume fraction. Finally, we note that CHB is known to decompose in
time, producing HBr. HBr can dissociate into H+ and Br− ions that can adsorb on the
surface of the colloidal particles [142]. In a solvent without added salt, κ−1

o = 6 µm
was estimated for both systems [142], and we will use this value throughout.

The colloids of system 1 are found to reverse the sign of their charge Z =
∫

Γ
d2r σ(r)

from positive (Z > 0) to negative (Z < 0) when the organic salt tetrabutylammonium-
bromide (TBAB) is added to the suspension [167]. We list the estimated concentration
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of free TBA+ ions ρTBA+

∣∣
Z=0

and the resulting Debye length (κo
∣∣
Z=0

)−1 for which this
occurs in Table 6.1. This suggests that H+ and Br− can both adsorb on the colloidal
surface and that the addition of TBAB introduces more Br− in the system, rendering
the colloids of system 1 to become negative for a high enough concentration of TBAB.
Such a charge inversion was not likely to occur in system 2.
The suspensions were put into a capillary which was half-filled with deionized water.

Such a setup is schematically shown in Fig. 6.1 listing various processes, including the
decomposition of CHB, the equilibria of HBr and TBAB with their free ions, and the
partitioning of these ions between water and oil. For simplicity, we have not taken
these equilibria into account in the theory of Sec. 6.2. However, these Bjerrum pairs
could be included in the theory by using the formalism of Ref. [147]. In the upperright
inset we show schematically the binding of H+ and Br− onto the surface of a single
colloidal particle.
Both suspensions in Table 6.1 formed two-dimensional monolayers at a distance of a

few nanometers from the oil-water interface, separated from a bulk colloidal suspension
by a zone void of colloids. The following observations were made: (i) The oil side was
negatively charged, while the water phase was positively charged in a system without
TBAB.When TBAB was added, we expect a positively charged oil side and a negatively
charged water side, because of the hydrophobic nature of TBA+. In other words, we
expect φD < 0 without TBAB and φD > 0 with TBAB. (ii) When TBAB was added to
the oil phase, the colloids in system 1 were driven from the interface towards the bulk.
Over time, however, the colloids were reattached close to the oil-water interface [213].
(iii) In system 2, the addition of TBAB did not result in particle detachment from the
interface. (iv) When TBAB was added to the water phase, colloids from the bulk were
actually driven closer to the oil-water interface, producing a denser monolayer at the
interface.
We will explain all these observations by applying the formalism of section 6.2.

Moreover, we will discuss the differences between a single adsorption model and a
binary adsorption model, which is the first logical extension compared to Chapter 5.

6.4 Colloid-interface interactions
We will perform calculations with N+ = 1, 2 and N− = 1, where (1,+) corresponds
to H+, (1,−) to Br− and (2,+) to TBA+. To estimate a few of the parameters, we
consider their (effective hydrated) ionic radii aH+ = 0.28 nm, aBr− = 0.33 nm, and
aTBA+ = 0.54 nm. This gives the self-energies (in units of kBT ) fH+ = 11, fBr− = 10
and fTBA+ = 6, based on the Born approximation fα = (λoB/2aα)(1 − εo/εw). This is
a poor approximation for TBA+, because it is known that TBAB is an antagonistic
salt, fTBA+ < 0. We will now argue why it is actually not a bad assumption to use
the Born approximation for TBA+. From Eq. (6.4), we can obtain the inequality
(fBr− − fTBA+)/2 ≤ φD ≤ (fBr− − fH+)/2. As long as fTBA+ < fBr− we thus find
that the Donnan potential is varied between a negative value and a positive one by
adding TBAB, in line with our expectations. We do not have to assume antagonism
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for this. Since we will always fix κ−1
o in our calculations, assuming antagonism would

only affect the value of κ−1
w , and we have already shown in Chapter 5 that this pa-

rameter is not important for the colloid-interface interaction of oil-dispersed colloids.
We therefore use the Born approximation to analyze the qualitative behaviour of the
effective interactions, allowing φD to be varied between −0.5 and 2.
Without water the screening length has been approximated to be κ−1

o = 6 µm,
however, with water this value will become larger, since water acts as an ion sink. In
contrast, the charged colloids in the oil will counteract this effect, because these charged
species are always accompanied by a double layer, and thus keep the ions in the oil.
Because we do not know the exact value of κ−1

o in an oil-water system, we will use it
as a free parameter and let it vary between 6 µm and 50 µm. Note that we work in a
single-particle picture, and that many-body effects can, for example, reduce the value
of κ−1

o by the overlap of double layers. This can be taken into account by introducing
an effective Debye length as was done in Chapter 2. Another many-body effect that we
do not include is the discharging of particles when the local colloid density is increased.
One should keep both these many-body effects in mind when comparing our values of
κ−1
o to experiment.

6.4.1 System without TBAB N+ = N− = 1

In this subsection we will investigate the systems without added TBAB for two different
adsorption models. The first one is a single-ion adsorption model. In this case, system 1
in Table I is described by adsorption of H+, while for system 2 only Br− can adsorb. We
use the values of Z from Table 6.1 to determine the values of the equilibrium constants
by using the spherical-cell model in the dilute limit with κ−1

o = 6 µm. Within this
procedure, we find for system 1 KH+a3 = 165 and KBr− → ∞; for system 2 we find
KBr−a

3 = 2700 and KH+a3 →∞. The resulting colloid-interface interaction potentials
as function of κ−1

o are shown in Fig. 6.2 (a) and (c), with Z(d) in the inset. The
product ZφD determines the long-distance nature of the colloid-interface interaction:
(a) it is repulsive for system 1, since ZφD < 0 and (c) attractive for system 2 since
ZφD > 0 (recall that φD = −0.5), see also Chapter 5. At smaller d the image-charge
interaction becomes important, which is attractive for both systems. In the nanometer
regime the van der Waals repulsion is the most important, and taken together with the
image-charge potential, it gives rise to a minimum in Φ(d), which equals the equilibrium
trapping distance of the colloidal particle from the interface.

Increasing κ−1
o reduces |Z| and in this case we see that the van der Waals repulsion

can overcome the image-charge potential for sufficiently small d. However, the reduc-
tion in the particle-ion force is much smaller than the reduction of the image force,
since the first scales like ∼ Z, unlike the latter, which scales (approximately) like ∼ Z2.
In Fig. 6.2(a) we see, for example, that this results in a trapped state near the interface
which becomes metastable for large κ−1

o , with a reduced energy barrier upon increasing
κ−1
o . For system 2, we see that Φ becomes repulsive for all d for sufficiently large κ−1

o ,
because the attractive image charge and attractive colloid-ion force are reduced due to
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Figure 6.2: Colloid-interface interaction potentials for the two different systems in Table 6.1 with the
corresponding colloidal charges Z(d) in the insets. System 1 is a CHB system with positively charged
colloids and system 2 a CHB/cis-decalin system with negatively charged colloids. We determined the
equilibrium constants by matching the charges Z to d → ∞ to the values of Z in Table 6.1 for Debye
length in oil κ−1o = 6 µm. For system 1 we consider (a) a single adsorption model where only H+ can
attach to the colloidal surface with equilibrium constant KH+a3 = 165 while KBr− → ∞ (Br− cannot
adsorb) and (b) a binary adsorption model with KH+a3 = 0.0001, KBr−a

3 = 47 and fraction of sites
available for Br−, θ = 0.8 . For the determination of these values we also used the salt concentration at
which Z switches sign by the addition of TBAB. We do similar calculations for system 2, for the single
adsorption model in (c) we, however, assume that no H+ can adsorb, but Br− can with KBr−a

3 = 2700
and (d) in the binary adsorption model we take KH+a3 = 1 and KBr−a

3 = 0.04, with θ = 0.5 .

particle discharging. This calculation shows that we can also have particle detachment
from the interface by removing a sufficient number of ions from the oil phase, and this
effect is stronger in the case of (a) than of (c), because the repulsive Donnan-potential
mechanism is longer ranged than the van der Waals repulsion. To our best knowledge,
both scenarios were not observed in experiment by, for example, adding a sufficient
amount of water that acts as an ion sink. Taken together with the fact that positively
charged particles can acquire a negative charge, it is clear that systems 1 and 2 are not
described by single-adsorption models [167].
With the same procedure as for the single adsorption model, we determined the

values of the equilibrium constants in the case of a binary adsorption model. For system
1 we also used the salt concentration ρTBA+

∣∣
Z=0

for which charge inversion takes place,
to find KH+a3 = 0.0001, KBr−a

3 = 47, and θ = 0.8. Here θ = θBr− is the fraction
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of sites on which anions can adsorb. For system 2, we assumed θ = 0.5 and found
KH+a3 = 1 and KBr−a

3 = 0.04. The short-distance (van der Waals), mid-distance
(image charge) and long-distance (Donnan) qualitative behaviour of Φ(d) do not change
when we consider the binary adsorption model, as can be seen in Fig. 6.2(b) and (d).
We do, however, see that the trapped state is more “robust” to changes in the ionic
strength, because of the much higher values of |Z(d)| involved. This can be understood
as follows, for which we consider first system 1. Since KBr− > KH+ , decreasing the
salt concentration leads to the negatively charged surface sites to discharge first, which
means that the charge initially increases with κ−1

o . This enhances the image-charge
effects, giving rise to a deeper potential well for the trapped state. At even higher κ−1

o ,
|Z(d)| will eventually decrease due to cationic desorption, although this is not explicitly
shown in Fig. 6.2. A similar reasoning can be found for the negatively charged colloids
of system 2, which shows only discharging upon increasing κ−1

o , but much less compared
to the single adsorption model.

The above discussion shows, together with the fact that added TBAB can change the
sign of Z of system 1, that the binary adsorption model describes systems 1 and 2 better
than the single adsorption model. Note, however, that the large energy barrier between
the trapped state and bulk in Fig. 6.2(b), shows that not all the colloids can be trapped
near the oil-water interface. This energy barrier explains the experimentally observed
zone void of colloids, although one should keep in mind that the charged monolayer
will provide extra repulsions which are not taken into account in our single-particle
particle. We will come back to this in Section 6.5.1.

6.4.2 Systems with added TBAB, N+ = 2, N− = 1

We now show how the colloid-interface interaction changes in a three-ion system. We
focus on the binary adsorption model applied to system 1, because this system has
the most rich behaviour. In this case, the addition of TBAB gives rise to two new
features. The first one is that it is possible to independently tune ρoBr− and ρoH+ under
the constraint of bulk charge neutrality, ρoTBA+ + ρoH+ = ρoBr− . By increasing ρoTBA+ , we
find that Z switches sign for

ρoTBA+

∣∣∣
Z=0

=
KBr−(1− θ)ρoH+

(2θ − 1)ρoH+ + θKH+

, (6.10)

where we used Eq. (6.7) together with the condition σBr− = σH+ . Secondly, because of
the hierarchy fTBA+ < fBr− < fH+ , the Donnan potential can switch from φD < 0 to
φD > 0 at

ρoTBA+

∣∣∣
φD=0

= ρoH+

efH+−fBr− − 1

1− efTBA+−fBr−
, (6.11)

where we used Eq. (6.4) and (6.6). Note that Eq. (6.11) is weakly dependent on the
precise value of fTBA+ , since exp(fTBA+ − fBr−) < 0.02 for fTBA+ . 6 (with 6 being its
value within the Born approximation), and hence the second term in the denominator
of Eq. (6.11) can be neglected. Using the equilibrium constants of Sec. 6.4.1, we see
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from Eq. (6.10) and (6.11) that φD switches sign before Z does upon adding TBAB;
i.e., ρoTBA+ |φD=0 < ρoTBA+|Z=0.

Since our calculations are performed in the grand-canonical ensemble, we have to
specify how we deal with the added TBAB. We choose to fix ρoH+ , as was determined
from the value at κ−1

o = 10 µm without added TBAB (blue curve in Fig. 6.2(b)). The
resulting colloid-interface interactions are shown in Fig. 6.3(a) and (b), for various
values of κ−1

o , which decreases upon addition of TBAB. The relation between the used
screening lengths and ρoTBA+ is shown in Fig. 6.3(c). We can identify four regimes,
which are shown in different colours. We start out with a situation with φD < 0 and
Z > 0 (blue), with an energy barrier that separates the trapped state from the bulk
state, as was discussed in the previous section. Increasing ρoTBA+ , decreases |φD| until
ultimately the energy barrier vanishes and φD becomes positive (shown in red). At even
larger added TBAB the colloidal particle becomes negative for d→∞ as it would be
in bulk at the given κ−1

o (shown in green).
Interestingly, there is a (small) energy barrier of a different nature than the energy

barriers shown until now. Namely, there is a d∗ for which Z(d∗) = 0 (see insets in Fig.
6.3(b)). Surprisingly, this point of zero charge d∗ does not coincide with the location
of the maximum in Φ(d). Furthermore, the result of κ−1

o = 900 nm does not even
show a maximum, although there is a point of zero charge. Both observations can
be understood from the fact that although Z = 0, the density σ(ϑ) is not spatially
constant. In this case, there is still a coupling between bulk and surface ions, that
contributes to Φ(d), see Eq. (5.4).
Finally, at a very high TBAB concentration we find Z(d) < 0 for all d (shown in

purple). To clarify the difference with the green curves, we show Z(∞) and Z(d) close
to the interface in Fig. 6.3(f). We clearly observe that in the “purple” regime the
Donnan potential results in a repulsion for all d, and hence particle detachment. Upon
decreasing κ−1

o this repulsion first becomes stronger, because φD increases from 1.8 to
2. However, increasing |Z| also increases the strength of the image-charge attraction,
which eventually results in a small plateau in Φ(d) between d − a ∼ 10−3 µm and
d− a ∼ 10−1 µm (compare κ−1

o = 250 nm with κ−1
o = 400 nm in Fig. 6.3(b)).

Having focused only on system 1 within a binary adsorption model, we can now
also understand how added TBAB would change the colloid-interface interactions in
the other cases of Fig. 6.2(a), (c) and (d). In the case of a single adsorption model
of system 1 only the Donnan potential switches sign, the energy barrier would vanish
and the particles stay trapped. Possibly, some of the particles from the bulk are then
moved towards the oil-water interface. For system 2, the addition of TBAB would
only introduce an energy barrier separating the trapped state from a bulk state, but
no detachment occurs, independent of the investigated adsorption models. This is in
line with the experiments of Ref. [207].
From the calculations in Fig. 6.3 we deduce that only significant particle detachment

from the interface occurs whenever Z < 0 and φD > 0. However, the range of the repul-
sion, which extends up until a micron, is too short to explain the particle detachment
found in experiments that may extend up to > 10 µm. This can be understood from
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Figure 6.3: Colloid-interface interactions for a three-ion model, in which only the ions H+ and Br− can
adsorb with the same equilibrium constants as in Fig. 6.2(b). By fixing ρoH+ to the value of the blue full
line where ρoTBA+ = 0 (which is the same as in Fig. 6.2(b)), we show the effect of a decreasing screening
length by the addition of ρoTBA+ in (a) and (b) with the colloidal charge Z shown in the insets and a
zoomed-in version of Φ(d) in (b) to show more clearly the small maxima that are found for κ−1o = 700
nm and 800 nm. In (c) we show how the resulting κ−1o behaves as function of ρoTBA+ , and changing this
density does not only influence the Donnan potential φD/βe as shown in (d), but also (e) the charge Z
close to the interface as shown as the dashed line in and in the bulk oil as shown by the full line, because
more Br− is available for adsorption. We use different colors to indicate the various regimes: blue is used
for φD < 0 and Z > 0, red for φD > 0 and Z > 0, green for φD > 0 and Z < 0 sufficiently far from the

interface and purple for φD > 0 and Z < 0 for all d.
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the fact that the particle detachment is a non-equilibrium phenomenon, that results
from the diffusion of ions from the oil phase to the water phase. This motivates us to
have a look at the ion dynamics, to get insights into the time evolution of the colloid-
ion forces. Many-body effects can also be important, but these will be left for future
work.

6.5 Ion dynamics
To describe the ion dynamics, we assume for simplicity that no colloid is present in
the system, such that the geometry is one dimensional. This can still provide a lot
of insight because we deduced from Chapter 5 that the colloid-ion potential can be
approximated by Z(∞)φ0(d), with φ0 the dimensionless electrostatic potential without
any colloids. The theory can be set up from Eq. (5.1), with the second line set equal
to zero, and one should keep in mind that for this case R is the total system volume.
It is then possible to derive dynamical equations for ρi,±(r) by using dynamical density
functional theory (DDFT) [214]1. We start with the continuity equation for given and
fixed values of α = ± and i = 1, ..., Nα,

∂ρi,α(r, t)

∂t
= −∇ · ji,α(r, t), (6.12)

with particle currents ji,α(r, t) equal to

ji,α(r, t) =−Di,α(r)ρi,α(r, t)∇

 δβF
[
{ρj,±}N±j=1

]
δρi,α(r)

∣∣∣∣∣∣
ρi,α(r)→ρi,α(r,t)

+ βVi,α(r)

 .

Explicitly working out the functional derivative gives

ji,±(r, t) = −Di,±(r) {∇ρi,±(r, t) + ρi,±(r, t)∇[±φ(r, t) + βVi,±(r)]} , (6.13)

with Di,α(z) = (Do
i,α − Dw

i,α)Θ(z) + Dw
i,α, with Do

i,α (Dw
i,α) the diffusion coefficient of

an ion of sign α in bulk oil (water). Here, we have used the Einstein-Smoluchowski
relation to relate the electric mobility to the diffusion constant. The time-dependent
electrostatic potential φ(r, t) satisfies the Poisson equation (neglecting retardation),

∇ · [ε(r)∇φ(r, t)]/εo = −4πλoB

[
N+∑
j=1

ρj,+(r, t)−
N−∑
j=1

ρj,−(r, t)

]
. (6.14)

Eqs. (6.12)-(6.14) are called the Poisson-Nernst-Planck equations and we solve them
under the boundary conditions

n · ji,α(r, t) = 0
n · ∇φ(r, t) = 0

}
∀r ∈ ∂R, ∀t ∈ [0,∞), (6.15)

1An extension of DDFT to go beyond the adiabatic approximation (used to derive DDFT) is available,
and is called power functional theory. In this framework the functional also depends on the currents
J [215].
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which follow from global mass and charge conservation, respectively. Finally, we have
the initial condition

ρi,α(r, t = 0) = g(r), (6.16)

for a prescribed function g.
We estimate the diffusion coefficients by making use of the Stokes-Einstein relation

Dj
i,± = (6πβηia±)−1 with ηi the viscosity of the solvent (i = o, w). At room temperature

we have ηw = 8.9 ·10−4 Pa·s, while for CHB we have ηo = 2.269 ·10−3 Pa·s. From these
values we find: Dw

H+ = 8.76 ·10−10 m2/s, Dw
TBA+ = 4.54 ·10−10 m2/s, Dw

Br− = 7.43 ·10−10

m2/s, Do
H+ = 3.44 · 10−10 m2/s, Do

TBA+ = 1.78 · 10−10 m2/s and Do
Br− = 2.91 · 10−10

m2/s.

6.5.1 The HBr system
We first focus on the colloid-ion forces in a system without added TBAB (N+ = N− =
1). We model this by investigating the time-dependence of φ(z, t), with z the direction
perpendicular to the oil-water interface. The oil is assumed to reside in a capillary
with a linear dimension perpendicular to the oil-water interface of length Lo = 1 mm.
The value of Lo is ten times smaller than the real experimental setting to facilitate
numerical calculations: we need to resolve the width of the interface (∼1 nm) and the
width of the Debye screening length which is on the order of microns in oil. The length
of the water side of the capillary Lw is also 1 cm in the experiments, but here we take
it to be much smaller: Lw = 100 µm. We assume this because there are initially no
ions in water, and we expect that water without ions is a much stronger “ion sink” than
water with ions. Because real water is hard to deionize completely, we correct for this
effect by assuming a much smaller water volume. The disadvantage is that only the
ion density profiles in the oil phase are therefore accurate, and more ion species (such
as H+ and OH−) in water should be included in the calculations if we want to model
the water phase more accurately.
We take an initial condition for (i, α) = H+,Br− of the form

ρi,α(z, t = 0) = ρ0Θ(z). (6.17)

The amplitude ρ0 will be determined from the ionic strength of the suspension before
it is brought into contact with a water phase, namely, ρ0 = [κo(t = 0)]2/8πλoB, where
κ−1
o (t = 0) = 6 µm. Solving Eq. (6.12), (6.13), (6.14), with boundary conditions (6.15)

and initial condition (6.17), results in the solutions of φ(z, t), ρH+(z, t) and ρBr−(z, t)
as given in Fig 6.4. It was convenient in our calculations to express the results in terms
of the dimensionless time τ = t/t0, with time scale t0 = L2/Dw

Br− . For this specific
calculation, we thus find t0 = 1.3 · 103 s, which means that the equilibrium state is
reached within ∼ 4 hours, as can be seen in Fig. 6.4. Of course the equilibrium state
will be reached later if a larger Lo is chosen.
The time evolution towards equilibrium reveals that φ(z, t) (Fig. 6.4(a)) always has

the same functional form: it always decreases monotonically with z and it goes towards
a constant value near z = Lo. Furthermore, the range of φ(z, t) is steadily increased
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over time due to the depletion of ions in the oil, because they move towards the water
phase. In addition to this effect, φ(Lo, t) also increases with time, until ultimately
φ(Lo, t→∞) = φD is reached.
In Fig. 6.4(b)-(f) we show the time evolution of the concentration of ions in the

water phase. The ion concentrations increase with time and the double layer at the
water side is always positively charged. At first, the densities of both H+ and Br− are
larger close to the oil-water interface, but after τ ∼ 0.01 the concentration of Br− is
reduced near the interface. At this stage, the screening length in water is still low, and
Lw is too small to ensure “bulk” charge neutrality until τ ∼ 1. For even larger times
the form of the profiles do not change, but only the (overall) concentrations increase.
In Fig. 6.4(g)-(k), we show the ion density profiles of H+ and Br− at the oil side

(z > 0). At the intial stages of the time evolution, ions are only depleted close to
the interface. On the scale of the plots, the ρH+(z, t) and ρBr−(z, t) look exactly the
same, although at very small separations we can see that the density of Br− is slightly
higher, meaning that the oil side is always negatively charged. This can be more
clearly seen in Fig. 6.4(j) where the water has taken up a sufficiently amount of ions.
The bulk densities ρi,α(Lo, t) for τ . 5 are always larger than the densities at the
interface as is seen in (g)-(j). Only at very long times (close to or at equilibrium)
the bulk density becomes lower for ρBr−(z, t) with z . κ−1

o (t → ∞), as is seen in
(k). Here, κ−1

o (t → ∞) = ρBr−(Lo, t → ∞) + ρH+(Lo, t → ∞) and this quantity can
be viewed as the equilibrium Debye length in oil. For this particular case, we find
κ−1
o (t → ∞) = 115 µm. This is a large value, however, we can go to lower values by

choosing a smaller Lw. We have performed such calculations, however, we have seen
that Lw is then too low to ensure bulk charge neutrality in the water phase, because
Lw < κ−1

w (t → ∞). Such a finite-size effect is of course absent in the experiments,
where Lw � κ−1

w . For Lw < 100 µm, we see the same qualitative behaviour as in Fig.
6.4, although for some Lw we have seen that φ(Lo, t) overshoots and becomes more
negative than φD, before relaxing to the equilibrium state.
Let us now relate the dynamics to the experiments, and in particular to the results on

system 1 within a binary adsorption model. In this case particles are always positively
charged, and their charge increases initially upon lowering the ionic strength from κ−1

o =
6 µm because of the larger desorption of negative ions than positive ions. Since Z > 0
for all times, we conclude from Fig. 6.4 that the colloid-ion force is always repulsive.
The question now arises how colloidal particles in the bulk can cross the energy barrier
that we have calculated in Fig. 6.2. First of all, we note that the attractive image forces
dominate on small distances from the interface. It is an instantaneous effect opposed to
the colloid-ion force that takes a few seconds to develop due to the relatively slow ion
dynamics. Particles with d−a = 1−10 µm are therefore attracted towards the interface
by image forces for all t > 0. Other particles at larger distances from the interface would
need to cross an energy barrier that for t & 10 s lies between 50−100 kBT based on the
values of φ(Lo, t) (which can be a factor 2 lower than φD) and Fig. 6.2(b). This barrier
can also become smaller when we include many-body particle discharging because of
local density variations. Moreover, particles far from the interface are actually lower
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Figure 6.4: Time evolution of a system with the ions H+ and Br− in oil (residing in a capillary with
length Lo = 1 mm) at an initial Debye length of κ−1o = 6 µm when brought into contact with ionless
water (capillary with length Lw = 10 µm). We show (a) the electrostatic potential φ(z, t)/(βe) and the
concentration ρH+(z, t) and ρBr−(z, t), respectively, in water ((b)-(f)) and in oil ((g)-(k)), all in terms of
the dimensionless time τ = t/t0, with t0 = L2

o/DBr− = 1.3 · 103 s. For t→∞ the screening length in oil
is κ−1o = 115 µm. Note that Br− and H+ concentrations in oil are essentially identical for τ . 1.
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charged than those close to it, since the ion concentration is higher for τ . 5, and this
could also affect the barrier height. It is therefore a subtle interplay between these
various aspects that determine which of the particles are going to be trapped near the
interface. The particles that are not able to do so in due time, are eventually prevented
from doing so by an energy barrier, separated from the monolayer by a region void of
colloids. This depleted zone has also been observed in experiments [150, 158]. Based
on the single-particle picture we do not expect many particles in bulk for system 2,
because the colloid-ion and image forces are attractive for this case, see Fig. 6.2.
In a many-body picture, however, the trapped colloids can repel other colloids from
approaching the interface, and this is not taken into account within our calculation.
For this, we need a suitable adjustment of the many-body theory presented in Ref.
[166] that has been set up for touching constant-charge colloids.

6.5.2 The TBAB system

The ion dynamics can also provide insights in the experiments where the salt TBAB
was added to the oil phase, which resulted in particle dislodgement. The equilibrium
calculations of Fig. 6.3 supported this fact by means of a repulsive colloid-ion force.
However, due to the large salt concentrations, the range of the repulsive colloid-ion force
was deemed to be too small in the parameter regime where the particle was negatively
charged (although the range was much larger than the van der Waals repulsion). We
will see if this can be resolved when the system is (correctly) viewed out of equilibrium.
In experiment it has been reported that when TBAB was added to the oil, κ−1

o

can be decreased down to 50 nm. This Debye length is so small that we can (except
at the very early stages of the dynamics) neglect the presence of HBr. Again, it is
uncertain how many ions are extracted by the water phase. We choose to stay in the
regime where the particles are negatively charged for d → ∞ and t → ∞, but they
can become positively charged close to the interface. We therefore choose Lw such
that a final κ−1

o (t → ∞) = 979 nm is reached (the “green” and “purple” regime in
Fig. 6.3). Because the Debye lengths are small, we used Lo = 10 µm with Lw = 100
nm. It was numerically difficult to perform calculations at even bigger Lo with these
screening lengths, but the present parameter settings can still give qualitative insights.
Furthermore, we used the Born approximation for all the ions: assuming antagonism
for TBA+ would only influence its concentration near the oil-water interface, and we
do not expect that the overall qualitative behaviour will change.
In Fig. 6.5 we show the numerical results for φ(z, t), ρTBA+(z, t) and ρBr−(z, t),

in time units of t0 = 1.3 s. We see that the same type of behaviour is found as in
Fig. 6.4, with the difference that φ(z → ∞, t) evolves towards φD = 2, and not to
φD = −0.5. From Fig. 6.5(a) we see that the water side is always negatively charged
(Fig. 6.5(b)-(f)), and the oil side positively charged (Fig. 6.5(g)-(k)). Because of the
relative small increase in the Debye length at t = 0 compared to Fig. 6.4, bulk charge
neutrality cannot be accomodated by the water side, κ−1

w (t→∞) > Lw, and only the
ion concentrations in oil are thus representative for the experiment. The nature of
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Figure 6.5: Time evolution of a system with the ions TBA+ and Br− in oil (residing in a capillary with
length Lo = 10 µm) at an initial Debye length of κ−1o = 50 nm when brought into contact with ionless
water (capillary with length Lw = 100 nm). We show (a) the electrostatic potential φ(z, t)/(βe) and the
concentration ρTBA+(z, t) and ρBr−(z, t), respectively, in water ((b)-(f)) and in oil ((g)-(k)), all in terms
of the dimensionless time τ = t/t0, with t0 = L2

o/DBr− = 1.3 s. For t→∞ the screening length in oil is
κ−1o = 979 nm.
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the colloid-ion forces can also be inferred from Fig. 6.5, but this is more subtle than
in the previous section. In the initial state the colloids are negatively charged, and
the colloid-ion force is repulsive. Colloids that were initially trapped are then repelled
from the interface, but only for surface-interface distances up until a micron, as can
be inferred from Fig. 6.3(b). When t increases, we observe that the concentration
of Br− decreases close to the interface. By only including the mass action effect in
the charging mechanism (see Chapter 5), we can estimate at which concentration the
colloidal particle becomes positively charged, and find ∼ 10−8 M. This means that for
τ < 0.5, the particles are strongly negatively charged, while for τ = 0.5 the particles
are negatively charged for d & 1 µm. In this case the range of the Donnan potential
extends up until Lo = 10 µm (dotted line in Fig. 6.5(a)). This could be an explanation
for the range of repulsions being longer than one would expect from the equilibrium
calculations. The range of φ(z, t) is increased because of the depletion of ions near the
interface, and by mass action the colloidal charge is (more) negative for large z than
close to the interface because of the larger concentration of ions. Particles are therefore
repelled by the colloid-ion forces, because it takes time for the bulk ion concentrations
to settle. In other words, the range of the interactions is set much faster than that the
colloidal charge at large z can “follow”. At some point, enough ions are depleted (even
for large z), the colloids become positively charged and are again attracted towards
the interface, as one would expect in equilibrium. This gives a possible explanation for
the experimentally observed reattachment after the initial dislodgement.
Finally, we consider the situation where TBAB is added to the water. Again, we

neglect HBr, so that the results are only accurate for TBAB concentrations much larger
than 10−12 M, based on the results of Fig. 6.4. We show the results in Fig. 6.6. In
(a) we show the time evolution of φ(z, t) towards its equilibrium profile, and we see
that the potential in this time evolution can temporarily become larger than φD. The
ion densities behave as expected. In (b)-(f) we see that the water side is now depleted
from ions, which reduces the screening at the water side until bulk charge neutrality
in water cannot be ensured. In (g)-(k) we see that the density of ions is first largest at
the interface until, slowly, also the rest of the oil is filled. The oil side of the interface
is always positively charged. Finally, the equilibrium situation is identical to the one
in Fig. 6.5 by construction.
Based on this calculation, we see that for all times the colloid-ion forces are attractive

up until equilibrium is nearly reached. In this case there is a high density of Br−
ions in bulk, such that the particles are negatively charged sufficiently far from the
interface. The colloids for small d are, however, positively charged as was explained in
Fig. 6.3(b). This explains why colloids are drawn closer to the interface upon adding
TBAB in water: the colloids remain mainly positive, but a positive Donnan potential
is generated out of a negative one, and hence an attraction towards the interface is
induced. This can also be already understood from the equilibrium calculations.
Finally, we note that up until now we considered only quasi-equilibrium effects.

What we did not consider up until now are diffusiophoretic effects [216], which is a
non-equilibrium process where colloidal particles move along concentration gradients
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Figure 6.6: Same as Fig. 6.5, but now we place all the ions TBA+ and Br− that were present in the
system in Fig. 6.5, as an initial condition in the water phase. The oil resides in a capillary with length
Lo = 10 µm)and the water in a capillary with length Lw = 100 nm. We show (a) the electrostatic
potential φ(z, t)/(βe) and the concentration ρTBA+(z, t) and ρBr−(z, t), respectively, in water ((b)-(f))
and in oil ((g)-(k)), all in terms of the dimensionless time τ = t/t0, with t0 = L2

o/DBr− = 1.3 s. For
t→∞ the screening length in oil is κ−1o = 979 nm.
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of ions. These effects occur even if there is local charge neutrality based on the ion
concentrations without any colloidal particle present. Considering that the double lay-
ers form faster than that the bulk concentrations of the ions can settle, it is reasonable
to expect that diffusiophoretic effects can occur over the whole system volume for a
considerable amount of time. However, assessing the direction of the diffusiophoretic
force can be highly non-trivial, although we can conclude that this force will work
opposite depending on whether TBAB is added to oil or water. Namely, in the first
case, there is a positive ion concentration gradient for sufficiently large z at the oil side
(see Fig. 6.5), while in the second one it is negative (see Fig. 6.6).

6.6 Conclusion and outlook
In this chapter we have looked at colloid-interface interactions and ion dynamics at
an oil-water interface, in a system with up to three ion species. We have applied our
formalism to recent experiments [167, 207, 213] and have discussed (i) how the charges
on the water and oil side of the oil-water interface can change upon addition of salt,
(ii) how charge inversion of interfacially trapped non-touching colloidal particles upon
addition of salt to the oil phase can drive particles towards the bulk over long distances,
followed by reattachment for large times, (iii) that particles that cannot invert their
charge stay trapped at the interface and (iv) that colloids in bulk can be driven closer
to the interface by adding salt to the water phase. We used equilibrium methods
and ion dynamics to show that this is due to a subtle interplay between long-distance
colloid-ion forces, mid-distance image forces, and short-distance van der Waals forces.
The colloid-ion forces are the most tunable of the three, because they can not only be
tuned in the interaction strength, but also in being repulsive or attractive. We have
shown this explicitly by including three ion species in the theory and by investigating
various charge regulation mechanisms, extending the formalism of Chapter 5.
For future directions we think that it would be meaningful to investigate many-body

effects in a similar fashion as in Ref. [166]. There are, however, two drawbacks of
the method of Ref. [166] that need to be amended before we could apply it to our
system of non-touching colloids. First of all, in Ref. [166] a Pieranski potential [156]
was used to ensure the formation of a dense monolayer at the oil-water interface. It
would be interesting to see if the trapping of particles near the interface can be found
self-consistently by the mechanism presented in this chapter and the previous one, by
using a repulsive van der Waals colloid-interface potential. Secondly, the formalism of
Ref. [166] was set up for constant-charge particles. In the constant-charge case, it is
a good approximation to replace the particle nature of the colloids by a density field.
For charge-regulating particles this can be a severe approximation because one needs
the surface potential and not the laterally averaged electrostatic potential to determine
the colloidal charge.
Investigating many-body effects can be interesting, because colloids present in bulk

contribute to the Donnan potential. This is not the case when all the colloids are
trapped near the interface: in this case the electrostatic potential generated by the
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colloids cannot extend through the whole system volume. Finally, a dense monolayer
can provide an extra electrostatic repulsion for colloids, in addition to the repulsive
colloid-ion force for Z(∞)φD < 0 and the repulsive van der Waals force. Therefore,
we expect that the interplay of the colloidal particles with ions can be very interesting
on the many-body level, especially when we include not only image-charge and ion-
partitioning effects, but most importantly, also charge regulation. However, it is not
trivial to take all these effects into account in a many-body theory. Another direction
that we propose is to perform the ion dynamics calculation of Sec. 6.5 in the presence
of a single (and maybe stationary) charged sphere near an oil-water interface. This
would give insights into the out-of-equilibrium charging of charge-regulating particles,
providing not only more information on the tunability of colloidal particles trapped
near a “salty” dielectric interface, but also on (out-of-equilibrium) diffusiophoretic ef-
fects that were not considered in much detail in this chapter.
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completion of this chapter. Sela Samin is thanked for his general insights and collab-
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have a look at multiple ion species, which is the main subject of this chapter.
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7 A Landau-de Gennes
theory for hard colloidal
rods: defects and tactoids

We construct a phenomenological Landau-de Gennes theory for hard colloidal rods by per-
forming an order parameter expansion of the chemical-potential dependent grand potential.
By fitting the coefficients to known results of Onsager theory, we are not only able to
describe the isotropic-nematic phase transition as function of density, including the well-
known density jump, but also the isotropic-nematic planar interface. The resulting theory
is applied in calculations of the isotropic core size in a radial hedgehog defect, the density
dependence of linear defects of hard rods in square confinement, and the formation of a
nematic droplet in an isotropic background.

7.1 Introduction
Studying phase transitions involves a careful investigation of the free energy of the
system, however, computing it can be very hard, even for the simplest interactions
[4]. In the case of symmetry-breaking transitions an order parameter can be defined,
which allows one to distinguish a disordered state from an ordered one. From the
microscopic Hamiltonian close to a phase transition, a power expansion in terms of
this order parameter can often be derived [217], the so-called Landau free energy [218],
but it can also be set up phenomenologically based on symmetry grounds. The Lan-
dau free energy is usually studied on the level of a saddle-point approximation, such
that only polynomial Euler-Lagrange equations have to be solved to understand the
phase behaviour, and this procedure has had many successes. Examples include the
spontaneous magnetization from a paramagnet to a ferromagnet [219], the gas-liquid
transition [220], and the formation of a superconductor from an ordinary metal [221].

For nematic liquid crystals the order parameter is a traceless and symmetric tensor
Q [222] with components Qαβ where α, β = 1, 2, 3 in three-dimensional systems. This
tensorial form is chosen because the ordered phase breaks rotational (SO(3)-) symme-
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try, but there is a residual Z2, or up-down symmetry, which requires the theory to be
invariant under O(3), rather than SO(3). The bulk Helmholtz (or Gibbs) free energy
that describes the first order phase transition towards a nematic phase, can then be
expanded as

∆F = A(T − T ∗)Tr(Q2)−BTr(Q3) + C(TrQ2)2, (7.1)

where A, B and C are phenomenological coeffcients, T is temperature and T ∗ is the
temperature of the isotropic spinodal. However, this so-called Landau-de Gennes ex-
pansion [222] is only suitable for thermotropics: materials that become liquid crystalline
as function of temperature. It has been applied in many situations, ranging from equi-
librium [223] to non-equilibrium situations [224], including colloidal particles immersed
in a thermotropic nematic [225, 226] and active nematics [227].
In contrast, lyotropic systems, which can consist of hard rods or platelets [228–232],

become ordered as a function of density [113], and are not described by the free energy
of Eq. (7.1). A simple remedy for this problem would be to replace T in Eq. (7.1) by
the density ρ, but this cannot capture the density jump that is found in the isotropic-
nematic (IN) phase transition, which can be as large as 25% [233]. Most theories for
lyotropics, such as Onsager theory [27], do exhibit this density jump, but are difficult
to handle numerically in more complex situations or geometries, because one has to
solve a complicated non-linear integral equation.
This motivates us to set up a Landau expansion for lyotropics for which we will use

the grand potential Ω rather than the Helmholtz (or Gibbs) free energy F in section II.
By using Ω, the expansion parameters will depend on the chemical potential µ 1, and
the density jump will naturally be encoded through the relation ∂(Ω/V )/∂µ|V,T = −ρ,
with V the volume of the system and ρ the average density. Such a Landau expansion
in terms of Q is different from, for example, the phase-field-crystal method of Ref.
[234], which produces terms that also explicitly depend on density. In our description
only a single µ-dependent term is needed to describe the density dependence of the IN
transition. It is therefore easier to use than the method proposed in Ref. [234], for
which also an Euler-Lagrange equation for ρ needs to be solved, in addition to the one
for Q. We will explore the bulk properties of such a Landau expansion by fitting and
comparing it with Onsager theory, [27] in section III, which is exact in the needle limit
[235]. Afterwards, we fit the square-gradient coefficients by using the hard-rod surface
tension on parallel and perpendicular anchoring for a planar IN interface in section
IV. This approach is similar to the one that is briefly discussed by Wittmann et al. in
the context of fundamental measure theory [236] . However, we will perform a more
thorough analysis of the quality of this theory compared to Onsager theory. Finally,
we show some applications: a study of the isotropic core size in a hedgehog defect
(section V), linear defects and director textures for rods under confinement (section
VI), and the shape and size of a nematic droplet with a homogeneous director field
(section VII).

1Actually, it depends on all intensive variables of the relevant ensemble, in this case not only on µ,
but also on T . However, we will consider hard particles, hence we do not consider T dependence.
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7.2 Landau-de Gennes free energy
Let us consider hard rods of length L and diameter D at chemical potential µ in a
macroscopic volume V bounded by a surface ∂V . In the Landau grand potential, we
will consider terms that depend on Q and its spatial gradient ∇Q,

∆Ω[Q] =

∫
V

dr [∆ωb(Q(r)) + ωe(∇Q(r))] +

∫
∂V

dS ωs(Q(r)), (7.2)

where ∆ωb is the bulk grand potential density with respect to the isotropic state, ωe
describes elastic deformations and surface tension effects, and ωs is an anchoring term
that describes the interaction with external walls. All the terms should be invariant
under Q→ UTQU, with U ∈ O(3). We expand the bulk contribution with respect to
the isotropic state ∆ωb up until fourth order in Q, which gives us

βB2∆ωb(Q(r);µ) =
2

3
aβ(µ∗ − µ)QαβQβα −

4

3
b QαβQβλQλα +

4

9
d QαβQβαQλρQρλ,

(7.3)

where we will use the Einstein summation convention throughout this chapter. The
second virial coefficient in the disordered isotropic phase is given by B2 = πL2D/4 in
the limit L� D, and is included in our definition to render the Landau coefficients a,
b and d conveniently dimensionless. For simplicity we assume them to be independent
of µ. Moreover, µ∗ will turn out to be the chemical potential at the isotropic spinodal.
When we assume that the nematic phase is uniaxial, then Q can be expressed in terms
of the scalar order parameter S(r) and the director field n(r) for α, β = 1, 2, 3,

Qαβ(r) =
3

2
S(r)

[
nα(r)nβ(r)− 1

3
δαβ

]
. (7.4)

Notice that the largest eigenvalue of Q is S, while the corresponding (normalized)
eigenvector is n. Using that QαβQβα = (3/2)S2 and that QαβQβλQλα = (3/4)S3, we
can express Eq. (7.3) in terms of S as

βB2∆ωb = aβ(µ∗ − µ)S2 − bS3 + dS4. (7.5)

For the terms in gradients of Q we only retain terms up until square gradients in Q
which gives us 2

βB2ωe(∇Q(r)) =
2

9

[
l1(∂αQβλ)(∂αQβλ) + l2(∂αQαλ)(∂βQβλ) + l3(∂αQβλ)(∂λQβα)

]
,

(7.6)

where the dimensionfull parameters l1, l2 and l3 are elastic constants for Q. In general,
they will depend on µ, but for simplicity, we initially assume them to be constant.
Later, in section VII, we will investigate the effect when they are µ-dependent.

2To show this, recall that ∂α transforms as a vector, i.e., ∂α → Uαβ∂β for U ∈ O(3)

101



Chapter 7. A Landau-de Gennes theory for hard colloidal rods: defects and tactoids

It is instructive to work out ωe for the uniaxial case of Eq. (7.4). Since the norm of
the director is a constant and using the vector identities

[n× (∇× n)]α = −nβ∂βnα, (7.7)

(∂αnβ)2 = (∇ · n)2 + [n · (∇× n)]2 + |n× (∇× n)|2 −∇ · [n(∇ · n) + n× (∇× n)],
(7.8)

we can recast ωe in the form

βB2ωe =
1

3
(l1 + ls/3)|∇S|2 +

ls
3

(n · ∇S)2

+∇(S2) ·
[(
l1 +

2

3
ls

)
(∇ · n)n +

(
l1 +

1

3
ls

)
n× (∇× n)

]
(7.9)

+ S2
{

(l1 + ls)(∇ · n)2 + l1[n · (∇× n)]2 + (l1 + ls)|n× (∇× n)|2
}

− [l1 + (ls − la)/2]∇ ·
{
S2[n(∇ · n) + n× (∇× n)]

}
,

where we introduced ls = (l2 + l3)/2 and la = (l2 − l3)/2. We see that ωe encodes for
surface tension (first line) and elastic deformations (second line) [237]. Eq. (7.9) can
be compared with the Frank elastic free energy Fe [238, 239] for a bulk nematic phase
with a spatially constant bulk order parameter Sb,

Fe =
1

2

∫
dr{K11(∇ · n)2 +K22(n · ∇ × n)2+ (7.10)

K33|n× (∇× n)|2 − 2K24∇ · [n(∇ · n) + n× (∇× n)]},
where the terms in the integrand describe splay, twist, bend and saddle splay deforma-
tions, respectively. Up to second order in Sb we find K11 = K33 = 2S2

b (l1 + ls)/(βB2),
K22 = 2S2

b l1/(βB2) and K24 = S2
b [l1 + (ls − la)/2]/(βB2). Within Onsager theory

K33 � K11 and K22 = K11/3 [240], which is not to be expected to hold in the Landau
expansion at this order. Finally, notice that the last term of Eq. (7.10) is a surface
contribution 3 and that la will typically only contribute to the surface free energy [222].
Finally, ωs in Eq. (7.2) is an anchoring contribution for external walls, for which we

assume the Rapini-Papoular (like), or Nobili-Durand form [242, 243],

βB2ωs
L

=
w

2

[
Qαβ(r)−Q0

αβ(r)
]2
, (7.11)

with w the dimensionless anchoring strength and Q0 the preferred value of Q on the
surface. Although it is possible to minimize ∆Ω with respect to S, it is more convenient
and more general to directly minimize Eq. (7.2) with respect to Q when the director
field varies as function of position. However, one has to perform the minimization
under the constraint that Q is traceless and symmetric, see for example Ref. [244].

3Although we say that it is a surface contribution, it does not mean that it cannot have any effect
on bulk properties. Actually, it is well known that for certain director field configurations K24 can
renormalize K11, see Ref. [241].
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7.3 Bulk properties
In bulk, we assume a fully uniaxial nematic phase and hence it is sufficient to inves-
tigate Eq. (7.5). The (meta)stable and unstable points are found by the condition
∂∆ωb/∂S = 0, resulting in the following solutions

SI = 0, (7.12)

S±N =
3b

8d

(
1±

√
1− 32adβ(µ∗ − µ)

9b2

)
. (7.13)

The stability of these points can be investigated by analyzing the sign of ∂2∆ωb/∂S
2.

The isotropic spinodal µ∗ is defined by ∂2∆ωb/∂S
2|S=SI = 0, while the nematic spinodal

βµ+ = βµ∗ − 9b2/(32ad) is the µ for which ∂2∆ωb/∂S
2|S=S+

N
= 0. Finally, the binodal

βµIN = βµ∗ − b2/(4ad) is determined from ∆ωB(SI) = ∆ωB(S+
N). A stability analysis

shows that (i) for µ < µ+ the isotropic phase is the stable configuration, (ii) for
µ+ < µ < µIN we have that S−N is absolutely unstable, while S+

N is metastable and
the isotropic phase is stable, and (iii) for µIN < µ < µ∗ we have that S−N is absolutely
unstable, while S+

N is stable and the isotropic phase is metastable. (iv) For µ > µ∗

we have that S−N is metastable, while S+
N is stable and the isotropic phase is unstable.

The resulting bifurcation diagram listing the stability of all these branches is shown in
the inset of Fig. 7.1, where we indicate with arrows the IN transition as function of µ.
Below, we derive the values of the coefficients we used in Fig. 7.1 from fits to Onsager
theory.
When S is known for a given µ, one can convert µ to the dimensionless density

c = B2ρ. For this we introduce the grand potential density of the isotropic state ωI
and define ω := ωI + ∆ωb. Then we find ∂(B2ω)/∂µ = −c, such that

c(µ) = cI(µ) + aS2, (7.14)

where we have defined cI(µ) = −∂(B2ωI)/∂µ. Within Onsager theory, we calculate ωI
by using an isotropic distribution function, such that βµ(cI) = log(cI/4π) + 2cI [28].
By inverting this relation, one obtains cI(µ). Together with Eq. (7.14), and S one can
determine c.
At isotropic-nematic coexistence, we have from Eq. (7.14) and the analysis above

that

c(µIN) = cI(µIN) + aS2
IN , (7.15)

βµIN = βµ∗ − b2

4ad
, (7.16)

SIN =
b

2d
. (7.17)

Within Onsager theory, it is known that [28] cI(µIN) = 3.290, c(µIN) = 4.191, βµ∗ =
6.855, βµIN = 5.241 and SIN = 0.7922. Using these values, we find a = 1.436, b = 5.851
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Figure 7.1: Bifurcation diagram for the lyotropic Landau-de Gennes (LdG) theory in the density-order
parameter (c, S) representation and in the chemical potential-order parameter (µ, S) representation (inset)
by fitting it to coexistence data from Onsager theory. We use green for the isotropic branch SI , blue for
the upper nematic branch S+

N , and red for the lower nematic branch S−N . We use full lines whenever the
respective branch is (globally) stable, dashed lines whenever they are metastable and dotted lines whenever
they are absolutely unstable. In grey we show data points obtained from Onsager theory and we see that
the LdG theory matches well with it. With arrows we indicate the isotropic-nematic transition in both
representations, exhibiting a density jump in the (c, S) representation when the ordered phase starts to

form.

and d = 3.693. With this set of parameters, we determine that βµ+ = 5.039 4. We
plot the bifurcation diagram in Fig. 7.1, indicating the stable, metastable and unstable
regions in the (c, S) representation and in the inset we show the (µ, S) representation.
Arrows indicate the IN transition in both representations, for which the density jump
is correctly captured by construction. We also give a comparison with Onsager theory
(the grey circles) for which the bifurcation diagram is known [28, 245].

We note that S+
N > 1 for c & 5 in Fig. 7.1, which is unphysical. A simple remedy

for this problem would be to replace S4 → S4/(1−S) in Eq. (7.5), which ensures that
S ≤ 1. However, this complicates the free energy, especially when the full Q-tensor
theory is needed, so it will not be considered here. We have seen in our calculations that
this remedy does give better results for the nematic branches at high densities when
compared with Onsager theory. However, our calculations show that inhomogeneous
Landau theories are less accurate for these expansions, presumably because accuracy
in the metastable regime is more important than in the high-density regime.
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Figure 7.2: Interfacial profiles S(z) and c(z) between an isotropic phase and a nematic phase, calculated
within the lyotropic LdG theory. Two characteristic distances are defined to quantify the shape of the
profiles: δ is the displacement between the center of the S profile and that of the c profile, where we

defined a measure for the interfacial width, τ = |z+ − z−|, with c′′′(z±) = 0.

7.4 Isotropic-Nematic interface

Let us now consider an inhomogeneous system that for z →∞ consists of an isotropic
fluid, while for z → −∞ there is a bulk nematic with order parameter Sb. For simplicity,
we neglect biaxial effects within our LdG theory, which can be important, but can be
included quite easily if necessary [246, 247]. Moreover, we assume homogeneity in
the plane perpendicular to the z axis. As a natural consequence a planar interface
will develop between the two bulk phases, with an order parameter profile S(z) and
a density profile c(z), that can be calculated within our Landau theory. The surface
tension for parallel γ‖ and perpendicular anchoring γ⊥ of such a system are known
within Onsager theory [248] and these quantities will be used to fit the constants l1
and ls = (l2 + l3)/2 from Eq. (7.6). We fix the director field n to be spatially constant
with a specified orientation and let α be the angle of the director with the interface
normal. This means that for α = 0 (α = π/2) the rods are aligned perpendicular
(parallel) to the interface. With this definition, we can write n · ∇S = S ′(z) cosα,
where henceforth a prime denotes differentiation with respect to z.
The Landau grand potential per unit interfacial area A for this geometry is

∆Ω[S]

A
=

∫
dz

[
m(α)

2βB2

(S ′(z))
2

+ ∆ωb(S(z);µ)

]
, (7.18)

with stiffness constantm(α) = (2/3)[ls cos2 α+l1+ls/3]. It is straightforward to rewrite

4Notice that we could also have used µ+ to determine the Landau coefficients. However this quantity
is hard to determine numerically from Onsager theory.
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the Euler-Lagrange equation δ∆ΩLdG[S]/δS = 0, into

m(α)S ′′(z) =
∂[βB2∆ωb(S(z);µ)]

∂S(z)
,

lim
z→−∞

S(z) = Sb, lim
z→∞

S(z) = 0. (7.19)

For our purposes it suffices to consider this equation at coexistence, where µ = µIN
and Sb = SIN . Multiplying this equation with S ′(z) and integration over z gives

m(α)

2
(S ′(z))2 = dS2(S − SIN)2, (7.20)

where we used that βB2∆ωb(S(z);µIN) = dS2(S − SIN)2, and where an integration
constant vanishes because S ′(z)→ 0 for z → ±∞. Taking the square root of this equa-
tion and choosing the positive root since it is consistent with our boundary conditions,
it is straightforward to find that the order parameter profile reads

S(z) =
SIN

2

[
1− tanh

(
z

2ξ

)]
, (7.21)

after introducing the correlation length ξ = [2dm(α)]1/2/b. The profile for c(z) can be
obtained from Eq. (7.14), as

c(z) = cI +
aS2

IN

4

[
1− tanh

(
z

2ξ

)]2

. (7.22)

By definition ∆ωb(SIN , µIN) = 0, which means that the bulk pressure comes entirely
from the isotropic contribution to the grand potential, ωI = −βB2pIN . Hence, ∆Ω/A
is the surface tension when evaluated at coexistence,

βB2γ(α) = m(α)

∫ ∞
−∞

dz[S ′(z)]2 = S3
IN

√
dm(α)

18
, (7.23)

where we used Eq. (7.20) and we find that m(α) = 9/(8d)[πβγ(α)LD/S3
IN ]2L2 from

Eq. (7.23) . From Ref. [248], we know that βγ‖LD = 0.156 (α = π/2), while
βγ⊥LD = 0.265 (α = 0). We thus find m‖ = 0.296L2, and m⊥ = 0.854L2. For the
perpendicular case (α = 0), we plot the profiles c(z) and S(z) in Fig. 7.2, showing
that the density profile is shifted with respect to the order parameter profile, which is
consistent with Onsager theory and simulations [248]. The same phenomenon is found
for α = 0, but the interfaces have a smaller width. For the above obtained values
of m‖ and m⊥, it follows using the relation below Eq. (7.18) that l1 = 0.165L2 and
ls = 0.837L2. In this case it is not possible to determine la. Using these values, we
find K11/K22 = 6, which should be contrasted with the exact relation where this ratio
should be equal to 3 for L→∞ [240, 249, 250].
To assess the quality of our calculations, we introduce two characteristic lengths.

The first one is defined as δ = |zS − zc|, where S(zS) = SIN/2 and c(zc) = [c(µIN) +
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cI(µIN)]/2, hence we see that δ is a measure for the shift of c(z) with respect to S(z).
Another length scale is the width of c(z), which can be defined as τ = |z+− z−|, where
z± satisfies c′′′(z±) = 0. For α = 0, we find that δ‖ = 0.223L and τ‖ = 0.586L, while
within Onsager theory the values are δO‖ = 0.45L [248] and τO‖ = 0.697L [29]. Finally,
for α = π/2, we have determined that δ⊥ = 0.378L and τ⊥ = 0.994L, however, the
values of δO⊥ and τO⊥ are not reported in the literature. Where comparisons are possible,
we do see that the LdG results compare quite favourably with Onsager theory, where
one should keep in mind the enormously reduced numerical effort of the LdG theory
compared to the Onsager theory of the IN interface.

7.5 Radial hedgehog defect
In this section, we will study the hedgehog defect, an object that has received much
attention in the thermotropic liquid crystal literature [251–254], but for which little
is known for lyotropic liquid crystals. To study this type of defect, we assume locally
uniaxial symmetry and consider

Q(r) =
3

2
S(r)

(
er ⊗ eTr −

1

3
I
)
, (7.24)

where n(r) = er is the radial unit-vector. If the hedgehog defect would consist of
a bulk nematic phase, the elastic free energy density diverges at the centre r = 0,
and the only way for the system to lower its free energy is by a melting transition
of the core to an isotropic phase. Landau theory allows us to determine the internal
structure of the resulting defect core, shown schematically in the inset of Fig. 7.3. This
calculation would not be possible within continuum theories such as e.g. Eq. (7.10), in
which the spatial variation of S(r) is ignored. In such Frank-Oseen theories, a cut-off
length is needed to assess the size of the isotropic core, whereas the core size will follow
naturally from the regime where S(r) vanishes within our LdG theory. Finally, the
rod length L is a natural length scale in our calculations, because we determined the
stiffness constants m‖ and m⊥ from a microscopic theory. This allows us to estimate
the isotropic core size in terms of L.
Since we fix the director field to be radial, it suffices to evaluate Eq. (7.5) and (7.9).

A radial director field is irrotational, ∇× er = 0, and has a non-vanishing divergence,
∇ · er = 2/r. From Eq. (7.2) and Eq. (7.6) it is then straightforward to derive the
grand potential

βB2∆Ω[S] =

∫
dr

[(
l1
3

+
4ls
9

)
(∂rS)2 + ∂r(S

2)
2

r

(
l1 +

2

3
ls

)
+ S2(l1 + ls)

4

r2
+ βB2∆ωb

]
,

(7.25)

for which the Euler-Lagrange equation is

S ′′(r) +
2

r
S ′(r)− 6

r2
S(r) =

3βB2

2m⊥

∂∆ωb
∂S

, (7.26)
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Figure 7.3: Internal structure of a hedgehog defect for various chemical potentials µ. In (a) the order
parameter profile S(r) is shown and in the inset we show a schematic top view of the defect. In (b) we plot
the dimensionless local density c(r). The profiles clearly show the structure of an isotropic core centered

at r = 0.

to be solved for the boundary conditions S(0) = 0 and S(R) = S+
N(µ). The radius R

is the size of the hedgehog defect, which can be thought of as the radius of a finite
spherulite or a bulk nematic where there is a finite region of size R where the rods are
radially aligned. In our calculations we set R = 50L. Notice that the surface term
in Eq. (7.6) does not contribute because we consider strong homeotropic anchoring
conditions at r = R.
Solving Eq. (7.26) for a given µ gives the structure of a hedgehog defect S(r),

shown in Fig. 7.3(a) for several µ. Indeed, an isotropic core centered at the origin
is found. For r ↓ 0, the profiles behave locally as S(r) = O(r2) and for r → ∞ as
S(r) = S+

N(µ) − O(1/r2), as is well known [251]. Moreover, increasing µ, which is
equivalent to setting a higher bulk density, gives rise to a smaller isotropic core size.
This behaviour is also observed in thermotropic Landau theory [251], however there
are two new features that our version provides. Firstly, as was mentioned earlier, m⊥
is determined by a fit to the Onsager result, and hence the rod length L is an intrinsic
(microscopic) length scale of the theory. This allows us to determine the isotropic core
size in terms of L. We see that the isotropic core size is always O(L) sufficiently far
from the nematic spinodal, in accordance with experiments [255]. This is in sharp
contrast with thermotropic liquid crystals, where the isotropic core size is macroscopic
in size compared to the microscopic size of the molecules, which have a length on the
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Figure 7.4: (a) Isotropic core size measured by the positions rS and rc for which the order parameter S
and the density c reach the average of their minimum and maximum value, respectively. (b) The interfacial
shift δ = |rS − rc| as function of µ. The vertical dotted lines indicate the bulk binodal µ = µIN , and the
horizontal line in (b) is the shift δ⊥ in a planar geometry with a fixed director field perpendicular to the

interfacial plane, as determined in section IV.

order of 10−9 m [251]. The reason is that for thermotropics, the binodal lies always
close to the isotropic spinodal temperature T ∗ and the nematic spinodal temperature
T+, since typically T+ − T ∗ . 1 K [223]. Secondly, from S(r) we can determine the
density profiles c(r), for which we show some examples in Fig. 7.3(b) for the same set
of µ. Similar to the planar interface case, c(r) is shifted with respect to S(r) towards
the region where the bulk nematic phase is found.

The isotropic core size can be characterized by rS or rc, the positions for which S(r)
and c(r) attains the average of their minimum and maximum value, respectively, which
we show as a function of µ in Fig. 7.4(a). We see that both quantities increase with
decreasing µ, showing that at low (bulk) densities the rods have a lower tendency to
order, which facilitates an isotropic phase. When µ approaches the nematic spinodal
µ+, the core size diverges, because the nematic phase becomes absolutely unstable.
However, it is hard to determine numerically the exact state point for which this
happens, because of convergence problems in Eq. (7.26) for βµ . 5.22.

We plot the interfacial shift δ = |rS − rc| in Fig. 7.4(b), revealing a weak (but
non-monotonic) variation with µ. As a comparison we indicate δ⊥, which is the result
found in the flat geometry of section 7.4, as the dotted horizontal line. We do not
make a comparison with the interfacial width τ since it is an ill-defined quantity for
the hedgehog defect: the equation c′′′(r) = 0 has only one solution. Finally, we remark
that the hedgehog defect can be unstable towards a ring disclination or a split core
defect, as was found for thermotropic LdG theory [253]. For hard rods the split core
defect has been realized by applying an external magnetic field [256]. Ring disclina-
tions, however, are expected not to occur in hard-rod systems, because, in contrast to
molecular systems, we have K11 � K33.
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Figure 7.5: (a) A rectangular cuboid with a square base of dimensions l × l in which we confine rods
with diameter D and length L. Various anchoring boundary conditions at the four walls Γ1, ...,Γ4 are
investigated. (b)-(c) For ∆ = 0 (see Eq. (7.31)) the rods at the corners of the square have the same
angle with the bottom wall, while (d) for ∆ > 0 the rods always move to the edge farthest from the corner
towards the opposing wall or (e) for ∆ < 0 the edge closest to the corner is moved towards the opposing

wall.

7.6 Confined hard rods
An application for which we need the full Q-tensor theory is the confinement of rods in
a rectangular cuboid. Such a system has been investigated using a mean-field Onsager
model [257] and Frank-Oseen model [258], but also using Monte-Carlo simulations [259]
and within Landau theory [260]. In the latter case, however, local density variations
were not considered.
Let us consider a rectangular cuboid with a square base of dimensions l × l in the

xy-plane as illustrated in Fig. 7.5(a). To simplify the problem, we take the height
equal to the diameter of the rods, such that the rods will necessarily order within the
xy-plane. We implement this by setting Qzz = −1/2 and Qzx = Qzy = 0. Following
Ref. [259], we use the largest positive eigenvalue λ+ of Q to determine the degree
of order, while the corresponding eigenvector n is a measure for the alignment in the
xy-plane. Observe that λ+ is not always the same as the scalar order parameter S,
which is defined as the absolute largest eigenvalue. We parametrize

Q(x, y) =

1
4

+ q1(x, y) q2(x, y) 0
q2(x, y) 1

4
− q1(x, y) 0

0 0 −1
2

 , (7.27)

for which we can derive (see Appendix A) the Euler-Lagrange equations for q = (q1, q2),

(l1 + ls)∇2q = 3aβ(µ∗ − µ)q− 9

2
bq +

d

2
(3 + 16q2

1 + 16q2
2)q, (7.28)

with the boundary conditions

(l1 + ls)(ν̂ · ∇q) +
9

4
w(q− q0) = 0, (7.29)

and ν̂ an outward pointing normal vector. Unless stated otherwise, we assume relatively
strong anchoring conditions, w = 10. Moreover, we assume anchoring conditions at
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Figure 7.6: Profiles of the director angle θ(x, y) (top), eigenvalue λ+(x, y) (middle) and density c(x, y)
(bottom) in a cell of 73/20× 73/20 in units of rod length L and where the height of the slab is chosen to
be equal to the diameter D of the rods. We fix the anchoring strength w = 10 and anchoring parameter
∆ = 0.1, and investigate their effects on an isotropic state (a)-(c) at chemical potential βµ = 2, while
in (d)-(f) we consider a nematic state βµ = 5. The bulk 2D IN transition occurs at βµIN = 2.03 as
explained in the text. The ordering effects of the walls can be seen in (a) where θ is the angle with the x

axis, while the degree of ordering is shown in (b) and (e), and the density c in (c) and (f).

the four walls of the form

Q0(r) =
3

2

[
n0(r)⊗

(
n0
)T

(r)− 1

3
I
]
, r ∈ Γi, (7.30)

with a specified director n0 and Γi (i = 1, .., 4) indicating the four walls. In general, we
will assume planar anchoring at the four walls, but we also want to investigate various
director configurations at the four corners. For example, for (x, y) ∈ Γ1 we assume

n0
x =

√
1−∆2 sin2

(πx
l

)
,

n0
y = −∆ sin

(πx
l

)
, (7.31)

with anchoring paramater ∆, which allows us to study metastable states that are
otherwise hard to access. For ∆ = 0 this gives an equal weight to either of the two
configurations shown in Fig. 7.5(b) and (c), whereas a bias in the configurations of the
director occurs when ∆ 6= 0. For ∆ > 0 the configuration of Fig. 7.5(d) is preferred
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and for ∆ < 0 the configuration of Fig. 7.5(e). Analogous expressions can be derived
for the other three boundaries which we can summarize for (x, y) ∈ Γi (i = 1, 2, 3, 4)
as

q0
1 = (−1)i

3

4

[
2∆2 sin2

(πxi
l

)
− 1
]
, (7.32)

q0
2 = −3

2
∆ sin

(πxi
l

)√
1− sin2

(πxi
l

)
, (7.33)

with (x1, x2, x3, x4) = (x, y,−x,−y). Solving the set of equations Eq. (7.28), (7.29),
(7.32) and (7.33) gives λ+(x, y) and n(x, y) 5. Moreover, within our Landau theory
we can extract the density c(x, y) = cI(µ) + (2a/3)Tr(Q2). Interestingly, it turns out
that c(x, y) is a good measure for the local two-dimensional density ρ2D = N/A, with
N = ρAD the number of rods and A = l2 the base area, such that c = (π/4)L2ρ2D, is
a natural dimensionless real density.
Note that the present square-gradient theory cannot account for layering at a hard

wall, which in principle is present in simulations and theory of these systems [261, 262]
although not in a pronounced way given the large particle aspect ratios considered. The
extension of the Landau theory to include, for example, a smectic phase in the case
of short rods to describe pre-smectic layering for perpendicular anchoring is, however,
straightforward [263].
In Fig. 7.6 we show examples of the structures that can be found for ∆ = 0.1 and

l/L = 73/20. The latter system size is chosen because it enables us to compare our
results with the simulations of Ref. [259]. We consider βµ = 2 (2D isotropic) and
βµ = 5 (nematic), which should be compared with βµ2D

IN = βµ∗− (3b− d)/(2a) = 2.03
where the bulk phase transition in this 2D geometry takes place according to our 3D-
based LdG theory. In the isotropic state for ∆ = 0.1, the rods align along the four
walls, while pointing their endpoints towards the corners along the diagonals, as can
be seen in Fig. 7.6(a) where we plot the (minimal) angle θ of n with respect to the
the x-axis. Fig. 7.6(b) shows that the core is 2D isotropic since λ+ = 1/4, but close
to the walls ordering is induced, λ+ > 1/4. Furthermore, the density is lowest where
the ordering is the smallest, see Fig. 7.6(c). However, a complete study of the wetting
and pre-wetting properties of the walls is out of the scope of this chapter, since a more
sophisticated surface free energy may be needed [264]. In the nematic state, there is
a competition between the ordering effects of the wall and the density-induced order
due to the rod-rod interactions. This results in a lens-shaped director field structure
(Fig. 7.6(d)), and for this specific boundary condition it results in defects near two of
the four corners with an isotropic core shown in red in Fig. 7.6(e), with a reduction in
local density shown in blue in Fig. 7.6(f).
The type of possible structures are very sensitive to the boundary conditions that

we impose. In Fig. 7.7 we show the various possibilities for different values of ∆ as
function of µ. For ∆ = 0 we see in Fig. 7.7(a)-(d) that order is always reduced at
the four corners, but these isotropic cores become smaller in size for larger µ. The

5Notice that n is strictly speaking only a well-defined quantity whenever λ+ > 1/4
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Figure 7.7: Nematic director n (black lines) and the degree of two-dimensional ordering λ+(x, y) (col-
ormap) for chemical potentials βµ = 2, 3, 4, 5 from left to right, for severa; anchoring parameter ∆ (see
Eq. (7.31) and Fig. 7.5): (a)-(d) ∆ = 0, (e)-(h) ∆ = 0.1, (i)-(l) ∆ = 0.5 and (m)-(p) ∆ = 0.5 on Γ1

and Γ4, while ∆ = 0 on Γ2 and Γ3. A two-dimensional isotropic state (λ+ = 1/4) is colored in red. The
cell size is the same as in Fig. 7.6.
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of the chemical potential µ for various system sizes l × l and anchoring parameter ∆ (dimensionless
anchoring strength w = 10). In black we show the 2D bulk phase transition, the 3D IN-transition occurs

at βµIN = 5.241 beyond the scale of the plot.

same happens when ∆ = 0.1 in Fig. 7.7(e)-(h), although now only in two of the four
corners a 2D isotropic phase is found. In Fig. 7.7 (i)-(l) we set ∆ = 0.5 and see that
two defects are created at the center of the cell, which move apart along the diagonal
when the total density is increased. When the center is perfectly ordered, λ+ = 1, the
defects reside at fixed positions, but not at the corners. A combination of the various
structures can be found whenever ∆ is different for the four boundaries. An example
is shown in Fig. 7.7(m)-(p) with ∆ = 0.5 on Γ1 and Γ4, and ∆ = 0 on Γ2 and Γ3.
A competition of the wall-induced ordering and the spontaneous nematic ordering

always occurs beyond the chemical potential for which the center starts to order. Hence,
we investigate λmid

+ ≡ λ+(0, 0) as function of µ, shown for various system sizes l and
anchoring parameters ∆ in Fig. 7.8. We observe a second-order phase transition at
µ > µ2D

IN , with a shift that depends on the system size and on the nature of defects.
In our calculations we also observe that a smaller anchoring strength w shifts the
phase transition closer to the 2D bulk one, the same as with increasing l. This can
be understood from the observation that for the formation of a nematic phase in the
center, it is necessary to counteract the wall-ordering effects. When the wall-ordering
effects are stronger, which happens at larger w or smaller l, a larger density and hence
a larger µ is needed to spontaneously order the system. Similar observations were made
in a two-dimensional Onsager model [257].
Finally, we make some remarks on the location of the bulk phase transition of the

quasi 2D setup that we have investigated here. Converting µ2D
IN to a density, we find

that the 2D bulk phase transition takes place at c∗ = 1.95, which should be compared
with ρ∗2D = 3π/2L2 or c∗ ≈ 4.7 for the two-dimensional Onsager model [245]. This
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significant discrepancy can be understood from the fact that we have not properly
included the walls that confine the rods in the xy-plane, we simply set Qzz = −1/2
and Qzx = Qzy = 0. The Landau theory that we use is, however, effectively three-
dimensional, and the excluded volume interactions in two dimensions are of a different
nature than in three dimensions. A better construction of the LdG theory would
include these walls within a three-dimensional calculation. Another alternative is to
use a two-dimensional Landau theory where the coefficients are to be determined from
the bifurcation diagram of a two-dimensional Onsager theory. We expect that the
qualitative features presented in this case, however, will not change.

7.7 Nematic droplet

Nematic droplets, or tactoids, differ from droplets of an isotropic fluid because they
are elongated rather than spherical in shape. This has been observed in experiments,
where the defect structures in the nematic texture have been investigated [265–269],
but also in simulations [270], and within the Zwanzig model [271]. The shape of a
tactoid can be determined within continuum theory [272] by minimizing the combined
elastic and surface free energy

F = Fe +

∫
∂Vdrop

dS[γ‖ + (γ⊥ − γ‖)(ν̂ · n)2], (7.34)

at a finite and given volume of the droplet Vdrop. Recall that the Frank elastic free
energy Fe is given in Eq. (7.10), and that γ‖ (γ⊥) is the surface tension when the
rods are aligned parallel (perpendicular) to the interface. Since the shape is an input
parameter in the minimization procedure of Eq. (7.34), one has to impose how the rods
align along the interface of the droplet, and this is captured in the second term of Eq.
(7.34). Minimization of this free energy has been successful in determining the shapes
of tactoids. The surface tensions that are used as fit parameters to match the theory
with the experimentally observed shapes, however, disagree with the experimentally
measured and theoretically obtained values of the surface tension [29, 241, 248, 269,
273–277]. A hypothesis for this discrepancy is due to the simple choice of the Rapini-
Papoular form [242] to describe the anchoring at the IN interface, which is strictly
speaking only true for a planar (non-curved) geometry. The question is how much
curvature would renormalize the surface tensions of the flat geometry. Our aim is to
calculate this within our Landau theory, because the surface effects of Eq. (7.34) should
automatically be captured in our treatment. Such a calculation has been briefly touched
upon for the thermotropic case in Ref. [278], although only in a two-dimensional xy-
geometry and with a focus on the time evolution rather than on the equilibrium tactoid
sizes and shapes.

For simplicity we focus on tactoids with a homogeneous director field, n = ez, with
ez the unit vector in the z-direction. For such a director field all elasticity terms vanish,
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Figure 7.9: Relaxation of a spherical liquid crystalline droplet of initial radius r0 = 3L prepared at
βµ0 = 5.5 according to the dynamics of Eq. (7.39) and constraint Eq. (7.40). In (a)-(c) we show
snapshots of the order parameter profile S(ρ, z) for various values of dimensionless time t′ showing that
the spherical droplet becomes elongated over time. In (d) and (e) we show the order parameter profiles
along the two symmetry axes of the droplet. In (f)-(h) we show the corresponding snapshots of the local

dimensionless density c(ρ, z) and the profiles along the symmetry axes in (i) and (j).

and hence the Landau grand potential is given by

∆Ω[S] =

∫
dr

[
m‖

2βB2

|∇S|2+
m⊥ −m‖

2βB2

(n · ∇S)2 + ∆ωb

]
. (7.35)

It is easily seen that this free energy mimics the second term in Eq. (7.34), with
the identification that the surface normal ν̂ is the same as ∇S on the surface defined
by S(r∗) = (1/2) maxr∈V S(r), where we defined the IN interface to be the loci of
points for which S(r) attains half its maximum value. Thus, the square gradient term
in Eq. (7.35) is a surface tension contribution that results in droplets that tend to
minimize their surface area, while the second term favours droplet shapes for which
the misalignment between surface normal and director is minimal because m⊥ > m‖.
It turns out to be numerically difficult to find non-trivial solutions to the Euler-

Lagrange equations of Eq. (7.35) that are spatially inhomogeneous. For this reason we
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investigate instead a dynamical equation for S 6 assuming model-A (pseudo-)dynamics
[280],

∂S

∂t
= −Γ

δ∆Ω[S;µ]

δS(r)
, (7.36)

and far-field boundary condition

ν̂ · ∇S(r, t) = 0, r ∈ ∂V. (7.37)

As an initial condition we take a spherical droplet (or “nucleus”)

S(r, t = 0) =
3

2
S+
N(µ)Θ(r − r0), (7.38)

where Θ is the Heaviside step function, r0 is the radius of the initial droplet and
r =

√
ρ2 + z2, in terms of the cylindrical coordinates (ρ, z). Our goal is to look at a

fixed µ for stationary solutions of Eq. (7.36), since they would also be solutions of the
Euler-Lagrange equations. If we use Eq. (7.36) for a fixed r0, we only find solutions
for which droplets keep growing if µ is too large, or droplets that keep shrinking if µ
is too small. Consequently, there must be a critical chemical potential µc for which
the droplet neither grows or shrinks when the optimal shape is attained. To find µc
for a given shape and droplet volume we fix µ0 = µ(t = 0) and evaluate instead of Eq.
(7.36),

∂S

∂t
= −Γ

δ

δS(r)

[
∆Ω[S;µ0]− ∆µ(t)

βB2

∫
dr c(r, t;µ0 + ∆µ(t))

]
, (7.39)

with a Lagrange multiplier ∆µ(t) such that conservation of total number of particles∫
dr c(r, t;µ0 + ∆µ(t)) =

∫
dr c(r, t = 0;µ0) (7.40)

is guaranteed. By definition ∆µ(t = 0) = 0. Working out the above Euler-Lagrange
equation gives

βB2

Γ

∂S

∂t
= m‖∇2S + (m⊥ −m‖)

∂2S

∂z2
− 2aβ{µ∗ − [µ0 + ∆µ(t)]}S + 3bS2 − 4dS3.

(7.41)

Moreover, we find that we can approximate βµ(cI) ≈ AcI + B, with A ≈ 2.25541
and B = −2.19865, with a largest relative error of 0.6% for cI ∈ [3, 6]. Using this
approximation the constraint of Eq. (7.40) can be rewritten as∫

dr

[
β∆µ(t)

A
+ aS2(r, t)

]
=

∫
dr aS2(r, t = 0). (7.42)

6We neglect the noise terms in our calculations, since we are only interested in using Eq. (7.36) as
a pseudo dynamics to find stationary solutions to the Euler-Lagrange equation of Eq. (7.35). In
Ref. [279] it is, however, listed how noise terms for a Q-tensor theory can be constructed.
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We solve Eq. (7.41) and Eq. (7.42), using the boundary condition Eq. (7.37) and
initial condition Eq. (7.38) where we take for the system volume a cylinder of radius
20L and height 20L, using the xy-plane as a symmetry plane. When r0 and µ0 are
too small, the initial droplet disappears in time, but when they are chosen too big
the droplet will eventually touch the system boundary and a “planar” interface along
the radial direction will develop. However, here we will only consider the set of values
for µ0 and r0 that give stable droplets that do not change over time: this defines
µc = µ0 + ∆µ(t→∞).
In Fig. 7.9(a)-(c) we show the typical relaxation of a spherical droplet as function

of dimensionless time t′ = ΓL3t/(βB2) towards an elongated shape within our LdG
theory, with the profiles along the two coordinate axes shown in Fig. 7.9(d) and (e).
Our LdG theory allows also for the calculation of c(ρ, z) using Eq. (7.14), which we
show in Fig. 7.9(f)-(h) and in Fig. 7.9(i)-(j) along the two symmetry axes. The
stationary solution that we find has a higher chemical potential than the bulk binodal,
µc > µIN , which accounts for the Laplace pressure in this ensemble.
Interestingly, the solution found for long times is very similar to the IN planar

interface at coexistence. This is indicated by the interfacial shift δ and interfacial
width τ . We find for S(ρ, 0) and c(ρ, 0) that δρ = 0.219L and τρ = 0.576L to be
compared with the flat plane result of δ‖ = 0.223L and τ‖ = 0.586L. Along the z
axis we find δz = 0.372L and τz = 0.978L to be compared with δ⊥ = 0.378L and
τ⊥ = 0.994L. This shows that the surface tensions in both directions are effectively
reduced for µ > µIN , since τ is smaller. However, from scaling arguments [281], we find
that for γ⊥ the relevant length scale is L− (1/2)d2/L, with d the possible displacement
of the rods given the orientation distribution function. In contrast, for γ‖ the relevant
length scale is d. A higher µ is equivalent to a higher density and hence lower d. From
the above scaling arguments we deduce that γ⊥ should increase with µ while γ‖ should
decrease, which is not captured in our calculation.
This latter observation is relevant when we investigate the aspect ratio R1/R2 of the

stationary droplets, with R1 the length of the main axis and R2 the one of the minor
axis, see the inset of Fig. 7.10(a). It turns out that we always find R1/R2 = 1.7,
which equals the ratio of the surface tensions determined from the planar geometry
γ⊥/γ‖ =

√
m⊥/m‖, see Eq. (7.23). Starting with different values of µ0 and r0 (or even

changing the aspect ratio of the initial droplet) we observe that µc only depends on
µ0, see Fig. 7.10(a). For small µc, and hence lower values of the “Laplace pressure”,
µc−µIN , we find larger droplets, as indicated by a largerR1, although the differences are
not large among the various final droplet sizes. However, regardless the final size, the
aspect ratio is always 1.7, which is illustrated by the various colored lines in Fig. 7.10(b)
converging to the dotted grey line. This is only to be expected when curvature effects
are not important, which is also found within the macroscopic theory of Eq. (7.34)
for homogeneous director fields with γ⊥ and γ‖ constant. However, we expect that γ⊥
and γ‖ depend on curvature. Moreover, in experiments [265–269], it is concluded that
(i) the aspect ratio depends on R1, (ii) the aspect ratio can become as large as 4 to 5
and (iii) the experimentally observed shapes have cusps at the endpoints on the axis
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7.7. Nematic droplet
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Figure 7.10: (a) Time evolution of the chemical potential µ(t′) = µ0 + ∆µ(t′) for various initial droplets
and initial chemical potential µ0. We use the same color for initial droplets of the same r0 and aspect
ratio. In the inset we show the shape parameters R1 and R2 that we use to characterize the droplets.
In (b) we indicate the time evolution of the aspect ratio R1/R2 as function of the droplet main axis R1,
where the various arrows indicate the flow of time. All lines end on the grey dotted line R1/R2 = 1.7
where the droplet does not change anymore, while the final droplet size R1(t′ =∞) depends crucially on

µ0. The dotted blue lines correspond to the results shown in Fig. 7.9.

parallel to the director field when the aspect ratio is larger than 2. Only very large
droplets are expected to have an aspect ratio of 1.7.
Interestingly, in simulations R1/R2 ∼ 1.7 is also found [270, 282], in contrast to the

experiments where a larger R1/R2 up to∼ 5 has been observed [269]. We note, however,
that the rods in these simulations have a smaller particle aspect ratio (L/D ∼ 20)
than in typical experiments (L/D ∼ 1000). Moreover, rod flexibility, polydispersity
and residual Van der Waals forces may be at play, and investigating these effects will
be left for future work. In the remainder of the text, we will instead speculate how
the present LdG theory can produce R1/R2 > 1.7. Whether or not these large tactoid
aspect ratios can actually be found within Onsager theory remains, however, an open
question.
Clearly, increasing the aspect ratio is only possible within our theory by tuning the

ratio m⊥/m‖. Indeed, we find in our calculations that we can obtain any desired aspect
ratio by varying this quantity. Moreover, to make R1/R2 depend on the droplet size
and hence on µc − µIN , the coefficients m⊥ and m‖ need to depend on µ. This does
not come as a surprise, since l1 and ls are in general µ dependent. However, since
m⊥ = (2/3)(l1 + 4ls/3) and m‖ = (2/3)(l1 + ls/3) we find that the maximal aspect
ratio that can be achieved by tuning l1 and ls is R1/R2 = 2, while keeping l1, ls > 0.
However, we have to go to extreme limits to achieve this behaviour, l1 should be close
to zero or ls very large.
Another possibility to achieve a higher aspect ratio is by including higher order terms
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Chapter 7. A Landau-de Gennes theory for hard colloidal rods: defects and tactoids

in the Landau expansion. The next order term has two derivatives and is third order in
Q. There are many symmetry-allowed terms that satisfy this condition, however, the
only one that does not generate any new elasticity contributions and hence the only
one that is quadratic in n is the term

2

9
l4Qαβ∂αQρσ∂βQρσ =

l4
2
S(r)

[
(n · ∇S)2 − 1

3
|∇S|2

]
+ elasticity terms, (7.43)

see Ref. [283], which holds for the uniaxial case. Another motivation why such a term
is needed, is that it lifts the degeneracy on K11 and K33, which is also found within
Onsager theory [240], but not in LdG theory if the square gradient terms are only
quadratic in Q, see section II below Eq. (7.10).
Clearly, including Eq. (7.43) increases γ⊥, which is reflected by the positive sign of

the first term. In contrast γ‖ is reduced, since the second term is negative. Conse-
quently, for l4 > 0, the aspect ratio R1/R2 is increased. To reproduce the flat plane
result for large droplets we expand l4 = l04(µ− µIN) +O[(µ− µIN)2] with l04 > 0, and
tried to do the calculation with this contribution 7. By construction larger droplets
will have an aspect ratio closer to R1/R2 = 1.7, since µc will be closer to µIN . While
it was rather straightforward to get R1/R2 ∼ 2 by tuning l04, we found numerical
difficulties when we tried to find a larger aspect ratio, because adding Eq. (7.43) in-
troduces extra non-linearities in the Euler-Lagrange equation. Moreover, within all
of our calculations, no cusps in the droplet shape were found, while they are always
experimentally observed for R1/R2 & 2, see for example Ref. [269]. We hypothesize
that for the existence of these cusps is essential to have a large aspect ratio, and we
speculate here that we cannot find such solutions due to the adopted square-gradient
approximation. Another possibility would be that model-A dynamics is not suitable to
find these cusp(-like) solutions. Finally, we neglect any bipolarness in the director-field
texture that may also be important [241, 269]. It would be interesting to use the full
Q-tensor theory to capture this effect, since it is known within the macroscopic theory
of Eq. (7.34) that R1/R2 depends on R1 when bipolarness is included, even when γ⊥
and γ‖ are taken to be constant.
Despite its shortcomings here and there, our theory does show that adding a µ-

dependent elasticity term to the free energy allows us to predict an aspect ratio of
R1/R2 = 1.7− 2 that depends on the droplet size. The larger the droplet, the smaller
R1/R2 since the “Laplace pressure” is smaller. If the elastic coefficients are assumed
to be constant, we find no curvature effects on R1/R2. An improvement of the theory
to obtain cusp-like solutions is needed, however. We expect that the cusps have a
strong renormalizing effect on the surface tensions so that experimentally observed
aspect ratios around 4 can be achieved. The existence of these cusps is expected to be
more important than that of the “Laplace pressure”, which turns out to be important
whenever R1/R2 ∼ 2.

7In principle the full µ-dependence can be assessed by throughly comparing the Landau coefficients
with the results of the elastic constants from Onsager theory [249, 250].
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7.8 Discussion and conclusions
We have constructed a Landau theory for hard rods by a suitable order parameter
expansion of the grand potential in Sec. 7.2. The coefficients are determined by fitting
them to the bulk coexistence data and the surface tensions in a planar geometry.
This is different from the approach of Ref. [236] where the Frank elastic coefficients
from a fundamental measure theory [284] are used to determine the square gradient
coefficients. We have compared our results with known properties of Onsager theory,
such as the (bulk) bifurcation diagram in Sec. 7.3 and characteristic length scales of
the IN interface in Sec. 7.4.

The remainder of the paper was a demonstration of the resulting Landau theory
in more complex situations. We gave examples that were investigated before within
Landau theory, but not yet within a density-dependent one. In Sec. 7.5 we showed
that we can assess the isotropic core size of hedgehog defects in terms of the rod length
L and investigated how the isotropic core size depends on the bulk density. Sufficiently
far from the spinodal, we found a core size that is on the order of the length of the
constituent particles, in contrast to a thermotropic hedgehog defect, which has a core
size that is much larger than the length of the constituent molecules. In Sec. 7.6 we
studied the evolution of topological defects as function of density in confined quasi
two-dimensional geometries and examined the effects of various boundary conditions.
Sec. 7.7 describes a novel application to find the curvature dependence of the surface
tension in a self-consistent manner to explain the discrepancy between measurements
and theoretical predictions of the surface tension for tactoids. Our calculations showed
that the “Laplace pressure” renormalizes the surface tensions of the flat geometry for
the perpendicular and parallel anchoring conditions, provided that a higher order µ-
dependent elastic coefficient is included. However, cusps in the equilibrium shapes of
the tactoids are not found, and are expected be important for the renormalization of
the surface tensions.

We remark that the construction of the LdG theory is completely general. There
are various ways of determining the coefficients, for which we have only shown one
example. Moreover, these coefficients do not necessarily need to be fitted to Onsager
theory, but can also be determined from comparisons with other theories for (hard)
rods, such as fundamental measure theory [236], or experiments and simulations. An
interesting application would be to determine the Landau coeffcients from Khokhlov-
Semenov theory to describe semi-flexible chains [113, 285, 286]. Furthermore, we only
studied the grand-canonical ensemble, however, for bulk systems it is also possible to
consider the Gibbs free energy, where the pressure is the relevant intensive variable to
be tuned to describe the density-dependent IN transition for hard rods. Ultimately,
the final application determines which method is optimal. Finally, we hope that our
findings will help to provide (qualitative) insights into problems that can be very hard
to tackle within (inhomogeneous) Onsager theory or extensions thereof.
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Appendix: Euler-Lagrange equations for rods in square
confinement
In this appendix we derive the Euler-Lagrange equations that we used in section VI.
For this we have to minimize ∆Ω with respect to Q while taking into account that Q
is traceless and symmetric, and that the order occurs in the (x, y) plane. Therefore, we
introduce the Lagrange multipliers λB, κBρ and ξB to ensure these constraints in the
bulk, and for the surface we introduce likewise λS, κSρ and ξS.
We define

βB2∆Ω̃[Q] =βB2∆Ω[Q]− λB
∫
V

drδαβQβα(r)− κBα
2
εαβρ

∫
V

dr[Qβρ(r)−Qρβ(r)]

− ξB
∫
V

drδαzδβz

(
Qαβ(r) +

1

2

)
− λSL

∫
∂V

dS δαβQβα(r) (7.44)

− κSαL

2
εαβρ

∫
∂V

dS[Qβρ(r)−Qρβ(r)]− ξSL
∫
∂V

dSδαzδβz

(
Qαβ(r) +

1

2

)
.

The Lagrange multipliers λB and λS ensure that Q is traceless in the bulk and surface
respectively, while κBα and κSα (α = 1, 2, 3) ensure that Q is symmetric in the bulk
and on the surface respectively. It is then straightforward to find the Euler-Lagrange
equations by setting δ∆Ω̃/δQαβ(r) = 0 to find for α, β = 1, 2, 3 and r ∈ V

l1∂
2
λQαβ + l2∂λ∂αQλβ + l3∂λ∂βQαλ − 3aβ(µ∗ − µ)Qβα + 9b QβρQρα − 4dQλρQρλQβα =

λBδαβ + κBρ εραβ + ξBδαzδβz, (7.45)

while for r ∈ ∂V
4

9
[l1∂λQαβ ν̂λ + l2∂λQλβ ν̂α + l3∂βQαλν̂λ] + w(Qαβ −Q0

αβ) = λSδαβ + κSρ εραβ + ξSδαzδβz,

(7.46)
with ν̂ being the unit surface normal. Setting the derivatives with respect to the
Lagrange multipliers to zero, gives the constraints

Tr(Q) = 0, Qαβ = Qβα (α, β = x, y, z), Qzz = −1

2
. (7.47)

The Lagrange multipliers can be determined by evaluating the zz component of Eq.
(7.45),

λB + ξB =
3

2
aβ(µ∗ − µ) +

9

4
b+ 2dQλρQρλ, (7.48)
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while taking the trace of Eq. (7.45) gives

3λB + ξB = 2ls∂ρ∂λQλρ + 9bQλρQρλ, (7.49)

hence

λB = ls∂λ∂ρQρλ +
9

2
b

(
QλρQρλ −

1

4

)
− 3

4
aβ(µ∗ − µ)− dQλρQρλ. (7.50)

The effect of the Lagrange multipliers κρ is to symmetrize Eq. (7.45) over the indices
α and β. A similar calculation can be performed to determine the surface Lagrange
multipliers. Combining Eq. (7.45)-(7.47) and Eq. (7.50) results in the Euler-Lagrange
equations Eq. (7.28) and boundary condition Eq. (7.29).
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8 Summary

In this thesis we investigated various aspects of colloidal dispersions. We not only
emphasized the tunability of the particle properties (rods versus spheres, charging
properties of the particle surface), but also the properties of the medium in which
they reside (oil and/or water). These properties can impact the phase behaviour of
colloidal dispersions, and the effective colloid-colloid or colloid-interface interactions.
We applied concepts like (long-range) ionic screening, charge regulation, many-body
effects, and anisotropy in particle shape, to various dispersions of charged colloidal
spheres and hard needles.

In Chapter 2, we studied one-component1 dispersions of charge-regulating colloidal
spheres. These spheres were treated within a spherical-cell model to approximate the
many-body environment in which the colloidal particles can reside. This leads, for
example, to particle discharging as function of density and salt concentration, and as
such, can induce crystallization depending on the (effective) screening length, colloid
density and colloidal charge. The type of charge regulation proved to have a large
influence on the phase diagram, showing not only a reentrant fluid if the salt concen-
tration is increased (fluid-BCC(-FCC)-fluid), but also if the colloid density is increased
(fluid-BCC-fluid) in the case of colloidal spheres that acquire their charge via cationic
and anionic adsorption. This explained experiments and showed that the macroscopic
phase diagram gives insights in microscopic processes such as the charge-regulation
properties of a single colloidal particle. Moreover, we compared various crystalliza-
tion criteria quantitatively by mapping the cell model to inflated hard spheres, point
Yukawa systems and the one-component plasma.

We described binary systems of repulsive charge-asymmetric colloidal spheres in
Chapter 3. Within the cell approach we calculated thermodynamic properties and
looked at spontaneous demixing, which revealed that charge asymmetries between col-
loidal species can induce a spinodal instability. We constructed phase diagrams and
compared various boundary conditions for the colloidal charge. Moreover, we gave
estimates on the location of the crystallization transition, by an interpolation between
the one-component limits of the suspension. Finally, we looked at the repercussions of

1The number of components refers to the number of colloidal species.
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the phase diagram on sedimentation profiles, revealing that the previously theoretically
predicted segregation of the colloidal species is not necessarily associated with phase
separation. The results from the local-density approximation that we used were, how-
ever, in disagreement with experiment, because non-local contributions can become
more important if the system is close to a demixed state.
There is also the possibility for microphase separation in repulsive binary colloidal

dispersions, and we investigated this in Chapter 4. Using the binary cell model, we per-
formed many-body corrections to the colloid-colloid effective pair potential by mapping
the cell model to a system of two colloidal spheres. This approach revealed the pos-
sibility of a directional effective-interaction potential. The directionality stems from
the formation of induced dipoles, which depend on the precise local environment of
a single colloid. Such effective interactions can explain the experimentally observed
formation of alternating strings and extended clusters in binary mixtures of colloids.
Furthermore, we ended with open questions on the surprising formation of dumbbells
in one-component systems, which is still poorly understood.
In Chapter 5 we considered colloidal particles in a medium that consists of two

immiscible solvents, namely oil and water. We showed that so-called non-touching
colloids experience an effective interaction potential with the oil-water interface, that
is tunable by the Donnan potential and colloidal charge. These colloid-ion forces can
not only be tuned in range and strength, but also in being repulsive or attractive at
sufficiently large distances from the interface, and should be added to the well-known
image-charge and van der Waals potential. Furthermore, we investigated lateral colloid-
colloid interactions for colloids that can penetrate the oil-water interface, revealing
again the importance of many-body effects, as was also found in other chapters. We
suggested that the colloid-colloid lateral interaction is dominated by the small, weakly
screened bound charges at the oil-exposed side of the colloidal surface, and these are
probably more important than the many highly screened charges at the water-exposed
side.
The tunable colloid-interface interaction for non-touching colloids was explicitly com-

pared with experiments in Chapter 6. We considered two salts with the same anion,
which enabled us to tune the colloidal charge from negative to positive as a function
of ionic strength. We explicitly explained the time-dependent particle detachment and
subsequent reattachment from the interface by the addition of an organic salt to the
oil phase, by using equilibrium methods and ion dynamics. Furthermore, we explained
the Donnan-potential dependence on salt, the robustness of interfacially trapped col-
loids when the particles cannot switch the sign of their colloidal charge and, finally,
the attractive colloid-interface interaction when an organic salt was added to the water
side.
Finally, in Chapter 7, we considered the anisotropy in the particle shape in the

context of hard needles. These needles were described by a novel Landau-de Gennes
theory that accurately mimicks Onsager theory. We tested this theory that is based on
the grand-canonical ensemble in bulk and for the isotropic-nematic interface. We ap-
plied it subsequently to the hedgehog defect and showed that colloidal systems have an
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isotropic core size that is on the order of the particle size. This should be contrasted to
molecular (thermotropic) systems where the core size is much larger than the molecular
size. Furthermore, we investigated the density dependence of director field textures and
their defects for confined rods. Ultimately, we applied our theory to tactoids: liquid
crystalline droplets in an isotropic background. The experimentally observed large size
aspect ratios of these droplets are, however, not explained in our theory, if we use the
surface tensions from Onsager theory, revealing the need of additional ingredients in
our model.
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Samenvatting voor iedereen

In het dagelijks leven komen we veelvuldig in aanraking met colloïdale dispersies. Dit
soort systemen bestaan in de praktijk uit twee componenten: enerzijds hebben we een
medium (gas, vloeistof of vaste stof), en anderzijds hebben we deeltjes die een grootte
hebben tussen een nanometer en enkele micrometers (de zogenaamde colloïdale deel-
tjes), die zelf ook weer gasvormig, vloeibaar of vast kunnen zijn. In principe drinken
we dus colloïden (denk aan melk), we maken onze tanden ermee schoon (tandpasta),
maar ook ons menselijk lichaam bestaat er uit (denk aan bloed). De colloïdale deel-
tjes in deze voorbeelden zijn hier respectievelijk vetdruppels, schuurmiddel en rode
bloedcellen. Ook hebben colloïdale systemen mogelijke toepassingen als bijvoorbeeld
halfgeleiders, wat weer belangrijk is voor de materiaalkunde. In dit proefschrift heb-
ben we echter colloïden vanuit een fundamenteel oogpunt bekeken, waarbij de effectieve
wisselwerkingen, het fasengedrag, maar ook de vorm van de deeltjes centraal stonden.
Dit hebben we gedaan door naar twee modelsystemen te kijken: elektrisch geladen
bolvormige deeltjes en ongeladen harde staven, beiden wanneer ze zich in een vloeistof
bevinden.

Geladen colloïden

Het eerste modelsysteem bestaat uit bolvormige deeltjes met een netto elektrische la-
ding. De effecten van elektrische ladingen kennen we allemaal, denk aan statische
elektriciteit, bliksem of stroom die uit je stopcontact komt. Ladingen bevinden zich
echter ook in natriumchloride, beter bekend als tafelzout. Wanneer we deze smaak-
maker oplossen in water breken de zoutkristallen op in positief geladen natriumionen
en negatief geladen chloride-ionen die beiden vrij door het water kunnen bewegen.
Er zijn ook andere zouten dan tafelzout, zoals magnesiumcarbonaat, zinksulfaat, wa-
terstofbromide of tetrabutylammoniumbromide (niet allemaal even eetbaar). Wat ze
allemaal met elkaar gemeen hebben is dat de ionen waaruit ze bestaan erg klein zijn
(0.1-1 nanometer) en in tegenstelling tot colloïdale deeltjes (∼ 1 micrometer) kan je ze
niet eens met een optische microscoop zien.

Deze zoutionen kunnen binden aan het oppervlak van colloïdale deeltjes zodat deze
zelf ook effectief geladen worden. De hoeveelheid gebonden lading hangt hierbij niet
alleen af van de hoeveelheid zout in het systeem, maar ook van bijvoorbeeld de deel-
tjesdichtheid. De ongebonden ionen kunnen daarentegen vrij door het oplosmiddel be-
wegen en zullen zich herverdelen rondom de geladen deeltjes volgens het principe dat
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ongelijke ladingen elkaar aantrekken, maar gelijke ladingen elkaar afstoten. Hierdoor
ontstaat een wolk van negatieve ionen rondom positief geladen deeltjes (en uiteraard
een positieve wolk rondom negatief geladen deeltjes). Deze wolk van vrije lading en
de gebonden oppervlaktelading vormen samen de elektrische dubbellaag. Wanneer we
echter de lading van het colloïdale deeltje van een afstand bekijken, dan is het net
alsof de lading lager is dan de daadwerkelijke lading: de tegengesteld geladen wolk
schermt de lading van het deeltje af voor de buitenwereld. Deze afscherming is sterker
wanneer er meer vrije ionen in het systeem zijn. Er zijn dan immers meer tegenionen
beschikbaar om de lading van het colloïdale deeltje “effectief” te neutraliseren; hierdoor
kunnen de ionen die hetzelfde ladingsteken hebben als het deeltje dichterbij komen en
zijn de dubbellagen kleiner.
Er is daarom een drastisch verschil tussen geladen colloïdale deeltjes in water of in

een olie. In olie is het veel moeilijker om vrije ionen te maken: dit kunnen we wederom
illustreren met tafelzout, dat veel moeilijker op te lossen is in olijfolie dan in water.
Dit levert twee verschillen op tussen een colloïdaal watersysteem en een colloïdaal
oliesysteem. Ten eerste zijn de deeltjes lager geladen in olie omdat er minder lading
beschikbaar is dat zich aan het oppervlak kan hechten. Het tweede verschil is dat de
afscherming van deze lading ook veel zwakker is dan in bijvoorbeeld water, waardoor
elektrostatica toch belangrijk is. Olieachtige systemen zijn dus interessant omdat je
wel geladen deeltjes kan krijgen, maar de dubbellagen zijn langgerekter. Dit is anders
dan in de waterachtige systemen die al uitvoerig bestudeerd zijn in de literatuur. We
richten ons daarom voornamelijk op de oliën, alhoewel deze niet altijd direct geschikt
zijn voor consumptie.

Fasengedrag

Het fasengedrag van geladen deeltjes hebben we uitvoerig in kaart gebracht in dit proef-
schrift. Geladen colloïdale bollen kunnen zich bijvoorbeeld wanordelijk ordenen zoals
in een gas of vloeistof. Soms is het echter voor het systeem gunstiger als de deeltjes zich
spontaan ordenen in een kristalrooster waardoor de elektrostatische repulsie tussen de
deeltjes minimaal is: er wordt dan een zogenaamd Wignerkristal gevormd. Intuïtief
gezien zal een dergelijke fase gevormd worden wanneer we de deeltjesdichtheid in het
systeem verhogen. Iets soortgelijks vinden we immers ook bij de vorming van edelste-
nen, een proces dat vaak onder hoge druk en dus hoge deeltjesdichtheid voorkomt. De
aanwezigheid van dubbellagen en het feit dat deeltjes kunnen ontladen om repulsies
te verminderen, maakt ons systeem echter een stuk complexer. Een ontdekking die
we bijvoorbeeld hebben gedaan is dat het mogelijk is om een colloïdaal kristal weer te
laten smelten door de dichtheid te verhogen (hoofdstuk 2). Dit blijkt alleen mogelijk
te zijn wanneer zowel positieve als negatieve ionen op het colloïdale deeltjesoppervlak
kunnen binden, waardoor deeltjes snel genoeg kunnen ontladen.
Voegen we een tweede type deeltjes toe aan het systeem dan krijgt het fasenge-

drag een extra dimensie. Indien de ladingen van de twee typen deeltjes verschillen in
grootte, maar niet van teken, dan kan het systeem ontmengen in een fase die rijk is
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aan laag geladen deeltjes en een fase dat rijk is aan hoog geladen deeltjes. Een der-
gelijk ontmenggedrag zou mogelijk invloed kunnen hebben op het sedimentatieprofiel:
de verdeling van deeltjes over de hoogte als we zwaartekracht zijn werk laten doen.
Dit kan leiden tot tegenintuïtieve fenomenen zoals het feit dat zware deeltjes boven
lichte deeltjes kunnen zweven, puur vanwege het verschil in ladingen en massa. Deze
fenomenen hebben we besproken in hoofdstuk 3.

Vloeistoffen en kristallen zijn voorbeelden van macroscopische fasen, we kunnen het
verschil tussen deze twee namelijk gewoon met ons blote oog waarnemen. Ordening kan
echter ook op een veel kleinere schaal gebeuren, zoals we kunnen lezen in hoofdstuk
4. Deeltjes die verschillen in lading kunnen structuren vormen die alleen onder de
microscoop te zien zijn. Zo kunnen deeltjes zich ordenen in een slangachtige structuur
waarbij hoog geladen en laag geladen bollen elkaar afwisselen. Dit fenomeen blijkt het
gevolg te zijn van een dipoolmoment dat op de deeltjes ontstaat wanneer ze ontladen
op het punt waar ze elkaar naderen. Dit elektrische dipoolmoment is vergelijkbaar met
een magneet: als twee dipolen oplijnen dan trekken ze elkaar aan, anderzijds stoten
ze elkaar af wanneer ze in tegengestelde richting wijzen. Dit is een voorbeeld van een
effectieve wisselwerking : de manier hoe deeltjes elkaar “voelen” als we de effecten van
het medium (olie of water) en de ionen meenemen. Dit is tevens het tweede centrale
begrip in dit proefschrift naast de term fasengedrag.

Afstembare effectieve wisselwerkingen

Effectieve wisselwerkingen zijn niet alleen belangrijk voor het fasengedrag van colloïden,
maar het blijkt ook belangrijk te zijn bij het vangen van deeltjes nabij een grensvlak.
Grensvlakken zijn scheidingen tussen twee fasen van een verschillende aard, zoals een
muur met lucht, of een bal in water. Omdat olie en water niet mengen, zal er dus een
ook een olie-water grensvlak ontstaan. Het is dan mogelijk om deeltjes te vangen bij
een dergelijk grensvlak door het deeltje te laten uitsteken in het water, maar ook een
gedeelte te laten uitsteken in de olie. Mocht dit het geval zijn, dan zorgen oppervlak-
tespanningseffecten ervoor dat het erg moeilijk is om de deeltjes van het grensvlak los
te krijgen.

In hoofdstuk 5 en 6 hebben we gekeken naar een mechanisme om deeltjes te vangen
nabij een olie-watergrensvlak zonder dat de deeltjes contact hebben met water. Dit is
mogelijk omdat de deeltjes Van der Waals krachten ondervinden die de deeltjes van
het grensvlak af willen duwen (dit zijn dezelfde krachten waardoor gecko’s op muren
kunnen klimmen, waar ze overigens attractief zijn). Doordat het geladen deeltje de
olie en het water in verschillende mate polariseren, ontstaat er ook een aantrekking op
basis van elektrostatica (de spiegelladingattractie), en deze hangt niet af van het teken
van de lading. Precies op het punt in de ruimte waar deze afstotende en aantrekkende
krachten elkaar opheffen, staan de deeltjes stil en hierdoor worden ze effectief enkele
nanometers van het grensvlak gevangen.

Wat echter vaak in de literatuur wordt vergeten is dat er ook nog ionen zijn in het
systeem. De ionen verdelen zich over het water en de olie, en zoals we intuïtief wellicht
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al weten zullen er meer ionen naar de water gaan. Deze scheiding in lading zorgt er
uiteindelijk voor dat het grensvlak zelf ook geladen wordt: afhankelijk van het type io-
nen zal de waterkant positief of negatief opladen, terwijl de oliekant dan respectievelijk
negatief of positief geladen wordt. Dit geeft aanleiding tot twee dubbellagen bij het
grensvlak (eentje in water en eentje in olie) en deze beïnvloedt de dubbellaag van het
deeltje. Echter omdat het grensvlak geladen is, zal er dus ook een potentiaalverschil
ontstaan over het grensvlak, en dit potentiaalverschil leidt tot een elektrische kracht die
repulsief of attractief is op basis van het teken van het potentiaalverschil (wat afhangt
van de type ionen in het systeem), en het teken van de deeltjeslading. Doordat de
deeltjes het grensvlak niet doordringen, kunnen we de deeltjes dus van het grensvlak af
of er naartoe laten bewegen. Dit allemaal door met de lading van het deeltje of de type
ionen in het systeem te spelen. Doordat we deeltjes kunnen vangen dichtbij een grens-
vlak maar ook ze ervan af kunnen laten duwen, vormt dit fenomeen een interessante
mogelijkheid om emulsies te maken waarbij we de stabiliteit ervan kunnen veranderen
door middel van zout.

Anisotropie

Het laatste thema in dit proefschrift gaat over de anisotropie in de vorm van colloï-
dale deeltjes, en in het bijzonder die van (ongeladen) harde staven. We spreken over
anisotropie wanneer een bepaalde eigenschap van een specifieke richting afhangt. Om
staven te beschrijven hebben we, in tegenstelling tot bollen, twee lengtecoördinaten
nodig, zoals de diameter en de lengte. We bekijken hierbij de situatie waarbij de lengte
van de deeltjes veel groter is dan de diameter. Deeltjes met een langgerekte vorm heb-
ben de eigenschap dat ze kunnen oplijnen in een specifieke voorkeursrichting zonder
dat ze hun massamiddelpunten in een kristalrooster ordenen. In dit geval spreken we
van een nematische fase en deze kan in een colloïdaal stavensysteem gevormd worden
door de deeltjesdichtheid te verhogen. Een nemaat is een voorbeeld van een vloeibaar
kristal: een aggregatietoestand die wel ordening vertoont (de deeltjes wijzen allemaal
één kant op), maar de ordening is niet perfect, waardoor het wel bepaalde karakteris-
tieken heeft van een vloeistof. Vloeibare kristallen kennen we het wellicht het beste
in dagelijkse leven als toepassing in het LCD (Liquid Crystal Display) scherm. Een
andere toepassing is “smart glass”: glas dat doorzichtig of ondoorzichtig is, afhankelijk
of er een elektrisch veld over heen staat.
In hoofdstuk 7 hebben we colloïdale staven beschreven puur in termen van een orde-

parameter (zonder expliciet gebruik te maken van bijvoorbeeld de deeltjesdichtheid).
Een ordeparameter is een grootheid waarmee we een geordende fase (nemaat) kunnen
onderscheiden van een wanordelijke fase (vloeistof zonder uitgelijnde deeltjes). Het
voordeel van een dergelijke beschrijving is dat je makkelijker berekeningen kan doen
aan nematische systemen en daardoor dus ook makkelijker voorspellingen kan doen.
We hebben de theorie getest door eerst het fasengedrag in kaart te brengen en ver-
volgens hebben we gekeken naar het grensvlak tussen een “normale” vloeistof en een
nemaat.
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Omdat de ordening in een nemaat niet perfect is, hebben we ook naar zogenaamde
defecten gekeken: fouten in de oplijning van staven in een bepaalde richting. Een
voorbeeld is het egeldefect: als de staven radieel uitgelijnd zijn, zal dit ertoe leiden
dat de richting in het centrum onbepaald is. Dit brengt enorme energiekosten met zich
mee waardoor de kern van een dergelijk defect smelt tot een normale (niet-nematische)
vloeistof. We hebben met onze theorie de grootte van een dergelijke kern afgeschat en
vergeleken met moleculaire systemen. Tot slot hebben we ook gekeken naar defecten
waar de nematische fase in een eindige doos wordt geplaatst, waarbij de staven een
voorkeur hebben om parallel uit te lijnen aan de muren.

Het laatste onderwerp in het kader van anisotropie is de vorming van vloeibaar kris-
tallijne druppels, de zogenaamde tactoïden. Deze druppels zijn anders dan waterdrup-
pels omdat ze niet bolvormig zijn, maar langgerekt. We hebben de verhouding tussen
de lengte van deze druppels ten opzichte van hun diameter bestudeerd als functie van
de tijd, en we hebben gezien hoe we de druppels zo langgerekt mogelijk kunnen maken
op basis van de grensvlakspanning en de kromming van de druppel. Kromming bleek
hierbij echter weinig invloed te hebben en we concludeerden dat er extra ingrediënten
in de theorie nodig zijn om experimenten te verklaren, die nog langgerekter bleken te
zijn dan de voorspellingen van de theorie.

Tot slot
In dit proefschrift hebben we verschillende aspecten van colloïdale dispersies bekeken.
Het feit dat de deeltjes zich bevinden in een vloeistof die qua intrinsieke eigenschappen
en inhoud (de ionen) veranderd kunnen worden, geeft aanleiding tot een breed scala aan
fenomenen. Denk hierbij aan het fasengedrag, maar ook aan de effectieve interacties
tussen bijvoorbeeld een colloïdaal deeltje en een olie-watergrensvlak. Het belangrijkste
hierbij is dat veel van deze eigenschappen af te stemmen zijn door parameters zoals
zoutconcentratie, deeltjesdichtheid, druk of temperatuur te variëren. Alhoewel we dit
voornamelijk uit een fundamenteel oogpunt hebben bekeken, zal dit uiteindelijk ook
tot meer begrip leiden voor bijvoorbeeld het maken van toepassingen, zoals voedings-
middelen, materialen, medicijnafgifte en veel meer, aangezien colloïden al heel lang een
belangrijke rol spelen in ons dagelijks leven.
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