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dr. Wouter Beugeling (UU)



Abstract

The Lieb lattice is an interesting lattice structure that can host interesting topological phases and novel
fermionic superfluids. The fact that this two-dimensional lattice has three sites per unit cell, leads to
three bands in the spectrum for tight-binding models. An intrinsic spin-orbit coupling term opens
gaps between the three bands, which in addition, host a quantum spin Hall effect. The intricate nature
of the multi-gap structure opens up the possibility to realize topological phase transitions driven by
the next-nearest neighbour hopping t′, which are accompanied by a change of spin Chern numbers
of the various bands. We envisage a realization of such phenomena in optical lattices under shaking,
where the ratio of t′ to the next-nearest hopping t can be tuned to, in principle, any value. Finally, we
will consider interaction-driven instabilities towards fermionic superfluidity on the Lieb lattice, with
a special emphasis on systems with a point-like Fermi surface. Various types of possible superfluids
will then be discussed.
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Chapter 1

Introduction

Our main focus in this thesis will be the Lieb lattice: a two-dimensional square lattice with a basis
that consists of three sites. It occurs for example in the the high-temperature tetragonal phases of
the so-called cuprates: layered, ceramic materials that exhibit the phenomenon of high-temperature
superconductivity. The sites in this lattice then play the role of the copper and oxygen atoms that
provide the periodic potential in which the electrons can move. Moreover, it is believed that the
superconductivity occurs in these layers. An example of a high temperature superconductor (HTSC)
is given in Figure 1.1, where we also display the CuO planes that have the geometry of a Lieb lattice.
Since the HTSCs are one of the prime motivations of studying this lattice, we feel it to be appropriate
to sketch a few of its features in this introduction, although the topics in the next few chapters will
not be directly related to the phenomenon of high-temperature superconductivity. However, some of
the ideas that were proposed in the context of the cuprates will still be used to investigate various
properties of the Lieb lattice. Here we are referring to the circulating current states proposed by C.M.
Varma: states that break time-reversal symmetry, while leaving the discrete translational symmetry of
the lattice intact.

1.1 A general view on the cuprates

It is remarkable that so many years after the discovery of the cuprates in 1986 by J.G. Bednorz and
K.A. Müller [2], we still do not understand why these materials can become superconducting. Maybe
this reflects the complexity of a problem at which possibly charge, spin, orbital and lattice degrees
of freedom couple strongly with each other. Despite the complicated nature of these compounds, it
did not take long until the charge carriers in the superconducting phase were identified as Cooper
pairs [3], just like in the conventional superconductors that can be descibed by the microscopic the-
ory of Bardeen, Cooper and Schrieffer (BCS) [4]. However, there is some evidence that unlike in
BCS superconductors, the superconducting order parameter transforms non-trivially according to the
point-group symmetry of the underlying lattice. One of the most convincing experiments that showed
this was due to Tsuei et al. [5]. By using scanning SQUID magnetometry, they pointed out that the
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Figure 1.1: (a) Chemical structure of La2−xSrxCuO4 (LSCO), where the CuO layers have the geom-
etry of the Lieb lattice. Figure adapted from Ref. [1]. (b) The unit cell of the Lieb lattice
is indicated, together with the three sublattices A, B, and C.

cuprates are d-wave superconductors, instead of conventional s-wave superconductors. One of the
consequences of such a pairing symmetry is the emergence of nodal quasiparticles, excitations that
cost no energy, which can be seen in, for example, dynamical spin susceptibility or optical conduc-
tivity measurements [6]. However, the exact pairing symmetry is not a completely resolved issue yet,
since there are still experiments contradicting this result [7].

Another subject of debate is the underlying pairing mechanism. The ‘conventional’ retarded
phonon mediated interactions could not explain the high critical temperature Tc that was found in
some of the cuprates, and for this reason many other pairing mechanism were proposed, such as a me-
diation by spin fluctuations, excitons or polarons. All these proposals literally pushed the BCS idea
to its limits. However, knowing the exact pairing mechanism is just one of the necessities for BCS
theory to work, the other being the occurrence of an instability within the Fermi surface. This just
means that the normal state must be a Fermi liquid if we want to apply BCS theory. However, there
is ample evidence that parts of the normal state in the phase diagram cannot be explained within this
view [8]. Before touching this point, we need to explain the general phase diagram for the cuprates.

1.1.1 Structure and phases of the cuprates

A first look at the cuprates reveals a very complicated chemical structure, which is a possible reason
why the physics of these compounds is difficult to understand. Besides their structural diversity and
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Figure 1.2: Phase diagram of LSCO as a function of doping. Figure adapted from Ref. [7].

complexity, there are also many similarities. All cuprates have CuO2 planes, with the geometry of a
Lieb lattice, which are separated by layers containing atoms like Ba, Tl, La, and O. The latter layers
are often thought of as charge reservoirs: they provide the charge carriers to the CuO2 planes, in
which the superconductivity is believed to occur. Let us take La2−xSrxCuO4 (LSCO) as an example
(see Figure 1.1 (a)). We observe that every copper atom is surrounded by six oxygen atoms in a
distorted octahedral arrangement. It is not a perfect octahedron, since the bond length (∼2.4 Å) of
copper with an oxygen from the charge reservoir (the so called apical oxygen) is longer than that of
a bond with an oxygen from the CuO2 plane (∼1.9 Å). The first type of bond is thus weaker than
that of the in-plane Cu-O bonds, giving rise to the thought that the essential physics happens in the
two-dimensional CuO2 planes.

In the undoped regime, all cuprates are anti-ferromagnetic Mott insulators: materials that are insu-
lators because of interactions. A superconducting region is formed upon doping above a critical value
xc. The parent compounds are doped upon the insertion of substitutional or interstitial impurities,
resulting in either fewer electrons donated to the CuO2 planes (the material is then called hole-doped
or p-doped) or an excess of electrons (called electron-doped or n-doped). The critical temperature Tc
of the superconducting regime is first increased by adding dopants, this region is called underdoped.
After a while Tc decreases upon increasing doping, this region of the superconducting dome is called
overdoped. The regions for which Tc is around its maximum is called optimally doped.

A typical phase diagram as function of doping is shown in Figure 1.2 for La2−xSrxCuO4 (LSCO),
a hole-doped cuprate. Replacing La3+ randomly by Sr2+ results in fewer electrons donated to the
CuO2 planes. This introduces holes in these layers and this fact is supported by measurements of
the sign of the Hall coefficient. After the material is sufficiently doped, it exhibits a superconducting
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phase (SC), preceded by a spin glass phase, as shown in the phase diagram of Figure 1.2. The critical
temperature is about 40 K when optimally doped. At sufficiently high temperatures, there is a phase
transition from the superconducting state to the normal state. Finally, we observe that there is also
a structural phase transition in this material, from a high-temperature tetragonal phase to a low tem-
perature orthorhombic structure. This structural phase transition is accompanied by the tilting of the
octahedra, effectively elongating the crystal in certain directions.

Remarkably, the concept of doping occurs in all the cuprates. There are, however, some differ-
ences. For example, in the hole-doped cuprate YBa2Cu3O7−x (YBCO), the optimally doped material
has a much higher Tc than LSCO (∼ 92 K). This could be attributed to the fact that this material has
two CuO2 layers instead of a single layer between subsequent charge reservoirs. There are also struc-
tural differences: YBCO is characterized by having small CuO chains in the charge reservoir, that are
absent in LSCO. These affect some properties, such as the optical conductivity. From this discussion,
it should be clear that there are some differences among the HTSCs, but in the rest of the thesis we
will only focus on the properties that are common to most of the cuprates. For this, we are going to
have a closer look at generic features of the phase diagram.

1.1.2 Properties of the normal state in high-temperature superconductors

A careful look at the phase diagram for LSCO in Figure 1.2 already shows a richer structure than in
the BCS superconductors. For example, the material at zero doping (the so-called parent compound)
is a Mott insulator. The general view on this is that the strong Coulomb repulsion U on the Cu sites
is large enough to restrict the motion of the charge carriers at half filling (i.e. one electron per Cu
site). Metaphorically, it is as if the electrons are in a complete stand-still, just like cars in a traffic
jam [9]. In this view, the oxygen atoms in the CuO layers are most often neglected. If we would
take them into account however, the cuprates are better characterized as being charge-transfer (CT)
according to the Zaanen-Sawatzky-Allen scheme [10]. The difference is that the motion of charges
is not restricted by the large U , but by the charge-transfer energy ∆pd between the orbitals of Cu and
O. Because ∆pd < U , there is a CT band composed mainly of oxygen orbitals, that lies between the
upper and lower Hubbard band [11]. At half-filling, the system is filled up to this band, meaning that
the doped holes will mainly reside on the O sites. However, in n-doped materials the electrons will
mainly reside on Cu sites.

The phase diagram of LSCO shown in Figure 1.2 does not reveal the full complicated structure
of the normal state. Lead by measurements of transport properties (e.g. electrical resistivity), ther-
modynamic properties (e.g. heat capacity, magnetic susceptibility), structure (in the spin or charge
sector with the help of neutron scattering, scanning tunneling microscope (STM) or angle-resolved
photoemission spectroscopy (ARPES)) or some other spectroscopic properties (such as the Knight
shift in nuclear magnetic resonance (NMR) spectroscopy, or Raman spectroscopy), we can draw ad-
ditional lines in the phase diagram for the cuprates. A particular view is shown in Figure 1.3, where
the ‘normal’ phase is split into three regions. However, different experiments yield different lines
in the phase diagram, so the distinction between the mentioned regions is not well-defined. In other
words, the transition between these various regions are not sharp and should be seen as cross-overs.
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Figure 1.3: Generic phase diagram for hole-doped cuprates. Specific features found for some of the
cuprates are omitted, such as a spin glass phase. Figure adapted from Ref. [12].

Moreover, different experiments probe different length and/or time scales. Also, some techniques are
surface based (e.g. STM or ARPES), while others measure bulk properties (e.g. neutron scattering).
Some experiments probe order in real space (e.g. STM), while others probe order in momentum
space (e.g. ARPES). This makes the comparison between the different experiments very difficult. Fi-
nally, not many types of cuprates are easily synthesized in the whole doping range of interest, making
comparisons between different materials difficult.

Let us now investigate each of the regimes in the normal state in more detail. In the far overdoped
regime, the normal state behaves like a Fermi liquid. In this region, if the temperature is sufficiently
low, there are only quasiparticles. This results in an in-plane resistivity which scales with temperature
like ρ ∼ T 2 at low temperature. Instead, close to the optimally doped regime, the linear resistivity
scales linearly with temperature for sufficiently low T . Another unusual feature of the resistivity is
the large anisotropy associated with it. The temperature dependence of the resistivities in-plane are
different from the resistivity perpendicular to the Cu-O planes. These experiments suggest that the
charge carriers move indeed in the Cu-O planes, as it was mentioned before, but that they tend to
localize in the direction perpendicular to these planes. Finally, it is known that the Hall coefficient
in this region is strongly temperature dependent. Because of this behaviour, region I in Figure 1.3 is
called ‘strange metal’ or marginal Fermi liquid (MFL).

In the MFL region of the phase diagram, it is believed that the concept of a quasiparticle is lost.
Ideas about quantum criticality are very popular in the theoretical community to explain the properties
of this part of the phase diagram. The linear resistivity can then be explained by the fact that the
current is carried by quantum fluctuations, which appear because of the close proximity to a quantum
critical point (QCP), see Figure 1.3. A QCP denotes the occurrence of a second order phase transition
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Figure 1.4: (a) Representation of ARPES spectra for underdoped cuprates at an antinodal point. Be-
low Tc a well-defined quasi-particle peak is observed, which disappears when raising the
temperature. Notice that a gap persists for all T . Figure adapted from Ref. [14]. (b)
Evolution of the Fermi surface upon raising the temperature. Below Tc (left panel) a d-
wave node exists, which evolves into a gapless Fermi arc above Tc (middle panel). When
the four Fermi arcs meet, a fully connected Fermi surface is formed (right panel). Figure
adapted from Ref. [15].

at T = 0. This emphasizes the role of quantum fluctuations in this phase transition, as thermal
fluctuations are absent at this point. Note that a QCP is difficult to detect, since its appearance may be
obscured by the presence of superconductivity.

Maybe the most complicated part of the normal state is the region with a question mark. In this
region, an anisotropic loss of states in the single particle excitation spectrum is observed, even though
the material is not superconducting. This is called the pseudogap phase and is one of the most intrigu-
ing features of the cuprates. The presence of the pseudogap expresses itself in NMR measurements of
the Knight shift, Raman scattering, neutron scattering, but also in transport measurements such as the
electrical resistivity [13].

The number of experiments performed in the pseudogap regime is vast. Many unconventional
features are observed in this part of the phase diagram [7, 13]. Here, we will shortly discuss some
observations done with ARPES. In ARPES, the photoemission intensity at fixed momentum is mea-
sured, which is roughly equal to the probability of finding an electron at a given momentum and
energy. When spectra are recorded in the SC phase at a point of the Brillouin zone where the d-wave
gap is maximal, at the so-called antinodal point, we observe spectra as shown in Figure 1.4 (a). The
intensity is low above the Fermi energy, which indicates the presence of a gap. Moreover, below Tc,
a peak is observed in the spectrum which corresponds to a quasiparticle, a well-defined electronic
excitation. Upon raising the temperature, the peak becomes smaller and ultimately disappears, while
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the gap remains. This is an indication that quasiparticles may be absent in the pseudogap phase. In
contrast, far in the overdoped region (not shown), the gap disappears above Tc, but there is still a
quasiparticle peak. The disappearance of a quasiparticle peak is also observed in the MFL region of
the phase diagram.

Another interesting feature of the pseudogap region can be seen when the electronic dispersion
is probed as a function of momentum. In the SC regime, there is a gap everywhere except at the
nodal points in momentum space, because of the d-wave nature of the superconductor. When the
temperature is raised above the critical temperature, these so-called Fermi points are replaced by
Fermi arcs. These arcs eventually grow until they meet each other and form a connected Fermi surface
(Figure 1.4(b)). Here it becomes clear why it is difficult to understand the nature of the pseudogap. As
of now there exists no framework to handle electronic systems without a well-defined Fermi surface.
Nevertheless, there are many theories proposed to describe the nature of the pseudogap.

One of the earliest ideas about this subject is that the occurrence of a pseudogap is an indica-
tion that preformed Cooper pairs develop [16], or stated differently, that it has to do with a form of
fluctuating superconductivity. Here, it is argued that it is possible that phase coherence occurs at a
later stage than the formation of the Cooper pairs. This needs to be contrasted with the conventional
superconductors, for which BCS theory assumes that pairing and phase coherence occur at the same
point in the phase diagram, namely at Tc. Although the idea is relatively old, it still finds some recent
experimental support [17].

Another popular idea is that the pseudogap phase is accompanied by many types of order which
compete with each other. The idea of competing, hidden order in the pseudogap phase makes the
various ordering mechanisms in the cuprates at least as rich as the ones observed in the field of soft
condensed matter. In this research area, various inhomogeneous structures are well known, such as
those found in copolymer blends or in self-assembling concentrated amphiphilic solutions [18]. In
contrast to what is found in soft matter physics, in the cuprates it is the electrons that may order in an
inhomogeneous fashion and not the molecular constituents. In addition, most of the proposed orders
have experimental evidence, suggesting that various types of order may compete and even coexist with
each other. Another unclear aspect is whether they favor or compete against superconductivity. This
makes the pseudogap region the playground of many exotic ordering phenomena. Notable examples
are various forms of charge segregations, such as the the stripes discovered by Zaanen and Gunnarson
[19] (for a review on stripe physics see [20]), quantum liquid crystals or the resonating valence bond
(RVB) state proposed by Anderson [21]. However, we will only focus on yet different proposals:
the so-called spontaneous diamagnetic currents. This is because we will use them as inspiration to
investigate various properties of the Lieb lattice in this thesis later.

1.2 Mesoscopics of the pseudogap phase: spontaneous diamagnetic cur-
rents

Before we can discuss the spontaneous diamagnetic current phases, we have to discuss the models
that are used in this context. Most of the models that are trying to describe the behaviour of the
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cuprates, focus their attention on the CuO2 planes. It is believed that the comprehension of the physical
properties of these two-dimensional systems is essential for understanding the mechanism triggering
superconductivity in the cuprates. At the end, it may be necessary to couple these layers to each
other because in two dimensions it is not possible to find true long range order via a spontaneously
broken continuous symmetry. This fact follows from the Mermin-Wagner-Hohenberg theorem [22,
23]. Notice that it is essential that the symmetry to be broken is continuous, showing why this theorem
does not apply, for instance, to the two-dimensional Ising model.

1.2.1 Electronic models

A very popular way to model the CuO2 planes is by using the tight-binding approach combined with
an on-site Coulomb repulsion. The latter is taken into account because we know, for example, from
LSCO, that the undoped material is a Mott insulator. In such a model only the highest occupied
orbitals of Cu and O are taken into account. Due to the underlying lattice structure, the degeneracy of
the d orbitals of Cu is lifted, such that the highest occupied orbital is of dx2−y2 character. For oxygen
these are the px and py orbitals. If one defines the vacuum to be the state for which Cu and O attain
their closed-shell configuration, we can define fermionic creation (annihilation) operators p̂†j,σ (p̂j,σ)
that create (destroy) a hole with spin σ on a p orbital of oxygen on site j. Similarly, this can be done
for a d orbital of Cu, for which we will denote the creation (annihilation) operator for a hole with spin
σ on site i by d̂†i,σ (d̂i,σ). Then it is possible to write down a Hamiltonian Ĥ3B

Ĥ3B =− tpd
∑
〈ij〉,σ

(
p̂†j,σd̂i,σ + h.c

)
− tpp

∑
〈jj′〉,σ

(
p̂†j,σp̂j′,σ + h.c

)
+ εd

∑
i,σ

d̂†i,σd̂i,σ

+ εp
∑
j,σ

p̂†j,σp̂j,σ + Ud
∑
i

d̂†i,↑d̂i,↑d̂
†
i,↓d̂i,↓ +

Up
2

∑
j

p̂†j,↑p̂j,↑p̂
†
j,↓p̂j,↓

+ Vdp
∑
〈ij〉,σ

d̂†i,σd̂i,σp̂
†
j,σp̂j,σ + Vpp

∑
〈ij〉,σ

p̂†i,σp̂i,σp̂
†
j,σp̂j,σ. (1.1)

This model is called the Emery model [24] or simply the three-band Hubbard model, because we have
three orbitals in a unit cell with Hubbard-like interactions, see Figure 1.5. It takes into account the
hybridization between nearest neighbour Cu and O atoms by a hopping parameter tpd. Moreover, a
O-O hopping term is included with parameter tpp. The on-site energies for occupying a 2p (3d) orbital
is given by εp (εd). The strong on-site (Coulomb) repulsion when two holes occupy the same 2p (3d)
orbital is taken into account by the parameter Up (Ud). Nearest-neighbour Coulomb repulsion is taken
into account by Vpd and Vpp. At half-filling (one hole per site, meaning no dopant) and in the strong-
coupling regime, the model reduces to a Heisenberg model with a superexchange 1 antiferromagnetic
coupling. This is just as we expect, because it is known that the Heisenberg model provides a good
description of the undoped cuprates.

It did not take long before an effective Hamiltonian for the three-band model was written down,
which only took into account the copper sites (although it is still controversial whether this is allowed).
This idea was pointed out by F. C. Zhang and T. M. Rice [26]. They showed that the hybridization

1This is called superexchange because it is a coupling of the copper cations through a non-magnetic oxygen anion.
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Figure 1.5: Unit cell for the desciption of CuO2 planes in the Emery model. The various hopping
and interaction paramters are shown, together with the orbital degrees of freedom that are
taken into account of Cu

(
dx2−y2

)
and O (px, py). Figure adapted from Ref. [25]

strongly binds a hole on each square of O atoms to the central Cu2+, to form a local singlet. This so
called Zhang-Rice singlet (with S = 0) is equivalent to removing a spin on a copper site, such that the
effective theory described holes (the spin singlets) on a square lattice of copper spins. The effective
Hamiltonian for such a system is the t− J model,

Ĥt−J =J
∑
〈ij〉

(
Ŝi · Ŝj −

1

4
n̂in̂j

)
− t

∑
〈i,j〉;σ

[
ĉ†i,σ(1− n̂i,−σ)(1− n̂j,−σ)ĉj,σ + h.c.

]
. (1.2)

Here, Ŝi denotes the spin-1/2 operators at sites i for the square lattice of copper and J is the antiferro-
magnetic nearest-neighbour coupling. Every site in this model can have three possible states, namely
a Cu 3d hole with spin up or down, or a singlet state which corresponds to an empty site. The terms
on the second line describe the hopping of the 3d holes on the lattice without changing their spin, for
which double occupancy is forbidden by the projection operator 1 − n̂i,−σ. Finally, we see that the
t − J model is actually equivalent to another much studied model in the field of high-temperature
superconductivity, namely the single-band Hubbard model with Hamiltonian Ĥhub

Ĥhub = −t
∑
〈i,j〉;σ

(ĉ†i,σ ĉj,σ + h.c.) + U
∑
i

(
n̂i,↑ −

1

2

)(
n̂i↓ −

1

2

)
, (1.3)

in the limit of strong on-site repulsions U . This model was proposed by Anderson to describe the
essential physics of the cuprates [21].

13



Figure 1.6: (a) Staggered currents for the DDW order and staggered π-flux phase. Only the Cu sites
are taken into account. Every plaquette has a flux of ±π. Picture adapted from Ref. [27].
(b) Circulating currents as proposed by Varma. Picture adapted from Ref. [12].

1.2.2 Staggered π-flux phase and d-density wave order

Let us first consider the t − J model. When treated in mean-field, a special solution was found by
Kotliar [28] and independently by Affleck and Marston [29], which was called the staggered π-flux
phase. This solution is described by a complex hopping parameter between the various Cu sites (the
oxygen atoms are not taken into account) with a phase chosen such that there are staggered orbital
currents flowing around plaquettes in the Cu planes, see Figure(1.6)(a). This induces a flux of ±π in
every plaquette, hence the name staggered π-flux phase. These currents give rise to alternating small
moments, which are difficult to detect experimentally [30]. This phase breaks parity, time-reversal,
translational and rotational symmetries.

The energy dispersion of the π-flux phase shows many interesting features. It exhibits an energy
gap, as it should for describing the pseudogap regime. Interestingly, this gap vanishes at the nodal
points located at (±π/2, ±π/2). At these points Dirac cones emerge, meaning that the dispersion
increases linearly around these points [31]. Finally, we remark that the emergence of a π-flux phase
can be put in a more general context of gauge theories (such as SU(2)), where it is believed that this
phase emerges upon doping, since in that case the gauge invariance is lifted [31].

The idea of staggered fluxes was put into a more general setting by Nayak [32]. He proposed that
the occurrence of staggered fluxes is a natural consequence of the appearance of d-wave supercon-
ductivity in the cuprates. By imposing an order parameter with d-wave symmetry, he showed that the
competition with other order parameters was able to describe some of the features of the pseudogap
phase [33]. If one would have imposed s-wave symmetry, the same order parameter would describe
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charge density waves (CDW). Hence, this type of order was called d-density wave (DDW). The DDW
order breaks parity, time-reversal, translational and rotational symmetries, because also here the alter-
nating current patterns gives rise to magnetic moments. As of now, however, this type of order has no
experimental evidence.

1.2.3 Circulating current phases

One of the main assumptions of the staggered flux phase and DDW order is that the oxygen atoms are
not taken into account to describe the CuO planes. Chandra Varma, however always believed that the
oxygen atoms cannot be neglected. By doing a suitable mean-field coupling of a three-band Hubbard
model, he proposed a phase similar to the currents found in the DDW order [12]. However, here the
orbital currents flow around O-Cu-O plaquettes. An example of such a circulating current (CC) phase
or Varma phase is shown in (Figure 1.6(b)). With this construction, Varma could explain some of the
features in the pseudogap phase. Moreover, the fluctuations in the order parameter that provide these
orbital currents could be used as a pairing mechanism to get d-wave superconductivity at a sufficiently
low temperature [34]. Finally, we note that Varma’s construction heavily relies on the existence of a
QCP. This is in contrast to Anderson’s RVB picture, where the pseudogap is proposed to be the result
of fluctuations towards a d-wave superconductor.

Because of the more involved lattice geometry when oxygen is taken into account, there are several
possibilities for the orbital currents to flow. We will see various possibilities in this thesis. However
for now, we note that the Varma phase is unique in that it only breaks time-reversal symmetry, but
leaves the symmetry of the lattice intact, giving experimentalists a handle for detecting this type of
order. Recent experimental results by the group of Bourges [35] and somewhat later by the group of
Kapitulnik [36] provide support for this type of order.

From the discussion above, it should be clear that there are many interesting proposals to explain
the rich phenomena in the cuprates. In these proposals, the Lieb lattice geometry may play an im-
portant role. In this thesis, we will investigate the Lieb lattice simply because it is an interesting
lattice structure to study, with a possible realization as an optical lattice. We will focus on topological
properties and on instabilities towards fermionic superfluidity for a given band structure.

1.3 Outline of this thesis

Now that we have a clear motivation in mind, we will go to the main subjects in the thesis. First of all,
we will discuss various topological states of matter that a Lieb lattice can host. To fully appreciate this,
we will first introduce the concept of a topological insulator (TI) in Chapter 2. We will see how topo-
logical invariants can relate bulk properties to distinct edge properties and how these type of materials
cannot be adiabatically connected to conventional states of matter. Various discrete symmetries play
an important role here. Then we will put the Varma phases in a topological perspective, by discussing
the work by Sun and Fradkin [37] and He et al. [38]. Moreover, since we will be mostly interested
in the non-interacting case in the tight-binding regime, we will also discuss a possible experimental
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realization of TIs in optical lattices.
In Chapter 3, we will start discussing our own contribution to the field of TIs. Elaborating on the

work done by Weeks and Franz [39] for the Lieb lattice, we find that a real next-nearest-neighbour
hopping can drive many interesting topological phase transitions in a model that accounts for an
intrinsic spin-orbit coupling term. Moreover, we will see that our construction is equivalent to two
copies of one of the Varma phases. Finally, we will discuss the requirement of having multiple gaps
for realizing these topological phase transitions.

Chapter 4 will be concerned about interaction-driven instabilities on the Lieb lattice, treated on
a mean field level in the particle-particle channel. Conventionally, these states of matter are known
as superconductors, but in our case it is more accurate to name them fermionic superfluids. This is
because we will think about possible realizations in optical lattices and these set-ups necessarily host
neutral particles instead of electrons. Moreover, we will assume that there is already an attractive in-
teraction between the particles and we will ask ourselves the question how the emergent quasiparticles
from a tight-binding band structure could pair. Because of the complexity of this problem. we will
only lay down the framework for studying these phenomena on the Lieb lattice. We will leave various
numerical studies for a future work. Finally, we will conclude in Chapter 5 and we will provide an
outlook for future research.
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Chapter 2

Topological quantum matter

The field of topological insulators and topological superconductors received much attention in the last
decade. These types of quantum matter have a bulk that is insulating or superconducting, while the
edge or surface of the sample hosts topologically protected gapless modes. The protection is a result of
the fact that these materials cannot be adiabatically connected to a state of matter that is topologically
trivial. For example, we can imagine that these systems are described by a Bloch Hamiltonian that
depends on a set of parameters, such as coupling constants or hopping amplitudes. By tuning these
parameters slowly enough in time (i.e. adiabatically) the gapless modes cannot disappear without a
band gap closing. This property makes these systems very interesting for various applications, such
as novel spintronic devices or topological quantum computing.

In this chapter, we will make these ideas more precise, by discussing the quantum Hall effect
in various forms and the quantum spin Hall effect. We will restrict our discussion only to system
where the concept of a band structure applies and we will highlight the necessary concepts from
topological band theory that we will need in Chapter 3. Essentially, this means that we are only going
to Hamiltonians with single-particle like terms. This includes the non-interacting case, interactions
that can be written in a single particle picture (e.g., spin-orbit coupling), or interactions treated in
mean-field. We conclude with a possible experimental realization of topological quantum matter
using cold atoms. For a more thorough discussion of topological quantum matter, that for example
includes a discussion about topological field theory, we refer to Ref. [40]. Another excellent review
for topological insulators can be found in Ref. [41].

2.1 A topological view on the integer quantum Hall effect

The integer quantum Hall effect (IQHE), discovered by Von Klitzing et al. [42] in 1980 and first
theoretically predicted by Ando et al. in 1975 [43] , is the first example of topological quantum matter
found in history. Indeed, it was one of the first instances where the concept of spontaneous symmetry
breaking and hence the concept of an order parameter in the conventional sense did not apply.

In principle, the experiment is very simple. We start out with a thin slab of semiconducting (or
insulating) material, such as a GaAs heterostructure, for which the length and width are much larger
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Figure 2.1: Typical measurement of the IQHE and FQHE as performed by J.Smet, MPI-Stuttgart.
The experimental set-up is shown in the upper left corner. The dashed-dotted line indi-
cates the classical Hall response. At sufficiently low temperatures plateaus start to form
in the transverse resistance as a function of B. The numbers indicate the filling fractions
n, the integer ones are for the IQHE, the fractional ones for the FQHE. The peaks in
longitudinal resistance were not discussed in the text, but are the result of the formation
of a percolating network between the two current carrying edges for a suitable n. Figure
adapted from Ref. [44].

than the height, so that the slab can essentially be seen as being two-dimensional. This slab is placed
in an external magnetic field perpendicular to the surface area and subsequently the transverse con-
ductance is measured perpendicular to the direction of the electric field. Normally, the classical Hall
response is found: a transverse conductance σxy that is proportional to the norm of the magnetic field
B. Such measurements are for example used to determine the type of charge carriers (electrons or
holes). At sufficiently low temperatures, the semiconductor becomes insulating because of a lack of
thermal excitations. However, the transverse conductance still persists, but with the remarkable ob-
servation that plateaus are formed in σxy as s function of B, see Figure 2.3. What is more remarkable
is that these plateaus always occurred at an exact integer multiple n of the quantum of conductance,
i.e., σxy = ne2/h. Furthermore, it has been found that the entire contribution to this effect was from
charge currents situated on the edge of the sample. These so-called edge states are chiral, which means
that they are uni-directional.
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At the time, it was believed that one of the essential ingredients for this to occur was the two-
dimensionality and the time-reversal symmetry breaking by an external magnetic field. In such a
set-up, we get the well-known orbital quantization of the spectrum in terms of Landau levels and it
has been found that the integer n is related to the filling fraction of these energy levels. In systems
where electron-electron interactions play an important role, n can also become a rational fraction,
which leads to the so-called the fractional quantum Hall effect (FQHE) [45], also shown in Figure
2.3. However, as mentioned in the introduction, we will not discuss interacting systems beyond the
mean-field level, so we will not touch upon the FQHE further than mentioning it.

Many explanations for the existence of chiral edge states in the IQHE exist. One is that they are
the result of the skipping motion of the orbital electrons in the Landau levels against the edge of the
sample. Another very appealing explanation emerges from the concept of topological invariants, and
this will be of the most interest to us in this thesis.

Thouless, Kohmoto, Nightingale and Den Nijs [46] found in 1982 by a Kubo formula calculation
that the filling fraction n is related to an integer topological invariant called the first Chern char-
acteristic class, or simply Chern number, which in the context of the IQHE is also known as TKNN
invariant, named after their discoverers. The Chern number for the α-th band (Landau level) is defined
according to

Cα =
1

2π

∫
(M)BZ

d2kFαxy. (2.1)

This formula is expressed as the integral over the (magnetic) Brillouin zone ((M)BZ) of the so-called
Berry curvature Fαxy , defined via the Berry connection Aαµ according to Fαxy = ∂xA

α
y − ∂yAαx . Here,

the Berry connection can be calculated from the eigenstates of the Hamiltonian |Ωα〉 via the formula
Aµ = −i〈Ωα|∂µ|Ωα〉, where ∂µ is a shorthand notation for the derivative with respect to kµ for
µ = x, y. Notice that the Chern number is a property of the bulk bands and it can be shown that it
can only take integer values. In this sense, it seems like another well-known topological invariant,
namely the Euler characteristic which is a quantity that depends on the genus, or number of holes of
a surface. It can be expressed via the Gauss-Bonnet theorem as the integral of the Gaussian curvature
over a compact Riemannian manifold. This gives a simple way of relating local properties (curvature)
to global properties (genus). However, for the Chern number there is not always such an intuitive
explanation. Finally, we remark that the Chern numbers for the various bands are only well-defined if
there are no band touching points.

Having a closer look at Eq. (2.1), we notice that the Chern number is actually equivalent to the
Berry phase divided over 2π evaluated around a closed loop that encircles the BZ. This geometrical
phase factor arises naturally in the cyclic adiabatic evolution of a quantum-mechanical system, in
addition to the well-known dynamical phase factor [47]. One of the most important properties of the
Berry phase factor is that it is gauge-invariant and hence observable. These properties give rise to
many interesting effects on electronic properties [48].

However, we can see the Chern number also in a more differential geometric setting [49]. We
can think of mappings of the 1BZ, which is topologically equivalent to a 2-torus T2, to the Hilbert
space of Bloch Hamiltonians. By using the Bloch wave functions, a principle U(1) fiber bundle can
be constructed on the torus and this defines a connection, the so-called Berry connection. With a

19



connection, we can define a curvature and hence define a Chern number.
We can finally ask ourselves the question of how a bulk property, such as the Chern number, is

related to a property on the edge, namely the quantum Hall conductivity. This is by virtue of the
bulk-boundary correspondence

n =
∑

α:εα<εF

Cα, (2.2)

and this states that the TKNN invariant just equals the sum of the Chern numbers of the filled bands.
To show how this idea works in practice, we will consider another type of QHE, proposed by Haldane
[50]. This will make the idea of the above correspondence more transparent, because the concept of
Landau levels is not needed for such an explanation.

2.2 Quantum Anomalous Hall effect and bulk-boundary correspondence

At the time when the IQHE was discovered, it was believed that the essential ingredients for a QHE
were two-dimensionality and time-reversal symmetry breaking by the presence of a magnetic field.
Now we understand that both conditions are not necessary, but let us focus on the latter condition,
assuming that we are in two space-dimensions. In 1988, Haldane proposed a theoretical model on the
honeycomb lattice (graphene) to show that it can support a QHE without the application of an external
magnetic field. For this reason it is also known as the quantum anomalous Hall effect (QAHE) or
Haldane phase [50].

The construction of the model is as follows. Although no net magnetic field is present, Haldane
allowed the magnetic flux to fluctuate in the lattice, but under the condition that there is no net flux
through a unit cell. This means that there is still time-reversal symmetry breaking, but no Landau lev-
els. This makes the QAHE effect an ideal example for explaining the bulk-boundary correspondence
discussed in the previous section, because of its simplicity. Moreover, the 2 × 2 Hamiltonian matrix
can be compactly written as

H(k) = d(k) · σ, (2.3)

where σ is a vector of Pauli matrices. If we normalize the two component vector d and call this d̂, d̂

then can be seen as mappings from T
2 (the 1BZ) onto the 2-sphere S2. Because the Hamiltonian has

this form, the Chern number has a simple interpretation as a winding number of d̂ over S2,

C± = ± 1

4π

∫
1BZ

d2k d̂(k) ·
(
∂d̂

∂kx
× ∂d̂

∂ky

)
, (2.4)

where the plus (minus) sign refers to the upper (lower) band. Notice that this construction is not
unique for the Haldane model, because it in principle holds for any d̂ vector. We can imagine that
this object depends on a set of parameters, and with this formula it is easy to map out all the possible
Chern numbers as a function of these parameters without calculating any eigenvectors. Finally, notice
that the sum of Chern numbers of all the bands is always zero and indeed this property holds generally
also for multiband models.
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FIG. 2 The interface between a quantum Hall state and an
insulator has chiral edge mode. (a) depicts the skipping cy-
clotron orbits. (b) shows the electronic structure of a semi
infinite strip described by the Haldane model. A single edge
state connects the valence band to the conduction band.

with E(qx) = ~vF qx. This band of states intersects the
Fermi energy EF with a positive group velocity dE/dqx =
~vF and defines a right moving chiral edge mode.

In the 1980’s related ideas were applied to narrow
gap semiconductors, which can be modeled using a 3D
massive Dirac Hamiltonian(Volkov and Pankratov, 1985;
Fradkin, Dagotto and Boyanovsky, 1986). An interface
where the Dirac mass changes sign is associated with gap-
less 2D Dirac fermion states. These share some similari-
ties with the surface states of a 3D topological insulator,
but as we shall see in section IV.A, there is a funda-
mental difference. In a separate development, Kaplan
(1992) showed that in lattice quantum chromodynamics
4D chiral fermions could be simulated on a 5D lattice
by introducing a similar domain wall. This provided a
method for circumventing the doubling theorem(Nielssen
and Ninomiya, 1983), which prevented the simulation of
chiral fermions on a 4D lattice. Quantum Hall edge states
and surface states of a topological insulator evade similar
doubling theorems.

The chiral edge states in the quantum Hall effect can
be seen explicitly by solving the Haldane model in a semi-
infinite geometry with an edge at y = 0. Fig. 2(b) shows
the energy levels as a function of the momentum kx along
the edge. The solid regions show the bulk conduction and
valence bands, which form continuum states and show
the energy gap near K and K′. A single band, describing
states bound to the edge connects the valence band to the
conduction band with a positive group velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E(qx) could develop a kink so that the edge states inter-
sect EF three times – twice with a positive group velocity
and once with a negative group velocity. The difference
NR − NL between the number of right and left moving
modes, however, can not change, and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence:

NR −NL = ∆n, (7)

where ∆n is the difference in the Chern number across
the interface.
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FIG. 3 Electronic dispersion between two boundary Kramers
degenerate points Γa = 0 and Γb = π/a. In (a) the num-
ber of surface states crossing the Fermi energy EF is even,
whereas in (b) it is odd. An odd number of crossings leads to
topologically protected metallic boundary states.

C. Z2 topological insulator

Since the Hall conductivity is odd under T , the topo-
logically non trivial states described in the preceding sec-
tion can only occur when T symmetry is broken. How-
ever, the spin orbit interaction allows a different topolog-
ical class of insulating band structures when T symmetry
is unbroken (Kane and Mele, 2005a). The key to under-
standing this new topological class is to examine the role
of T symmetry for spin 1/2 particles.
T symmetry is represented by an antiunitary operator

Θ = exp(iπSy/~)K, where Sy is the spin operator and
K is complex conjugation. For spin 1/2 electrons, Θ has
the property Θ2 = −1. This leads to an important con-
straint, known as Kramers’ theorem, that all eigenstates
of a T invariant Hamiltonian are at least twofold de-
generate. This follows because if a non degenerate state
|χ〉 existed then Θ|χ〉 = c|χ〉 for some constant c. This
would mean Θ2|χ〉 = |c|2|χ〉, which is not allowed be-
cause |c|2 6= −1. In the absence of spin orbit interac-
tions, Kramers’ degeneracy is simply the degeneracy be-
tween up and down spins. In the presence of spin orbit
interactions, however, it has nontrivial consequences.

A T invariant Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (8)

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n = 0, but there is an additional invariant with two pos-
sible values ν = 0 or 1 (Kane and Mele, 2005b). The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.

In Fig. 3 we show plots analogous to Fig. 2 showing the
electronic states associated with the edge of a T invariant
2D insulator as a function of the crystal momentum along
the edge. Only half of the Brillouin zone 0 < kx < π/a is
shown because T symmetry requires that the other half
−π/a < k < 0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
separated by an energy gap. Depending on the details
of the Hamiltonian near the edge there may or may not
be states bound to the edge inside the gap. If they are

Figure 2.2: Schematic figure showing the QAHE. In (a) we observe the presence of a chiral edge state
by connecting a non-trivial material with n = 1 with a trivial vacuum. (b) This edge state
can be visualized in the spectrum by solving for a semi-infinite geometry. Figure adapted
from Ref. [41].

Now, let us assume that for a certain set of parameters, the model in Eq. (2.3) has a band gap
separating a valence band with C− = 1 from the conduction band. According to the bulk-boundary
correspondence (2.2), this means that n = 1, in other words the Hall conductivity is e2/h. The edge
state that is responsible for this value can be visualized by solving for the band structure in a semi-
infinite geometry. This means that we impose periodic boundary conditions on two opposite edges,
while imposing open boundary conditions on the other two edges. The wavenumber in only one of
the two directions is then a good quantum number (e.g., kx) and in general we then obtain pictures
as schematically shown in Figure 2.2. Clearly, a gapless mode can then be seen. Moreover, n is then
related to the number of crossings of the edge states with the Fermi energy. We can define this more
precisely by saying that a crossing with positive slope gives a positive contribution, while a negative
slope gives a negative contribution.

With this picture and the concept of adiabatic connectivity, we can also see the occurrence of
protected edge currents more intuitively as follows. We can think of the material as being placed
in a trivial vacuum that also has a band gap (namely, a gap for positrons and electrons in the Dirac
picture). The two-dimensional material can then be seen as infinitely many one-dimensional lines that
continuously interpolate between a non-trivial vacuum and a trivial one, in the direction perpendicular
to the edge. Because of adiabatic connectivity, such an interpolation can only occur if the band gap
closes at the edge, which explains the occurrence of a gapless mode.

The above discussion can also be generalized to multi-band models. In particular, we can think
of the circulating current phases by Varma that were introduced in Chapter 1. The various current
patterns that are possible explicitly break time-reversal symmetry. An interesting question is then
whether the Hamiltonian with the mean-field corrections from the interaction may give rise to QAH
states. This question was answered by Sun and Fradkin [37]. They showed that if the model breaks in-
version and time-reversal symmetry, but conserves the product, then the system cannot host a QAHE.
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fourth triangle has ux −3 with zero total ux in the unit
cell. In this state all the T, C, and I symmetries are broken
and none of the pairs CT, IT, or CI is preserved while
TCI remains unbroken. Hence, this state is a mixture of
states of type I and II time-reversal symmetry breaking.

VI. SYMMETRIES AND FINITE TEMPERATURE
TRANSITIONS

For a two-band model for a system in the continuum i.e.,
ignoring the explicit breaking of rotational symmetry by the
underlying lattice , the 1 and 1 phases break spontane-
ously two continuous symmetries: the SO 2 rotational in-
variance and the relative U 1 phase symmetry. Hence, two
Goldstone modes are generated in the broken-symmetry
phase. At nite temperatures, the thermal uctuations of
these two Goldstone modes destroy this long-range order.
The thermodynamic phase transition is in the universality
class of a system of two XY models which will undergo a
Kosterlitz-Thouless-type phase transition.

For the case of the 2 and 3 phases, the relative U 1
phase symmetry of the bands is broken explicitly by the
effects of the interactions, which do not preserve particle
number on each band as a good quantum number. Hence,
only one continuous symmetry, SO 2 , remains, and it is bro-
ken spontaneously in this phase at T=0. Since this is a con-
tinuous SO 2 symmetry, the nite temperature transition be-
tween the normal state and the 2 or the 3 phase also
belongs to the Kosterlitz-Thouless KT universality class, in
this case with a single SO 2 order-parameter eld.

The direct transition from the normal state to the 2 or 3
states was shown in Sec. IV D to be rst order at zero tem-
perature. Therefore one expects this transition to remain rst
order even at nite temperature up to a critical value where
the phase boundary reaches a tricritical or multicritical
point. In general, for a system with full rotational invariance
SO 2 , the transition from these phases to the normal state
should be in the KT universality class as well.

For lattice systems, rotational symmetry is broken down
to a discrete subgroup, the point-group symmetry of the un-
derlying lattice. Hence the only continuous symmetry left to
be spontaneously broken in the 1 and 1 phases is the rela-
tive U 1 phase. Thus, the nite temperature transitions from
the 1 and 1 phases to the normal state are also KT transi-
tions. For lattice systems in which the 2, 2 and 3, 3

phases can be realized there are no continuous symmetries
present since the relative U 1 symmetry is broken by the
interactions. Hence, in general the thermodynamic transi-
tions from the 2 and 3 phases to the normal state only
involve the restoration of time-reversal invariance and the
discrete point-group symmetries broken in these low-
temperature phases up to important caveats discussed be-
low .

For a lattice system, except for the 1 and 1 phases,
whose existence is not generic and requires ne tuning, the
and phases only break discrete symmetries and hence do
not have Goldstone modes in their excitation spectra. As a
result, the fermionic quasiparticles are the only low-energy
excitations in these broken-symmetry phases. This implies
that the Fermi-liquid picture should remain valid in these
low-temperature phases even if the uctuations are stronger
than what is allowed in a naive mean-eld treatment.

We will now give a more careful analysis of the nature of
the thermal phase transitions for the 2, 2, 3, and 3
phases in lattice, which have richer structures, based on an
analysis of the symmetry.

Let us begin by discussing the d-wave type 3 phase in a
square lattice. In this case, in addition to the Z 2 time-reversal
symmetry, this phase also lowers the invariance under /2
spatial rotation to rotation 2D space inversion , which is
also a Z 2 symmetry breaking. Formally, the 3 phase has a
broken Z 2 Z 2 symmetry. In the case of the 2 phase, the
situation is similar except that the time-reversal even Z 2 sym-
metry requires a different physical interpretation see Appen-
dix D .

From this view point the natural description of the ther-
mal phase transitions out of the 2 or 3 phase should be in
the 2D Ashkin-Teller universality class. In what follows we
will consider the conceptually more straightforward 3
phase, but the same analysis also applies to the more intricate

2 phase.
If the low-temperature phase is 3 the phase diagram can

have the general topology of the one shown in Fig. 8 a . As
temperature is raised it may undergo a direct phase transition
to the normal phase or have two thermal transitions. In the
latter case, the intermediate phase arises from the restoration
of one of the Z 2 symmetries, either time reversal or spatial
rotations. Thus the intermediate temperature phase is either a
time-reversal even nematic phase the 3 phase or a spa-
tially isotropic phase with broken time-reversal invariance.

(a) (a) (b) (c)

FIG. 7. The T symmetry-breaking ux state in a the crossed-chain lattice and b – d the Emery lattice. b is the Varma II loop
state. a and c are type II T-breaking states, b is type I, and d is a type I-type II mixed state.

TIME-REVERSAL SYMMETRY BREAKING AND… PHYSICAL REVIEW B 78, 245122 2008

245122-11

Figure 2.3: Two examples of Varma phases. The one shown in (a) breaks inversion and time-reversal
but does conserve the product. For this reason it does not host a QAH response. However,
the state in (b) does satisfy the correct requirements. Figure adapted from [37].

In this light, for the examples shown in Figure 2.3 only pattern (b) satifies this condition. Later, He,
Moore and Varma related this to the occurrence of singularities in the wave function [38]. This exam-
ple illustrates the fact that although time-reversal symmetry breaking is a necessary condition for the
QAHE, it is certainly not a sufficient one.

2.3 Quantum spin Hall effect

All the QHEs in two dimensions need TRS breaking to occur. However, in 2005 a new type of
topological quantum matter was proposed by Kane and Mele, the so-called quantum spin Hall effect
(QSHE) [51, 52]. They proposed a time-reversal symmetric model of graphene, where spin-orbit
coupling (SOC) plays an important role, such as a Rashba SOC and intrinsic SOC. If the Rashba term
is zero, then spin is conserved and the Kane and Mele model is just like two copies of the Haldane
model for each spin component. Although initially proposed for the honeycomb lattice, it seemed that
the SOC in real graphene was too weak to host a QSHE. However, it did not take long until the QSHE
was realized experimentally in HgTe/CdTe quantum wells [53] after the theoretical formulation by
Bernevig, Hughes and Zhang [54].

Because the QSH insulator necessarily preserves time-reversal symmetry, it means that n = 0

for every Fermi energy. In other words, there is no quantum Hall conductivity. Instead, the QSHE is
characterized by a non-vanishing spin Hall conductivity that is the result of a transverse spin current
along the edges. Moreover, these edge states are topologically protected, which ensures that they are
robust against impurities, in sharp contrast to the spin Hall effects that were known at that time.

However, there are some important differences. First of all, the spin currents are carried by helical
edge states, instead of chiral ones, which means that the direction of motion is correlated with its
spin. Because of the spin degree of freedom, we always have an even number of them, i.e. the helical
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Symmetry d

AZ Θ Ξ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

TABLE I Periodic table of topological insulators and super-
conductors. The 10 symmetry classes are labeled using the
notation of Altland and Zirnbauer (1997) (AZ) and are spec-
ified by presence or absence of T symmetry Θ, particle-hole
symmetry Ξ and chiral symmetry Π = ΞΘ. ±1 and 0 denotes
the presence and absence of symmetry, with ±1 specifying
the value of Θ2 and Ξ2. As a function of symmetry and space
dimensionality, d, the topological classifications (Z, Z2 and 0)
show a regular pattern that repeats when d→ d+ 8.

3. Periodic table

Topological insulators and superconductors fit to-
gether into a rich and elegant mathematical structure
that generalizes the notions of topological band theory
described above (Schnyder, et al., 2008; Kitaev, 2009;
Schnyder, et al., 2009; Ryu, et al., 2010). The classes
of equivalent Hamiltonians are determined by specifying
the symmetry class and the dimensionality. The symme-
try class depends on the presence or absence of T sym-
metry (8) with Θ2 = ±1 and/or particle-hole symmetry
(15) with Ξ2 = ±1. There are 10 distinct classes, which
are closely related to the Altland and Zirnbauer (1997)
classification of random matrices. The topological clas-
sifications, given by Z, Z2 or 0, show a regular pattern
as a function of symmetry class and dimensionality and
can be arranged into the periodic table of topological in-
sulators and superconductors shown in Table I.

The quantum Hall state (Class A, no symmetry; d =
2), the Z2 topological insulators (Class AII, Θ2 = −1;
d = 2, 3) and the Z2 and Z topological superconductors
(Class D, Ξ2 = 1; d = 1, 2) described above are each
entries in the periodic table. There are also other non
trivial entries describing different topological supercon-
ducting and superfluid phases. Each non trivial phase is
predicted, via the bulk-boundary correspondence to have
gapless boundary states. One notable example is super-
fluid 3He B (Volovik, 2003; Roy, 2008; Schnyder, et al.,
2008; Nagato, Higashitani and Nagai, 2009; Qi, et al.,
2009; Volovik, 2009), in (Class DIII, Θ2 = −1, Ξ2 = +1;
d = 3) which has a Z classification, along with gapless 2D
Majorana fermion modes on its surface. A generalization
of the quantum Hall state introduced by Zhang and Hu
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FIG. 5 Edge states in the quantum spin Hall insulator. (a)
shows the interface between a QSHI and an ordinary insula-
tor, and (b) shows the edge state dispersion in the graphene
model, in which up and down spins propagate in opposite
directions.

(2001) corresponds to the d = 4 entry in class A or AII.
There are also other entries in physical dimensions that
have yet to be filled by realistic systems. The search is
on to discover such phases.

III. QUANTUM SPIN HALL INSULATOR

The 2D topological insulator is known as a quantum
spin Hall insulator. This state was originally theorized
to exist in graphene (Kane and Mele, 2005a) and in 2D
semiconductor systems with a uniform strain gradient
(Bernevig and Zhang, 2006). It was subsequently pre-
dicted to exist (Bernevig, Hughes and Zhang, 2006), and
was then observed (König, et al., 2007), in HgCdTe quan-
tum well structures. In section III.A we will introduce
the physics of this state in the model graphene system
and describe its novel edge states. Section III.B will re-
view the experiments, which have also been the subject
of the review article by König, et al. (2008).

A. Model system: graphene

In section II.B.2 we argued that the degeneracy at the
Dirac point in graphene is protected by inversion and
T symmetry. That argument ignored the spin of the
electrons. The spin orbit interaction allows a new mass
term in (3) that respects all of graphene’s symmetries. In
the simplest picture, the intrinsic spin orbit interaction
commutes with the electron spin Sz, so the Hamiltonian
decouples into two independent Hamiltonians for the up
and down spins. The resulting theory is simply two copies
the Haldane (1988) model with opposite signs of the Hall
conductivity for up and down spins. This does not violate
T symmetry because time reversal flips both the spin and
σxy. In an applied electric field, the up and down spins
have Hall currents that flow in opposite directions. The
Hall conductivity is thus zero, but there is a quantized
spin Hall conductivity, defined by J↑

x − J↓
x = σs

xyEy with
σs
xy = e/2π – a quantum spin Hall effect. Related ideas

were mentioned in earlier work on the planar state of

Figure 2.4: Schematic figure showing the QSHE. In (a) we observe the presence of a pair of helical
edge state by connecting a non-trivial material with ν = 1 with a trivial vacuum. These
edge state can be visualized in the spectrum by solving for a semi-infinite geometry.
Figure adapted from Ref. [41].

edge states come in pairs on a given edge. This is schematically shown in Figure 2.4. Secondly, this
spin Hall conductivity is only quantized if spin is conserved. For instance, we can define a spin Hall
conductivity by a difference of the expectation value of Ŝz for left (L) and right movers (R) at the
Fermi energy

σSH =
e

h
(〈Ŝz〉L − 〈Ŝz〉R)|EF . (2.5)

If spin is not conserved, then the edge states are not necessarily eigenstates of Ŝz . Finally, the QSHE
is characterized by a so-calledZ2 := Z/2Z index ν instead of an integerZ. In other words, the QSHE
is characterized by an integer modulo 2, which we represent by either 0 or 1, which denote either the
trivial or the non-trivial states, respectively. If ν = 0, there is an even number of edge state pairs on
a given edge, while for ν = 1 we have an odd number. For this reason, the QSH insulator is maybe
more accurately described as a Z2 topological insulator. The fact that an even number of edge state
pairs is trivial, needs more explanation. The reason for this is that the time-reversal symmetry, that
offers protection for these helical edge states, gives rise to non-trivial consequences.

To make this idea more transparent, let us consider a system of spin-1/2 particles on a lattice,
described by a time-reversal symmetric Hamiltonian Ĥ . It can then be shown that there exists an
anti-unitary operator Θ, with Θ2 = −1 (or Θ2 = 1 for integer spin particles), such that the Bloch
Hamiltonian H(k) satisfies ΘH(k)Θ−1 = H(−k). The operation Θ can be written as Θ = KU ,
where U is unitary and K is complex conjugation, the latter contribution explaining why it is anti-
unitary. This condition on H(k) implies that for any state characterized by (k, ↑) there is a time-
reversed partner (−k, ↓) with the same energy. However, at the time-reversal invariant momenta
(TRIM) Γ, defined by the condition Γ = −Γ + G, with G a reciprocal lattice vector, we have the
additional property1 that [H(Γ),Θ] = 0. This implies that H(Γ) and Θ have the same basis of

1Notice that this property heavily relies on the fact that the Hamiltonian matrix has a BZ periodicity. However, in
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Figure 2.5: Example why the QSHE is characterized by a Z2 invariant. It is not possible to create
a gap in the edge state spectrum for a single pair of helical edge states on a given edge.
Such TRS perturbations always violate Kramers theorem (see (a)→(b)). However, this is
possible with two pairs of edge states ((c)→(d)). Figure adapted from Ref. [57].

eigenvectors. Let us now consider such an eigenvector which we will denote by |χ〉 with eigenvalue
λ, that we assume to be non-degenerate. Applying Θ twice to such a state, we have that Θ2|χ〉 =

Θλ|χ〉 = λ∗Θ|χ〉 = |λ|2|χ〉, where the second equality comes from the fact that we have to pull λ
through Θ that contains K. However, Θ2 = −1 and this contradicts the fact that λ is non-degenerate.
This proves Kramers theorem [56], which in our formulation states that any eigenvalue evaluated at a
TRIM is at least doubly degenerate.

Now the topological protection by TRS should be clear. An even number of edge state pairs can
be pushed out of the band gap by a TRS perturbation, because such perturbations still satisfy Kramers
theorem. This is in contrast to an odd number of edge state pairs, that could only be removed out the
gap by a band gap closing, see also Figure 2.5.

multiband tight-binding models, this is not necessarily true. This is because it is a common convention in the literature
and in this thesis to let the Fourier transform depend on the position of the lattice site within the unit cell. However, this
is not a problem. Namely, such a Hamiltonian is always unitary equivalent to a matrix that is BZ periodic, with a unitary
transformation given by a diagonal matrix that contains suitable phase factors. Alternatively, we can redefine the unitary
part in Θ by such a matrix. For a more thorough discussion on the issue of BZ periodicity, see Ref. [55].
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We finally note that the 2D Z2-TI has a generalization to 3D [58]. In contrast to the 2D case, it is
characterized by four Z2 invariants. The material can then be classified as a weak TI, a system that
consists of layers of 2D QSH states and are weak against disorder, or a strong TI, that is a genuinely
new topological state for which the surface acts as a topological metal. Here, the Fermi surface
encloses an odd number of Dirac cones.

2.4 Other types of topological quantum matter

From the above discussion, it is clear that TRS plays an important role for the QSHE to occur. How-
ever, there are other discrete symmetries that play also an important role in the classification of topo-
logical quantum matter. One is for example the so-called particle-hole symmetry. If the Hamiltonian
is particle-hole symmetric (PHS), then there exists an anti-unitary operator Ξ with Ξ2 = ±1 such that
the Hamiltonian matrix satisfies ΞH(k)Ξ−1 = −H(−k). Such a condition implies that for every state
k with energy E, there is a state−k with energy−E. Examples of such systems are superconductors,
for which the Bogoliubov-de Gennes Hamiltonian is PHS by construction. This opens the possibil-
ity to have topological superconductors, for which the PHS implies the possible existence of gapless
Majorana modes. The final discrete symmetry is the so-called chiral symmetry (or sublattice symme-
try), which is a combination of time-reversal and particle-hole transformations. It is represented by a
unitary operator Π, and a Hamiltonian matrix with this symmetry satisfies ΠH(k)Π−1 = H(−k).

According to these symmetries, topological states of matter can be classified in a systematic way
[59, 60]. This defines the so-called ten-fold way, for which ten symmetry classes are found. For
each such class, this classification shows whether a topological invariant can be found for a given
dimension. The result is shown in Table 2.1 for d = 1, 2, 3, which are the only dimensions that are
relevant for us.

From this table, we see that in each dimension five types of topological quantum matter can be
found, that can either be classified by a Z or a Z2 invariant. The IQHE/QAHE discussed previously
falls into the A class for d = 2, while the Z2 topological insulators of the previous section for d = 2, 3

are classified as AIII. Some entries represent topological superconductors, such as the CI class in three
dimensions. This TRI singlet superconductor can be characterized according to a winding number that
takes on even values only [61]. The non-trivial phase is characterized by an even number of linearly
dispersing surface Andreev states. These bound states give a linear contribution to the surface density
of states, and these can be detected with STM. As another example, we have the DIII class for d = 3,
the so-called non-centrosymmetric superconductors. Here the fully gapped phases are characterized
by a winding number, while nodal superconducting phases are characterized by a topological charge
[62]. Also the B-phase of the fermionic superfluid He-3 falls into this class [63].

However, this classification only works for Hamiltonians with single-particle like terms. The real
influence of interactions is still not entirely clear. Moreover, there are also proposals to extend the
classification as defined above by taking into account the underlying lattice structure. Juričić et al.
[64] showed that a dislocation inserted into the lattice structure can bind zero modes similar to a
π-flux, depending on where the band gap opens in the 1BZ.
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Table 2.1: Tenfold way classification of topological invariants according to dimension (up to d = 3)
and the operators Θ, Ξ and Π. A zero means that this symmetry is absent, while a presence
of such a symmetry is specified by ±1. Here the sign depends on the type of particles that
we consider and thus on whether the relevant operator squares to plus or minus the identity.

Class Θ Ξ Π d = 1 d = 2 d = 3

A 0 0 0 0 Z 0

AIII 0 0 1 Z 0 Z

AI 1 0 0 0 0 0

BDI 1 1 1 Z 0 0

D 0 1 0 Z2 Z 0

DIII −1 1 1 Z2 Z2 Z

AII −1 0 0 0 Z2 Z2

CII −1 −1 1 Z 0 Z2

C 0 −1 0 0 Z 0

CI 1 −1 1 0 0 Z

2.5 Optical lattices as a tool to study topological quantum matter

One of the central themes in this thesis is the investigation of the QSHE on the Lieb lattice. One of the
most appealing experimental set-ups where we can realize this are the so-called optical lattices. We
will only sketch the main ideas and refer to many of the excellent reviews for this subject (e.g., see
ref. [65]). This is because we will not use the optical lattice idea anywhere explicitly in this thesis.

Let us now roughly sketch the principle behind optical lattices. By using a suitable laser set-up,
a standing wave pattern of laser intensities can be realized. When loaded with cold atoms (fermions
or bosons), this pattern acts as a periodic potential in which the atoms can move by virtue of the AC
Stark effect. Such a potential also occurs in real electron systems, where it is provided by the ionic
background. There are however differences, such as the fact that atoms are neutral, instead of charged,
like the electrons. Secondly, the scales are different. The typical lattice constant in real materials is
on the order of Å, while in optical lattices it is determined by the wavelength of the lasers λ, which
can be of the order 500 nm. Optical lattices have the advantage over real materials that they are
free of impurities. More importantly, they provide the possibility to tune the interaction strength and
kinetic energy of the atoms to a very high accuracy by simply changing the laser intensities. This latter
property makes optical lattices especially suitable to study various model systems in condensed matter
physics to a very high degree of precision. For example, the Mott insulator-superfluid transition that
was predicted for the Bose-Hubbard model [66, 67] has indeed been experimentally observed with the
help of these cold atom systems [68].

There are various proposals to realize the Lieb lattice with cold atoms [69, 70]. By the laser
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Figure 2.6: (a) Laser set-up for generating the Lieb lattice as an optical lattice. Picture adapted from
[69]. (b) The optical potential that this laser arrangement produces.

arrangement shown in Figure 2.6(a), an optical potential landscape as given by

V (x, y) =V1(sin2 kLx+ sin2 kLy + sin2 2kLx+ sin2 2kLy)

+ V2

{
sin2

[
kL(x+ y) +

π

2

]
+ sin2

[
kL(x− y) +

π

2

]}
(2.6)

can indeed be generated to provide the precise lattice geometry of the Lieb lattice. This is plotted
in Figure 2.6(b). Having such a realization in mind, we can systematically investigate tight-binding
models for this geometry. Normally, these models are only formally true in the limit of a strong
periodic potential. However, with the help of cold atoms we can simulate them to a very high degree
of accuracy. In the next chapter, we will consider such models that include for example a next-nearest-
neighbour hopping parameter t′. We are especially interested in t′ as being a tunable parameter,
however we can already see from Figure 2.6 that such a parameter would always be much smaller
than the nearest-neighbour hopping t. However, recently it has been shown that by shaking the optical
lattice, the ratio t′/t can be tuned to in principle any possible value. This is performed by adding a
periodic modulation to the Hamiltonian, which depends on a shaking frequency ω. This perturbation
can be treated within Floquet theory [71] in the limit of ~ω � V0, with V0 a typical lattice depth.
We then find that the nearest-neighbour hopping parameter is renormalized by a Bessel function [72],
while t′ can be renormalized by a Bessel function with a different argument [73]. Indeed, this allows
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one to tune t′/t, and it will be of importance later. Namely, we will see in the next chapter that tuning
t′ can lead to many interesting topological phase transitions on the Lieb lattice.

Finally, we remark that optical lattices also provide a versatile tool to detect edge states. However,
this is not straightforward because there are no charge currents, but mass currents. Moreover, we
have to be able to define sharp edges in the experiment. There are various proposals to realize and
detect these edge states experimentally, for example by using angular-momentum sensitive Bragg
spectroscopy by employing Raman transitions in an appropriate way [74]. Furthermore, the notion of
sharp edges is not always necessary to observe the edge states, because it can be shown that topological
invariants are still well-defined in a system with soft edges [75].
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Chapter 3

Driving topological phase transitions with
next-nearest neighbour hopping

In this chapter we will investigate various topological phase transitions on the Lieb lattice. The lattice
geometry of such a two-dimensional square lattice with three sites per unit cell is shown in Figure
3.1, together with the first Brillouin zone (1BZ). Our focus here lies on tight binding (TB) models,
where we assume that all particles loaded onto this lattice are in their respective ground states. For
instance, when only nearest neighbour (NN) hopping is included in such a model, there are three (spin
degenerate) bands, where two dispersing bands touch the flat middle band via a cone like dispersion
at the M -point. There are various ways of separating the three bands from each other, for example
by adding a dimerization term that staggers the hopping along the x- and y-direction or by including
a Rashba spin orbit coupling (SOC) term. The resulting gaps are however topologically trivial, as
was discussed by Weeks and Franz [39]. Nevertheless, they showed that an intrinsic SOC is able to
separate the three bands by a topologically non-trivial band gap. Here, we will extend their work by
also including next-nearest neighbour (NNN) hopping into their model. As we shall see next, this will
give rise to new interesting topological phase transitions, not studied before. Some of the results in
this chapter have been recently submitted for publication [76].

3.1 Tight binding Hamiltonian

Motivated by the above discussion, we will investigate the following tight binding model on a Lieb
lattice,

Ĥ = −t
∑
〈i,j〉;σ

ŝ†i,σ ŝj,σ − t′
∑
〈〈i,j〉〉;σ

ŝ†i,σ ŝj,σ + iλISO

∑
〈〈i,j〉〉;σ,σ′

ŝ†i,σ(eij · σσσ′)ŝj,σ′ . (3.1)

The first (second) term describes the (N)NN hopping process of a fermion with spin projection σ from
a site i to a site j. Effectively, this model can be seen as fermions hopping between s-orbitals, hence
we denote their respective creation (annihilation) operator by ŝ†i,σ (ŝi,σ). The final term describes an
intrinsic SOC term with coupling constant λISO. On a lattice, it has the form of a spin dependent NNN
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Figure 3.1: (a) The geometry of the Lieb lattice. The square unit cell with lattice constant a is in-
dicated, together with the three sublattices (A, B, C). An example of a (N)NN hopping
process t (t′) is indicated by the red arrows. The third-nearest-neighbour hopping t′′ is
also indicated. The effect of this parameter will be investigated in Chapter 4. (b) First
Brillouin zone of the Lieb lattice. The high symmetry points Γ, X , Y , and M are given.

hopping term. To describe this, we have defined a unit vector eij := (dik×dkj)/|dik×dkj | in terms
of the bond vectors dik and dkj that connects the sites i and j via the unique intermediate site k. In
this lattice geometry these bond vectors can be either ±a/2ex or ±a/2ey respectively, with a being
the lattice constant. Finally, σ := (σx, σy, σz) is a vector of Pauli matrices.

In momentum space, the Hamiltonian can be written as

Ĥ =
∑

k∈1BZ

Ψ̂†kHkΨ̂k, Hk := H0
k ⊗ 12×2 + iHISO

k ⊗ σz, (3.2)

in the basis Ψ̂k := (Ψ̂k,↑, Ψ̂k,↓), where Ψ̂k,σ := (ŝA,k,σ, ŝB,k,σ, ŝC,k,σ). The 3× 3 real matrices H0
k

andHISO
k are given by

H0
k =

 0 −2t cos(kxa/2) −2t cos(kya/2)

−2t cos(kxa/2) 0 −4t′ cos(kxa/2) cos(kya/2)

−2t cos(kya/2) −4t′ cos(kxa/2) cos(kya/2) 0

 (3.3)

and

HISO
k = 4λISO

 0 0 0

0 0 − sin(kxa/2) sin(kya/2)

0 sin(kxa/2) sin(kya/2) 0

 . (3.4)

It turns out that Hk is block diagonal of the form diag(H0
k + iHISO

k ,H0
k − iHISO

k ) =: diag(H↑k,H
↓
k).

This means that the blocks corresponding to the spin-up and spin-down projections are related by
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Figure 3.2: Gap opening at the M -point for λISO 6= 0 and t′ = 0. (a) The upper and lower bands
touch the middle flat band at the M -point, while a gap appears if the intrinsic SOC is
turned on, as shown in (b).

complex conjugation, H↑k = (H↓k)∗. Moreover, these blocks are Hermitian, giving the well-known
result that this particular form of intrinsic SOC cannot lift the spin degeneracy. For calculating the
energy spectrum, it thus suffices to restrict our attention to one spin component, while keeping in mind
that the resulting bands are doubly degenerate. Notice that the above model describes fermions on the
Lieb lattice with complex NNN hopping, where the imaginary part stems from the intrinsic SOC.

3.2 Imaginary NNN hopping

Let us first consider the case where t′ = 0. The resulting dispersion relations can be found in Figure
3.2 for λISO = 0 and λISO 6= 0 respectively. In the first case, we see that there is a single cone like
dispersion touching a flat band at the M -point. It is remarkable that there is only one such cone in
the 1BZ, because one would naively say that that there should always be an even number of Dirac
cones by the fermion doubling theorem of Nielsen and Ninomiya [77]. However, the presence of the
flat band gives a possibility to circumvent this theorem [78], because the low-energy Hamiltonian can
only be expressed in matrices that form a representation of su(2), but these do not form a Clifford
algebra. Examples of these type of touchings are not unique for the Lieb lattice, since they can also
be found in for example the kagome lattice with a staggered flux [79].

The effect of λISO is to open a gap at the M -point as is seen in Figure 3.2(b). This is actually
the case studied by Weeks and Franz [39]. They showed that the system is characterized by a non-
trivial Z2 invariant ν, which can be calculated rather easily from the parity eigenvalues at the TRIM,
because the system respects inversion symmetry [58]. However, we will show that both gaps can
exhibit a QSHE in a different way, by using the fact that spin is conserved, since the SOC term is only
proportional to σz . This means that this model can be seen as two independent copies of the spin-up
and spin-down, making the Chern number a well-defined quantity for a single spin projection. The
advantage of investigating the Chern numbers instead of ν is that it is directly related to the spin Hall
conductivity.

Without loss of generality, let us focus on the spin up component and assume λISO > 0. The
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Hamiltonian can then be written asH↑k := R·L, where R = (R1, R2, R3) withR1 = −2t cos(kxa/2),
R2 = −2t cos(kya/2) and R3 = 4λISO sin(kxa/2) sin(kya/2). Furthermore, L := (L1, L2, L3) is a
vector of the following Gell-mann matrices

L1 =

0 1 0

1 0 0

0 0 0

 , L2 =

0 0 1

0 0 0

1 0 0

 , L3 =

0 0 0

0 0 −i
0 i 0

 . (3.5)

This set of matrices satisfy the commutation relations [Li, Lj ] = iεijkLk, so they form a basis for the
spin-1 representation of the Lie algebra su(2). Because of this particular structure of the Hamiltonian,
it is possible to calculate the Chern numbers analytically, since here they have a simple interpretation
as a winding number. This was demonstrated by He, Varma and Moore [38], and we will apply their
method below. In the following, we set the lattice constant a = 1.

The eigenvalues of H↑k are found to be ε± = ±R and ε0 = 0 with R := |R|. Observe that there
is a full gap between the energy bands for R3 6= 0 (Figure 3.2), making the Chern number a well-
defined quantity. The eigenstates are also readily obtained by employing for instance a method using
vector products (see the Appendix A). Because of the 3×3 structure of the Hamiltonian, there is some
freedom for choosing the eigenstates, which are related by U(1) gauge transformations. As He et al.
[38] already pointed out, this gauge dependence does not show up in the Berry curvature and hence
the Chern number is independent of a particular choice of eigenstates. Abbreviating an eigenstate as
|Ω〉 = (α, β, γ) :=

∏
k,σ(αŝ†A,k,σ + βŝ†B,k,σ + γŝ†C,k,σ)|0〉, where it is understood that k is restricted

to the 1BZ, we find the eigenstates

|Ω±〉 =
1√

2(R2 −R2
1)R

(±RR2 + iR1R3, R1R2 ± iRR3, R
2 −R2

1), (3.6)

|Ω0〉 =
1

R
(iR3, R2,−R1). (3.7)

In the thermodynamic limit, k becomes a continuous variable which allows us to take derivatives with
respect to the wave numbers kx and ky. The Berry connections corresponding to the above states then
read

A±µ : = −i〈Ω±|∂µ|Ω±〉 =
∓R1

R(R2 −R2
1)

(R3∂µR2 −R2∂µR3), (3.8)

A0
µ : = −i〈Ω0|∂µ|Ω0〉 = 0, (3.9)

where we have abbreviated ∂µ := ∂/∂kµ for µ = x, y. Clearly the Chern number for the band ε0 is
zero, so we will focus only on the bands ε±. The Berry curvature for these bands is given by

F±xy = ∂xA
±
y − ∂yA±x = ∓R̂ · (∂xR̂× ∂yR̂), (3.10)

with R̂ := R/R. The Chern number is then given by

C↑± =
1

2π

∫
1BZ

d2k F±xy (3.11)

= ∓ 1

4π

∫ π

−π
dkx

∫ π

−π
dky

t2λISO(c2
ys

2
x + c2

xs
2
y + s2

xs
2
y)

(t2c2
x + t2c2

y + 4λISOs2
xs

2
y)

3/2
= ∓1, (3.12)
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with sµ := sin(kµ/2) and cµ := cos(kµ/2) for µ = x, y. To summarize, we have for the spin
up projection C↑ := (C↑−, C↑0 , C↑+) = (1, 0,−1). Obviously, for the spin down component, we have
C↓ = −C↑. We remark that from this result we immediately get the Chern numbers for λISO < 0 by
interchanging the roles for spin up and spin down. Since the Hamiltonian is diagonal in spin space,
we can define a spin Chern number 1 for the bands as Cspin := C↑ − C↓. Notice that because of the
symmetry between the spin components, we have that Cspin = 2C↑. By virtue of the bulk-boundary
correspondence, the spin Hall conductivity in units of the spin conductivity quantum 2 e/4π then
equals

σSH :=
∑

α: εα<εF

Cspin,α, (3.13)

where the summation is over the filled bands (i.e., εF is the Fermi energy) . Notice that σSH is
necessarily quantized in these units because the edge modes are eigenstates of Ŝz with eigenvalue
±~/2. The Z2-index is then related to spin Hall conductivity by ν = σSH/2 mod 2.

3.3 Real NNN hopping

Let us now consider the case where t′ 6= 0, which can be seen as the real part of the NNN hopping
term in the momentum space. We shall see that this contribution breaks particle-hole symmetry. This
case is thus in a sense more complicated than the previous case, because the Hamiltonian matrix
cannot be written in the form R̃ · L̃, with L̃ a vector of matrices that form a basis for a Lie algebra
that is is isomorphic to su(2). However, it is still possible to extend the components of L̃ to a basis of
su(3). This means that the Chern number does not have a simple interpretation as a winding number.
Moreover, the expressions for the eigenvalues are more complicated, although one can still find them

analytically. Defining R4 := −4t′ cos(kxa/2) cos(kya/2) and R :=
√∑4

i=1R
2
i , we find that the

dispersions satisfy

εα =
2R√

3
cos

[
1

3
arccos

(
3
√

3R1R2R4

R3

)
+ γα

]
, (3.14)

where the angle γα parametrizes the three solutions as γ− = 2π/3, γ0 = −2π/3 and γ+ = 0. These
solutions have been obtained by using Cardano’s solution for the roots of a cubic polynomial, given
the fact that we have only real roots.

We will now focus on the qualitative behaviour of the dispersions as function of t′ when we set
λISO = 0 (Figure 3.3), meaning that we have purely real NNN hopping. This will help us to understand
the full complex case later. Let us start with t′ = 0, for which the middle band is flat, as was already
discussed before (see Figure 3.3(a), dashed lines). For t′ > 0, the middle band starts to develop a
maximum at the Γ-point (see Figure 3.3(a), continuous lines), and ultimately, this maximum touches
the upper band for t′/t = 0.5 (Figure 3.3(b)). For t′/t > 0.5, tilted anisotropic Dirac cone like

1In the presence of spin mixing perturbations the collection of Chern numbers for the various bands can be seen as a
matrix in spin space, meaning that it is not useful to define a spin Chern number. See also Ref. [80].

2There are various conventions for the units. If one thinks of a spin current as a difference of two charge currents, then
σSH can be expressed in units of e2/h. As a true spin current, it is in units of ±e/4π, where the sign also depends on
convention.
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Figure 3.3: Dispersions for various values of t′ along the high symmetry lines in the 1BZ. (a) The
case where t′ = 0 is shown by the black dashed line. For 0 < t′ < 0.5t the middle band
starts to develop a maximum at the Γ-point. This is shown in blue. (b) For t′ = 0.5 the
maximum at the Γ-point touches the upper band. (c) When t′ > 0.5t a tilted anisotropic
Dirac cone forms at the Q-point. The Q-point is defined in (d), where also a three-
dimensional picture of the anisotropic tilted Dirac cone at this point is shown. Finally, the
four corners of the dotted square indicate the positions of the four tilted anisotropic Dirac
cones in the 1BZ.

touchings occur at four inequivalent points in the 1BZ of the form (±q,±q), where q is given by the
condition cos(qa/2) = t/2t′ for t′ > 0 (see Figure 3.3(c)-(d)). Notice that these four solutions reflect
the C4 symmetry of the underlying lattice and that they do not coincide with high symmetry points in
the 1BZ. Moreover, observe that the position of these cones in the 1BZ is tunable by t′. Finally, the
result for t′ < 0 can be obtained by changing E to −E for every k.

Next, we will show that the effective Hamiltonian around these points is a generalized Weyl
Hamiltonian, meaning that the low energy structure of the dispersion is indeed that of a tilted anisotropic
Dirac cone. Without loss of generality, we only consider the case q > 0 and set kQ := (q, q). This
means that we focus on the tilted Dirac cone at theQ-point defined in Figure 3.3(d). Taylor expanding,
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we find for i = x, y

cos(kia/2) = cos(qa/2)− 1

2
sin(q/2)(pia)− 1

8
cos(q/2)(pia)2 (3.15)

=
t

2t′
− 1

2

√
1− (t/2t′)2(pia)− 1

8
t/2t′(pia)2, (3.16)

where we used that sin(arccosx) =
√

1− x2 and defined k := kQ + p. We use this to expand (3.3)
entrywise to first order asH0(k) ' H0(kQ) + δH(p). Then, we have that

H0(kQ) = − t
2

t′

 0 1 1

1 0 1

1 1 0

 , (3.17)

which has eigenvalues ε01 = ε02 = t2/t′ and ε03 = −2t2/t′, while the normalized eigenvectors are
|ψ1〉 = (−1, 0, 1)/

√
2, |ψ2〉 = (1,−2, 1)/

√
6 and |ψ3〉 = (1, 1, 1)/

√
2. Notice that it is essential that

the eigenvectors |ψ1〉 and |ψ2〉 that span the two-dimensional eigenspace corresponding to ε01 = ε02 are
orthonormal. This can be achieved by using the Gram-Schmidt procedure. The first order correction
to the Hamiltonian matrix is given by

δH(p) = t

√
1− t2

4t′2

 0 px py

px 0 px + py

py px + py 0

 . (3.18)

Using the Luttinger-Kohn representation at the point kQ [81], the matrix elements of the effective
HamiltonianHeff read to first order in px and py

Heff
ν,ν′ = ε0νδν,ν′ + 〈ψν |δH(p)|ψν′〉 (3.19)

with ν, ν ′ = 1, 2. We neglect the first term, which is equivalent to setting the zero of energy equal to
the value at the band touching point kQ. The result is

Heff(p) = −t
√

1− t2

4t′2

(
py py/

√
3

py/
√

3 (4px + py)/3

)
. (3.20)

The above can be written as a generalized Weyl Hamiltonian

Heff(p) =
3∑

µ=0

vµ · p σµ, (3.21)

where σ0 := 12 and σ := (σ1, σ2, σ3) = (σx, σy, σz) is a vector of Pauli matrices. We find

v0 = − t
3

√
1− t2

4t′2
(−2ex + ey), (3.22)

v1 = −t
√

1

3

(
1− t2

4t′2

)
ey, (3.23)

v2 = 0, (3.24)

v3 = −2t

3

√
1− t2

4t′2
(ex + ey). (3.25)
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Figure 3.4: Fermi surfaces for t′ = 0.7t, λISO = 0 and chemical potential (a) below the Weyl points,
(b) exactly at the Weyl points and (c) above the Weyl points. In green (blue) we denote
the filled particle states from the middle (upper) band. For t′ = −0.7t, the indicated
regions would be filled hole states, with ’above’ replaced by ’below’ and vice versa.

In principle, one can transform the above Hamiltonian to a minimal Weyl Hamiltonian, as shown
by Goerbig et al. [82]. For this, we first make a rotation in spin space to transform σz into σy.
This is followed by a unitary transformation which is equivalent to a rotation in spin space around
the σz axis, together with a rotation in momentum space. The rotation angles are then chosen in
such way that the coefficient in front of σx is proportional to the momentum in the x-direction and
similarly for the y-direction. In terms of the new parameters, one can then obtain a condition for
which one can unambiguously assign the conduction and valence band for a Fermi energy around the
band touching point. However, in our case we find that this maximum tilt condition is violated for all
values of t′ > 0.5t. Actually, this can also be seen by looking at the dispersions in Figure 3.3(d). As
a consequence, the Fermi surfaces around the band touching point are open.

To demonstrate this behaviour, we have plotted the Fermi surfaces exactly at the Weyl points and
slightly above/below it in Figure 3.4. These pictures reveal that exactly at the band touching point the
Fermi surface is perfectly nested, while slightly above or below it, the nesting is imperfect. It would
be interesting to add on-site interactions for these choices of chemical potential and investigate spin
and charge density wave instabilities using the formalism proposed by Makogon et al. [83]. The fact
that there is a multi-band Fermi surface may give rise to interesting effects. Moreover, extending this
formalism to include longer-range interactions seem to be worthwhile.

The occurrence of open Fermi surfaces does not necessarily pose a problem for the application
of the effective Hamiltonian in (3.21). However, as we shall see in the next section, the band that
is projected out becomes topologically non-trivial for λISO 6= 0, which hints to the fact that the
generalized Weyl Hamiltonian does not properly take into account the topology of the system. One
thus has to resort to the full tight binding Hamiltonian to get hold of these properties.
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Figure 3.5: (a) The black dashed line indicates the dispersions for λISO = 0 and the blue continuous
line indicates the situation for λISO 6= 0. There is no full gap when λISO is below a critical
value λcISO. (b) For a sufficiently large λISO > λcISO, the spectrum is fully gapped.

3.4 Numerical evaluation of the Chern numbers for complex NNN hop-
ping

Let us now consider the case t′ 6= 0 and λISO 6= 0. Regarding the topology of the bands, we already
understand the case t′ < 0.5t. Namely, such a state is adiabatically connected to the case for which
t′ = 0 and no band gap is closed in such a process. This means that the Chern numbers of the bands
are exactly the same as if one would put t′ = 0.

It is however more subtle for t′ > 0.5t. As mentioned in the previous section a band touching point
occurs at the Γ-point for λISO = 0. Interestingly, this still occurs in the presence of intrinsic SOC,
because R3 = 4λISO sin(kxa/2) sin(kya/2) = 0 at the Γ-point for all values of λISO. In a sense, the
Γ-point is thus protected from the effects of the intrinsic SOC. Because the upper and middle band do
touch when t′ is increased above 0.5t, the Chern numbers of the bands may change. For this reason it
is worthwhile to be able to calculate the Chern numbers in the presence of a non-zero t′. An analytical
evaluation of the Chern numbers as in section 3.2 is in principle possible, but the expressions become
tedious to deal with. For this reason, we will choose to compute the Chern numbers numerically by
resorting to the method proposed by Fukui et al. [84]. The analytical results presented before have
been used to check the validity of our numerical code.

Before we present the results from this calculation, we would like to point out another subtlety that
occurs in the band structure of our TB model for a genuinely complex NNN hopping. It is clear that
for t′ 6= 0.5t all three bands are separated from each other at each point in the 1BZ. However, there
is a parameter regime for which there is no full gap between the upper and middle band, although
the bands are separated (Figure 3.5(a)). In this case, if the minimum of the upper band lies below the
maximum of the middle band, we say that the spectrum exhibits a negative indirect band gap. We
observe that a critical λISO is needed to obtain a full gap between the middle and upper band (Figure
3.5(b)). The condition for such a full gap to occur is ε0(kΓ) < ε+(kM ). Whenever, this condition is
not satisfied, a 2/3-filled system will always have both the upper band and the middle band partially
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filled, which would classify the bulk as a semi-metal. Because of these bulk states that are present at
this filling, it may not be possible to detect the edge states. Moreover, by a result of Haldane [85], the
partially filled bands will in general give a non-quantized contribution to the spin Hall conductivity.

Notice that for 1/3-filling this problem does not occur, which means that the edge states can be
experimentally observed. By symmetry, we have the same effects for t′ < 0, but with 1/3- and 2/3-
filling interchanged and “upper gap” replaced by “lower gap”. Given this information, we can draw a
‘phase’ diagram in the (t′, λISO)-plane, for which we indicate the regions with distinct Chern numbers
for the bands. Moreover, we can find the regions when there is a full gap between the (lower) upper
band and the middle band for (1/3-) 2/3-filling.

Let us comment on the phases which occur in such a diagram, as is shown in Figure 3.6. Without
loss of generality, let us focus on the case that t′ > 0. For 2/3-filling, one has a semi-metal at the
blue region in Figure 3.6. Outside this blue region, one could classify the material as a QSH insulator
whenever λISO 6= 0 and t′ 6= 0.5t. The first requirement is necessary, because for λISO = 0 the three
bands are not separated, resulting in a metallic state (Figure 3.3). Recall that if the second requirement
is not satisfied, there is a band touching point at the Γ-point. Consequently, it is not possible to assign
a Chern number to the middle and upper bands separately.

For 1/3-filling, all the regions enclosed by the red lines and the line t′ = 0 are QSH insulators
with σSH given by (3.13). Just like above we have for this filling fraction that the case λISO = 0 is an
ordinary metal. Finally, for t′ = 0.5t and λISO 6= 0, the Fermi energy lies in a gap with a completely
filled band with non-zero (spin) Chern number, hence classifying it as a QSH insulator. The above
discussion also holds for t′ < 0, but with 1/3 and 2/3 interchanged and the word ’blue’ replaced
by ’green’. Moreover, for Cσ0 = ±2, we have that σSH switches sign when going from 1/3-filling to
2/3-filling. This does not occur when the middle band is topologically trivial. Finally, we note that
the various changes in Chern numbers after a transition can be understood in terms of the type and
number of band touchings that occur exactly at the transition.

3.5 Formal equivalence with Varma phase

We could now ask ourselves the question whether we can also see the topological phase transitions
from the previous section in QAH systems, in addition to the QSH systems. Indeed, this is possible,
and for this we will show that the Hamiltonian in Eq. (3.2) is formally equivalent to the Hamiltonian
of the Varma phase shown in Figure 2.3(b). Let us thus have a closer look at this circulating current
state. From Ref. [38] it is known that the Hamiltonian with mean-field corrections from the order
parameter r is given by

HCCk =

 0 itsx itsy

−itsx 0 t′sxsy + ircxcy

−itsy t′sxsy + ircxcy 0

 , (3.26)

where we abbreviated si := sin(kia/2) and ci := cos(kia/2) for i = x, y. It turns that the
Hamiltonian (3.2) that we studied before is equivalent to this Hamiltonian for a particular choice
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Figure 3.6: Phase diagram as function of λISO and t′. The red lines indicate positions for which a
band gap closes, meaning that the Chern numbers can change. In the regions enclosed by
these red lines the various (spin) Chern numbers C↑ = Cspin/2 are indicated. The blue
(green) region indicates the parameter regime for which there is no full gap between the
middle and upper (lower) band.

of spin component. To make this equivalence more precise, first shift the momentum in (3.26) by
k → k + (π, π). Then perform a unitary transformation by using the matrix U := diag(i, 1, 1). We
find thatHσk = UHCCk+(π,π)U

† if we identify t′ → −4t′ and r → ±4λISO, where the plus (minus) sign
refers to σ =↓ (σ =↑).

This formal equivalence is interesting because it means that this Varma phase can undergo the
topological phase transitions studied in the previous section. This means that the phase diagram in
Figure 3.6 could equally well apply to this Hamiltonian, with a suitable rescaling of the axes. The
only difference is that it is not helical edge states that may reverse direction, but chiral ones because
of explicit TRS breaking. Finally, these phase transitions were not discussed in Ref. [38], although
they did mention the possibility that Chern numbers may change when bands start to touch.

3.6 Staggered hoppings

In Ref. [39] it was shown that a staggered NN hopping t ± α along the x- and y-direction in the ab-
sence of SOC also opens a gap at the M -point. However, it was found that such a gap is topologically
trivial. In light of Ref. [37] this is not surprising, because the Hamiltonian for a single spin projec-
tion conserves the product of time-reversal and inversion. Moreover, their Hamiltonian is formally
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equivalent to a Varma phase that does not exhibit a QAHE.
However, despite of this, we still find it interesting to investigate such a contribution to the Hamil-

tonian, but with an intrinsic SOC present. Including the dimerization term, we find that the Hamilto-
nian changes to

Hk := H0
k ⊗ 12×2 + iHISO

k ⊗ σz +Hdim
k ⊗ 12×2, (3.27)

with

Hdim
k =

 0 −2iαsx −2iαsy

2iαsx 0 0

2iαsy 0 0

 . (3.28)

We could choose the relative signs in front of the sines differently, which corresponds to different
dimerization patterns. However, this will not change the results that follow because it only amounts
to a suitable transformation e.g., (kx, ky)→ (kx,−ky) in momentum space. Let us now calculate the
phase diagram for a fixed α by identifying the set of parameters for which a band touching occurs.
However, this is in principle a difficult problem, because the dimerization α explicitly breaks the
underlying C4 symmetry of the lattice, but it can be solved numerically. Moreover, the condition for a
negative indirect band gap was also calculated. The results are shown in Figure 3.7 for the staggered
hopping contribution α = 0.3t.
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Figure 3.7: (a) Phase diagram as function of λISO and t′ for α = 0.3t. This diagram should be read in
the same way as the one in Figure 3.6. The combination of Chern numbers of the bands
that do not occur in the α = 0 case are indicated with colored regions. (b) A negative
indirect band gap occurs in the green (blue) region, delimited by the dashed lines for 1/3

(2/3) filling.
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There are a few qualitative differences compared to the case where α = 0. First of all, we observe
various new combinations of Chern numbers for the bands, which we indicate by the colored regions.
These regions are larger if α is increased. For these regions, it can occur that the gaps are either
trivial or host a QSHE with σSH = ±2. Finally, we see that the region for which a negative indirect
band gap can occur is much larger. We observe for example that λcISO diverges near the transition line
|t′/t| = 0.5. However, the additional features from the dimerization term are not washed out, because
the indirect gap only occurs in one of the two gaps. Finally, we see that for |t′| < |α|/

√
2 no negative

indirect band gap can occur.

3.7 Some perspectives on other lattice geometries

The occurrence of these phase transitions driven by t′ opens the question whether they can also occur
in other lattices. Although other lattice geometries are not a focus of this thesis, we did investigate
the kagome lattice, which has three sites per unit cel. Indeed, these phase transitions occur also in the
kagome lattice. However, in the honeycomb lattice, with two sites per unit cell, they were only found
at non-zero magnetic field. For this reason, we may conjecture that these type of topological phase
transitions can only occur in multi-gap systems. The details of the relevant calculations, together with
the results presented here have been recently submitted for publication [76].
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Chapter 4

Fermionic superfluidity

In this chapter, we will investigate fermionic superfluidity on the Lieb lattice at zero temperature in
mean-field. Since our focus here will be on the weak coupling limit, it is important to first understand
the band structure without any mean field corrections. There are several possible band structures
from which we can start. One way is to begin with the model presented in the previous section with
λISO = 0 and t′ > 0.5t. We could then put the chemical potential exactly at the band touching point
of the generalized Weyl cones. However, because of the large tilt of these cones, there is already a
(multiband) Fermi surface for this choice of the Fermi energy, see Figure 3.4. Moreover, this Fermi
surface is perfectly nested so that any instability towards fermionic superfluidity would need to com-
pete with a charge density wave instability. This is a complicated problem which we would not like
to pursue here.

Instead, we will start with a model that has generalized Weyl cones within the 1BZ, but with a
point-like Fermi surface at the band touching point. To accomplish this, we add fluxes to our unit
cell in a pattern that is similar to the circulating current states as was proposed by Varma for the
high-Tc superconductors [12]. The difference is that we assume the fluxes to be given, meaning that
they are not spontaneously formed from the interactions. This can for example be realized in optical
lattices. The question is then how the emergent Bloch waves can be used for pairing in a BCS-type
manner. Finally, we will also investigate the possibility of pairing when the chemical potential is put
at a quadratic band touching point (QBTP). The particle-hole instabilities for such a band structure
were already investigated for the Lieb lattice by Tsai et al. [86]. Here, we will however focus on the
particle-particle channel.

4.1 Mimicking the Varma phase

In this section, we will mimic some of the Varma phases in the hope that they will give interesting
band structures that can serve as a starting point for pairing instabilities. For simplicity, we will only
consider Varma phase patterns that do not enlarge the unit cell, to make sure that the number of bands
is minimal. In particular, we considered the circulating current phases shown in Figure 4.1. Each of
these states have a flux of φ in a suitable plaquette within the unit cell. For example, the one shown in
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(a) (b) (c)

Figure 4.1: Varma circulating current phases that do not enlarge the unit cell. Regarding the sublattice
indices mentioned in the text, we use the same conventions as in Chapter 3.

(a) has a flux of φ in a B−A−C−B plaquette, where we can transverse this plaquette in both clock
senses. The example in (b) has a flux φ in a B − C −B − C −B plaquette, but only when followed
counterclockwise. These fluxes are realized in a tight binding model under the condition that every
hopping process in the direction of an arrow is accompanied by a suitable phase factor. However,
for our purposes it turns out that only (c) will be of relevance. Namely, the pattern in (a) leads to a
renormalization of t′ according to t′ → t′ cos(φ). The physics of such a model is already described
in the previous chapter, since there we have already looked at all the possible values of t′. Pattern (b)
is not interesting for fermionic superfluidity, because the effect of the flux φ is to create two full gaps
between the three bands for t′ 6= 0, in a similar fashion as how an intrinsic SOC acts. These gaps then
host a QAHE, and topological phase transitions driven by t′ can be realized here, and this was again
discussed in the previous chapter. Therefore, we will only consider pattern (c). We will see that this
gives us a point-like Fermi surface, which will be an interesting starting point for adding interactions.

For this pattern, the Hamiltonian can be written as

Ĥt = −t
∑
〈i,j〉;σ

eiθi,j ŝ†iσ ŝj,σ − t′
∑
〈〈i,j〉〉;σ

eiθi,j ŝ†i,σ ŝj,σ. (4.1)

Here the angle θi,j has a value that depends on the particular bond that connects the sites i and j.
These values are chosen such that a flux of ±φ transverses a B-A-C-B plaquette, where the plus
(minus) sign is taken if such a plaquette is transversed (counter)clockwise. Here, only NN or NNN
links are considered. Moreover, we demand that the flux in an A-B-C-A-B-C-A plaquette is zero.
This means that θi,j can take the values 0 or ±φ/3.

In the momentum space, we can write the Hamiltonian as Ĥ =
∑

k,σ Ψ̂†k,σHVk Ψ̂k,σ in the basis
Ψ̂k,σ = (ŝA,k,σ, ŝB,k,σ, ŝC,k,σ). The Hamiltonian matrixHVk then reads

HVk =

 0 −2t cos(kxa/2 + φ/3) −2t cos(kya/2 + φ/3)

∗ 0 −4t′ cos(kxa/2− φ/6) cos(kya/2− φ/6)

∗ ∗ 0

 , (4.2)
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where the asterisks ’∗’ need to be filled in such that the matrix is Hermitian. The factor φ/6 for
the term that describes hopping between the B and C sublattice is maybe not easy to understand, so
let us first elaborate on this contribution. This term comes from adding the relevant phase factors,∑

j e
i(k·δj+θj), where the δj’s are bond vectors that connect the B sites with its four NNN C sites.

These vectors are given by δ1 := (ex + ey)a/2, δ2 := −(ex + ey)a/2, δ3 := (ex − ey)a/2, and
δ4 := −(ex− ey)a/2. The phase θj is equal to −φ/3 for j = 1, it equals φ/3 for j = 2 and it is zero
otherwise. Then we find that

−t′
∑
j

ei(k·δj+θj) = −2t′{cos[(kx + ky)a/2− φ/3] + cos[(kx − ky)a/2− φ/3]}

= −2t′{cos[(kxa/2− φ/6) + (kya/2− φ/6)]

+ cos[(kxa− φ/6)− (kya/2− φ/6)]}.

Then apply cos(α+ β) + cos(α− β) = 2 cosα cosβ and the result follows.
Let us now consider some properties of the matrix in Eq.(4.2). First, we observe that this matrix

reduces to H0
k (see previous chapter) for φ = 0, as it should be. Moreover, it looks like that the

Hamiltonian is 6π periodic in φ. However, as we shall see below, many of the band structures are
equivalent up to a shift in momentum. To understand this notion, we first consider t′ = 0. In this case,
the effect of the flux is merely to displace the band structure by a vector−(2φ/3, 2φ/3). For example,
there is still a Dirac cone like structure that touches a flat middle band, but now instead of appearing
at the M -point, it occurs at (π − 2φ/3, π − 2φ/3)1. This motivates us to define a phase dependent
momentum as qi := ki + 2φ/3a for i = x, y. This definition will only be used to map out equivalent
band structures onto each other. When we consider pairing later, we have to work with the original
momentum k. The Hamiltonian matrix in terms of q then simplifies to

HVq =

 0 −2t cos(qxa/2) −2t cos(qya/2)

∗ 0 −4t′ cos[(qxa− φ)/2] cos[(qya− φ)/2]

∗ ∗ 0

 . (4.3)

From this we see that there is in fact only a 2π periodicity in φ, where we think of two band structures
being equivalent if they can be mapped onto each other by a shift in momentum. Under this condition,
the case φ = 0 is equivalent to φ = 2π. Moreover, the spectra for φ and φ + π can be mapped onto
each other by a C2 rotation. This means that we can now naturally restrict our attention to 0 ≤ φ ≤ π.

We observe that only for φ = 0 and φ = π the dispersions satisfy ε(q) = ε(−q), because in these
cases, we have thatHVq = HV−q. This condition is not satisfied for other values of the flux φ. Despite
the lack of such a symmetry, we still have that all the band touching points occur along the diagonals
qy = ±qx. The spectra along these diagonal are shown in Figure 4.2.

The dispersions still have a symmetry along the negative diagonal qy = −qx. In this case we have
that ε(qx,−qx) = ε(−qx, qx). We find band touchings between the middle and the lower bands at

1Whenever this point occurs outside the 1BZ, we have to use a reciprocal lattice vector to identify it with a point in the
1BZ.
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±(q0,−q0) (Figure 4.2(c)-(d)), where q0 is given by

cos(q0) =
t2

4t′2

[
1− 4t′2

t2
cosφ−

√
1 +

16t′2

t2
sin2

(
φ

2

)]
. (4.4)

This solution also describes the band touching points along the positive diagonal, which occur at the
points±(q0, q0), see Figure 4.2(a). However, this expression is then only true for φ = π. For all other
values of the flux, there are still two Weyl cones, but not at the same energy, see Figure 4.2(b).
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Q′

−Q
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Figure 4.2: Typical band structures for Eq. (4.3) as a function of the phase dependent momentum
q. We have defined the special points M ′ = (π, π), Q = (q0,−q0), Q′ = (q0, q0),
Q̃ = (q̃0,−q̃0) and Γ′ = (0, 0). The upper row depicts the spectra along the positive
diagonal, which show possible band touchings between the upper and the middle band,
whereas the lower row depicts spectra along the negative diagonal. (a) For φ = π, there
are two Weyl points symmetrically around the zero of momentum in the shifted BZ. (b)
For φ not an integer multiple of π, the Weyl points are not symmetrically displaced. (c)
For all values of φ 6= 2πn (n integer), there are tunable Weyl points between the lower
and the middle bands that satisfy the maximum tilt condition for all values of t′. (d) For
a suitable choice of parameters, there are also Weyl touchings between the upper and the
middle bands that however do not satisfy the tilt condition. The particular example shown
here is for φ = π/2 and t′ = 0.8t.
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There is also a possibility to have a band touching point between the middle band and upper band
at ±(q̃0,−q̃0) , given by the condition

cos(q̃0) =
t2

4t′2

[
1− 4t′2

t2
cosφ+

√
1 +

16t′2

t2
sin2

(
φ

2

)]
. (4.5)

Notice that such a band touching point does not always occur. For this to happen, it is required that
the modulus of the right hand side is smaller than or equal to unity, see Figure 4.2(d).

In the following, we will always focus on the lower two band touching points. We define a vector
Q := (q0,−q0), so that the two generalized Weyl cones are separated by an incommensurate vector
2Q. We are interested in putting the chemical potential at these Weyl points. In this case, the chemical
potential can be found by filling in Q in the Hamiltonian and solve for the eigenvalues. We find that

µ =
t2

2t′

[
−1 +

√
1 +

16t′2

t2
sin2

(
φ

2

)]
. (4.6)

4.2 Pairing for a circulating current pattern

We will now look at interactions and treat them in the particle-particle channel at the mean-field level.
There are two types of interactions that we will consider, namely attractive on-site and NN density-
density type interactions. These type of interactions can be realized with cold atoms. Although in most
optical lattice experiments only on-site Hubbard interactions are realized, NN interactions are possible
if one considers dipolar atoms [87], or a mixture of fermions and bosons. In the latter case, the bosons
condense and the phonons of the condensate mediate a longer-range effective interaction between the
fermions [88]. Before we proceed, let us look at how a MF decoupling in the particle-particle channel
works.

Two-body density-density interactions are generally of the form ŝ†i,σ ŝ
†
j,σ′ ŝj,σ′ ŝi,σ. In the particle-

particle channel, we expand the operators as ŝi,σ ŝj,σ′ = 〈ŝi,σ ŝj,σ′〉 + δ(ŝi,σ ŝj,σ′). Here 〈...〉 is an
average taken in the grand canonical ensemble and the equality sign defines the fluctuations around
this average value. Inserting this expansion in the interaction term, we find that

ŝ†i,σ ŝ
†
j,σ′ ŝj,σ′ ŝi,σ =

(
〈ŝ†i,σ′ ŝ

†
j,σ′〉+ δ(ŝ†i,σ ŝ

†
j,σ′)

) (
〈ŝj,σ′ ŝi,σ〉+ δ(ŝj,σ′ ŝi,σ)

)
≈ 〈ŝ†i,σ′ ŝ

†
j,σ′〉ŝj,σ′ ŝi,σ + ŝ†i,σ′ ŝ

†
j,σ′〈ŝj,σ′ ŝi,σ〉 − 〈ŝ†i,σ′ ŝ

†
j,σ′〉〈ŝj,σ′ ŝi,σ〉. (4.7)

We shall now apply this to specific cases.

4.2.1 On-site interactions

Let us consider first the simple case of an attractive on-site interaction of the form

Ĥint = −U
∑
i

ŝ†i,↑ŝ
†
i,↓ŝi,↓ŝi,↑, (4.8)
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with U > 0. After the mean-field decoupling, we find

ĤMF
int =

3N |∆|2
U

−
∑
i

(
ŝ†i,↑ŝ

†
i,↓∆ + h.c.

)
, (4.9)

with respect to the order parameter ∆ = U〈ŝi,↓ŝi,↑〉 and where N is the number of unit cells. The
factor three arises because there are three sublattices in each unit cell. Moreover, notice that for
simplicity we assume our order parameter to be site independent and we absorb U in its definition to
make sure that it has the dimension of energy. It is now straightforward to write (4.9) in momentum
space. We then arrive at the mean-field (MF) Hamiltonian ĤMF := Ĥt + ĤMF

int , which in the grand
canonical ensemble can be written in the form

ĤMF − µN̂ =
∑
k

(Ψ̂†k,↑, Ψ̂−k,↓)HBdG
k

(
Ψ̂k,↑

Ψ̂†−k,↓

)
−
∑
k

3µ+
3N |∆|2
U

, (4.10)

with the 6× 6 Bogoliubov-de Gennes (BdG) Hamiltonian matrix given by

HBdG
k =

(
HVk − µ13×3 −∆13×3

−∆∗13×3 −HV−k + µ13×3

)
. (4.11)

Notice that this matrix is by construction particle-hole symmetric. Before we start diagonalizing
HBdG

k , let us comment on the other contributions in (4.11). We see that there is a term propor-
tional to µ that does not depend on the order parameters. Such a term arises because we used the
anti-commutation relations to write ŝ†X,−k,↓ŝX,−k,↓ = 1 − ŝX,−k,↓ŝ†X,−k,↓. Moreover, the sum over
wavenumbers is convergent because of the ultraviolet cut-off imposed by the lattice constant. This
term can in principle be neglected because it does not depend on the order parameters, in contrast to
the last term.

We will now proceed to diagonalize HBdG
k . However, it is difficult to find the eigenvalues ex-

plicitly. First of all, the characteristic polynomial is of degree six and it is involved to find the roots
sinceHVk 6= HV−k. If this would not be the case, then

(
HBdG

k

)2 would be block diagonal and it would
be easy to find the eigenvalues using Cardano’s method, because the sextic characteristic polynomial
would then factorize into two cubics. Unfortunately this is not true, so the eigenvalues have to be
found numerically.

However, the above fact has a non-trivial consequence. To see this, let us consider the unitary
transformation such that the non-interacting Hamiltonian is diagonal, i.e., we transform the operators
to the band representation. This unitary transformation can be written as Λk = QkHVkQ

†
k, where

Λk is a diagonal matrix that consists of the eigenvalues of HVk . It is interesting to apply such a
transformation to the BdG Hamiltonian matrix. This is done by Wk = diag(Qk, Q−k) according to
HBdG

k →WkHBdG
k W †k. We find

WkHBdG
k W †k =

(
QkHVkQ

†
k − µ13×3 −∆QkQ

†
−k

−∆∗Q−kQ
†
k −Q−kHV−kQ

†
−k + µ13×3

)
(4.12)

=

(
Λk − µ13×3 −∆QkQ

†
−k

−∆∗Q−kQ
†
k −Λ−k + µ13×3

)
. (4.13)
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Notice that the condition HVk 6= HV−k implies that we have that QkQ
†
−k 6= 13×3. This mean that the

on-site pairing naturally leads to intra-band and inter-band pairing, in sharp contrast to the case if the
Hamiltonian is symmetric under k→ −k. In such a case, we would only have intraband pairing.

Now, suppose we know the eigenvalues. Then, we can write the Hamiltonian in the basis in which
it is diagonal. This is accompanied by a unitary transformation Uk, in which the Nambu spinor is
transformed to the quasi-particle basis(

Υ̂k,↑
Υ̂†−k,↓

)
= Uk

(
Ψ̂k,↑

Ψ̂†−k,↓

)
, (4.14)

with the three-component quasi-particle spinor given by Υ̂k,σ := (ς̂1,k,σ, ς̂2,k,σ, ς̂3,k,σ). Then, we can
write UkHBdG

k U †k = diag(E1,k, E2,k, E3,k,−E1,−k,−E2,−k,−E3,−k), where we used the particle-
hole symmetry. In terms of the quasi-particle creation and annihilation operators, the MF Hamiltonian
becomes

ĤMF − µN̂ =
∑
k,σ

3∑
i=1

Ei,kς̂
†
i,k,σ ς̂i,k,σ −

∑
k

(3µ+
3∑
i=1

Ei,k) +
3N |∆|2
U

. (4.15)

The terms in the above equation have the same interpretation as in the conventional BCS theory. The
first term takes into account quasi-particle excitations, while the other terms denote the energy of
the vacuum for the quasi-particles. The theory is now free, so it is straightforward to calculate the
partition function

ZMF = Tr
[
e−β(Ĥ−µN̂)

]
= e−3βN |∆|2/U∏

k,σ

eβ(3µ+
∑
i Ei,k)/2

(
1 + e−β

∑
i Ei,k

)
. (4.16)

The factor 1/2 in the exponent arises because we included this term inside the product over σ, which
takes two values. From this, we can calculate the grand potential

ΩMF = −β−1 logZMF =
3N |∆|2
U

−
∑
k,σ

[
(3µ+

∑
i

Ei,k)/2 + β−1 log
(

1 + e−β
∑
i Ei,k

)]
.

(4.17)
Let us assume that Ei,k ≥ 0. We are interested in the case T → 0 (or equivalently β → ∞), in the
thermodynamic limit. If we neglect all terms independent of ∆, then the grand potential per unit cell
reads

ω :=
ΩMF

N
=

3|∆|2
U
−
∫

1BZ

d2k

(2π)2

∑
i

Ei(k). (4.18)

In finding this expression, we used that the total system surface is N , in units where a = 1. Normally,
we can find the gap equations by setting the derivative of this quantity with respect to ∆ equal to zero.
This is equivalent to evaluate the self-consistency condition ∆ = U〈ŝi,↓ŝi,↑〉. However, because we
do not have analytical expressions for the quasi-particle dispersions, it is more feasible to minimize ω
numerically.

We have performed such minimization for, e.g., φ = π and t′ = 0.4t, where we assumed ∆ to
be real. What we observe is that there is a second-order phase transition to a superfluid phase at a
critical coupling of Uc ≈ 5t. The fact that a critical coupling is needed for a phase transition to occur
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Figure 4.3: Quasiparticle spectra when on-site pairing ∆ is included. Only the spectra near E = 0

are shown. In these examples, we have taken φ = π and t′ = 0.4t. (a) For ∆ = 0

the spectra are gapless in the 1BZ. (b) For ∆ = t the spectra are still gapless, but now
at different points in the 1BZ. (c) A full superfluid gap is formed when ∆ is sufficiently
large. In this example, we have put ∆ = 2t.

at T = 0 does not come as a surprise. Indeed, this is because of a vanishing density of states (DOS)
at the Weyl points. Such a behaviour was already observed earlier for proposals of superconductivity
in graphene [89] and on a square lattice with a staggered flux [88], when the chemical potential is at
the Dirac point. Finally, we checked how the critical value of the coupling depends on the separation
of the Weyl points, which can be tuned by t′ and φ. We found that this has minimal influence, so that
Uc is almost a constant as function of t′ and φ.

Because the phase transition is second-order, this means that in principle we have access to various
values of the order parameter ∆. For sufficiently strong interaction, the weak coupling calculation
that we have perforned here would not hold. Still, let us consider the various quasiparticle excitation
spectra that can occur as a function of ∆. Then, we find something remarkable: for a non-zero value
of ∆, the quasiparticle spectrum is not necessarily gapped in the full 1BZ, see Figure 4.3(b). Only if
∆ is sufficiently large, a superfluid gap can occur, see Figure 4.3(c). This is rather strange, because
normally on-site pairing immediately opens a gap in the spectrum. We do not quite understand this
observation, but it may be due to the interband components in the on-site pairing. Arguably, this
makes it harder to gap out the quasiparticle branches. Moreover, we see that tuning ∆ can move
around the points for which the spectrum is gapless, before a superfluid gap opens.

4.2.2 Nearest-neighbour interactions

We now add a nearest neighbour attraction term of the form

Ĥint = −V
2

∑
〈i,j〉

∑
σ,σ′

ŝ†i,σ ŝ
†
j,σ′ ŝj,σ′ ŝi,σ, (4.19)
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where V > 0. The factor 1/2 is to avoid double counting. However, we could also have chosen to
restrict the sum over the sites in the A sublattice and then sum over the four possible NN of such a
site. We checked that this would give us the same result. Next, we decouple this interaction term in
the particle-particle channel to find the mean field correction to the Hamiltonian

Ĥint ≈ E0 −
∑
〈i,j〉

∑
σ,σ′

(
ŝ†i,σ ŝ

†
j,σ′∆j,i;σ′,σ + h.c.

)
, (4.20)

with E0 :=
∑
〈i,j〉

∑
σ,σ′ |∆i,j;σ,σ′ |2/V . The question is now how we should define our order param-

eters. There are various possibilities to do this. First, notice that the ∆i,j;σ,σ′ = V 〈ŝi,σ ŝj,σ′〉 denote
particle-particle correlations across a bond in the lattice connecting two nearest-neighbour sites. One
way is then to define a spin-singlet order parameter, for which we allow the value to depend on the
particle bond. Such an approach was already discussed for graphene [90] and for the square lattice
under a staggered flux [88]. This type of order parameters has a RVB-like character, that may lead
to unconventional order parameters that are worthwhile to consider. Here, we will however adopt a
different approach, as proposed by Roy and Herbut [91].

For simplicity, let us first assume that the values of the bond order parameters are equal for the
four bonds around an A site. Moreover, if the chemical potential is chosen such that there is a point-
like Fermi surface, it leads to a phenomenon that is called hidden order. This was proposed for
graphene [89], where tuning the NN gap parameters does not open a gap at the Dirac point. Instead,
one renormalizes the Fermi velocity. Roy and Herbut elaborated on this fact by choosing a particular
ansatz appropriate to the honeycomb lattice for the NN pairing parameters [91]. By connecting the
two Dirac cones in the 1BZ by a commensurate separation vector K, they proposed an FFLO state for
the spin triplet part of the decoupling: a superconducting state that is spatially inhomogeneous, but
periodic with 2K. Such states were first proposed by Fulde, Ferrell, Larkin and Ovchinnikov [92, 93]
and they describe pairing at a finite momentum. Namely, in standard BCS theory, the state (k, ↑) is
paired with (−k, ↓), while in the FFLO state we have pairing between (k + K, ↑) and (−k + K, ↓),
so that the Cooper pair has total momentum 2K.

In the case of the honeycomb lattice, such a pairing ansatz leads to a so-called Kekule pattern. In a
suitable parameter regime this pattern is more favourable than the hidden order that would result from
the spin singlet part of the decoupling. In principle, we are interested in employing such a ‘Kekule’
ansatz here, which means that we connect the two Weyl points with the vector 2Q. However, we will
not solve this problem for the Lieb lattice in this thesis, but we will comment on the differences at the
end of this section. For now, let us just consider their ansatz and look at what kind of contributions
we can expect. We define the order parameters as

∆i,j;σ,σ = ∆σ cos[Q · (xi + xj) + α],

1

2
(∆i,j;↓↑ + ∆i,j;↑↓) = ∆̃ cos[Q · (xi + xj) + α],

1

2
(∆i,j;↓↑−∆i,j;↑↓) = ∆′.

Here, α parametrizes various possible inhomogeneous superfluid states for the components of the
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triplet. Using this ansatz, we find that∑
σ,σ′

ŝ†i,σ ŝ
†
j,σ′∆j,i;σ′,σ =

∑
σ

∆σ cos[Q · (xi + xj) + α]ŝ†i,σ ŝ
†
j,σ

+ ∆̃ cos[Q · (xi + xj) + α](ŝ†i,↑ŝ
†
j,↓ + ŝ†i,↓ŝ

†
j,↑) + ∆′(ŝ†i,↑ŝ

†
j,↓ − ŝ

†
i,↓ŝ
†
j,↑)

(4.21)

We are now interested in how these terms look like in the momentum space. For example, suppressing
the spin indices, we find∑
〈i,j〉

cos[Q · (xi + xj) + α]ŝ†i ŝ
†
j =

∑
k

{ŝ†A,k−Qŝ
†
B,−k−Q cos[(kx +Qx)/2]eiα

+ ŝ†A,k+Qŝ
†
B,−k+Q cos[(kx −Qx)/2]e−iα}+ (B → C, x→ y),

where we have performed a shift in the first term k → k −Q and in the second term k → k + Q.
Finally, we rewrite E0 using this ansatz,

E0 =
N

V
(4|∆′|2 + 2|∆̃|2 + |∆↑|2 + |∆↓|2), (4.22)

where for the last three terms we have used that Q is not a reciprocal lattice vector.

4.2.3 Hidden order

With the calculations performed in the previous subsection, it is now possible to write down the BdG
Hamiltonian. Let us do this for a simple case, where we assume ∆̃ = ∆↑ = ∆↓ = 0. It is then
straightforward to write down the Hamiltonian

ĤMF − µN̂ =
∑
k

(Ψ̂†k,↑, Ψ̂−k,↓)HBdG
k

(
Ψ̂k,↑

Ψ̂†−k,↓

)
−
∑
k

3µ+ E0, (4.23)

with the 6× 6 Bogoliubov-de Gennes (BdG) Hamiltonian matrix given by

HBdG
k =

(
HVk − µ13×3 Pk

P†k −HV−k + µ13×3

)
. (4.24)

Here, the pairing matrix Pk is given by

Pk = −∆′

 0 cx cy

cx 0 0

cy 0 0

 . (4.25)

Notice that this matrix is proportional to the non-interacting Hamiltonian for φ = 0 and t′ = 0. In
some sense, this is the same as the hidden order proposed for graphene, where the pairing matrix
had the same k dependent coefficients as the non-interacting part of the Hamiltonian. Indeed, by
numerically diagonalizing HBdG

k we find that ∆′ is not able to create a gap in the spectrum at zero
energy. However, in contrast to the graphene case, it not only renormalizes the Fermi velocity, but
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Figure 4.4: Quasiparticle spectra when NN pairing ∆′ is included. Only the spectra near E = 0 are
shown. In these examples, we have taken φ = π and t′ = 0.4t. (a) For ∆ = 0.5t the
spectra are gapless in the 1BZ, but at different points than for ∆′ = 0, see Figure 4.3(a).
The points for which the spectra are gapless depends on the value of ∆′. For example, in
(b), we have ∆′ = t and in (c) we have put ∆′ = 2t.

also the position of the points in the BZ for which there is no gap, see Figure 4.4. Finally, we note that
by minimizing the relevant grand potential per unit cell ω, we find that a critical interaction Vc ≈ 9t is
needed (assuming ∆′ to be real), before a fermionic superfluid can form. The phase transition is then
second order, and again, all of this seems to be independent of the separation of the Weyl cones.

4.2.4 FFLO state on the Lieb lattice: a small outlook

Let us now comment on how the BdG Hamiltonian matrix would look like if the FFLO state is taken
into account. Then a six-component spinor will not suffice. We need to choose a 24-component
Nambu spinor as follows

Φ̂k = (Ψ̂k+Q,↑, Ψ̂k+Q,↓, Ψ̂k−Q,↑, Ψ̂k−Q,↓, Ψ̂
†
−k−Q,↑, Ψ̂

†
−k−Q,↓, Ψ̂

†
−k+Q,↑, Ψ̂

†
−k+Q,↓). (4.26)

The Hamiltonian can then be written as

ĤMF − µN̂ =
∑
k

Φ̂†kHBdG
k Φ̂k −

∑
k

3µ+ E0, (4.27)

where now HBdG
k is a 24 × 24 matrix. We have yet to diagonalize this matrix, but we can already

comment on some differences with the Kekule superconductor for graphene. First of all, the size of
the matrix can be understood by counting the degrees of freedom for valley (2), spin (2), sublattice (3)
and finally from the Nambu space construction (2). The amount of sublattices (three instead of two)
makes this a bigger matrix than was found for graphene, where it was 16× 16.

There are also other differences between the Lieb lattice and graphene. In graphene, the Dirac
cones are situated at the high symmetry points. Moreover, the wavenumbers of these cones add up to
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zero. This is in contrast to the Weyl cones in our case, because they are not centered symmetrically
around the Γ point. Moreover, the vector that connects them is incommensurate, while for graphene
the separation vector is commensurate. This means that for the Lieb lattice, no simple interpretation
can be given for the superfluid phase in terms of a Kekule pattern. Finally, and most importantly, the
Weyl cones are tunable. In principle, their position in the 1BZ can vary, which means that a low-energy
approximation is questionable. We already saw that this could occur in the previous subsections. In
the graphene case, the Dirac cones were always at the same point because they are protected. This
allowed Roy and Herbut [91] to perform a low-energy approximation. By the use of symmetries, it
was then straightforward to solve for the eigenvalues of their 16× 16 matrix. It seems that our system
has little symmetry that we can really use. This makes the FFLO state with a Varma phase pattern a
highly non-trivial problem. However, we may want to pursue this problem as a future work.

4.3 Pairing for a quadratic band touching point

The absence of symmetries make the problem of the previous section very difficult. Nevertheless,
it is an interesting scenario because of the presence of two Weyl cones in the 1BZ that allowed an
FFLO type ansatz. We can generate more types of non-interacting band structures on the Lieb lattice
with a point-like Fermi surface for a suitable choice of the Fermi level. As another example, we
will consider the quadratic band touching point. It occurs if a local chemical potential εA on the A
sublattice is included and if we allow for a third-nearest-neighbour hopping t′′, with the restriction
that such a hopping process cannot cross another lattice site, see Figure 3.1(a).

Hartree-Fock (i.e., particle-hole) like mean-field corrections from repulsive interactions were con-
sidered by Tsai and collaborators [86] . They found that the QBTP is then unstable towards various
nematic, QSH and QAH phases driven by the repulsive interactions. Our approach would be different,
because we will look at attractive interactions in the particle-particle channel. Moreover, we will only
briefly discuss the possibilities.

4.3.1 Non-interacting case

We define the spinor Ψ̂k,σ := (ŝA,k,σ, ŝB,k,σ, ŝC,k,σ), to write down the non-interacting Hamiltonian
as

Ĥt =
∑
k,σ

Ψ̂†k,σH
QB
k Ψ̂k,σ, (4.28)

with

HQB
k =

 εA −2tcx −2tcy

−2tcx −2t′′c2y −4t′cxcy
−2tcy −4t′cxcy −2t′′c2x

 , (4.29)

where we abbreviated cγi := cos(γkia/2) for i = x, y and γ = 1, 2. For εA < 0 and t′′ 6= 0 there is a
QBTP at M , where both bands have opposite curvature. This is the case that we are interested in and
this is shown in Figure 4.5.
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Figure 4.5: Quadratic band touching point for εA = −4t and t′′ = 0.1t. (a) For the case t′ = 0 and
when t′ = 0.25t. The effect of NNN hopping is thus to change the curvatures of the two
bands at the M point. However for suitably large t′ we end up in the same behaviour as
in (a).

We will now look at the low-energy structure of this QBTP. At the M point, the eigenvalues of
HQB

k are given by ε0ν with ν = 1, 2, 3 and corresponding eigenvectors |ψν〉. Let us label the bands
such that ν = 3 corresponds to the band that is gapped out. We define k = kM + p and we use
this to expand the Hamiltonian matrix entrywise, HQB ' HQB(km) + δH(p) to quadratic order. By
using the Luttinger-Kohn representation at the point kM , we find the matrix elements of the effective
HamiltonianHeff

Heff
ν,ν′ = ε0νδν,ν′ + 〈ψν |δHp|ψν′〉+

1

2
〈ψν |δHp|ψ3〉〈ψ3|δHp|ψν′〉

(
1

ε0ν − ε03
+

1

ε0ν′ − ε03

)
, (4.30)

with ν, ν ′ = 1, 2. The result is

Heff(p) =

(
m−1

0 p2
x − t′′p2

y pxpy(m
−1
0 − t′)

pxpy(m
−1
0 − t′) m−1

0 p2
y − t′′p2

x

)
, (4.31)

with m−1
0 := t2/(t′′ − εA). Here, we put the zero of energy at the band touching point, which

means that we neglected all terms that do not depend on p. This effective Hamiltonian can then
be rewritten in terms of the identity matrix σ0 := 1 and the Pauli matrices σ := (σ1, σ2, σ3) as
Heff(p) =

∑3
µ=0 fµ(p)σµ, with the coefficients given by

f0(p) =
1

2
(p2
x + p2

y)(m
−1
0 − t′′), (4.32)

f1(p) = pxpy(m
−1
0 − t′), (4.33)

f2(p) = 0, (4.34)

f3(p) =
1

2
(p2
x − p2

y)(m
−1
0 + t′′). (4.35)

In terms of these coefficients, the dispersion around the M-point is easily found to be

ε±(p) = f0(p)±
√
f1(p)2 + f3(p)2. (4.36)
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The fact that fµ(p) = fµ(−p) for µ = 0, .., 4, implies that ε±(p) = ε±(−p). Moreover, the two
bands are particle-hole symmetric only for the case that f0(p) = 0. Finally, for a certain set of
parameters, ε±(0) can be either a saddle point, maximum or minimum. This is controlled by t′ for
the QBTP that we consider here. This is not explicitly discussed by Tsai et al. [86] because they have
neglected the contribution of t′. However, for a suitable choice of t′ > t′′, it can be made sure that
it is roughly the same band touching point as if t′ = 0. This indeed allows us to neglect t′, if we are
only interested in quadratic bands that touch with opposite curvature.

4.3.2 A small note on the effect of attractive interactions

In a sense, the above non-interacting Hamiltonian is easier to handle than the Varma case because
the position of the QBTP is protected and more symmetries are present. One example of such a
symmetry is that HQB

k is invariant under inversion. As was discussed previously, this means that an
on-site pairing with equal amplitude on the various sublattices would only induce intraband pairing.
This leads to a gapped superfluid for every value of the on-site order parameter. The second difference
with the Varma case is that the instability already occurs for an infinitesimal attractive interaction. The
absence of a critical interaction strength at zero temperature is because the DOS does not vanish at
the QBTP. Moreover, this allows us to have more control over the types of superfluid phases that may
occur, because we have more control over the range in which the weak coupling approach is valid.

A pairing instability that would result from an on-site interaction is not particularly interesting
in this case. Instead, we will consider NN and NNN interactions, where we parametrize the latter
with a constant W > 0. Just like in the Varma case, we need to think about the definition of the
order parameters. Here the FFLO ansatz is not possible because there is only one QBTP in the 1BZ.
However, we can still consider an RVB-type order parameter, for which we allow the values of the
various bond order parameters to vary. In such a case, the BdG Hamiltonian matrix takes the form

HBdG
k =

(
HQB

k − µ13×3 Pk
P†k −HQB

k + µ13×3

)
, (4.37)

with the chemical potential at the QBTP given by µ = 2t′′. Here, the pairing matrix is given by

Pk =

 0 ∆V
k,x ∆V

k,y

∆V
−k,x 0 ∆W

k

∆V
−k,y ∆W

−k 0

 . (4.38)

The parameters in this matrix are described by

∆V
k,α = ∆V

+,αe
ikαa/2 + ∆V

−,αe
−ikαa/2 (4.39)

for α = x, y, with spin-singlet order parameters, ∆V
±,α = V 〈ŝj,↑ŝj±eα/2,↓ − ŝj,↓ŝj±eα/2,↑〉. Here, j is

a site from the A sublattice.
The order parameters generated from W can be expressed by using the NNN bond vectors. We

recall that δ1 := (ex+ey)a/2, δ2 := −(ex+ey)a/2, δ3 := (ex−ey)a/2, and δ4 := −(ex−ey)a/2.
In terms of these vectors, we have
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∆W
k =

4∑
j=1

∆W
j e

ik·δj , (4.40)

with order parameters ∆W
i = W 〈ŝj,↑ŝj+δi,↓ − ŝj,↓ŝj+δi〉 for i = 1, ..., 4. These RVB-type order

parameters can conveniently be written in terms of the vectors

∆V = (∆V
+,x,∆

V
+,y,∆

V
−,x,∆

V
−,y), (4.41)

∆W = (∆W
1 ,∆W

2 ,∆W
3 ,∆W

4 ). (4.42)

Notice that we have the same coefficients as in the non-interacting part in the Hamiltonian for vectors
of the type ∼ (1, 1, 1, 1), implying hidden order (no gap). If we allow for some other values, we
see by a careful examination of the possible quasiparticle spectra that no gapped superfluid can form
for any value of ∆V . A particular choice of values for the order parameters can only change the
curvature of the quasi-particle branches, see Figure 4.6(b). However, we find that it is possible to
create a gap at zero energy with ∆W . For example, this can be obtained by the combination of bond
order parameters, given by ∆W ∼ (1, 0, 0, 0), see Figure 4.6(c). This means that in the RVB-pairing
picture, we need NNN interactions to create a full superfluid gap for every point in the 1BZ. From this
small discussion, it may be worthwhile to consider a more careful analysis from the problem that is
posed here. This will be addressed in a future work.

Figure 4.6: Effect of the RVB-type order parameters ∆V and ∆W on the quasiparticle spectrum
around E = 0 for εA = −4t, µ = 2t′′, and t′′ = 0.1t. (a) If all the order parameters
are chosen to be zero, then the spectrum is gapless at the M -point. (b) Choosing ∆V =

(2t, 0, 0, 0) gaps out certain quasiparticle branches, but the system is still gapless at the
M -point. (c) If the order parameters from the NNN attraction W are considered, it is
possible to create a full gap everywhere in the 1BZ. The example that we give here is
∆W = (t, 0, 0, 0).
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Chapter 5

Conclusion and outlook

In this thesis, we investigated two different subjects on the Lieb lattice: the QSHE and fermionic
superfluidity. These two topics have been discussed in Chapter 3 and 4 respectively, while the prereq-
uisites can be found in the first two chapters. For the QSHE problem, we have considered models that
account for an intrinsic spin-orbit coupling, that on a lattice takes the form of a complex NNN hop-
ping. We investigated how the topological features of such models are influenced by the conventional
real NNN hopping contribution t′. As our main result, we have shown that t′ may drive topological
phase transitions in multigap systems, for which the helical edge states reverse direction. This change
in the edge state spectrum can be understood from the spin Chern numbers of the bands that change
value. Subsequently, we have calculated two phase diagrams that show the rich behaviour of these
topological transitions. However, care must taken when interpreting these diagrams, because of the
possible occurrence of negative indirect band gaps. This means that we have partially filled bands
that give rise to a non-quantized contribution to the spin Hall conductivity, which may not be detected
because the bulk is in this case a semi-metal.

The change in (spin) Chern numbers occurs because of specific band touchings in the 1BZ, for
example by tilted anisotropic Dirac cones. Another important outcome of our studies is that it is pos-
sible to tune the momentum for which a band gap opens at these cones. It would thus be enlightening
to look at this problem by the proposed classification of Juričić et al. [64], to see if dislocations can
bind zero modes, and how this phenomenon depends on the positions of the Weyl cones in the 1BZ.
Furthermore, it would be important to investigate how the two gaps that can occur between the three
bands in the tight-binding spectrum, can be probed independently.

Finally, it would be interesting to see how the topological phase transitions are influenced when
interactions are taken into account. We could, for example, consider spin- and charge density waves
instabilities at the mean-field level. However, in a suitable parameter regime, there is still a large
portion of the middle band that is flat. This means that interactions can become dominant over the
kinetic terms, so that the system must be interpreted as strongly correlated. In this case, we could
question the applicability of a mean-field approach.

The second subject that we discussed in this thesis is the problem of fermionic superfluidity on the
Lieb lattice. Our philosophy here was to consider this problem in the weak coupling limit, where BCS-
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like techniques could be applied. We added interactions to band structures that have a point-like Fermi
surface for a suitable choice of the chemical potential. We investigated a particular type of Varma flux
pattern and a quadratic band touching point that is formed by including third-nearest-neighbour hop-
ping. In the first case, we find Weyl cones that are tunable, in sharp contrast to the protected position
of the QBTP in the 1BZ. A critical interaction strength is needed to obtain a fermionic superfluid
when the chemical potential is put at the Weyl points, while for the QBTP an infinitesimal attraction
suffices. Despite these differences, these two situations have some features in common. For example,
in both cases hidden order could be found: a fermionic superfluid that is gapless for specific points in
the 1BZ. We saw that creating a full gap was especially difficult for longer-range types of attractive
interactions, such as NN ones. However, for the on-site interaction, it is always possible to open a full
gap for every point in the 1BZ.

The realization of fully gapped states may be particularly interesting for the occurrence of topo-
logical states of matter. For example, we could try to realize non-trivial states in the D or in the DIII
classes, according to the classification that we discussed in Chapter 2. An NNN RVB-type order pa-
rameter for the QBTP may be the best candidate, because it may lead to a non-trivial superfluid state
that is fully gapped. A competition with on-site pairing would also be interesting to pursue further. In
addition, including higher orbitals, such as p, d and f may be important for realizing novel topological
superfluids.

Finally, for the pairing in the Varma phase pattern, we have included the possibility of having an
FFLO state by connecting two Weyl points that reside within the 1BZ. We have not considered the
resulting spectrum of such a pairing in this thesis, nor have we considered the thermodynamically
favored phases. However, it would certainly be interesting to look further into this problem and to
compare the results with the proposal for graphene by Roy and Herbut [91]. In this setting, it would
be worthwhile to investigate how topological excitations would manifest on the Lieb lattice, when
such an FFLO state is present. Still, the apparent lack of symmetry in the Hamiltonian and the fact
that the BdG matrix is relatively large makes this a non-trivial problem.
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Appendix A

Eigenvectors of Hermitian 3× 3 matrices

At several occasions in this thesis, we had to determine the eigenvalues of a Hermitian 3 × 3 matrix.
For this the roots of a cubic polynomial had to be found, and the analytical expression for this are well-
known. In this appendix, we will show that analytical expressions for the eigenvectors can also be
found analytically very easily. It is a small trick that works, because we can take cross products for 3-
vectors. However, this method is not always useful, because for complicated matrices, the expressions
can become hard to handle. Moreover, the method can be prone to error propagation, so that it would
not always be the most suitable method to use [94]. However, this method could be applied in Chapter
3, when we expressed the Chern number as a winding number in the case where t′ = 0.

Let us begin with a Hermitian 3 × 3 matrix A, that satisfies A† = A. Suppose that vi is an
eigenvector, written as a column vector, with eigenvalue λi, which we assume to be non-degenerate
for all i = 1, 2, 3. Since vi is an eigenvector, we have that

(A− λi1)vi = O, (A.1)

with O the 3×3 zero matrix. Taking the Hermitian conjugate of the above and multiplying it with the
j-th unit vector ej , we find that

v∗i · (A− λi1)ej = 0 ∀j. (A.2)

The above equation then tells us that v∗i is perpendicular to every column of the matrixA−λi1. More-
over, if the j-th column is linearly independent from the k-th column, we have that the normalized
eigenvectors can be found by the formula

vi =
[(A− λi1)ej × (A− λi1)ek]

∗

||(A− λi1)ej × (A− λi1)ek||
. (A.3)
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