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Abstract

In this paper, we report a competing nucleated self-assembly model for use in the
description of the expression of chirality in deuterated benzene-1,3,5-tricarboxamides
(D-BTAs). These molecules form helical supramolecular polymers, which are inher-
ently chiral objects. A preference for the formation of a right-handed or left-handed
helix is observed if deuterium is used for the formation of a stereocenter. The type
of helix depends on the absolute configuration of the chiral monomeric unit. The net
helicity can be measured with CD spectroscopy, while the fraction of polymerized ma-
terial can be measured by UV-VIS spectroscopy. The model discussed in this work is
able to predict experimental data obtained from these methods in a dilute solution of
D-BTAs in a limited temperature regime, if the data is normalized such that at low
temperatures a net helicity of unity is obtained.
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Preface

This report is the final result of the theoretical part of an internship done at the
department of Applied Physics and the department of Chemical Engineering and is
intended to serve as a final project for both bachelor programmes. The project con-
sisted of two parts: a theoretical part meant for physics, while the chemistry part is
purely experimental. Although this report is the final result of the theoretical part, the
experimental part is not meant to be seen separate from this. For this reason I have
chosen to include the most relevant experimental results in the first and third chapter
as an introduction, motivation and discussion for the construction of the model. All
other experiments are included in the report for the chemistry part, which is written
up in an article style.

Since this project is intended to be interdisciplinary, I tried to make this report as
readable as possible for both physicists and chemists. For this reason, I have worked
out some explicit steps within the derivations. One particular example is that I have
put the derivation of the heat capacity of a quantum harmonic oscillator in the Ap-
pendix. People with some background in statistical mechanics may of course already
be familiar with these calculations. For physicists, I have tried to omit extensive chem-
ical nomenclature, where possible. Furthermore, some necessary chemical principles
are outlined in the first chapter.

I hope that you as reader will enjoy reading this report, regardless if you are a physicist
or a chemist.

Jeffrey Everts
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Chapter 1

Introduction

1.1 The expression of chirality

Helical structures formed by self-assembly processes are observed much in nature. A
well known example is DNA, the carrier of our genetic material. The most common
form of this macromolecule is a double helix, consisting of two helical strands of nucleic
acids associated by hydrogen bonds (cf. Figure 1.1(a)). As another example, many
helical substructures can be observed in proteins, the so-called α-helix (cf. Figure
1.1(b) and 1.1(c)). We can also observe helical aggregation on a whole other length
scale. An example is F-actin, a supramolecular helical polymer consisting of globular
proteins called G-actin [1]. See also Figure 1.1(d) and 1.1(e).

Figure 1.1: Various examples of helical architectures observed in living systems (a) DNA,
a double helix that is formed by hydrogen bonds between complementary base
pairs (taken from [1]). (b) A sequence of amino acids in an α-helical form.
The helix is indicated by a ribbon (taken from [2]). (c) Part of the structure
of the α-helix showing some chemical details (taken from [2]) (d) The tertiary
structure of the protein G-actin. Notice the α-helices present in this structure
(taken from Wikipedia). (e) The quaternary structure of F-actin, a helical
supramolecular polymer consisting of G-actin (taken from Wikipedia).
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Figure 1.2: (a) Threefold intramolecular hydrogen bonding for a methoxyethyl function-
alized BTA [3]. (b) Graphical representation for the helical self-assembly of
a BTA in either a (P)- or (M )-helix. By introducing a stereocenter in the
monomeric unit, the formation of one helix type is preferred.

Helices are chiral objects; it is an object that cannot be superimposed on its mirror
image. Consequently, we can distinguish two types of helices: one that has a right
handed orientation (or P -helix) and one that has a left-handed orientation (or M -
helix). For a macromolecule with a helical conformation, a preference for one of the
two helical senses is observed. For example, in DNA there is a preference for one of
the two types of helices under certain external conditions (such as temperature, pH
or salt concentration). We can distinguish many types of DNA conformations, but
surprisingly a family of conformations that is most common in living cells (B-DNA), is
right-handed [1]. The same holds for certain sequences of amino acids: due to restricted
possibilities of bond orientations in the primary structure, certain aggregated states
can be preferred. For example, there exist polypeptides for which a left-handed helix
is the structure of preference [2]. The reason for the existence of this preference is
not trivial. There are many mesoscopic interactions which contribute to the energetic
state of the aggregate, and thus the structure of the aggregate.

The system that is considered in this project are benzene-1,3,5-tricarboxamides (BTAs),
molecules that also self-assemble in helical structures. These are disc-like molecules
(or discotics), consisting of a central benzene core, with three alkyl tails coupled by
amide bonds to this central core. The general structure of an asymmetrical BTA
can be found in Figure 1.3. This molecule is able to form threefold hydrogen bonds
with other molecules of the same type, which accommodates the formation of a quasi
one-dimensional, linear, helical supramolecular polymer. This was first observed by
Lightfoot et al. for methoxyethyl functionalized BTAs in the solid state by X-ray
diffraction studies (cf. Figure 1.2(a)) [3]. The formation of a BTA helix by threefold
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Figure 1.3: Expression of chirality for a solution of a methyl substituted BTA in methyl-
cyclohexane (3 · 10−5M). For various residual groups the CD effect is shown.
The CD effect is absent in an achiral molecule.

intermolecular hydrogen bonds is also observed in (dilute) solutions [4]. In general, if
the monomeric units are achiral, equal amounts of P - and M -helices are formed. How-
ever, if we introduce a stereocenter in the monomers, it will result in a preference for
the formation of one of the two helix types. Alternatively said for this case, chirality on
a molecular, or microscopic scale is transferred to the mesoscopic scale of an aggregate.
We will define this effect as the expression of chirality on the supramolecular scale. It
is absent if we consider the same molecule without the stereocenter; equal amounts of
P - and M -helices then exist. See also Figure 1.2(b). It is unknown why this effect is
observed. Presumably, it is due to the confinement of space by the residual group that
introduced the stereocenter, but we shall see in section 1.3 that this does not need to
be the case.

A typical way to observe the bias of one type of helical aggregate, is by measuring the
circular dichroism spectrum in (dilute) solutions [5]. Circular dichroism or CD is the
difference in absorption between left- and righthanded circularly polarized light. This
effect is expressed by a value called the CD effect (given in mdeg). Sometimes this
quantity is corrected for concentration and the path length of the cuvette. We call
this normalized value ∆ε and it is defined as ∆ε := CD effect/(32980 · c · l), with c
the concentration in M and l the path length in cm. As a final remark, we note that
circular dichroism measured in the vicinity of an absorption band of the substance is
called a Cotton effect.

A preference for one type of helix (e.g. P -helix) results in a CD spectrum with a
particularly shape that depends on the shape of the aggregate and the molecular
architecture of the monomeric units [5]. An example is shown in Figure 1.3 from the
work of Stals et al. [4] for various chiral methylated BTAs. As can be seen, these
methyl substituted BTAs show a significant Cotton effect. The maximum amplitude
of the CD effect is proportional to the net helicity, which is a measure for the preference
of one type of helix over the other. Furthermore, notice that the CD spectra of two
enantiomers are perfect mirror images of each other.

Another interesting feature of chiral methylated BTAs can be observed in Figure 1.3.
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It is observed that the position of the methyl substituent in the aliphatic tail deter-
mines the shape and sign of the CD spectrum. Moreover, it depends on whether it
is positioned on a odd or even position in the alkyl chain. This is called an odd-even
effect in shape and sign of the CD spectrum. Stals et al. hypothesize that this effect
is caused by steric hindrance of the methyl group in the helical aggregate, which is
different for an odd or even position. This difference in steric interaction will result
in a different helical packing or even a different helical sense. This is expressed in the
two observed shapes of the CD spectra.

We hope to have shown that CD spectroscopy is an interesting technique to investigate
systems, in which a net helicity can be observed. Often this technique is complemented
with UV-VIS spectroscopy. Since the absorption spectrum of an aggregate differs from
that of the molecularly dissolved state, the absorbance or optical dispersity (O.D.) is a
measure for the fraction polymerized material. These techniques together are used to
investigate the dependency of the system for various conditions such as concentration
and temperature. The temperature dependence will be discussed in the next section.

1.2 Nucleated self-assembly
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Figure 1.4: Nucleated self-assembly of a asymmetrical methylated BTA in a solution of
3 · 10−5 M in dodecane, with the residual group shown in the graph. The
fact that this process is co-operative is expressed in the sharp transition from
the molecularly dissolved state to the polymerized regime. In this Figure the
transition occurs at the polymerization temperature Tp = 72◦C. Notice the
similarity in shape of these cooling traces for the UV-VIS measurement and
CD measurement.

As was already outlined in the previous section, CD and UV-VIS spectroscopy are
useful techniques to investigate the self-assembly of BTAs in helical objects as a func-
tion of temperature. Usually, this is done by probing the CD effect or O.D. for various
temperatures at a particular wavelength (usually the maximum absolute value of the
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Cotton-effect). Since these values are proportional to the net helicity and fraction
polymerized material, we can measure these quantities as function of temperature, if
normalized in a correct manner. An advantage of these spectroscopic measurements
is that they can be automated. In this way, many data points can be obtained for
an accurate description of the process at hand. This is more difficult if we would like
to do concentration dependent measurements. The disadvantage of this method is
that it is not robust when the shape of the spectrum changes (e.g., when mixing two
chromophores that have different Cotton effects). Care have to be taken in this case
since we can only probe at one wavelength.

A typical cooling curve obtained with UV-VIS and CD spectroscopy is shown in Figure
1.4. In this example we have chosen a methylated BTA, that was also discussed ear-
lier. There are many interesting and characteristic features concerning these kinds of
curves. First of all, we can clearly distinguish between a regime in which all molecules
are in solution (in this case at high temperatures) and a regime in which we have
the polymerized state. This distinction is possible, since a free molecule does not ex-
hibit a CD effect in solution at the given wavelength. This is not true with UV-VIS
spectroscopy for the BTAs, since we measure an absorption spectrum in the molecu-
larly dissolved state. Another issue is the absorption spectrum of the solvent. These
effects combined result in a non-linear baseline for temperature dependent UV-VIS
measurements. The resulting optical effects are seen in Figure 1.4 especially in the
high temperature regime.

By using models, many useful information can be extracted from these UV-VIS and
CD measurements. Different chemical models concerning the supramolecular poly-
merization exist (cf. Figure 1.5). Here we make a distinction between isodesmic
self-assembly and nucleated self-assembly.

Figure 1.5: Different types of models for the self-assembly of supramolecular models. (a)
Isodesmic self-assembly, the elongation constant K is assumed to be equal for
all steps. (b) Nucleated self-assembly, in this type a monomeric unit can switch
between an assembly active state and an assembly inactive state, governed by
an activation constant Ka << 1 for monomeric units and K ′a for a monomeric
unit in a growing polymer chain. We call the polymerization self-catalyzed or
autosteric if K ′a >> Ka (taken from [7]).

In the first case, the ease of an addition of a monomeric unit to a growing polymer
chain is equal for all steps. For example, the equilibrium constant K for a monomer
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to add to a trimer chain is equal as it would be for an addition to a pentamer chain.
In the case of nucleated self-assembly, we discern the existence of an assembly active
state and an assembly inactive state for the monomeric units. If the monomer is
active, it can readily polymerize, if it is inactive it cannot. It reduces to the isodesmic
case if the required energy to make the molecule active is very small. We call the
polymerization nucleated or co-operative, if the transition form the inactive state to
the activated state is very unfavorable. In this case, there exist a sharp transition that
resembles a thermodynamic phase transition between the monomeric regime and the
polymerized regime. Moreover, in the nucleated self-assembly model we can make a
distinction between a self-catalyzed (or autosteric) process and a non self-catalyzed
process. In the first case, the monomer needs to be activated prior to adding to the
growing polymer chain, in every step of the polymerization process. In the latter case,
there is no energy penalty if a monomer wants to bind to an existing aggregate of a
certain length.

Both the self-catalyzed as the non self-catalyzed approach will lead to a mass action
law. This is obtained by a free energy minimalization [8], [7] (see also Chapter 2).
As usual, a mass action law is governed by a mass action variable X := φK, with K
an equilibrium constant regulated by a free energy of binding g by K := exp(−βg).
Chemists usually call this equilibrium constant an elongation constant (Ke). In this
definition, φ indicates a mole or volume fraction. Together in the definition of the
variable X, it says something about the a priori probability of a monomer actually
attaching to a growing aggregate. In the case of non-autosteric nucleated self-assembly
it will result in a mass action law of the following form,

XKa = 1−N−1

a +Ka(Na − 1)Na. (1.1)

Here Ka << 1 is called the activation constant which acts as an equilibrium constant
between the active state of a monomer and the inactive state. Na is defined as the
mean aggregation number of active species. In contrast, we find for the self-catalyzed
form,

X = 1−N−1

a +Ka(Na − 1)Na. (1.2)

As is seen, these two equations can be interchanged by a redefinition of the mass
action variable. In practice, this means that you cannot distinguish autosteric and
non-autosteric self-assembly by using this method. To do this, we need kinetic mea-
surements.

This mass action law can be used to derive an approximate expression for the fraction
polymerized material η,

η ∼ 1− exp

(
−hp
kBTp

(
T

Tp
− 1

))
. (1.3)

Here hp is the enthalpy of elongation as defined on the polymerization temperature
Tp and as usual kB is the Boltzmann constant. Outside the polymerized regime,
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η = 0. Near the polymerization temperature we can find a more accurate expression
if Ka << 1, given by,

η ∼ K
1
3
a exp

(
2

3
K−1/3
a hp(T/Tp − 1)/kBTp

)
. (1.4)

This model is in fact a simplification of the actin polymerization model of Oosawa and
Kasai [6] and we can fit experimental data by using equations 1.3, 1.4. This model will
give us information about the co-operativity of the system (Ka) (i.e., the sharpness
of the transition between the molecularly dissolved regime and polymerized regime).
The value of this constant is smaller if the self-assembly is co-operative. Furthermore,
it gives information about the enthalpy release on elongation (i.e., the growth) of the
polymer chain by hp. Notice that prior to fitting, the data need to be normalized. This
normalization is usually done arbitrarily by taking the largest CD effect or O.D.. We
then assume that at that point a situation is achieved in which all monomeric units
are in an aggregated state of only one helical screw sense. This is called a homochiral
state. It is also common to fit the CD cooling curve as if it is a measure for the fraction
polymerized material. This procedure is motivated by the similar shape of CD and
UV-VIS cooling curves for most chiral BTAs. We then assume that only one type of
helix is formed exclusively in the polymerized regime.

1.3 Deuterated benzene-1,3-5-tricarboxamides (D-

BTAs)

In the case of methylated BTAs, the residual groups that introduce the stereocenters
were large enough to offer a significant amount of steric hindrance in an aggregate.
It is interesting to see the effect of making this residual group much smaller to the
very limits of molecular chirality. The smallest stereocenter that we could introduce
is simply by replacing a hydrogen atom by a deuterium1. The difference between
a hydrogen atom and a deuterium is very small (only one neutron), so we do not
exaggerate if we say that such a molecule is on the borderline of being chiral or
achiral. The stereocenter that is formed in this way, is very small as compared to a
large group such as a methyl on the electronic level. The real difference is present on
the vibrational level, as is reflected in the different vibrational energies of a C-H bond
compared to a C-D bond. We can imagine that the preference for one type of helix
will not be that pronounced for such a system.

It is shown by Green et al. that indeed a deuteration results in the expression of
chirality [9]. However, this work was done on polyisocyanates, a covalent polymer, but
not for a supramolecular polymer. Inspired by this work, the two enantiomers of a
symmetric deuterated BTA (D-BTA) were synthesized by Dirk Balkenende and Seda
Cantekin, and chirality is indeed expressed at a supramolecular level for this system
[10]. As expected, the temperature dependency of the CD effect is much weaker than

1Actually the smallest possible stereocenter known is by bringing a certain part of the molecule
in an excited state.
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Figure 1.6: Cooling curves as obtained in CD and UV-VIS spectroscopy at λ = 223 nm
at a concentration of 5 · 10−5 M in dodecane. The data has been normalized
in order to give a good comparison between the two cooling traces. In the left
Figure the structural formula of the (S )-enantiomer of the D-BTA is shown.
Experimental data is taken from [10].

for the methylated BTAs. In contrast, the shape of the curve measured with UV-VIS
as a function of temperature is similar to that of the methylated BTAs. (cf. Figure
1.6). These effects together cannot be predicted by the nucleated self-assembly model
as described in the previous section.

Moreover, a Cotton effect was only observed if linear alkanes were used as a solvent
(e.g., heptane and dodecane). In branched or cyclic alkanes, such as respectively iso-
octane and methylcyclohexane (MCH), the effect was completely absent (cf. Figure
1.7(a)).

Figure 1.7: (a) Cotton effects at room temperature for D-BTAs in various solvents at c =
5 · 10−5 M . (b) Temperature dependent CD data as monitored at 223 nm for
a D-BTA solution in heptane (c = 5 · 10−5 M). The sample was heated after
the first cooling run, to investigate the presence of hysteresis. No significant
hysteresis was observed. Also note that the data is not normalized.
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These two results motivate us to believe that indeed not all the aggregates are present
in just one helix orientation. We can hypothesize that there is a competition between
the formation of P -type helices and M -type helices, as expressed in a difference be-
tween the CD and UV-VIS cooling curves. The equilibrium between these two species,
is shifted to one side if a linear alkane is used as a solvent. If we would consider a
solution in a cyclic or branched alkane, there is no preference for one of the two species.
We then have equal amounts of P -type helices and M -type helices, and consequently
a zero net helicity. As a remark, we note that a competition between two kinds of
supramolecular polymer was also observed in bis-urea compounds by Bouteiller et al.
[11].
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Figure 1.8: Sergeant added to a solution of (S )-D-BTA in dodecane. Two enantiomers of
a methylated BTA were used as a sergeant, with the side chains shown in the
figure. 6% sergeant was needed to bias the D-BTA to a preferred helix type,
while 10% was needed to bias it to the other type. Experimental data taken
from [10].

Interestingly, if we look at temperature dependent CD in heptane and let the temper-
ature vary between −10◦C and 90◦C, we observe two extrema in the low temperature
regime (Figure 1.7(b)). These extrema are reproducible even if the sample is heated
after cooling (Figure 1.7(b)). Furthermore, these effects are not seen in UV-VIS (Fig-
ure D.1). These extrema may also be present for a solution in dodecane, but we are
then not able to measure this, since the sample cannot cooled down to sufficient low
temperatures. This is due to the high melting point of dodecane (−9.6◦C). We believe
that the presence of these extrema cannot be explained by the competition hypothesis
followed earlier. We therefore hope to predict the net helicity as function of tem-
perature only for a limited temperature regime. In the case of the measurements in
heptane, this would be the regime from 20◦C to 90◦C. A discussion of these extrema
is found in section 3.2.

We conclude this section with an experiment in which a Sergeant-and-Soldiers (SaS)
like effect is used. The SaS-effect is observed if we add small amounts of a chiral
molecule (the sergeant) to a solution of achiral molecules (the soldiers). All the achiral
molecules are then biased to the helical screw sense of the chiral ”seed”. A similar
effect can be realized, if we add a chiral BTA that has superimposable CD and UV-VIS
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curves as function of temperature, indicating that this system has a more pronounced
preference for a certain type of helix. This experiment is done by Seda Cantekin [10]
by titrating a chiral methylated BTA to a D-BTA solution and the result is shown in
Figure 1.8.

We observe in this experiment that adding a stronger sergeant results in an increase
of the CD effect (in absolute value). This experiment shows that we need to take
care when normalizing the experimental results, since it makes the choice of data
normalization very difficult (and this could even be so in the case of methylated BTAs).
From these experiments, we can hypothesize that the D-BTA system saturates at a
net helicity of 0.35.

1.4 General approach and report structure

The interesting features of D-BTAs as described in the previous section motivate us
for having a closer look to these systems. In this report we will discuss a procedure
to describe nucleated self-assembly in the case of two competing species by extending
the Oosawa and Kasai model for nucleated self-assembly. The construction of this
model will be much similar to the approach of the one-component model as discussed
in section 1.2. With this approach, we hope to describe the net helicity and fraction
polymerized material as a function of temperature in a limited temperature regime.
For this purpose, the dodecane measurements will be used for testing the model.

The model will be derived in Chapter 2 and we will see that it will result in a mass
action law much similar to the one component model. Then we will use perturbation
theory in order to obtain analytical solutions for a system in which the preference
for the formation of one helix type over the other is small. As a final result, we will
use the model to calculate length distributions of the different types of aggregate. In
Chapter 3, we try to fit the experimental data by simulation. We will also discuss
some experimental results that are done within this project and which are relevant for
the discussion of the model. For details about these experiments, we refer to [12].

14



Chapter 2

Competing nucleated self-assembly
model

2.1 Theory

In this section we will set up the general equations that we will use in our model
to describe the co-operative self-assembly of discotics in helical aggregates. For this
purpose a non-selfcatalyzed model is made, in which we will consider the existence
of inactive species i, and active species A and B. A could be for instance a P -helix,
while obviously B would then be a M -helix or vice versa. Within a saddle point
approximation, we can write the free energies as follows.

The free energy for the inactive species i is,

βfi
V

= ρi ln(ρiυ)− ρi − ρi lnZi, (2.1)

while for the active species α = A,B the free energy is given by the expression,

βfα
V

=
∞∑
N=1

ρα(N)[ln(ρα(N)υ)− 1−N lnZα + βGα(N − 1)]. (2.2)

The total free energy is then given by,

f = fi +
∑
α

fα. (2.3)

Here β is as usual the reciprocal of thermal energy given by β := 1
kBT

with kB the
Boltzmann constant and T the absolute temperature, V is the system volume, υ is
the volume of a solvent molecule, ρk with k=i, A, B is the number density of species
k, Zk is the partition function for a monomer of species k, and finally Gα is a free
energy of binding for the formation of an aggregate. Note that in 2.2, the first two
terms between brackets [...] are an ideal mixing entropy term, while the third and last
term are respectively from the free energy contributions of the monomers and of the
aggregates.
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Furthermore, we have the conservation of mass:

φi = ρiυ, (2.4)

φα =
∞∑
N=1

Nρα(N)υ, (2.5)

φ = φi +
∑
α=A,B

φα. (2.6)

Here φ denotes a mole fraction, since we have used for our definition of υ the volume
of a solvent molecule (see Appendix C). Note also the definition of the mole fraction
of active species 2.5. Here we correct for the length of the aggregate N , to make sure
that φ is a conserved quantity.

We can find the optimal distributions by means of a functional minimalization of
the free energy with respect to the various number densities by: δf

δρk
= 0, under the

constraint of mass conservation. The optimal distributions for the inactive species are
then given by,

φi = exp(βµ)Zi =: λ, (2.7)

with λ the fugacity. Furthermore, we can use this definition of fugacity to show that
we can find for the number density for species α of length N by,

ρα(N)υ = ΛN
α exp(βGα), (2.8)

where we have used the definition Λα := λ exp(−βGα)Zα
Zi

. Using this result, we can
also find an expression for the number density of species α,

υρα :=
∞∑
N=1

ρα(N)υ = exp(βGα)
Λα

1− Λα

. (2.9)

And we can do the same for the mole fraction of species α,

φα :=
∞∑
N=1

Nρα(N)υ = exp(βGα)
Λα

(1− Λα)2
. (2.10)

By using (2.9) and (2.10), we can determine the mean aggregation number of active
species by the known recipe,

Nα =
φα
ραυ

=
1

1− Λα

⇔ Λα = 1− 1

Nα

. (2.11)

Using this expression in the definition for the mole fraction of species α (2.10), we
find,

φα = exp(βGα)

(
1− 1

Nα

)
N

2

α. (2.12)
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We now have the right tools to write the expression of the total mole fraction (2.6) of
all species more explicitly,

φ = λ+
∑
α

exp(βGα)
Λα

(1− Λα)2

∗
= ΛA exp(βGα)

Zi
ZA

+
∑
α

exp(βGα)
Λα

(1− Λα)2
.

(2.13)

Here we have have taken at (*) α = A as our reference point for λ. By rewriting and
subsequently working out (2.13), we find,

φK = 1− 1

NA

+
ZA
Zi
NA(NA − 1) +

ZA
Zi

exp(β(GA −GB))N
2

B(1− 1

NB

). (2.14)

We have defined the dimensionless equilibrium constant K as the product of the ac-
tivation constant of species A: (ZA/Zi), with the elongation constant of species A:
Ke,α := exp(−βGα). We can further simplify this expression by using (2.8) and (2.11)
to establish a relation between species A and B,

1− 1

NB

= κBA

(
1− 1

NA

)
. (2.15)

With κBA := ZB
ZA

exp(β(GA − GB)) a ratio of equilibrium constants. By using (2.15)
in (2.14) and notice that we can only do this substitution for κBA 6= 0, we find,

φK = 1− 1

NA︸ ︷︷ ︸
monomers

+
ZA
Zi
NA(NA − 1)︸ ︷︷ ︸

polymers type A

+
ZB
Zi

N
2

B

N
2

A

NA(NA − 1)︸ ︷︷ ︸
polymers type B

(κBA > 0). (2.16)

While for κBA = 0, we can find the following expression,

φK = 1− 1

NA

+
ZA
Zi
NA(NA − 1) (κBA = 0). (2.17)

Furthermore, we can find an inequality that holds for the ratio of aggregation numbers
by means of (2.15),

NA

NB

= NA − κBA(NA − 1) ≥ 0. (2.18)

A consequence of this inequality is that we have to take care by doing a parametrization
in NA, if B is preferred at certain conditions. The ratio of elongation constants can
never be larger than one, if aggregates of species A are very large close to the long
chain limit.

These calculations show us that we can find a mass action law for the formation of two
helical aggregates, for which the mass action can be ascribed to the variable X := φK.
As usual, the mass action variable X is the product of the a priori probability φ of a
molecule being near the growing assembly and the enhancement K of this probability
by the gain of free energy by actually attaching to it. Furthermore, we observe that
this approach will lead to the law of mass action for one component (2.17), as it should
be.
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2.2 The effect of mass action on a equally co-operative

two-component system

The quantity κBA in the previous section can be identified as a ratio of equilibrium
constants and is a measure of the preference for the formation of species B over A. If
we choose this quantity equal to unity, it directly means that the formation of both
species is equally energetically favorable. In this section, we will investigate what
happens if κBA = 1. According to our hypothesis, we have to find zero net helicity if
we have a system that satisfies these conditions. This is the case if the formation of
both species are equally co-operative, as we shall see next. Finally, we will investigate
the influence of mass action on the fraction polymerized material and net helicity.

To work out these calculations, we assume that at the polymerization point the poly-
mers are already very long, i.e. NA >> 1 if ZA

Zi
<< 1. By these assumptions, we

observe that for κBA = 1, the aggregation numbers of species A and B are equal:
NB = NA The mass action is then given by,

φK = 1 +N
2

A

(
ZA
Zi

+
ZB
Zi

)
. (2.19)

For the net helicity we then find,

〈θ〉 =
φA − φB

φi +
∑

α φα
=

N
2

A(ZA − ZB)

Zi +N
2

A(ZA + ZB)
(2.20)

We have chosen for this particular definition of the net helicity, since the CD effect
is assumed to be proportional to the net helicity. Since φ := φi +

∑
α=A,B φα is

a conserved quantity, we satisfy these experimental constraints. Moreover, we can
identify ZB/Zi and ZA/Zi as the activation constants for respectively species A and
B. As was mentioned earlier, we demand that in this case the net helicity is zero. This
condition will be satisfied if ZB = ZA, or in other words: the growth of species A and
B is equally co-operative. A direct consequence of this fact is that the quantity κBA
can be interpreted as a ratio of elongation constants as in, Ke,B/Ke,A.

We can of course also calculate the fraction polymerized material by,

η :=

∑
α φα

φi +
∑

α φα
=

2KaN
2

A

1 + 2KaN
2

A

. (2.21)

Here we have made the observation that Ka := ZA
Zi

(= ZB
Zi

), and used again the fact

that in this case NB = NA.

For an equally co-operative system the net helicity and fraction polymerized material
are plotted as function of the mass action variable X. The plots are obtained by a
parametrization with NA and plotted for various values of κBA. We see that only
small values of κBA are needed to have a significant effect. In Figure 2.1, the effect
of the ratio of elongation constants is shown, while in Figure 2.2 the influence of
co-operativity is emphasized.
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Figure 2.1: The dependence of the fraction polymerized material η and net helicity 〈θ〉
as function of the mass action variable X for activation constant Ka = 10−4.
The dependence on the ratio of elongation constants κBA is shown, which is a
measure of the preference of species B over A (where A is the preferred species
in this case). As can be seen η is independent of this parameter and only small
differences from κBA = 1 are needed such that η is superimposable on 〈θ〉 as
function of X.
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Figure 2.2: The dependence of the fraction polymerized material and net helicity as func-
tion of the mass action variable X for κBA = 10−0.002. Here we show the
influence of co-operativity on these quantities. The graphs of ”◦” corresponds
to Ka = 10−3, while the straight line ”-” graphs correspond to Ka = 10−4.
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We conclude this section by constructing a similar scheme for the competing nucleated
self-assembly model as in Figure 1.5. In this case every inactive species is activated
as governed by an activation constant Ka. This is followed by growth in two possible
types of aggregates labeled A and B. The growth of these aggregates are governed by
equilibrium constants Ke,A for active species A and Ke,B for active species B. This
scheme is given in Figure 2.3. Also notice the non self-catalyzed nature of this model
and recall that the predictions for thermodynamic equilibria of this type of model are
the same as that of a self-catalyzed version (section 1.2).

Figure 2.3: Chemical model for competing nucleated self-assembly. Every monomeric unit
needs to be activated, as is expressed in an activation constant Ka, which is
equal for both types of active species. The aggregates can grow after activa-
tion of a monomeric unit and these equilibria are established by elongation
constants Ke,A and Ke,B .

2.3 Analytical solutions by perturbing κBA

In this section, we will investigate the influence of a small preference for the formation
of one active species over the other. This approach is justified since we saw in section
2.2 that only a small deviation from κBA = 1 is enough to give a significant effect. By
doing this, we are able to derive analytical solutions for the net helicity 〈θ〉 and for the
fraction polymerized material η as a function of temperature. For this purpose, we will
consider κBA = 1 − δ with δ > 0 small. The choice for the positivity of δ is made to
make sure that no problems arise due to the parametrization with NA. Furthermore,
we again assume that starting from the polymerization point, the chains are already
long (i.e., NA >> 1 for Ka << 1). The mass action can then be written as,

φK = 1 +KaN
2

A

(
1 +

N
2

B

N
2

A

)
. (2.22)
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We can relate the aggregation number of species B to the aggregation number of
species A, according to,

NB

NA

=
1

NA − κBA(NA − 1)
=

1

NA(1− κBA) + κBA
. (2.23)

Then rewriting (2.22) using the relation between the aggregation numbers (2.23) and
by using the definition of the equilibrium constant K, we can write,

Y := (φK − 1)K−1
a = N

2

A

(
1 +

N
2

B

N
2

A

)
. (2.24)

Now we take κBA = 1− δ, then: NA/NB = 1 +NAδ, such that,

X := δ2Y = δ2N
2

A(1 + (1 + δNA)−2).

By defining t := δNA and rewriting we find,

X(t+ 1)2 = t2((t+ 1)2 + 1). (2.25)

Now we consider three cases: (i) t >> 1, (ii) t ' 1 and (iii) t << 1,

(i) t >> 1: For this case, we find: X ∼ t2, or δ2Y ∼ δ2N
2

A, and thus: Y ∼ N
2

A;

(ii) t ≈ 1: For this case, we find: X = 5
4
t2, or δ2Y ∼ 5

4
δ2N

2

A, and thus: Y ∼ 5
4
N

2

A;

(iii) t << 1: For this case, we find: X = 2t2, or δ2Y ∼ 2δ2N
2

A, and thus: Y ∼ 2N
2

A.

In all three cases, it can be seen that Y scales like N
2

A and thus NA =
√
Y . For

φK > 1, the ratio of aggregation numbers is then given by: NA/NB = 1 +
√
Y δ.

Using all these expression, we find for the net helicity for small perturbations δ,

〈θ〉 :=
φA − φB

φi +
∑

α φα
=

2
√
Y δKaY

1 + 2
√
Y δ + (2 + 2

√
Y δ)KaY

. (2.26)

While for the fraction polymerized material, we find,

η :=

∑
α φα

φi +
∑

α φα
=

(2 + 2
√
Y δ)KaY

1 + 2
√
Y δ + (2 + 2

√
Y δ)KaY

. (2.27)

We have now shown that we are able to obtain closed form expressions for 〈θ〉 and η.
Later, we will discuss this result compared to solutions that are obtained numerically
(Appendix B). Before we can do this, we have to introduce temperature dependency
for these expressions. This will be done in the next section.
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2.4 Temperature dependent behavior of competing

nucleated self-assembly

Using the results of the previous section, we are able to write everything in a ex-
perimental more useful form by considering the fraction polymerized material and
the net helicity as a function of temperature. First, we identify the quantity δ in
terms of free energy. By definition of κBA and by resummation of the quantity δ (i.e.,
1− δ ∼ exp(−δ)), we find,

δ ∼ β(GB −GA). (2.28)

Next, we can do a formal expansion around a certain reference temperature T ∗ for
the free energies in the definition of δ and for the various equilibrium constants in the
definition of Y . In general any equilibrium constant can be written as K = exp(−βg)
with g a free energy of binding of a single monomer. Expanding −βg up until second
order, we find,

−βg = −βg
∣∣∣∣
T=T ∗

−
(
∂βg

∂T

) ∣∣∣∣
T=T ∗

(T − T ∗)− 1

2

(
∂2βg

∂T 2

) ∣∣∣∣
T=T ∗

(T − T ∗)2 + ...

= lnK∗ +
h∗

kBT ∗

(
T

T ∗
− 1

)
+
C∗pT

∗ − 2h∗

2kBT ∗

(
T

T ∗
− 1

)2

+ ... . (2.29)

Every quantity marked with a asterisk indicates that the value is defined at the ref-
erence temperature T ∗. We are free to choose this reference temperature to be the
polymerization temperature Tp, such that φK∗aK

∗
e,A = 1. Furthermore, we choose to

omit the second order terms in our further calculations. This is justified since the
maximum value of the heat capacity of a single bond is approximately in the order
of kB (Appendix A) per degree of freedom. This quantity can never be bigger than
the enthalpic contribution in this term. This is still true if we imagine a situation
where the bond will be described by more degrees of freedom (such as ten, which is
approximately the maximal number of degrees of freedom for a single bond between
two monomeric units).

For simplicity, we will work out a case in which we expand Ka up until zeroth order
and all elongation constants to first order. For the moment, we assume that the ratio
of elongation constants at the polymerization temperature are approximately equal,
i.e., κ∗BA ' 1. In Chapter 3, we shall see that small deviations from this value will
greatly improve the quality of the experimental data fits. We then find for δ,

δ =
h∗e,A − h∗e,B
kBTp

(
T

Tp
− 1

)
, (2.30)

while for Y we find,

Y =

[
exp

(
h∗e,A
kBTp

(
T

Tp
− 1

))
− 1

]
K∗−1
a . (2.31)
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Figure 2.4: Plot of 〈θ〉 and η as function of temperature for K∗a = 10−4 and enthalpy of
elongation for active species A, h∗e,A = −40 kBTp. The energies written by the
red curves denote the elongation enthalpy difference between active species
B and A. As can be seen, only small enthalpy differences are needed for a
significant net helicity. This enthalpy difference also influence the fraction
polymerized material slightly, but this effect is not shown for sake of clarity.

Using these results, we have plotted the net helicity and fraction polymerized material
for a fixed value for the enthalpy of elongation h∗e,A, fixed K∗a and for various enthalpy
of elongation differences, h∗e,B−h∗e,A, in Figure 2.4 as a function of temperature. These
enthalpy differences have also a small influence on the quantity η. This is not shown
for the sake of clarity, since this effect is not that pronounced.

As can be seen in Figure 2.4, small enthalpy differences result in significant effects.
An observable net helicity is observed even for an enthalpy difference of 0.001 kBTp.
We can obtain this theoretical result, since all these small enthalpy contributions add
up to result in macroscopic observables, such as a net helicity. This was also pointed
out by Green and coworkers [9].

We conclude this section with a comparison of the analytical result for the net helicity
and fraction polymerized material with the numerical result of a fixed point iterative
method (Appendix B). A comparison can be found in Figure B.2. As can be seen, we
observe deviations from this result at low temperatures. This is observed since higher
order terms in δ become more important, since some of these terms will be amplified
considerably by the quantity NA, which becomes very large at low temperatures.
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2.5 Length distributions

In this section, we will construct expressions for the mole fractions of the various
species. First, we will consider the mole fraction of inactive species. As was derived in
section 2.1 from a free energy minimalization, we know that this mole fraction is equal
to the fugacity λ. Furthermore, by using the definition of Λα and expression (2.11) we
can express the mole fraction of inactive species as,

φi =

(
1− 1

NA

)
Zi
ZA

exp(βGA). (2.32)

Note that we have again taken α = A as our reference state. To make use of the nu-
merical solutions generated in the previous sections, we have to expand the activation
constant to zeroth order and elongation constant to first order. The result is,

φi =

(
1− 1

NA

)
K∗−1
a K∗−1

e,A exp

(−h∗e,A
kBTp

(
T

Tp
− 1

))
. (2.33)

The same reasoning can be done for the mole fraction of active species, α = A,B, with
length N,

φα(N) = N

(
1− 1

Nα

)N
exp(βGα). (2.34)

By expanding up until first order we find,

φα(N) = N

(
1− 1

Nα

)N
K∗−1
e,A exp

(−h∗e,α
kBTp

(
T

T∗
− 1

))
. (2.35)

Furthermore, note that we can define the free monomer mole fraction as the sum of
inactive species and active species of length N = 1,

φmon = φi +
∑
α=A,B

φα(1). (2.36)

In Figure 2.5 the length distribution for T/Tp = 0.8 is plotted. As can be seen, a
co-operativity of Ka = 10−4 results in a mean length of the aggregates of approxi-
mately 5000. This number corresponds to the length estimated for BTAs [14] that
also self-assemble in a co-operative fashion. Furthermore, we expect that a decrease
in temperature results in a decrease of the mole fraction of free monomers. The free
monomers are then converted in active species with length N . The mole fractions
of the inactive species and active species as a function of temperature are shown in
Appendix D.

To conclude this section, we discuss the influence of co-operativity on the width of the
mole fraction distribution. For this purpose, we introduce the notion of a polydispersity
index (PDI), defined as,

PDI :=

∑∞
N=1N

2ραυ/
∑∞

N=1N
2ραυ∑∞

N=1 Nραυ/
∑∞

N=1 ραυ
= 2− 1

NA

. (2.37)
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Figure 2.5: Length distributions for the monomers and active species A. In the case of
φA(N), the active species with length N = 1 are excluded, since they are
already included in the definition of the mole fraction of monomers φmon.
The plot is made for Ka = 10−4 and h∗e,A = −40 kBTp. For the elongation
constant as defined on Tp, we have chosen a value corresponding to a free
energy of binding of −20 kBTp.

Note that the inactive species are not included in this definition. The PDI is a measure
for the width of the distribution. The length distribution is narrow if the PDI is close
to unity. In contrast, if this value approaches PDI = 2, we get a wider range of stack
lengths present in solution. We calculate the PDI for two different values of Ka at
T/Tp = 0.95, h∗e,A = −40 kBTp, h

∗
e,B = −39.95 kBTp and K∗e,A = ln 20. For Ka = 10−3,

we find PDI = 1.989 and 〈N〉 = 5000. For Ka = 10−4, we find PDI = 1.996 and
〈N〉 = 5100. These calculation show that mole fraction distributions are very similar in
shape for various values of Ka in the nucleated case. Eventually, for low temperatures
the PDI will approach a value of two. Finally, we note that Ka regulates the amount
of inactive material.
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Chapter 3

Comparison with experiment and
experimental results

3.1 Comparison with experiments in dodecane

As mentioned in the introduction, the main goal of the model was to be able to predict
self-assembly properties of the D-BTA in dilute solutions. In this section, we try to
fit the data obtained from [10] in dodecane with the model of Chapter 2. Before we
begin to attempt this, we have to interpret the experimental data. In the case of the
UV-VIS cooling curve, we have to take into account that the baseline is non-linear.
In practice, this means that we will subtract a linear baseline from the whole cooling
curve, such that the values in the molecularly dissolved regime are constant and equal
to zero (as we should expect). Furthermore, the data has been normalized such that
the highest value is unity. In the case of the data obtained from CD spectroscopy,
the data has been normalized in two ways. In the first case, we have normalized it
such that the maximum value is 0.35. A motivation for this choice is given by the
experiment in Figure 1.8, which argues that not all aggregates are in the same helicity
at low temperatures. In the second case, we have normalized the data such that it
saturates at a value of unity. It is thus assumed that the system achieves a homochiral
state at sufficient low temperatures.

Table 3.1: Thermodynamic parameters obtained by fits of the UV-VIS and CD data of the
D-BTA in dodecane at a concentration of 5 · 10−5M and Tp = 352 K.

〈θ〉sat Ka log10 κ
∗
BA h∗e,A[J ] h∗e,A − h∗e,B[J ]

0.35 (7± 1) · 10−4 −0.0014± 0.003 (−18± 1) kBTp (−0.005± 0.002) kBTp
1.00 (7± 1) · 10−4 −0.0035± 0.0005 (−21± 1) kBTp (−0.05± 0.01) kBTp

In Figure 3.1 and Table 3.1 the results of the fits are shown. The fits were obtained
by using the numerical methodology of Appendix B. The results are governed by the
parameters h∗e,A, h∗e,B, K∗a and κ∗BA. We have chosen to let κ∗BA deviate from one
(Table 3.1), since this will dramatically increase the quality of the fits. It results in a
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sharper transition from a regime in which 〈θ〉 = 0 to a regime of non-zero net helicity.
Interestingly, only small deviations from one are enough.

Figure 3.1: Fits obtained by the competing nucleated self-assembly model for (a) a net
helicity normalized on 0.35 and (b) fraction polymerized material normalized
on unity. Also the results are shown for (c) net helicity normalized on unity
and (d) fraction polymerized material normalized on unity. The experimental
data is obtained from a dodecane solution of the D-BTA at a concentration of
5 · 10−5 M. [10]

The results of the first case are shown in the Figures 3.1(a) and 3.1(b). As can be seen,
a fit of the net helicity is only possible at high temperatures, while a clear deviation
is seen at low temperatures. Low enthalpy differences are needed to achieve this. The
difference of the enthalpy of elongation of species B and A is only 0.005 kBTp, while
κ∗BA ' 0.997. Moreover, we see that the UV-data appears to have a small maximum
at low temperatures. This may be the caused by the nonlinear baseline as discussed
in Chapter 1. It is difficult to correct for this effect. As a final remark, we obtain a
value of the activation constant that is slightly higher than for the achiral BTA [14].
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The fits where we have allowed the existence of a homochiral state are seen in Figures
3.1(c) and 3.1(d). A very good agreement with experimental data is obtained. We
notice it that is considerably better compared to Figure 3.1(a). Similarly as in the
previous case, the enthalpy difference of elongation is still very small (0.05 kBTp)
and there is only a small preference for B over A at the polymerization temperature,
given by κ∗BA ' 0.991. However, it is still a concern why the model cannot predict a
saturation value of the net helicity unequal to unity as was proposed by the experiment
described in Figure 1.8.

3.2 Self-assembly of D-BTA in heptane at low tem-

peratures

As mentioned in the first chapter, Cotton effects are solvent dependent in the case of D-
BTAs. While we do observe a Cotton effect in dodecane, it is absent in bulkier solvents
such as iso-octane (a branched alkane) or MCH (a cyclic alkane) at room temperature.
Heptane is another solvent in which chirality is expressed by the deuterated BTAs
at room temperature and is just like dodecane an linear alkane. However, as can be
seen in Figure 1.7(b) extrema are observed in temperature dependent CD, which are
absent in UV-VIS measurements (Figure D.1). We will have a closer look at what is
physically happening at these extrema in this section. Therefore, experiments were
conducted using CD and UV-VIS spectroscopy during this project, by using heptane
as a solvent. For details concerning the experimental method, we refer to [12].

The result of Figure 1.7 is repeated in Figure 3.2(a), where we have zoomed in the
temperature regime between −10◦C and 50◦C. The extrema are observed as an initial
decrease of the CD effect (in absolute value) at low temperatures, followed by an
increase (in absolute value). This increase even persists at temperatures lower than
0◦C. To make certain that this is not due to optical effects, a detailed analysis of the
shape of the Cotton effect is made for various temperature regimes, as indicated by
the three colors in Figure 3.2(a). For various temperature regimes the CD spectra as
function of temperature are shown. Surprisingly, we observe a change in the shape of
the CD spectrum similar to the odd-even effect discussed in section 1.1. Note also that
this shape change may as well affect the actual shape of the curve at temperatures
lower than 0◦C. However, as the change in wavelength at which the maximum Cotton
effect is observed is small, we do not expect large differences between our measurements
and the actual shape of the curve at the low temperature regime.

The change of the shape of the Cotton effect is gradual and occurs at the low tem-
perature extremum, in this case around 10◦C. It is exclusively observed by a change
in temperature, in contrast to the odd-even effect observed with methylated BTAs
(which is due to comparing different chemical structures). For this reason, we call this
an odd-even like effect. However, we were not able to measure this effect when using
dodecane as a solvent. The effect may be present, but it cannot be observed because
of the high melting point of dodecane (−9.6◦C). Cooling to temperatures below 0◦C
is thus not been performed.
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Odd-even effects are usually encountered on a larger length scale, such as in liquid
crystals [7]. This odd-even effect is for example observed in the transition temperature
from a liquid or solid state to a liquid crystalline state. Another example is an odd-
even effect in the screw sense of a cholesteric phase. Similarly to these observations, we
may hypothesize that in our case somehow the solvent takes part of the supramolecular
polymer. This was also already pointed out in the case of oligo(p-phenylenevinylene)
derivatives [15].

We conclude this section by noting that we have not attempted to fit the experimental
data in heptane, since the cooling curves are similar to the dodecane cooling curves
for temperatures higher than 25◦C. We believed that the model is not able to predict
the maximum and minimum in CD effect at lower temperatures. However, at the end
of this project, we have seen that it may be possible to predict the high temperature
extremum in the net helicity. This was not investigated thoroughly, since it was beyond
the scope of the project. A short description of this observation is included in Chapter
4 as an outlook.

Figure 3.2: (a) Temperature dependent CD as monitored at 223 nm for (S )-D-BTA in a
concentration of 5·10−5M in heptane. A small part of the total curve is shown.
The curve is divided in three parts for which the CD-spectra as function of
temperature is measured for the regime (b) 27◦C−50◦C, (c) 12◦C−24◦C and
(d) −10◦C− 9◦C. In all three cases (b)-(d), the arrow indicates cooling.
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Chapter 4

Conclusions and outlook

The goal of this project was to predict the net helicity and fraction polymerized mate-
rial of D-BTAs in dilute solutions for a limited temperature regime. In our approach,
we have used a competing nucleated self-assembly model by extending the actin poly-
merization model of Oosawa and Kasai. We had to limit the temperature regime, since
in the solvent heptane, extrema are observed for which we believed that they could
not be predicted by this hypothesis. Presumably, these extrema are present due to an
active role of solvent in the self-assembly process.

Good agreements are found with the experimental data by using this model in do-
decane. It was found that the difference in enthalpy of elongations between the two
types of aggregates is much smaller than the unit of kBT . The value of this difference
depends on the normalization of the experimental data, and was found to be 0.05 kBTP
if the net helicity and fraction polymerized material are normalized to unity. That this
could still result in macroscopic observables, such as a net helicity, is due to the fact
that all these small enthalpy differences add up in an aggregate to have large effects.
This is possible since the aggregates become very long, with an average of approxi-
mately 5000 monomeric units in one stack [14]. It was also observed that the ratio of
elongation constants κ∗BA needs to be perturbed from unity to give species A a small
preference over B, to get a better agreement with experimental data. This preference
is small κ∗BA ' 0.992, but it results in a sharper transition between a regime of zero
net helicity and a regime in which a net helicity can be observed. This sharp transition
is also observed in our experiments. Finally, the temperature regime in which a good
agreement with experimental data is found, becomes limited if we normalized the data
such that the system saturates at a net helicity of 0.35.

As for a theoretical outlook on this topic, we would recommend an extension of the
model by Jeroen van Gestel [16], which gives a microscopic description of a helical
aggregate by using the 1D Ising model. For instance, an extension by introducing
co-operativity in this model seems to be worthwhile. A microscopic description is in-
teresting, since we cannot exclude the existence of ’mixed’ aggregates, in which both P
and M -helices exist in the same aggregate. Possibly, there could be a gradual transition
between the P -regime to the M -regime. Such a state can be realized if the orientation
of the hydrogen bonds are gradually tilted from one regime in the aggregate to the
other. Solvent effects may also be included, but it has to be stressed that this will
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result in more parameters. More independent experimental data are then needed to
make sense out of the fits. Furthermore, these experimental techniques are also needed
to get more insights in what actually happens at low temperatures in for instance a
heptane solution. Finally, we have observed interesting behavior when titrating a
MCH solution to a heptane solution [12], which we could not fully explain. These
experiments also indicate that we need more experiments to learn more about this
system. This shows that the D-BTA system is a challenging system to model. Inter-
esting experimental techniques are for instance vibrational circular dichroism (VCD),
microscopy (AFM, STM) and heat capacity measurements (microDSC).

We would like to conclude this report by noting some interesting observations during
the calculations of the model. For instance, we could predict a net helicity that is
weakly dependent on temperature by keeping the difference in enthalpy of elongation,
h∗e,A − h∗e,B zero, while the difference in the heat capacity of binding between species
A and species B is small. This was not mentioned in the main text, but would be
interesting to investigate further.

Figure 4.1: Effect of a different sign of the free energy at the polymerization temperature
as compared with the difference in enthalpy of elongation, h∗e,A − h∗e,B . The
curves are obtained by using the numerical methodology of Appendix B, with
values for the parameters, K∗a = 7.5 · 10−4, h∗e,A = −20 kBTp, h∗e,A = −20.09
kBTp, log10 κ

∗
BA = −0.038.

A final interesting observation is about the sign of the free energy of binding at the
polymerization point, as expressed in κ∗BA, compared with the sign of the enthalpy
difference, h∗e,A − h∗e,B. If the signs are unequal, we are able to predict an extremum
in the net helicity 〈θ〉 and fraction polymerized material η. However, if the enthalpy
difference is small, the extremum in η reduces to a ’distortion’ at low temperatures
(cf. Figure 4.1(b)). This is also observed in experimental data (cf. Figure D.1). In
contrast, the extremum in net helicity is shifted towards lower temperature, while it is
near the polymerization temperature if the enthalpy difference is large (say > 1kBT ).
An example of such a distortion for η and an extremum in 〈θ〉 at low temperatures
are seen in Figure 4.1. Remarkably, it is possible to obtain an extremum at a simi-
lar temperature as was measured with temperature dependent CD in heptane. This
makes this observation very interesting for further research. However, since this was
discovered at the end of the project (literally), we have not investigated this yet.
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Appendix A

Heat capacity of a single quantum
harmonic oscillator

In this section, we will derive the heat capacity of a single quantum harmonic oscillator.
This will be used as a model for a single bond between two monomeric units within a
supramolecular polymer. The energy of a quantum harmonic oscillator is given by:

En =

(
n+

1

2

)
h̄ω n = 0, 1, 2, ... (A.1)

As usual h̄ is the Dirac constant and ω is the angular frequency. The canonical partition
function can then easily be calculated by it’s definition:

Q :=
∞∑
n=0

exp (−βEn) = exp

(
−βh̄ω

2

) ∞∑
n=0

[exp(−βh̄ω)]n (A.2)

By noticing that we now have in fact a geometric series, we can simplify this expression
by using

∑∞
n=0 x

n = 1
1−x for which |x| < 1, we find for the canonical partition function:

Q =
1

2 sinh
(
βh̄ω

2

) (A.3)

The heat capacity Cv can then be found by the usual recipe:

Cv =
1

kBT 2

∂2 lnQ

∂β2
= kB

(
h̄ω

kBT

)2
exp(βh̄ω)

[exp(βh̄ω)− 1]2
(A.4)

It’s straightforward to see that for T → 0 will result in Cv → 0, while for T → ∞
will result in Cv → kB. Since the heat capacity is a strictly increasing function
of temperature, it’s value thus varies between 0 and kB. We can imagine that the
oscillator model presented here can have many modes for the description of the bond.
The above result shows that each mode will contribute a value of kB to the value
of the heat capacity in the high temperature limit. Furthermore, we can neglect the
difference between Cv and Cp.
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Appendix B

Numerical implementation of the
model

In sections 2.2 and 2.3, we have considered the model in the long chain limit and
for small perturbations for the preference of one type aggregate over the other. Of
course, we can extend this notion by dropping these assumptions, but this will make
finding analytical expressions for the net helicity and fraction polymerized material
very difficult (if not impossible). In this case, we have to use numerical methods,
for which we choose a fixed-point like iterative method. Numerical solutions that we
can generate in this manner, can be applied to for instance the calculations of length
distributions, for which a long chain limit is not applicable.

The starting point for our method is to start with the mass action law for two com-
ponents (2.16). We do a Taylor expansion of all the elongation constants up until
first order, while we do this up until zeroth order for the activation constant. The
following method will not work, if we do the expansion for activation constant higher
than zeroth order. The result is:

exp

(
h∗e,A
kBT∗

(
T

T∗
− 1

))
= 1− 1

NA

+KaNA(NA − 1)

(
1 +

N
2

B

N
2

A

)
(B.1)

By rewriting this expression, we can construct an iterative scheme to get the temper-
ature T/T∗ as a function of the aggregation number of species A NA.(

T

T∗

)
i+1

= 1 +
kBT∗
h∗e,A

ln

[
1− 1

NA

+KaNA(NA − 1)

(
1 +

(
NB

NA

)2

i

)]
(B.2)

Where the ratio of aggregation numbers given in the i-th iteration step is given by:(
NB

NA

)
i

=

[
NA − exp

(
lnκ∗BA +

h∗e,B − h∗e,A
kBT∗

((
T

T∗

)
i

− 1

))
(NA − 1)

]−1

(B.3)

We go through this iteration scheme starting from i = 1 and as our initial value we
take

(
NB/NA

)
1

= 1. An implementation in MATLAB would be:
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%Iterative process to get temperature versus aggregation number

close all;

clear all;

%Defining constants

heB = -39.995; % Enthalpy of elongation for A given in units of kT

heA = -40; % Enthalpy of elongation for B given in units of kT

Ka = 1*10^-4; % Activation constant

KBA = 1 % Ratio of elongation constants

M = 20000; % Maximal mean aggregation number for A

%Create list of values

T_Tp= zeros(N,10);

%Starting estimate (aggregation number = i+0.01)

for i = 1:N

T_Tp(i,1) = 1+(1/heA)*log(1-1/(i+0.01)+2*Ka*(i+0.01)*((i+0.01)-1));

end

for j = 2:10

for k = 1:M

T_Tp(k,j) = 1+(1/heA)*log(1-1/(k+0.01)+Ka*(k+0.01)*((k+0.01)-1)+...

Ka*((k+0.01)-exp(log(KBA)+(heB-heA)*(T_Tp(k,j-1)-1)))^-2*...

(k+0.01)*((k+0.01)-1));

end

end

Furthermore, we can make a comparison of this scheme by considering the long chain
limit. In this limit, we can find an analytical expression for the reduced temperature
(T/Tp) as a function of NA. By plotting the result explicitly, we can see that in the
second iteration step the solution already converges. Furthermore, the behavior of the
solution in the long chain limit is as to be expected (cf. Figure B.1).

Finally, we note that this script will not work for isodesmic behavior. The reason is
that high temperatures cannot be achieved when NA is used as a parameter. The
reason is clear: there are no active species at temperatures higher than Tp.

As an application of this method, we can write the net helicity 〈θ〉 and fraction poly-
merized material η as a function of NA. Combined with the fact that we have the
temperature as a function of NA, we can plot numerical results for 〈θ〉 and η. This can
be seen in Figure B.2, with a comparison of the analytical result (section 2.3) included.
The discussion for the deviation at low temperatures can be found in section 2.3.
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Figure B.1: Temperature obtained by a parametrization with the aggregation number NA.
As can be seen already after the second iteration the solution converges. Also
plotted is the long chain limit; the agreement for high NA is very good with
this analytical expression.
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Figure B.2: Comparison between analytical solution as obtained with perturbation theory
(◦) with the numerical solutions by the fixed point iteration presented in this
Appendix (-). The values used for these plots are K∗a = 10−4, h∗e,B = −39.995
kBTp and h∗e,A = −40 kBTp.
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Appendix C

Choice of reference volume

In the competing nucleated self-assembly model that is derived in Chapter 2, we had to
use a reference volume υ to make the number density ρk (k = i, A, B) dimensionless.
The choice of this reference volume is not trivial, as is discussed in [7]. Normally, this
reference volume is taken as the volume of a monomeric unit. In contrast, we have
chosen to take the volume of a solvent molecule as a reference in our model. Both
choices will result in different interpretations of the quantities defined in equations 2.4,
2.5 and 2.6. Here, we will give a brief discussion of this interpretation.

If we choose υ to be the volume of a monomer, it implies that ρk = N ′k/V , with N ′k
the number of species k and V the system volume. Filling in this expression in the
definition of for instance φi will result in:

φi := ρiυ =
N ′iυ

V
=
Vi
V

(C.1)

Here Vi is the total volume taken in by the inactive species. The derivation in the case
of active species is similar. Clearly, this indicates that for this choice φi, φα(N), φα
and φ represent volume fractions.

In the case that υ is a solvent molecule volume, we have υ = 1/ρs, with ρs the number
density of solvent molecules. Again using this in the definition of φi (other cases follow
in the same manner), we find:

φi := ρiυ =
ρi
ρs
' ρi
ρs + ρi

=
N ′i

N ′s +N ′i
(C.2)

We have assumed dilute conditions at the ”'”-sign and N ′s is defined as the total
number of solvent species. Now we see that it represents a mole fraction. We have
chosen for this definition since mole fractions are easier to interpret. Note that this
choice is arbitrary.
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Appendix D

Supporting figures
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Figure D.1: Temperature dependent UV-VIS spectroscopy of a D-BTA solution in heptane
(c = 5 · 10−5M), which is a measure for the fraction polymerized material
η. Raw data is shown, meaning that it is not normalized and that it is
not corrected for the non-linear baseline. The two extrema seen with CD
spectroscopy are not observed here. Also note that subsequent heating after
cooling could not reproduce the O.D. obtained earlier with cooling. There is
also a small ’distortion’ observed at low temperatures. The reason for this is
unclear. This could be a device problem since the sample is cooled down to
the limits of the temperature controller (−10◦C). However, this distortion is
also predicted by theory (see Chapter 4).
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Figure D.2: The mole fraction of inactive species as a function of temperature. This curve
is obtained from theory (as described in section 2.4). The curve is obtained
for Ka = 10−4, h∗e,A = −40 kBTp. For the elongation constant as defined on
Tp, we have chosen a value corresponding to a free energy of binding of −20
kBTp.
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Figure D.3: The mole fraction of active species as a function of temperature for two dif-
ferent stack lengths N . This curve is obtained from theory (as described in
section 2.4). The curve is obtained for Ka = 10−4, h∗e,A = −40 kBTp. For the
elongation constant as defined on Tp, we have chosen a value corresponding
to a free energy of binding of −20 kBTp.
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