-
- 1
-
M. Stoitsov, M. Kortelainen, S. K. Bogner, T. Duguet, R. J. Furnstahl,
B. Gebremariam, and N. Schunck.
Microscopically based energy density functionals for nuclei using the
density matrix expansion: Implementation and pre-optimization.
Phys. Rev. C, 82:054307, 2010.
- 2
-
J Dobaczewski, K Bennaceur, and F Raimondi.
Effective theory for low-energy nuclear energy density functionals.
J. Phys. G, 39:125103, 2012.
- 3
-
S. Bogner et al.
Computational Nuclear Quantum Many-Body Problem: The UNEDF Project.
Comput. Phys. Commun., 184:2235, 2013.
- 4
-
M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P. G. Reinhard,
J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J. Erler, and A. Pastore.
Nuclear energy density optimization: Shell structure.
- 5
-
Wojciech Satua, Ramon A. Wyss, and Micha Rafalski.
Global properties of the skyrme-force-induced nuclear symmetry
energy.
Phys. Rev. C, 74:011301(R), Jul 2006.
- 6
-
A.V. Afanasjev.
In R. A. Broglia and V. Zelevinsky, editors, Fifty Years of
Nuclear BCS, page 138, Singapore, 2013. World Scientific Publishing Company.
- 7
-
N. Zeldes.
In in Handbook of Nuclear Properties, eds:D. Poenaru and W.
Greiner, page 13, Oxford, 1996. Clarendon Press.
- 8
-
W. Satua, D. J. Dean, J. Gary, S. Mizutori, and W. Nazarewicz.
Phys. Lett. B, 407:103, 1997.
- 9
-
A.L. Goodman.
Abc.
Adv. Nucl. Phys., 11:263, 1979.
- 10
-
J. Terasaki, R. Wyss, and P.-H. Heenen.
Onset of t=0 pairing and deformations in high spin states of the n=z
nucleus 48cr.
Phys. Lett. B, 437:1, 1998.
- 11
-
Stefan G. Frauendorf and Javid A. Sheikh.
Cranked shell model and isospin symmetry near n = z.
Nucl. Phys. A, 645(4):509 - 535, 1999.
- 12
-
J. A. Sheikh and R. Wyss.
Isovector and isoscalar superfluid phases in rotating nuclei.
Phys. Rev. C, 62(5):051302(R), 2000.
- 13
-
W. Satua and R. A. Wyss.
Cranking in isospace - towards a consistent mean-field description of
n=z nuclei.
Acta Phys. Pol., B32:2441, 2001.
- 14
-
Alexandros Gezerlis, G. F. Bertsch, and Y. L. Luo.
Mixed-spin pairing condensates in heavy nuclei.
Phys. Rev. Lett., 106:252502, 2011.
- 15
-
S. G. Rohozinski, J. Dobaczewski, and W. Nazarewicz.
Self-consistent symmetries in the proton-neutron
Hartree-Fock-Bogoliubov approach.
Phys. Rev. C, 81:014313, 2010.
- 16
-
L. M. Robledo and G. F. Bertsch.
Application of the gradient method to hartree-fock-bogoliubov theory.
Phys. Rev. C, 84:014312, 2011.
- 17
-
E. Perlinska, S. G. Rohozinski, J. Dobaczewski, and W. Nazarewicz.
Local density approximation for proton-neutron pairing correlations:
Formalism.
Phys. Rev. C, 69(1):014316, Jan 2004.
- 18
-
M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and D. J. Dean.
Systematic study of deformed nuclei at the drip lines and beyond.
Phys. Rev. C, 68(5):054312, 2003.
- 19
-
J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and
M. Stoitsov.
The limits of the nuclear landscape.
Nature, 486:509, 2012.
- 20
-
M. Kortelainen, J. Erler, W. Nazarewicz, N. Birge, Y. Gao, and E. Olsen.
Neutron-skin uncertainties of skyrme energy density functionals.
Phys. Rev. C, 88:031305(R), 2013.
- 21
-
E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac.
Landscape of two-proton radioactivity.
Phys. Rev. Lett., 110:222501, 2013.
- 22
-
E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac.
Erratum: Landscape of two-proton radioactivity [phys. rev. lett.
<span xmlns:xlink="http://www.w3.org/1999/xlink" style="font-weight:
bold;">110</span>, 222501 (2013)].
Phys. Rev. Lett., 111:139903, 2013.
- 23
-
M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and P. Ring.
Axially deformed solution of the skyrme-hartree-fock-bogolyubov
equations using the transformed harmonic oscillator basis. the program hfbtho
(v1.66p).
Comput. Phys. Commun., 167:43 - 63, 2005.
- 24
-
M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen,
J. Sarich, and S. Wild.
Axially deformed solution of the skyrme-hartree-fock-bogoliubov
equations using the transformed harmonic oscillator basis (ii) hfbtho v2.00d:
A new version od the program.
Comput. Phys. Commun., 184(6):1592 - 1604, 2013.
- 25
-
M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck,
M. V. Stoitsov, and S. Wild.
Nuclear energy density optimization.
Phys. Rev. C, 82:024313, 2010.
- 26
-
M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich,
N. Schunck, M. V. Stoitsov, and S. M. Wild.
Nuclear energy density optimization: Large deformations.
Phys. Rev. C, 85:024304, Feb 2012.
- 27
-
Koichi Sato, Jacek Dobaczewski, Takashi Nakatsukasa, and Wojciech Satua.
Energy-density-functional calculations including proton-neutron
mixing.
Phys. Rev. C, 88:061301(R), Dec 2013.
- 28
-
N. Schunck, J. Dobaczewski, J. McDonnell, W. Satua, J. A. Sheikh,
A. Staszczak, M. Stoitsov, and P. Toivanen.
Solution of the skyrme-hartree-fock-bogolyubov equations in the
cartesian deformed harmonic-oscillator basis.: (vii) hfodd (v2.49t): A new
version of the program.
Comput. Phys. Commun., 183:166, 2012.
- 29
-
N. Schunck et al.
Solution of the skyrme-hartree-fock-bogolyubov equations in the
cartesian deformed harmonic-oscillator basis: A new version of the program.
unpublished.
- 30
-
P. Ring and P. Schuck.
The Nuclear Many-Body Problem.
Springer-Verlag, Berlin, 1980.
- 31
-
J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger, C. R. Chinn, and
J. Dechargé.
Phys. Rev. C, 53:2809, 1996.
- 32
-
Wojciech Satua and Ramon Wyss.
Rotations in isospace: A doorway to the understanding of
neutron-proton superfluidity in
nuclei.
Phys. Rev. Lett., 86:4488-4491, May 2001.
- 33
-
Wojciech Satua and Ramon Wyss.
Microscopic structure of fundamental excitations in
nuclei.
Phys. Rev. Lett., 87:052504, Jul 2001.
- 34
-
J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson.
Nucl. Phys. A, 386:79, 1982.
- 35
-
C. A. Engelbrecht and R. H. Lemmer.
Isospin polarization in the nuclear many-body problem.
Phys. Rev. Lett., 24:607-611, Mar 1970.
- 36
-
N. Auerbach.
Phys. Rep., 98:273, 1983.
- 37
-
W. Satua, J. Dobaczewski, W. Nazarewicz, and M. Rafalski.
Isospin mixing in nuclei within the nuclear density functional
theory.
Phys. Rev. Lett., 103:012502, 2009.
- 38
-
B. G. Carlsson, J. Dobaczewski, and M. Kortelainen.
Local nuclear energy density functional at
next-to-next-to-next-to-leading order.
Phys. Rev. C, 78:044326, 2008.
- 39
-
W. Satua, J. Dobaczewski, W. Nazarewicz, and M. Rafalski.
Isospin-symmetry restoration within the nuclear density functional
theory: Formalism and applications.
Phys. Rev. C, 81:054310, May 2010.
- 40
-
S. Shlomo.
Rep. Prog. Phys., 41:957, 1978.
- 41
-
W. Nazarewicz, J. Dobaczewski, T. R. Werner, J. A. Maruhn, P.-G. Reinhard,
K. Rutz, C. R. Chinn, A. S. Umar, and M. R. Strayer.
Structure of proton drip-line nuclei around doubly magic
.
Phys. Rev. C, 53:740-751, Feb 1996.
- 42
-
A. T. Kruppa and W. Nazarewicz.
Gamow and r-matrix approach to proton emitting nuclei.
Phys. Rev. C, 69:054311, 2004.
- 43
-
K. Bennaceur and J. Dobaczewski.
Coordinate-space solution of the skyrme–hartree–fock–
bogolyubov equations within spherical symmetry. the program {HFBRAD}
(v1.00).
Comput. Phys. Commun., 168:96 - 122, 2005.
- 44
-
T. Vertse, A. T. Kruppa, and W. Nazarewicz.
Shell corrections for finite-depth deformed potentials: Green's
function oscillator expansion method.
Phys. Rev. C, 61:064317, 2000.
Jacek Dobaczewski
2014-12-07