Bibliography

1
M. Stoitsov, M. Kortelainen, S. K. Bogner, T. Duguet, R. J. Furnstahl, B. Gebremariam, and N. Schunck.
Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization.
Phys. Rev. C, 82:054307, 2010.

2
J Dobaczewski, K Bennaceur, and F Raimondi.
Effective theory for low-energy nuclear energy density functionals.
J. Phys. G, 39:125103, 2012.

3
S. Bogner et al.
Computational Nuclear Quantum Many-Body Problem: The UNEDF Project.
Comput. Phys. Commun., 184:2235, 2013.

4
M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P. G. Reinhard, J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J. Erler, and A. Pastore.
Nuclear energy density optimization: Shell structure.

5
Wojciech Satu\la, Ramon A. Wyss, and Micha\l Rafalski.
Global properties of the skyrme-force-induced nuclear symmetry energy.
Phys. Rev. C, 74:011301(R), Jul 2006.

6
A.V. Afanasjev.
In R. A. Broglia and V. Zelevinsky, editors, Fifty Years of Nuclear BCS, page 138, Singapore, 2013. World Scientific Publishing Company.

7
N. Zeldes.
In in Handbook of Nuclear Properties, eds:D. Poenaru and W. Greiner, page 13, Oxford, 1996. Clarendon Press.

8
W. Satu\la, D. J. Dean, J. Gary, S. Mizutori, and W. Nazarewicz.
Phys. Lett. B, 407:103, 1997.

9
A.L. Goodman.
Abc.
Adv. Nucl. Phys., 11:263, 1979.

10
J. Terasaki, R. Wyss, and P.-H. Heenen.
Onset of t=0 pairing and deformations in high spin states of the n=z nucleus 48cr.
Phys. Lett. B, 437:1, 1998.

11
Stefan G. Frauendorf and Javid A. Sheikh.
Cranked shell model and isospin symmetry near n = z.
Nucl. Phys. A, 645(4):509 - 535, 1999.

12
J. A. Sheikh and R. Wyss.
Isovector and isoscalar superfluid phases in rotating nuclei.
Phys. Rev. C, 62(5):051302(R), 2000.

13
W. Satu\la and R. A. Wyss.
Cranking in isospace - towards a consistent mean-field description of n=z nuclei.
Acta Phys. Pol., B32:2441, 2001.

14
Alexandros Gezerlis, G. F. Bertsch, and Y. L. Luo.
Mixed-spin pairing condensates in heavy nuclei.
Phys. Rev. Lett., 106:252502, 2011.

15
S. G. Rohozinski, J. Dobaczewski, and W. Nazarewicz.
Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach.
Phys. Rev. C, 81:014313, 2010.

16
L. M. Robledo and G. F. Bertsch.
Application of the gradient method to hartree-fock-bogoliubov theory.
Phys. Rev. C, 84:014312, 2011.

17
E. Perlinska, S. G. Rohozinski, J. Dobaczewski, and W. Nazarewicz.
Local density approximation for proton-neutron pairing correlations: Formalism.
Phys. Rev. C, 69(1):014316, Jan 2004.

18
M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and D. J. Dean.
Systematic study of deformed nuclei at the drip lines and beyond.
Phys. Rev. C, 68(5):054312, 2003.

19
J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. M. Perhac, and M. Stoitsov.
The limits of the nuclear landscape.
Nature, 486:509, 2012.

20
M. Kortelainen, J. Erler, W. Nazarewicz, N. Birge, Y. Gao, and E. Olsen.
Neutron-skin uncertainties of skyrme energy density functionals.
Phys. Rev. C, 88:031305(R), 2013.

21
E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac.
Landscape of two-proton radioactivity.
Phys. Rev. Lett., 110:222501, 2013.

22
E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac.
Erratum: Landscape of two-proton radioactivity [phys. rev. lett. <span xmlns:xlink="http://www.w3.org/1999/xlink" style="font-weight: bold;">110</span>, 222501 (2013)].
Phys. Rev. Lett., 111:139903, 2013.

23
M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and P. Ring.
Axially deformed solution of the skyrme-hartree-fock-bogolyubov equations using the transformed harmonic oscillator basis. the program hfbtho (v1.66p).
Comput. Phys. Commun., 167:43 - 63, 2005.

24
M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild.
Axially deformed solution of the skyrme-hartree-fock-bogoliubov equations using the transformed harmonic oscillator basis (ii) hfbtho v2.00d: A new version od the program.
Comput. Phys. Commun., 184(6):1592 - 1604, 2013.

25
M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M. V. Stoitsov, and S. Wild.
Nuclear energy density optimization.
Phys. Rev. C, 82:024313, 2010.

26
M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild.
Nuclear energy density optimization: Large deformations.
Phys. Rev. C, 85:024304, Feb 2012.

27
Koichi Sato, Jacek Dobaczewski, Takashi Nakatsukasa, and Wojciech Satu\la.
Energy-density-functional calculations including proton-neutron mixing.
Phys. Rev. C, 88:061301(R), Dec 2013.

28
N. Schunck, J. Dobaczewski, J. McDonnell, W. Satu\la, J. A. Sheikh, A. Staszczak, M. Stoitsov, and P. Toivanen.
Solution of the skyrme-hartree-fock-bogolyubov equations in the cartesian deformed harmonic-oscillator basis.: (vii) hfodd (v2.49t): A new version of the program.
Comput. Phys. Commun., 183:166, 2012.

29
N. Schunck et al.
Solution of the skyrme-hartree-fock-bogolyubov equations in the cartesian deformed harmonic-oscillator basis: A new version of the program.
unpublished.

30
P. Ring and P. Schuck.
The Nuclear Many-Body Problem.
Springer-Verlag, Berlin, 1980.

31
J. Dobaczewski, W. Nazarewicz, T. R. Werner, J. F. Berger, C. R. Chinn, and J. Dechargé.
Phys. Rev. C, 53:2809, 1996.

32
Wojciech Satu\la and Ramon Wyss.
Rotations in isospace: A doorway to the understanding of neutron-proton superfluidity in $ \mathit{N}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\mathit{Z}$ nuclei.
Phys. Rev. Lett., 86:4488-4491, May 2001.

33
Wojciech Satu\la and Ramon Wyss.
Microscopic structure of fundamental excitations in $ \mathit{N}\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}\mathit{Z}$ nuclei.
Phys. Rev. Lett., 87:052504, Jul 2001.

34
J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson.
Nucl. Phys. A, 386:79, 1982.

35
C. A. Engelbrecht and R. H. Lemmer.
Isospin polarization in the nuclear many-body problem.
Phys. Rev. Lett., 24:607-611, Mar 1970.

36
N. Auerbach.
Phys. Rep., 98:273, 1983.

37
W. Satu\la, J. Dobaczewski, W. Nazarewicz, and M. Rafalski.
Isospin mixing in nuclei within the nuclear density functional theory.
Phys. Rev. Lett., 103:012502, 2009.

38
B. G. Carlsson, J. Dobaczewski, and M. Kortelainen.
Local nuclear energy density functional at next-to-next-to-next-to-leading order.
Phys. Rev. C, 78:044326, 2008.

39
W. Satu\la, J. Dobaczewski, W. Nazarewicz, and M. Rafalski.
Isospin-symmetry restoration within the nuclear density functional theory: Formalism and applications.
Phys. Rev. C, 81:054310, May 2010.

40
S. Shlomo.
Rep. Prog. Phys., 41:957, 1978.

41
W. Nazarewicz, J. Dobaczewski, T. R. Werner, J. A. Maruhn, P.-G. Reinhard, K. Rutz, C. R. Chinn, A. S. Umar, and M. R. Strayer.
Structure of proton drip-line nuclei around doubly magic $ ^{48}\mathrm{Ni}$.
Phys. Rev. C, 53:740-751, Feb 1996.

42
A. T. Kruppa and W. Nazarewicz.
Gamow and r-matrix approach to proton emitting nuclei.
Phys. Rev. C, 69:054311, 2004.

43
K. Bennaceur and J. Dobaczewski.
Coordinate-space solution of the skyrme–hartree–fock– bogolyubov equations within spherical symmetry. the program {HFBRAD} (v1.00).
Comput. Phys. Commun., 168:96 - 122, 2005.

44
T. Vertse, A. T. Kruppa, and W. Nazarewicz.
Shell corrections for finite-depth deformed potentials: Green's function oscillator expansion method.
Phys. Rev. C, 61:064317, 2000.



Jacek Dobaczewski 2014-12-07