next up previous
Next: Construction of the energy Up: Construction of local densities Previous: Higher-order derivative operators


Local densities

Local densities are formed by acting several times on the scalar and vector nonlocal densities with the relative momentum operator $ \vec {k}$ and taking the limit of $ \vec {r}'=\vec {r}$. Using the spherical representation, the possible coupled $ k$-tensors (10) (up to sixth order in derivatives) $ K_{nL}$ are those given in Table 1 (replacing $ \nabla$ with $ k$).

Acting with $ K_{nL}$ on the scalar nonlocal density $ \rho\left(\vec {r},\vec {r}'\right)$ gives 16 different local densities up to N$ ^3$LO (one for every term in Table 1). They are listed in Table 3. When acting with $ K_{nL}$ on the vector nonlocal densities $ s\left(\vec {r},\vec {r}'\right)$, one has to construct all possible ways of coupling the $ k$-tensors with the vector density. Obviously, each of the 4 scalar ($ L=0$) derivative operators gives one local density, while each of the 12 non-scalar ($ L>0$) derivative operators gives three local densities. Altogether, from the vector density one obtains 40 local densities up to N$ ^3$LO. They are listed in Table 4.


Table 3: Local primary densities (23) up to N$ ^3$LO built from the scalar nonlocal density $ \rho\left(\vec {r},\vec {r}'\right)$ ($ v=0$). To simplify the notation the limit of $ \vec {r}'=\vec {r}$ is not shown explicitly. Stars ($ \star$) mark densities that enter the EDF up to N$ ^3$LO. Bullets ($ \bullet$) mark densities that enter the EDF up to N$ ^3$LO for conserved spherical, space-inversion, and time-reversal symmetries, see Sec. 4. The last two columns show the $ T$ and $ P$ parities defined in Eqs. (25) and (26), respectively. In addition, the time-even densities are marked by using the bold-face font.
No.     $ \rho_{nLvJ}$ =   density $ n$ $ L$ $ v$ $ J$ $ T$ $ P$
1 $ \star$ $ \bullet$ $ \bm{\rho_{0000}}$ =    $ {[}\rho {]}_{0}$ 0 0 0 0 1 1
2 $ \star$ $ $ $ {}{\rho_{1101}}$ =    $ {[}k \rho {]}_{1}$ 1 1 0 1 $ -$1 $ -$1
3 $ \star$ $ \bullet$ $ \bm{\rho_{2000}}$ =    $ {[}{[}kk {]}_{0} \rho{]}_{0}$ 2 0 0 0 1 1
4 $ \star$ $ \bullet$ $ \bm{\rho_{2202}}$ =    $ {[}{[}kk {]}_{2} \rho{]}_{2}$ 2 2 0 2 1 1
5 $ \star$ $ $ $ {}{\rho_{3101}}$ =    $ {[}{[}kk {]}_{0} k \rho{]}_{1}$ 3 1 0 1 $ -$1 $ -$1
6 $ \star$ $ $ $ {}{\rho_{3303}}$ =    $ {[}{[}k{[}kk{]}_{2}{]}_{3} \rho{]}_{3}$ 3 3 0 3 $ -$1 $ -$1
7 $ \star$ $ \bullet$ $ \bm{\rho_{4000}}$ =    $ {[}{[}kk {]}_{0} ^{2} \rho{]}_{0}$ 4 0 0 0 1 1
8 $ \star$ $ \bullet$ $ \bm{\rho_{4202}}$ =    $ {[}{[}kk {]}_{0} {[}kk{]}_{2} \rho{]}_{2}$ 4 2 0 2 1 1
9   $ $ $ \bm{\rho_{4404}}$ =    $ {[}{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} \rho{]}_{4}$ 4 4 0 4 1 1
10 $ \star$ $ $ $ {}{\rho_{5101}}$ =    $ {[}{[}kk {]}_{0}^2 k \rho{]}_{1}$ 5 1 0 1 $ -$1 $ -$1
11   $ $ $ {}{\rho_{5303}}$ =    $ {[}{[}kk {]}_{0} {[}k{[}kk{]}_{2}{]}_{3} \rho{]}_{3}$ 5 3 0 3 $ -$1 $ -$1
12   $ $ $ {}{\rho_{5505}}$ =    $ {[}{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5} \rho{]}_{5}$ 5 5 0 5 $ -$1 $ -$1
13 $ \star$ $ \bullet$ $ \bm{\rho_{6000}}$ =    $ {[}{[}kk {]}_{0} ^3 \rho{]}_{0}$ 6 0 0 0 1 1
14   $ $ $ \bm{\rho_{6202}}$ =    $ {[}{[}kk {]}_{0}^2 {[}kk{]}_{2} \rho{]}_{2}$ 6 2 0 2 1 1
15   $ $ $ \bm{\rho_{6404}}$ =    $ {[}{[}kk {]}_{0} {[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} \rho{]}_{4}$ 6 4 0 4 1 1
16   $ $ $ \bm{\rho_{6606}}$ =    $ {[}{[}k{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5}{]}_{6} \rho{]}_{6}$ 6 6 0 6 1 1


Table 4: Same as in Table 3 but for densities built from the vector nonlocal density $ \vec {s}\left(\vec {r},\vec {r}'\right)$ ($ v=1$).
No.     $ \rho_{nLvJ}$ =   density $ n$ $ L$ $ v$ $ J$ $ T$ $ P$
17 $ \star$ $ $ $ {}{\rho_{0011}}$ =    $ {[}s{]}_{1}$ 0 0 1 1 $ -$1 1
18 $ \star$ $ $ $ \bm{\rho_{1110}}$ =    $ {[}k s{]}_{0}$ 1 1 1 0 1 $ -$1
19 $ \star$ $ \bullet$ $ \bm{\rho_{1111}}$ =    $ {[}k s{]}_{1}$ 1 1 1 1 1 $ -$1
20 $ \star$ $ $ $ \bm{\rho_{1112}}$ =    $ {[}k s{]}_{2}$ 1 1 1 2 1 $ -$1
21 $ \star$ $ $ $ {}{\rho_{2011}}$ =    $ {[}{[}kk{]}_{0} s{]}_{1}$ 2 0 1 1 $ -$1 1
22 $ \star$ $ $ $ {}{\rho_{2211}}$ =    $ {[}{[}kk{]}_{2} s{]}_{1}$ 2 2 1 1 $ -$1 1
23 $ \star$ $ $ $ {}{\rho_{2212}}$ =    $ {[}{[}kk{]}_{2} s{]}_{2}$ 2 2 1 2 $ -$1 1
24 $ \star$ $ $ $ {}{\rho_{2213}}$ =    $ {[}{[}kk{]}_{2} s{]}_{3}$ 2 2 1 3 $ -$1 1
25 $ \star$ $ $ $ \bm{\rho_{3110}}$ =    $ {[}{[}kk{]}_{0} k s{]}_{0}$ 3 1 1 0 1 $ -$1
26 $ \star$ $ \bullet$ $ \bm{\rho_{3111}}$ =    $ {[}{[}kk{]}_{0} k s{]}_{1}$ 3 1 1 1 1 $ -$1
27 $ \star$ $ $ $ \bm{\rho_{3112}}$ =    $ {[}{[}kk{]}_{0} k s{]}_{2}$ 3 1 1 2 1 $ -$1
28 $ \star$ $ $ $ \bm{\rho_{3312}}$ =    $ {[}{[}k{[}kk{]}_{2}{]}_{3} s{]}_{2}$ 3 3 1 2 1 $ -$1
29 $ \star$ $ \bullet$ $ \bm{\rho_{3313}}$ =    $ {[}{[}k{[}kk{]}_{2}{]}_{3} s{]}_{3}$ 3 3 1 3 1 $ -$1
30 $ \star$ $ $ $ \bm{\rho_{3314}}$ =    $ {[}{[}k{[}kk{]}_{2}{]}_{3} s{]}_{4}$ 3 3 1 4 1 $ -$1
31 $ \star$ $ $ $ {}{\rho_{4011}}$ =    $ {[}{[}kk{]}_{0} ^{2} s{]}_{1}$ 4 0 1 1 $ -$1 1
32 $ \star$ $ $ $ {}{\rho_{4211}}$ =    $ {[}{[}kk{]}_{0} {[}kk{]}_{2} s{]}_{1}$ 4 2 1 1 $ -$1 1
33 $ \star$ $ $ $ {}{\rho_{4212}}$ =    $ {[}{[}kk{]}_{0} {[}kk{]}_{2} s{]}_{2}$ 4 2 1 2 $ -$1 1
34 $ \star$ $ $ $ {}{\rho_{4213}}$ =    $ {[}{[}kk{]}_{0} {[}kk{]}_{2} s{]}_{3}$ 4 2 1 3 $ -$1 1
35 $ \star$ $ $ $ {}{\rho_{4413}}$ =    $ {[}{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} s{]}_{3}$ 4 4 1 3 $ -$1 1
36   $ $ $ {}{\rho_{4414}}$ =    $ {[}{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} s{]}_{4}$ 4 4 1 4 $ -$1 1
37   $ $ $ {}{\rho_{4415}}$ =    $ {[}{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} s{]}_{5}$ 4 4 1 5 $ -$1 1


Table 4: continued.
No.     $ \rho_{nLvJ}$ =   density $ n$ $ L$ $ v$ $ J$ $ T$ $ P$
38 $ \star$ $ $ $ \bm{\rho_{5110}}$ =    $ {[}{[}kk{]}_{0}^2 k s{]}_{0}$ 5 1 1 0 1 $ -$1
39 $ \star$ $ \bullet$ $ \bm{\rho_{5111}}$ =    $ {[}{[}kk{]}_{0}^2 k s{]}_{1}$ 5 1 1 1 1 $ -$1
40 $ \star$ $ $ $ \bm{\rho_{5112}}$ =    $ {[}{[}kk{]}_{0}^2 k s{]}_{2}$ 5 1 1 2 1 $ -$1
41 $ \star$ $ $ $ \bm{\rho_{5312}}$ =    $ {[}{[}kk{]}_{0} {[}k{[}kk{]}_{2}{]}_{3} s{]}_{2}$ 5 3 1 2 1 $ -$1
42   $ $ $ \bm{\rho_{5313}}$ =    $ {[}{[}kk{]}_{0} {[}k{[}kk{]}_{2}{]}_{3} s{]}_{3}$ 5 3 1 3 1 $ -$1
43   $ $ $ \bm{\rho_{5314}}$ =    $ {[}{[}kk{]}_{0} {[}k{[}kk{]}_{2}{]}_{3} s{]}_{4}$ 5 3 1 4 1 $ -$1
44   $ $ $ \bm{\rho_{5514}}$ =    $ {[}{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5} s{]}_{4}$ 5 5 1 4 1 $ -$1
45   $ $ $ \bm{\rho_{5515}}$ =    $ {[}{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5} s{]}_{5}$ 5 5 1 5 1 $ -$1
46   $ $ $ \bm{\rho_{5516}}$ =    $ {[}{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5} s{]}_{6}$ 5 5 1 6 1 $ -$1
47 $ \star$ $ $ $ {}{\rho_{6011}}$ =    $ {[}{[}kk{]}_{0} ^3 s{]}_{1}$ 6 0 1 1 $ -$1 1
48 $ \star$ $ $ $ {}{\rho_{6211}}$ =    $ {[}{[}kk{]}_{0}^2 {[}kk{]}_{2} s{]}_{1}$ 6 2 1 1 $ -$1 1
49   $ $ $ {}{\rho_{6212}}$ =    $ {[}{[}kk{]}_{0}^2 {[}kk{]}_{2} s{]}_{2}$ 6 2 1 2 $ -$1 1
50   $ $ $ {}{\rho_{6213}}$ =    $ {[}{[}kk{]}_{0}^2 {[}kk{]}_{2} s{]}_{3}$ 6 2 1 3 $ -$1 1
51   $ $ $ {}{\rho_{6413}}$ =    $ {[}{[}kk{]}_{0} {[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} s{]}_{3}$ 6 4 1 3 $ -$1 1
52   $ $ $ {}{\rho_{6414}}$ =    $ {[}{[}kk{]}_{0} {[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} s{]}_{4}$ 6 4 1 4 $ -$1 1
53   $ $ $ {}{\rho_{6415}}$ =    $ {[}{[}kk{]}_{0} {[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4} s{]}_{5}$ 6 4 1 5 $ -$1 1
54   $ $ $ {}{\rho_{6615}}$ =    $ {[}{[}k{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5}{]}_{6} s{]}_{5}$ 6 6 1 5 $ -$1 1
55   $ $ $ {}{\rho_{6616}}$ =    $ {[}{[}k{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5}{]}_{6} s{]}_{6}$ 6 6 1 6 $ -$1 1
56   $ $ $ {}{\rho_{6617}}$ =    $ {[}{[}k{[}k{[}k{[}k{[}kk{]}_{2}{]}_{3}{]}_{4}{]}_{5}{]}_{6} s{]}_{7}$ 6 6 1 7 $ -$1 1

Finally, all local densities can be denoted by four integers $ nLvJ$ as

$\displaystyle \rho_{nLvJ}(\vec {r})=\left\{[K_{nL}\rho_v(\vec {r},\vec {r}')]_J \right\}_{\vec {r}'=\vec {r}},$ (23)

where the $ n$th-order and rank-$ L$ relative derivative operator $ K_{nL}$ acts on the scalar ($ v=0$) or vector ($ v=1$) nonlocal density, and ranks $ L$ and $ v$ are then vector coupled to $ J$. We call these local densities primary densities. The tensor components corresponding to the total rank $ J$ are not explicitly shown.

One can also act on each of the local densities with derivative operators $ D_{mI}$ of Table 1, and then couple ranks $ I$ and $ J$ to the total rank $ Q$, i.e.,

$\displaystyle \rho_{mI,nLvJ,Q}(\vec {r})=\left[D_{mI}\rho_{nLvJ}(\vec {r})\right]_Q.$ (24)

For $ m>0$, we call these local densities secondary densities. We do not explicitly list them, because they can be obtained in a straightforward way from the primary densities corresponding to $ m=0$, $ \rho_{nLvJ}=\rho_{00,InLvJ,J}$, which are listed in Tables 3 and 4.

In Tables 3 and 4, for completeness we also show the time-reversal ($ T$) and space-inversion ($ P$) parities defined as,

$\displaystyle T$ $\displaystyle =$ $\displaystyle (-1)^{n+v} ,$ (25)
$\displaystyle P$ $\displaystyle =$ $\displaystyle (-1)^{n} .$ (26)

These definitions are based on the analysis of symmetry properties, which we present in Appendix A. To better visualize the time-reversal properties of the local densities, in Tables 3 and 4 the time-even densities are shown in bold face.

Local densities constructed above are complex. Taking the complex conjugations gives relations derived in Appendix B:

$\displaystyle \rho_{mI,nLvJ,Q,M}^{*} =\left(-1\right)^{Q-M}\rho_{mI,nLvJ,Q,-M} ,$ (27)

where the tensor components, denoted $ M$, are shown explicitly. These relations allow for expressing positive tensor components through negative ones or vice versa. Therefore, complete information is contained in non-negative or non-positive tensor components only. The $ M=0$ components are either real (for even $ Q$) or imaginary (for odd $ Q$), and hence $ 2Q+1$ real functions always suffice to describe a given local density of rank $ Q$. Moreover, all scalar densities are real, which was the basis of choosing this particular phase convention, as described in Appendix B.


next up previous
Next: Construction of the energy Up: Construction of local densities Previous: Higher-order derivative operators
Jacek Dobaczewski 2008-10-06