Local densities are formed by acting several times on the scalar and vector nonlocal densities with the relative momentum operator and taking the limit of . Using the spherical representation, the possible coupled -tensors (10) (up to sixth order in derivatives) are those given in Table 1 (replacing with ).
Acting with on the scalar nonlocal density gives 16 different local densities up to NLO (one for every term in Table 1). They are listed in Table 3. When acting with on the vector nonlocal densities , one has to construct all possible ways of coupling the -tensors with the vector density. Obviously, each of the 4 scalar () derivative operators gives one local density, while each of the 12 non-scalar () derivative operators gives three local densities. Altogether, from the vector density one obtains 40 local densities up to NLO. They are listed in Table 4.
No. | = | density | |||||||||
1 | = | 0 | 0 | 0 | 0 | 1 | 1 | ||||
2 | = | 1 | 1 | 0 | 1 | 1 | 1 | ||||
3 | = | 2 | 0 | 0 | 0 | 1 | 1 | ||||
4 | = | 2 | 2 | 0 | 2 | 1 | 1 | ||||
5 | = | 3 | 1 | 0 | 1 | 1 | 1 | ||||
6 | = | 3 | 3 | 0 | 3 | 1 | 1 | ||||
7 | = | 4 | 0 | 0 | 0 | 1 | 1 | ||||
8 | = | 4 | 2 | 0 | 2 | 1 | 1 | ||||
9 | = | 4 | 4 | 0 | 4 | 1 | 1 | ||||
10 | = | 5 | 1 | 0 | 1 | 1 | 1 | ||||
11 | = | 5 | 3 | 0 | 3 | 1 | 1 | ||||
12 | = | 5 | 5 | 0 | 5 | 1 | 1 | ||||
13 | = | 6 | 0 | 0 | 0 | 1 | 1 | ||||
14 | = | 6 | 2 | 0 | 2 | 1 | 1 | ||||
15 | = | 6 | 4 | 0 | 4 | 1 | 1 | ||||
16 | = | 6 | 6 | 0 | 6 | 1 | 1 |
No. | = | density | |||||||||
17 | = | 0 | 0 | 1 | 1 | 1 | 1 | ||||
18 | = | 1 | 1 | 1 | 0 | 1 | 1 | ||||
19 | = | 1 | 1 | 1 | 1 | 1 | 1 | ||||
20 | = | 1 | 1 | 1 | 2 | 1 | 1 | ||||
21 | = | 2 | 0 | 1 | 1 | 1 | 1 | ||||
22 | = | 2 | 2 | 1 | 1 | 1 | 1 | ||||
23 | = | 2 | 2 | 1 | 2 | 1 | 1 | ||||
24 | = | 2 | 2 | 1 | 3 | 1 | 1 | ||||
25 | = | 3 | 1 | 1 | 0 | 1 | 1 | ||||
26 | = | 3 | 1 | 1 | 1 | 1 | 1 | ||||
27 | = | 3 | 1 | 1 | 2 | 1 | 1 | ||||
28 | = | 3 | 3 | 1 | 2 | 1 | 1 | ||||
29 | = | 3 | 3 | 1 | 3 | 1 | 1 | ||||
30 | = | 3 | 3 | 1 | 4 | 1 | 1 | ||||
31 | = | 4 | 0 | 1 | 1 | 1 | 1 | ||||
32 | = | 4 | 2 | 1 | 1 | 1 | 1 | ||||
33 | = | 4 | 2 | 1 | 2 | 1 | 1 | ||||
34 | = | 4 | 2 | 1 | 3 | 1 | 1 | ||||
35 | = | 4 | 4 | 1 | 3 | 1 | 1 | ||||
36 | = | 4 | 4 | 1 | 4 | 1 | 1 | ||||
37 | = | 4 | 4 | 1 | 5 | 1 | 1 |
No. | = | density | |||||||||
38 | = | 5 | 1 | 1 | 0 | 1 | 1 | ||||
39 | = | 5 | 1 | 1 | 1 | 1 | 1 | ||||
40 | = | 5 | 1 | 1 | 2 | 1 | 1 | ||||
41 | = | 5 | 3 | 1 | 2 | 1 | 1 | ||||
42 | = | 5 | 3 | 1 | 3 | 1 | 1 | ||||
43 | = | 5 | 3 | 1 | 4 | 1 | 1 | ||||
44 | = | 5 | 5 | 1 | 4 | 1 | 1 | ||||
45 | = | 5 | 5 | 1 | 5 | 1 | 1 | ||||
46 | = | 5 | 5 | 1 | 6 | 1 | 1 | ||||
47 | = | 6 | 0 | 1 | 1 | 1 | 1 | ||||
48 | = | 6 | 2 | 1 | 1 | 1 | 1 | ||||
49 | = | 6 | 2 | 1 | 2 | 1 | 1 | ||||
50 | = | 6 | 2 | 1 | 3 | 1 | 1 | ||||
51 | = | 6 | 4 | 1 | 3 | 1 | 1 | ||||
52 | = | 6 | 4 | 1 | 4 | 1 | 1 | ||||
53 | = | 6 | 4 | 1 | 5 | 1 | 1 | ||||
54 | = | 6 | 6 | 1 | 5 | 1 | 1 | ||||
55 | = | 6 | 6 | 1 | 6 | 1 | 1 | ||||
56 | = | 6 | 6 | 1 | 7 | 1 | 1 |
One can also act on each of the local densities with derivative operators of Table 1, and then couple ranks and to the total rank , i.e.,
In Tables 3 and 4, for completeness we also
show the time-reversal () and space-inversion () parities defined as,
Local densities constructed above are complex. Taking the complex conjugations gives relations derived in Appendix B:
(27) |