An entirely analogous pattern of terms and coupling constants appears
at sixth order. Imposing either Galilean or gauge symmetry forces 23 dependent coupling
constants to be specific linear combinations of 3 independent ones:.
Apart from the 6 free and 23 dependent coupling constants, at
sixth order the gauge invariance requires that all the remaining 100
coupling constants are equal to zero. These 100 constants are allowed to
be non-zero if the Galilean symmetry is imposed instead of the
full gauge invariance. Then, there are 80 dependent coupling
constants that are forced to be linear combinations of 20 independent
ones:
(212) | |||
(213) | |||
(214) | |||
(215) | |||
(216) | |||
(217) | |||
(218) | |||
(219) | |||
(220) | |||
(221) | |||
(222) | |||
(223) | |||
(224) | |||
(225) | |||
(226) | |||
(227) | |||
(228) | |||
(229) | |||
(230) | |||
(231) | |||
(232) | |||
(233) | |||
(234) | |||
(235) | |||
(236) | |||
(237) | |||
(238) | |||
(239) | |||
(240) | |||
(241) | |||
(242) |
(243) | |||
(244) | |||
(245) | |||
(246) | |||
(247) | |||
(248) | |||
(249) | |||
(250) | |||
(251) | |||
(252) | |||
(253) | |||
(254) | |||
(255) | |||
(256) | |||
(257) | |||
(258) | |||
(259) |
(260) | |||
(261) | |||
(262) | |||
(263) | |||
(264) | |||
(265) | |||
(266) | |||
(267) | |||
(268) | |||
(269) | |||
(270) | |||
(271) | |||
(272) | |||
(273) | |||
(274) | |||
(275) | |||
(276) | |||
(277) | |||
(278) | |||
(279) |
Finally,
we list 20 combinations of terms that are
invariant with respect to the Galilean symmetry and correspond to
the independent coupling constants: