next up previous
Next: Bibliography Up: Results for the Galilean Previous: Fourth order


Sixth order

An entirely analogous pattern of terms and coupling constants appears at sixth order. Imposing either Galilean or gauge symmetry forces 23 dependent coupling constants to be specific linear combinations of 3 independent ones:.

$\displaystyle \bm{C_{00,6000}^{0000}}$ $\displaystyle =$ $\displaystyle -\tfrac{3}{4} \sqrt{\tfrac{3}{7}} {}{C_{00,3303}^{3303}} ,$ (171)
$\displaystyle \bm{C_{00,4000}^{2000}}$ $\displaystyle =$ $\displaystyle -\tfrac{3}{4} \sqrt{21} {}{C_{00,3303}^{3303}} ,$ (172)
$\displaystyle \bm{C_{00,4202}^{2202}}$ $\displaystyle =$ $\displaystyle -3 \sqrt{\tfrac{15}{7}} {}{C_{00,3303}^{3303}} ,$ (173)
$\displaystyle {}{C_{00,5101}^{1101}}$ $\displaystyle =$ $\displaystyle \tfrac{9}{2} \sqrt{\tfrac{3}{7}} {}{C_{00,3303}^{3303}} ,$ (174)
$\displaystyle {}{C_{00,3101}^{3101}}$ $\displaystyle =$ $\displaystyle \tfrac{9}{10} \sqrt{21} {}{C_{00,3303}^{3303}} ,$ (175)
$\displaystyle \bm{C_{00,5110}^{1110}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{3}{5}} {}{C_{00,4212}^{2212}}-\tfrac{9 }{\sqrt{5}}{}{C_{00,6211}^{0011}} ,$ (176)
$\displaystyle \bm{C_{00,5111}^{1111}}$ $\displaystyle =$ $\displaystyle -\tfrac{3 }{2 \sqrt{5}}{}{C_{00,4212}^{2212}} ,$ (177)
$\displaystyle \bm{C_{00,5112}^{1112}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{3} {}{C_{00,4212}^{2212}}-\tfrac{18 }{5}{}{C_{00,6211}^{0011}} ,$ (178)
$\displaystyle \bm{C_{00,5312}^{1112}}$ $\displaystyle =$ $\displaystyle -4 \sqrt{\tfrac{7}{15}} {}{C_{00,6211}^{0011}} ,$ (179)
$\displaystyle \bm{C_{00,3110}^{3110}}$ $\displaystyle =$ $\displaystyle -\tfrac{7}{10} \sqrt{\tfrac{3}{5}} {}{C_{00,4212}^{2212}}-\tfrac{63 }{5 \sqrt{5}}{}{C_{00,6211}^{0011}} ,$ (180)
$\displaystyle \bm{C_{00,3111}^{3111}}$ $\displaystyle =$ $\displaystyle -\tfrac{21 }{10 \sqrt{5}}{}{C_{00,4212}^{2212}} ,$ (181)
$\displaystyle \bm{C_{00,3112}^{3112}}$ $\displaystyle =$ $\displaystyle -\tfrac{7}{10} \sqrt{3} {}{C_{00,4212}^{2212}}-\tfrac{126 }{25}{}{C_{00,6211}^{0011}} ,$ (182)
$\displaystyle \bm{C_{00,3312}^{3112}}$ $\displaystyle =$ $\displaystyle -\tfrac{12}{5} \sqrt{\tfrac{21}{5}} {}{C_{00,6211}^{0011}} ,$ (183)
       


$\displaystyle \bm{C_{00,3312}^{3312}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{3 \sqrt{3}}{}{C_{00,4212}^{2212}}-\tfrac{6 }{5}{}{C_{00,6211}^{0011}} ,$ (184)
$\displaystyle \bm{C_{00,3313}^{3313}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{3} \sqrt{\tfrac{7}{15}} {}{C_{00,4212}^{2212}} ,$ (185)
$\displaystyle \bm{C_{00,3314}^{3314}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{\sqrt{15}}{}{C_{00,4212}^{2212}}-\tfrac{8 }{3 \sqrt{5}}{}{C_{00,6211}^{0011}} ,$ (186)
$\displaystyle {}{C_{00,6011}^{0011}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{4} \sqrt{\tfrac{3}{5}} {}{C_{00,4212}^{2212}}+\tfrac{3 }{2 \sqrt{5}}{}{C_{00,6211}^{0011}} ,$ (187)
$\displaystyle {}{C_{00,4011}^{2011}}$ $\displaystyle =$ $\displaystyle \tfrac{7}{4} \sqrt{\tfrac{3}{5}} {}{C_{00,4212}^{2212}}+\tfrac{21 }{2 \sqrt{5}}{}{C_{00,6211}^{0011}} ,$ (188)
$\displaystyle {}{C_{00,4211}^{2011}}$ $\displaystyle =$ $\displaystyle 6 {}{C_{00,6211}^{0011}} ,$ (189)
$\displaystyle {}{C_{00,4011}^{2211}}$ $\displaystyle =$ $\displaystyle \tfrac{21 }{5}{}{C_{00,6211}^{0011}} ,$ (190)
$\displaystyle {}{C_{00,4211}^{2211}}$ $\displaystyle =$ $\displaystyle \sqrt{\tfrac{3}{5}} {}{C_{00,4212}^{2212}}+\tfrac{12 }{\sqrt{5}}{}{C_{00,6211}^{0011}} ,$ (191)
$\displaystyle {}{C_{00,4213}^{2213}}$ $\displaystyle =$ $\displaystyle \sqrt{\tfrac{7}{5}} {}{C_{00,4212}^{2212}}+18 \sqrt{\tfrac{3}{35}} {}{C_{00,6211}^{0011}} ,$ (192)
$\displaystyle {}{C_{00,4413}^{2213}}$ $\displaystyle =$ $\displaystyle \tfrac{4 }{\sqrt{5}}{}{C_{00,6211}^{0011}} .$ (193)

At this order, there are 3 stand-alone Galilean and gauge invariant terms:
$\displaystyle {}{G_{60,0000}^{0000}}$ $\displaystyle =$ $\displaystyle \bm{T_{60,0000}^{0000}} ,$ (194)
$\displaystyle {}{G_{60,0011}^{0011}}$ $\displaystyle =$ $\displaystyle {}{T_{60,0011}^{0011}} ,$ (195)
$\displaystyle {}{G_{62,0011}^{0011}}$ $\displaystyle =$ $\displaystyle {}{T_{62,0011}^{0011}} ,$ (196)

and 3 Galilean and gauge invariant linear combinations of terms, corresponding to the 3 independent coupling constants:
$\displaystyle {}{G_{00,3303}^{3303}}$ $\displaystyle =$ $\displaystyle \tfrac{9}{10} \sqrt{21} {}{T_{00,3101}^{3101}}+{}{T_{00,3303}^{33...
...sqrt{21} \bm{T_{00,4000}^{2000}}-3 \sqrt{\tfrac{15}{7}} \bm{T_{00,4202}^{2202}}$  
    $\displaystyle +\tfrac{9}{2} \sqrt{\tfrac{3}{7}} {}{T_{00,5101}^{1101}}-\tfrac{3}{4} \sqrt{\tfrac{3}{7}} \bm{T_{00,6000}^{0000}} ,$ (197)
$\displaystyle {}{G_{00,6211}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{63 }{5 \sqrt{5}}\bm{T_{00,3110}^{3110}}-\tfrac{126 }{25}\...
...frac{9 }{\sqrt{5}}\bm{T_{00,5110}^{1110}}-\tfrac{18 }{5}\bm{T_{00,5112}^{1112}}$  
    $\displaystyle -4 \sqrt{\tfrac{7}{15}} \bm{T_{00,5312}^{1112}}-\tfrac{6 }{5}\bm{...
...}^{2011}}+6 {}{T_{00,4211}^{2011}}+\tfrac{3 }{2 \sqrt{5}}{}{T_{00,6011}^{0011}}$  
    $\displaystyle +{}{T_{00,6211}^{0011}}+\tfrac{21 }{5}{}{T_{00,4011}^{2211}}+\tfr...
...rac{3}{35}} {}{T_{00,4213}^{2213}}+\tfrac{4 }{\sqrt{5}}{}{T_{00,4413}^{2213}} ,$ (198)
$\displaystyle {}{G_{00,4212}^{2212}}$ $\displaystyle =$ $\displaystyle -\tfrac{7}{10} \sqrt{\tfrac{3}{5}} \bm{T_{00,3110}^{3110}}-\tfrac...
...ac{3}{5}} \bm{T_{00,5110}^{1110}}-\tfrac{3 }{2 \sqrt{5}}\bm{T_{00,5111}^{1111}}$  
    $\displaystyle -\tfrac{1}{2} \sqrt{3} \bm{T_{00,5112}^{1112}}-\tfrac{1}{3 \sqrt{...
...\bm{T_{00,3314}^{3314}}+\tfrac{7}{4} \sqrt{\tfrac{3}{5}} {}{T_{00,4011}^{2011}}$  
    $\displaystyle +\sqrt{\tfrac{3}{5}} {}{T_{00,4211}^{2211}}+\tfrac{1}{4} \sqrt{\t...
...11}^{0011}}+{}{T_{00,4212}^{2212}}+\sqrt{\tfrac{7}{5}} {}{T_{00,4213}^{2213}} .$ (199)

Altogether, 6 free coupling constants (3 unrestricted and 3 independent) occur in both the Galilean and gauge invariant EDF at sixth order, cf. Table 6.

Apart from the 6 free and 23 dependent coupling constants, at sixth order the gauge invariance requires that all the remaining 100 coupling constants are equal to zero. These 100 constants are allowed to be non-zero if the Galilean symmetry is imposed instead of the full gauge invariance. Then, there are 80 dependent coupling constants that are forced to be linear combinations of 20 independent ones:

$\displaystyle \bm{C_{40,2000}^{0000}}$ $\displaystyle =$ $\displaystyle -{}{C_{40,1101}^{1101}} ,$ (200)
$\displaystyle \bm{C_{42,2202}^{0000}}$ $\displaystyle =$ $\displaystyle -{}{C_{42,1101}^{1101}} ,$ (201)
$\displaystyle \bm{C_{20,4000}^{0000}}$ $\displaystyle =$ $\displaystyle \tfrac{3 }{2 \sqrt{5}}\bm{C_{20,2202}^{2202}} ,$ (202)
$\displaystyle \bm{C_{22,4202}^{0000}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{15}{7}} {}{C_{22,3303}^{1101}} ,$ (203)
$\displaystyle \bm{C_{20,2000}^{2000}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{2} \sqrt{5} \bm{C_{20,2202}^{2202}} ,$ (204)
$\displaystyle \bm{C_{22,2202}^{2000}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{35}{3}} {}{C_{22,3303}^{1101}} ,$ (205)
$\displaystyle \bm{C_{22,2202}^{2202}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{5}{3}} {}{C_{22,3303}^{1101}} ,$ (206)
$\displaystyle {}{C_{20,3101}^{1101}}$ $\displaystyle =$ $\displaystyle -\tfrac{6 }{\sqrt{5}}\bm{C_{20,2202}^{2202}} ,$ (207)
$\displaystyle {}{C_{22,3101}^{1101}}$ $\displaystyle =$ $\displaystyle \sqrt{\tfrac{21}{5}} {}{C_{22,3303}^{1101}} ,$ (208)
$\displaystyle \bm{C_{40,1110}^{1110}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{5}}\bm{C_{40,1112}^{1112}}-\tfrac{3 }{2 \sqrt{5}}{}{C_{40,2211}^{0011}} ,$ (209)
$\displaystyle \bm{C_{20,3110}^{1110}}$ $\displaystyle =$ $\displaystyle -\tfrac{4 }{5}{}{C_{20,2011}^{2011}}-\tfrac{2 }{\sqrt{5}}{}{C_{20,2211}^{2011}} ,$ (210)
$\displaystyle \bm{C_{22,3312}^{1110}}$ $\displaystyle =$ $\displaystyle \tfrac{6 }{\sqrt{35}}{}{C_{22,2212}^{2011}}+\sqrt{\tfrac{5}{21}} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{2}{3} \sqrt{\tfrac{5}{21}} \bm{C_{22,3112}^{1111}}-2 \sqrt{2} \bm{C_{22,3313}^{1111}} ,$ (211)
       


$\displaystyle \bm{C_{40,1111}^{1111}}$ $\displaystyle =$ $\displaystyle \sqrt{\tfrac{3}{5}} \bm{C_{40,1112}^{1112}}+\sqrt{\tfrac{3}{5}} {}{C_{40,2211}^{0011}} ,$ (212)
$\displaystyle \bm{C_{42,1112}^{1111}}$ $\displaystyle =$ $\displaystyle 2 \sqrt{3} \bm{C_{42,1111}^{1111}}+2 \sqrt{3} {}{C_{42,2212}^{0011}} ,$ (213)
$\displaystyle \bm{C_{20,3111}^{1111}}$ $\displaystyle =$ $\displaystyle \sqrt{\tfrac{3}{5}} {}{C_{20,2211}^{2011}}-\tfrac{4}{5} \sqrt{3} {}{C_{20,2011}^{2011}} ,$ (214)
$\displaystyle \bm{C_{22,3111}^{1111}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{3}}\bm{C_{22,3112}^{1111}}-\tfrac{6 }{5}{}{C_{22,2212}^{2011}} ,$ (215)
$\displaystyle \bm{C_{22,3312}^{1111}}$ $\displaystyle =$ $\displaystyle \tfrac{6 }{\sqrt{35}}{}{C_{22,2212}^{2011}}-2 \sqrt{2} \bm{C_{22,3313}^{1111}} ,$ (216)
$\displaystyle \bm{C_{42,1112}^{1112}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{7}}\bm{C_{42,1112}^{1110}}-\sqrt{\tfrac{3}{7}} \bm{C_{42,1111}^{1111}} ,$ (217)
$\displaystyle \bm{C_{44,1112}^{1112}}$ $\displaystyle =$ $\displaystyle -{}{C_{44,2213}^{0011}} ,$ (218)
$\displaystyle \bm{C_{22,3110}^{1112}}$ $\displaystyle =$ $\displaystyle \bm{C_{22,3112}^{1110}} ,$ (219)
$\displaystyle \bm{C_{22,3111}^{1112}}$ $\displaystyle =$ $\displaystyle -\bm{C_{22,3112}^{1111}} ,$ (220)
$\displaystyle \bm{C_{20,3112}^{1112}}$ $\displaystyle =$ $\displaystyle -\tfrac{4 }{\sqrt{5}}{}{C_{20,2011}^{2011}}-\tfrac{1}{5}{}{C_{20,2211}^{2011}} ,$ (221)
$\displaystyle \bm{C_{22,3112}^{1112}}$ $\displaystyle =$ $\displaystyle \tfrac{6}{5} \sqrt{\tfrac{3}{7}} {}{C_{22,2212}^{2011}}+\tfrac{2 }{\sqrt{7}}\bm{C_{22,3112}^{1110}}$  
    $\displaystyle -\tfrac{1}{\sqrt{7}}\bm{C_{22,3112}^{1111}} ,$ (222)
$\displaystyle \bm{C_{20,3312}^{1112}}$ $\displaystyle =$ $\displaystyle -2 \sqrt{\tfrac{3}{35}} {}{C_{20,2211}^{2011}} ,$ (223)
$\displaystyle \bm{C_{22,3312}^{1112}}$ $\displaystyle =$ $\displaystyle \tfrac{2 }{7 \sqrt{5}}{}{C_{22,2212}^{2011}}+\tfrac{2}{7} \sqrt{\tfrac{5}{3}} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{4}{21} \sqrt{\tfrac{5}{3}} \bm{C_{22,3112}^{1111}} ,$ (224)
$\displaystyle \bm{C_{22,3313}^{1112}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{2}}\bm{C_{22,3313}^{1111}}-\tfrac{4 }{\sqrt{35}}{}{C_{22,2212}^{2011}}$  
    $\displaystyle -2 \sqrt{\tfrac{2}{7}} \bm{C_{22,3313}^{1111}} ,$ (225)
$\displaystyle \bm{C_{22,3314}^{1112}}$ $\displaystyle =$ $\displaystyle \tfrac{4 }{7 \sqrt{15}}{}{C_{22,2212}^{2011}}+\tfrac{4}{21} \sqrt{5} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{8}{63} \sqrt{5} \bm{C_{22,3112}^{1111}} ,$ (226)
$\displaystyle {}{C_{40,2011}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{3 }{\sqrt{5}}\bm{C_{40,1112}^{1112}}-\tfrac{1}{2 \sqrt{5}}{}{C_{40,2211}^{0011}}$  
    $\displaystyle -\tfrac{1}{\sqrt{42}}\bm{C_{22,3313}^{1111}} ,$ (227)
       


$\displaystyle {}{C_{42,2011}^{0011}}$ $\displaystyle =$ $\displaystyle \tfrac{4 }{\sqrt{3}}\bm{C_{42,1111}^{1111}}-\tfrac{1}{2}\bm{C_{42,1112}^{1110}}$  
    $\displaystyle +\sqrt{3} {}{C_{42,2212}^{0011}} ,$ (228)
$\displaystyle {}{C_{42,2211}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{4 }{\sqrt{15}}\bm{C_{42,1111}^{1111}}-\tfrac{1}{\sqrt{5}}\bm{C_{42,1112}^{1110}}$  
    $\displaystyle -\sqrt{\tfrac{3}{5}} {}{C_{42,2212}^{0011}} ,$ (229)
$\displaystyle {}{C_{42,2213}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{6 }{\sqrt{35}}\bm{C_{42,1111}^{1111}}-\tfrac{3}{2} \sqrt{\tfrac{3}{35}} \bm{C_{42,1112}^{1110}}$  
    $\displaystyle -\sqrt{\tfrac{7}{5}} {}{C_{42,2212}^{0011}} ,$ (230)
$\displaystyle {}{C_{20,4011}^{0011}}$ $\displaystyle =$ $\displaystyle \tfrac{3 }{5}{}{C_{20,2011}^{2011}} ,$ (231)
$\displaystyle {}{C_{22,4011}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{10} \sqrt{3} {}{C_{22,2212}^{2011}}-\tfrac{1}{4}\bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{1}{3}\bm{C_{22,3112}^{1111}} ,$ (232)
$\displaystyle {}{C_{20,4211}^{0011}}$ $\displaystyle =$ $\displaystyle \tfrac{3 }{7}{}{C_{20,2211}^{2011}} ,$ (233)
$\displaystyle {}{C_{22,4211}^{0011}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{7} \sqrt{\tfrac{3}{5}} {}{C_{22,2212}^{2011}}-\tfrac{1}{7} \sqrt{5} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle -\tfrac{2}{21} \sqrt{5} \bm{C_{22,3112}^{1111}} ,$ (234)
$\displaystyle {}{C_{22,4212}^{0011}}$ $\displaystyle =$ $\displaystyle \tfrac{3 }{7}{}{C_{22,2212}^{2011}} ,$ (235)
$\displaystyle {}{C_{22,4213}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{3 }{7 \sqrt{35}}{}{C_{22,2212}^{2011}}-\tfrac{3}{14} \sqrt{\tfrac{15}{7}} \bm{C_{22,3112}^{1110}} ,$ (236)
$\displaystyle {}{C_{22,4413}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{2}{7} \sqrt{\tfrac{5}{3}} {}{C_{22,2212}^{2011}}-\tfrac{1}{21} \sqrt{5} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle -\tfrac{1}{7} \sqrt{\tfrac{15}{7}} \bm{C_{22,3112}^{1111}}$  
    $\displaystyle -\tfrac{2}{63} \sqrt{5} \bm{C_{22,3112}^{1111}}+\sqrt{\tfrac{7}{6}} \bm{C_{22,3313}^{1111}} ,$ (237)
$\displaystyle {}{C_{22,2011}^{2011}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2 \sqrt{3}}{}{C_{22,2212}^{2011}}-\tfrac{5 }{12}\bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{5 }{9}\bm{C_{22,3112}^{1111}} ,$ (238)
$\displaystyle {}{C_{22,2211}^{2011}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{15}}{}{C_{22,2212}^{2011}}-\tfrac{1}{3} \sqrt{5} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle -\tfrac{2}{9} \sqrt{5} \bm{C_{22,3112}^{1111}} ,$ (239)
$\displaystyle {}{C_{22,2213}^{2011}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{\sqrt{35}}{}{C_{22,2212}^{2011}}-\tfrac{1}{2} \sqrt{\tfrac{15}{7}} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle -\sqrt{\tfrac{5}{21}} \bm{C_{22,3112}^{1111}} ,$ (240)
$\displaystyle {}{C_{20,2211}^{2211}}$ $\displaystyle =$ $\displaystyle \tfrac{2 }{5}{}{C_{20,2011}^{2011}}+\tfrac{1}{2 \sqrt{5}}{}{C_{20,2211}^{2011}} ,$ (241)
$\displaystyle {}{C_{22,2211}^{2211}}$ $\displaystyle =$ $\displaystyle -\tfrac{43 }{25 \sqrt{3}}{}{C_{22,2212}^{2011}}-\tfrac{1}{3}\bm{C_{22,3112}^{1110}}$  
    $\displaystyle -\tfrac{17 }{90}\bm{C_{22,3112}^{1111}} ,$ (242)


$\displaystyle {}{C_{22,2212}^{2211}}$ $\displaystyle =$ $\displaystyle \tfrac{4 }{5 \sqrt{5}}{}{C_{22,2212}^{2011}}+\tfrac{1}{\sqrt{15}}\bm{C_{22,3112}^{1111}}$  
    $\displaystyle -\tfrac{3}{5} \sqrt{14} \bm{C_{22,3313}^{1111}}+\tfrac{9}{5} \sqrt{\tfrac{21}{10}} \bm{C_{22,3313}^{1111}} ,$ (243)
$\displaystyle {}{C_{22,2213}^{2211}}$ $\displaystyle =$ $\displaystyle -\tfrac{4 }{25 \sqrt{7}}{}{C_{22,2212}^{2011}}-\sqrt{\tfrac{3}{7}} \bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{4 }{5 \sqrt{21}}\bm{C_{22,3112}^{1111}} ,$ (244)
$\displaystyle {}{C_{20,2212}^{2212}}$ $\displaystyle =$ $\displaystyle \tfrac{2 }{\sqrt{15}}{}{C_{20,2011}^{2011}}-\tfrac{1}{2 \sqrt{3}}{}{C_{20,2211}^{2011}}$  
    $\displaystyle +\tfrac{3}{5} \sqrt{\tfrac{2}{5}} \bm{C_{22,3313}^{1111}} ,$ (245)
$\displaystyle {}{C_{22,2212}^{2212}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{5} \sqrt{7} {}{C_{22,2212}^{2011}}-\tfrac{1}{6} \sqrt{\tfrac{7}{3}} \bm{C_{22,3112}^{1111}}$  
    $\displaystyle -\tfrac{3 }{\sqrt{10}}\bm{C_{22,3313}^{1111}} ,$ (246)
$\displaystyle {}{C_{22,2213}^{2212}}$ $\displaystyle =$ $\displaystyle -\tfrac{2}{5} \sqrt{\tfrac{2}{35}} {}{C_{22,2212}^{2011}}-\tfrac{2}{3} \sqrt{\tfrac{14}{15}} \bm{C_{22,3112}^{1111}}$  
    $\displaystyle +\tfrac{3 }{5}\bm{C_{22,3313}^{1111}} ,$ (247)
$\displaystyle {}{C_{20,2213}^{2213}}$ $\displaystyle =$ $\displaystyle \tfrac{2}{5} \sqrt{\tfrac{7}{3}} {}{C_{20,2011}^{2011}}+\tfrac{1}{\sqrt{105}}{}{C_{20,2211}^{2011}} ,$ (248)
$\displaystyle {}{C_{22,2213}^{2213}}$ $\displaystyle =$ $\displaystyle -\tfrac{9}{25} \sqrt{\tfrac{6}{7}} {}{C_{22,2212}^{2011}}-\tfrac{1}{\sqrt{14}}\bm{C_{22,3112}^{1110}}$  
    $\displaystyle +\tfrac{2}{15} \sqrt{\tfrac{2}{7}} \bm{C_{22,3112}^{1111}}+\tfrac{1}{5} \sqrt{\tfrac{3}{5}} \bm{C_{22,3313}^{1111}} ,$ (249)
$\displaystyle \bm{C_{51,1111}^{0000}}$ $\displaystyle =$ $\displaystyle {}{C_{51,0011}^{1101}} ,$ (250)
$\displaystyle \bm{C_{31,3111}^{0000}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{3}{5}} {}{C_{31,2212}^{1101}} ,$ (251)
$\displaystyle \bm{C_{33,3313}^{0000}}$ $\displaystyle =$ $\displaystyle {}{C_{33,2213}^{1101}} ,$ (252)
$\displaystyle \bm{C_{11,5111}^{0000}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{14} \sqrt{15} {}{C_{11,2212}^{3101}} ,$ (253)
$\displaystyle \bm{C_{31,1111}^{2000}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{5}{3}} {}{C_{31,2212}^{1101}} ,$ (254)
$\displaystyle \bm{C_{11,3111}^{2000}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{5}{3}} {}{C_{11,2212}^{3101}} ,$ (255)
$\displaystyle \bm{C_{31,1111}^{2202}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{3}}{}{C_{31,2212}^{1101}} ,$ (256)
$\displaystyle \bm{C_{33,1111}^{2202}}$ $\displaystyle =$ $\displaystyle \sqrt{6} {}{C_{33,2213}^{1101}} ,$ (257)
$\displaystyle \bm{C_{31,1112}^{2202}}$ $\displaystyle =$ $\displaystyle {}{C_{31,2212}^{1101}} ,$ (258)
$\displaystyle \bm{C_{33,1112}^{2202}}$ $\displaystyle =$ $\displaystyle -\sqrt{3} {}{C_{33,2213}^{1101}} ,$ (259)


$\displaystyle \bm{C_{11,3111}^{2202}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{3}}{}{C_{11,2212}^{3101}} ,$ (260)
$\displaystyle \bm{C_{11,3112}^{2202}}$ $\displaystyle =$ $\displaystyle {}{C_{11,2212}^{3101}} ,$ (261)
$\displaystyle \bm{C_{11,3312}^{2202}}$ $\displaystyle =$ $\displaystyle -\tfrac{2}{3} \sqrt{\tfrac{5}{21}} {}{C_{11,2212}^{3101}} ,$ (262)
$\displaystyle \bm{C_{11,3313}^{2202}}$ $\displaystyle =$ $\displaystyle -\tfrac{2}{3} \sqrt{\tfrac{10}{21}} {}{C_{11,2212}^{3101}} ,$ (263)
$\displaystyle \bm{C_{11,1111}^{4000}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{5}{3}} {}{C_{11,2212}^{3101}} ,$ (264)
$\displaystyle \bm{C_{11,1111}^{4202}}$ $\displaystyle =$ $\displaystyle \tfrac{5 }{7 \sqrt{3}}{}{C_{11,2212}^{3101}} ,$ (265)
$\displaystyle \bm{C_{11,1112}^{4202}}$ $\displaystyle =$ $\displaystyle \tfrac{5 }{7}{}{C_{11,2212}^{3101}} ,$ (266)
$\displaystyle {}{C_{31,2011}^{1101}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{5}{3}} {}{C_{31,2212}^{1101}} ,$ (267)
$\displaystyle {}{C_{31,2211}^{1101}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{3}}{}{C_{31,2212}^{1101}} ,$ (268)
$\displaystyle {}{C_{33,2212}^{1101}}$ $\displaystyle =$ $\displaystyle -2 \sqrt{2} {}{C_{33,2213}^{1101}} ,$ (269)
$\displaystyle {}{C_{11,4011}^{1101}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{5}{3}} {}{C_{11,2212}^{3101}} ,$ (270)
$\displaystyle {}{C_{11,4211}^{1101}}$ $\displaystyle =$ $\displaystyle \tfrac{5 }{7 \sqrt{3}}{}{C_{11,2212}^{3101}} ,$ (271)
$\displaystyle {}{C_{11,4212}^{1101}}$ $\displaystyle =$ $\displaystyle \tfrac{5 }{7}{}{C_{11,2212}^{3101}} ,$ (272)
$\displaystyle {}{C_{31,0011}^{3101}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{3}{5}} {}{C_{31,2212}^{1101}} ,$ (273)
$\displaystyle {}{C_{11,2011}^{3101}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{5}{3}} {}{C_{11,2212}^{3101}} ,$ (274)
$\displaystyle {}{C_{11,2211}^{3101}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{3}}{}{C_{11,2212}^{3101}} ,$ (275)
$\displaystyle {}{C_{33,0011}^{3303}}$ $\displaystyle =$ $\displaystyle {}{C_{33,2213}^{1101}} ,$ (276)
$\displaystyle {}{C_{11,2212}^{3303}}$ $\displaystyle =$ $\displaystyle -\tfrac{2}{3} \sqrt{\tfrac{5}{21}} {}{C_{11,2212}^{3101}} ,$ (277)
$\displaystyle {}{C_{11,2213}^{3303}}$ $\displaystyle =$ $\displaystyle -\tfrac{2}{3} \sqrt{\tfrac{10}{21}} {}{C_{11,2212}^{3101}} ,$ (278)
$\displaystyle {}{C_{11,0011}^{5101}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{14} \sqrt{15} {}{C_{11,2212}^{3101}} .$ (279)

Finally, we list 20 combinations of terms that are invariant with respect to the Galilean symmetry and correspond to the independent coupling constants:

$\displaystyle {}{G_{20,2202}^{2202}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{2} \sqrt{5} \bm{T_{20,2000}^{2000}}+\bm{T_{20,2202}^{22...
...\sqrt{5}}{}{T_{20,3101}^{1101}}+\tfrac{3 }{2 \sqrt{5}}\bm{T_{20,4000}^{0000}} ,$ (280)
$\displaystyle {}{G_{42,1112}^{1110}}$ $\displaystyle =$ $\displaystyle \bm{T_{42,1112}^{1110}}+\tfrac{1}{\sqrt{7}}\bm{T_{42,1112}^{1112}...
...{T_{42,2211}^{0011}}-\tfrac{3}{2} \sqrt{\tfrac{3}{35}} {}{T_{42,2213}^{0011}} ,$ (281)
$\displaystyle {}{G_{22,3112}^{1110}}$ $\displaystyle =$ $\displaystyle \bm{T_{22,3110}^{1112}}+\bm{T_{22,3112}^{1110}}+\tfrac{2 }{\sqrt{...
...c{5}{3}} \bm{T_{22,3312}^{1112}}+\tfrac{4}{21} \sqrt{5} \bm{T_{22,3314}^{1112}}$  
    $\displaystyle -\tfrac{5 }{12}{}{T_{22,2011}^{2011}}-\tfrac{1}{3} \sqrt{5} {}{T_...
...}{T_{22,4211}^{0011}}-\tfrac{3}{14} \sqrt{\tfrac{15}{7}} {}{T_{22,4213}^{0011}}$  
    $\displaystyle -\tfrac{1}{21} \sqrt{5} {}{T_{22,4413}^{0011}}-\tfrac{1}{3}{}{T_{...
...frac{3}{7}} {}{T_{22,2213}^{2211}}-\tfrac{1}{\sqrt{14}}{}{T_{22,2213}^{2213}} ,$ (282)
$\displaystyle {}{G_{42,1111}^{1111}}$ $\displaystyle =$ $\displaystyle \bm{T_{42,1111}^{1111}}+2 \sqrt{3} \bm{T_{42,1112}^{1111}}-\sqrt{...
...{\sqrt{15}}{}{T_{42,2211}^{0011}}-\tfrac{6 }{\sqrt{35}}{}{T_{42,2213}^{0011}} ,$ (283)
$\displaystyle {}{G_{22,3112}^{1111}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{3}}\bm{T_{22,3111}^{1111}}-\bm{T_{22,3111}^{1112}...
...m{T_{22,3312}^{1110}}+\tfrac{4}{21} \sqrt{\tfrac{5}{3}} \bm{T_{22,3312}^{1112}}$  
    $\displaystyle +\tfrac{5 }{9}{}{T_{22,2011}^{2011}}+\tfrac{8}{63} \sqrt{5} \bm{T...
...{}{T_{22,4211}^{0011}}-\tfrac{1}{7} \sqrt{\tfrac{15}{7}} {}{T_{22,4213}^{0011}}$  
    $\displaystyle -\tfrac{2}{63} \sqrt{5} {}{T_{22,4413}^{0011}}-\tfrac{2}{9} \sqrt...
...}{}{T_{22,2212}^{2211}}-\tfrac{1}{6} \sqrt{\tfrac{7}{3}} {}{T_{22,2212}^{2212}}$  
    $\displaystyle -\sqrt{\tfrac{5}{21}} {}{T_{22,2213}^{2011}}+\tfrac{4 }{5 \sqrt{2...
...T_{22,2213}^{2213}}-\tfrac{2}{3} \sqrt{\tfrac{14}{15}} {}{T_{22,2213}^{2212}} ,$ (284)
$\displaystyle {}{G_{22,3313}^{1111}}$ $\displaystyle =$ $\displaystyle -2 \sqrt{2} \bm{T_{22,3312}^{1110}}-2 \sqrt{2} \bm{T_{22,3312}^{1...
...312}^{1112}}+\bm{T_{22,3313}^{1111}}+\tfrac{1}{\sqrt{2}}\bm{T_{22,3313}^{1112}}$  
    $\displaystyle -\tfrac{1}{\sqrt{42}}\bm{T_{22,3314}^{1112}}+\tfrac{9}{5} \sqrt{\...
...}{}{T_{22,2212}^{2212}}+\tfrac{3}{5} \sqrt{\tfrac{2}{5}} {}{T_{22,2213}^{2211}}$  
    $\displaystyle +\tfrac{3 }{5}{}{T_{22,2213}^{2212}}+\sqrt{\tfrac{7}{6}} {}{T_{22,4413}^{0011}}+\tfrac{1}{5} \sqrt{\tfrac{3}{5}} {}{T_{22,2213}^{2213}} ,$ (285)
$\displaystyle {}{G_{40,1112}^{1112}}$ $\displaystyle =$ $\displaystyle \tfrac{1}{\sqrt{5}}\bm{T_{40,1110}^{1110}}+\sqrt{\tfrac{3}{5}} \b...
...1}^{1111}}+\bm{T_{40,1112}^{1112}}-\tfrac{3 }{\sqrt{5}}{}{T_{40,2011}^{0011}} ,$ (286)
$\displaystyle {}{G_{40,1101}^{1101}}$ $\displaystyle =$ $\displaystyle {}{T_{40,1101}^{1101}}-\bm{T_{40,2000}^{0000}} ,$ (287)
$\displaystyle {}{G_{42,1101}^{1101}}$ $\displaystyle =$ $\displaystyle {}{T_{42,1101}^{1101}}-\bm{T_{42,2202}^{0000}} ,$ (288)
$\displaystyle {}{G_{22,3303}^{1101}}$ $\displaystyle =$ $\displaystyle -\tfrac{1}{2} \sqrt{\tfrac{35}{3}} \bm{T_{22,2202}^{2000}}-\tfrac...
...T_{22,3303}^{1101}}-\tfrac{1}{2} \sqrt{\tfrac{15}{7}} \bm{T_{22,4202}^{0000}} ,$ (289)
$\displaystyle {}{G_{51,0011}^{1101}}$ $\displaystyle =$ $\displaystyle {}{T_{51,0011}^{1101}}+\bm{T_{51,1111}^{0000}} ,$ (290)
$\displaystyle {}{G_{31,1112}^{2202}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{5}{3}} \bm{T_{31,1111}^{2000}}+\tfrac{1}{\sqrt{3}}\...
...{1}{\sqrt{3}}{}{T_{31,2211}^{1101}}-\sqrt{\tfrac{3}{5}} \bm{T_{31,3111}^{0000}}$  
    $\displaystyle +{}{T_{31,2212}^{1101}}-\sqrt{\tfrac{3}{5}} {}{T_{31,0011}^{3101}} ,$ (291)
$\displaystyle {}{G_{33,2213}^{1101}}$ $\displaystyle =$ $\displaystyle {}{T_{33,0011}^{3303}}+\sqrt{6} \bm{T_{33,1111}^{2202}}-\sqrt{3} ...
...sqrt{2} {}{T_{33,2212}^{1101}}+{}{T_{33,2213}^{1101}}+\bm{T_{33,3313}^{0000}} ,$ (292)


$\displaystyle {}{G_{11,2212}^{3101}}$ $\displaystyle =$ $\displaystyle -\sqrt{\tfrac{5}{3}} \bm{T_{11,3111}^{2000}}+\tfrac{1}{\sqrt{3}}\...
...{T_{11,3312}^{2202}}-\tfrac{2}{3} \sqrt{\tfrac{10}{21}} \bm{T_{11,3313}^{2202}}$  
    $\displaystyle -\tfrac{1}{14} \sqrt{15} \bm{T_{11,5111}^{0000}}-\tfrac{1}{2} \sq...
...\bm{T_{11,1112}^{4202}}-\tfrac{1}{2} \sqrt{\tfrac{5}{3}} {}{T_{11,4011}^{1101}}$  
    $\displaystyle +\tfrac{5 }{7 \sqrt{3}}{}{T_{11,4211}^{1101}}+\tfrac{5 }{7}{}{T_{...
...{\tfrac{5}{3}} {}{T_{11,2011}^{3101}}+\tfrac{1}{\sqrt{3}}{}{T_{11,2211}^{3101}}$  
    $\displaystyle +{}{T_{11,2212}^{3101}}-\tfrac{2}{3} \sqrt{\tfrac{5}{21}} {}{T_{11,2212}^{3303}}-\tfrac{2}{3} \sqrt{\tfrac{10}{21}} {}{T_{11,2213}^{3303}} ,$ (293)
$\displaystyle {}{G_{40,2211}^{0011}}$ $\displaystyle =$ $\displaystyle -\tfrac{3 }{2 \sqrt{5}}\bm{T_{40,1110}^{1110}}+\sqrt{\tfrac{3}{5}...
...1}^{1111}}-\tfrac{1}{2 \sqrt{5}}{}{T_{40,2011}^{0011}}+{}{T_{40,2211}^{0011}} ,$ (294)
$\displaystyle {}{G_{42,2212}^{0011}}$ $\displaystyle =$ $\displaystyle 2 \sqrt{3} \bm{T_{42,1112}^{1111}}+\sqrt{3} {}{T_{42,2011}^{0011}...
...11}^{0011}}+{}{T_{42,2212}^{0011}}-\sqrt{\tfrac{7}{5}} {}{T_{42,2213}^{0011}} ,$ (295)
$\displaystyle {}{G_{44,2213}^{0011}}$ $\displaystyle =$ $\displaystyle {}{T_{44,2213}^{0011}}-\bm{T_{44,1112}^{1112}} ,$ (296)
$\displaystyle {}{G_{20,2011}^{2011}}$ $\displaystyle =$ $\displaystyle {}{T_{20,2011}^{2011}}+\tfrac{2 }{5}{}{T_{20,2211}^{2211}}-\tfrac...
...\tfrac{4 }{\sqrt{5}}\bm{T_{20,3112}^{1112}}+\tfrac{3 }{5}{}{T_{20,4011}^{0011}}$  
    $\displaystyle +\tfrac{2 }{\sqrt{15}}{}{T_{20,2212}^{2212}}+\tfrac{2}{5} \sqrt{\tfrac{7}{3}} {}{T_{20,2213}^{2213}} ,$ (297)
$\displaystyle {}{G_{20,2211}^{2011}}$ $\displaystyle =$ $\displaystyle {}{T_{20,2211}^{2011}}-\tfrac{2 }{\sqrt{5}}\bm{T_{20,3110}^{1110}...
...sqrt{\tfrac{3}{35}} \bm{T_{20,3312}^{1112}}+\tfrac{3 }{7}{}{T_{20,4211}^{0011}}$  
    $\displaystyle +\tfrac{1}{2 \sqrt{5}}{}{T_{20,2211}^{2211}}-\tfrac{1}{2 \sqrt{3}}{}{T_{20,2212}^{2212}}+\tfrac{1}{\sqrt{105}}{}{T_{20,2213}^{2213}} ,$ (298)
$\displaystyle {}{G_{22,2212}^{2011}}$ $\displaystyle =$ $\displaystyle -\tfrac{6 }{5}\bm{T_{22,3111}^{1111}}+\tfrac{6}{5} \sqrt{\tfrac{3...
...\sqrt{35}}\bm{T_{22,3312}^{1111}}+\tfrac{2 }{7 \sqrt{5}}\bm{T_{22,3312}^{1112}}$  
    $\displaystyle -\tfrac{4 }{\sqrt{35}}\bm{T_{22,3313}^{1112}}+\tfrac{4 }{7 \sqrt{...
... \sqrt{\tfrac{3}{5}} {}{T_{22,4211}^{0011}}+\tfrac{3 }{7}{}{T_{22,4212}^{0011}}$  
    $\displaystyle -\tfrac{3 }{7 \sqrt{35}}{}{T_{22,4213}^{0011}}-\tfrac{2}{7} \sqrt...
...\sqrt{15}}{}{T_{22,2211}^{2011}}-\tfrac{43 }{25 \sqrt{3}}{}{T_{22,2211}^{2211}}$  
    $\displaystyle +{}{T_{22,2212}^{2011}}+\tfrac{4 }{5 \sqrt{5}}{}{T_{22,2212}^{221...
...} \sqrt{7} {}{T_{22,2212}^{2212}}-\tfrac{4 }{25 \sqrt{7}}{}{T_{22,2213}^{2211}}$  
    $\displaystyle -\tfrac{2}{5} \sqrt{\tfrac{2}{35}} {}{T_{22,2213}^{2212}}-\tfrac{9}{25} \sqrt{\tfrac{6}{7}} {}{T_{22,2213}^{2213}} .$ (299)


next up previous
Next: Bibliography Up: Results for the Galilean Previous: Fourth order
Jacek Dobaczewski 2008-10-06