next up previous
Next: Properties of the valence Up: Results Previous: Details of the calculations

Energy minima in the $ N=75$ isotones


Table: Quadrupole $ \beta $ and $ \gamma $ deformation parameters, parameters of the classical model, $ \mathcal{J}_{s,m,l}$ $ [\hbar^2/$MeV$ ]$, $ s_{s,l}$ $ [\hbar]$, classical estimates for the critical frequencies and spins, $ \omega _{\text{crit}}^{\text{clas}}$ $ [\mathrm{MeV}/\hbar]$ and $ I_{\text{crit}}^{\text{clas}}$ $ [\hbar]$, and the full HF TAC results for those quantities, $ \omega _{\text{crit}}^{\text{HF}}$ $ [\mathrm{MeV}/\hbar]$ and $ I_{\text{crit}}^{\text{HF}}$ $ [\hbar]$, for the $ N=75$ isotones. The HF results with the SLy4 and SkM* forces are shown for the $ N$, $ G$, and $ T$ variants of calculation defined in Sec. 3.2.
nucleus force $ \beta $ $ \gamma $ $ \mathcal{J}_s$ $ \mathcal{J}_m$ $ \mathcal{J}_l$ $ s_s$ $ s_l$ $ \omega^{\text{clas}}_{\text{crit}}$ $ I^{\text{clas}}_{\text{crit}}$ $ \omega^{\text{HF}}_{\text{crit}}$ $ I^{\text{HF}}_{\text{crit}}$
$ ^{130}$Cs SLy4 $ N$ 0.24 49 4.81 29.2 17.0 5.41 4.86 0.46 12.8    
    $ G$ 0.24 49 5.50 37.1 21.3 5.45 5.16 0.37 13.2    
    $ T$ 0.24 49 4.16 29.4 19.9 5.49 5.20 0.59 16.8    
  SkM* $ N$ 0.23 47 5.86 31.3 17.9 5.43 5.01 0.43 13.0    
    $ G$ 0.23 47 6.55 36.7 21.1 5.47 4.97 0.37 13.0    
    $ T$ 0.23 47 5.69 33.4 20.0 5.49 5.14 0.43 13.9    
$ ^{132}$La SLy4 $ N$ 0.26 46 7.18 28.7 19.1 5.44 4.90 0.57 15.9 0.68 18.8
    $ G$ 0.26 46 8.45 36.0 23.7 5.60 5.21 0.47 16.4 0.60 20.3
    $ T$ 0.26 46 7.12 31.7 22.2 5.64 5.26 0.60 18.5    
  SkM* $ N$ 0.25 45 8.19 30.8 20.3 5.47 5.03 0.54 16.0 0.62 17.8
    $ G$ 0.25 45 8.81 35.9 23.5 5.60 5.06 0.46 15.9 0.54 17.8
    $ T$ 0.25 45 8.37 34.0 22.4 5.63 5.21 0.50 16.5 0.58 18.5
$ ^{134}$Pr SLy4 $ N$ 0.26 58 6.11   25.4 5.00 4.36        
  oblate $ G$ 0.26 58 7.21   31.3 4.92 4.84        
    $ T$ 0.26 56 3.68   29.8 5.26 4.60        
  SkM* $ N$ 0.23 22 18.5 28.1 20.7 5.38 5.28 0.91 25.0    
  triaxial $ G$ 0.23 22 21.4 32.6 24.3 5.46 5.44 0.82 26.1    
    $ T$ 0.23 22 20.7 30.8 24.8 5.52 5.57 1.08 32.7    
$ ^{136}$Pm SLy4 $ N$ 0.25 53     24.7   4.62        
  oblate $ G$ 0.25 53     30.3   5.38        
    $ T$ 0.25 52     29.0   5.05        
  SkM* $ N$ 0.22 19 15.0 27.5 12.4 5.32 5.38 0.56 14.8    
  triaxial $ G$ 0.22 19 17.9 33.2 13.0 5.50 5.42 0.45 14.4    
    $ T$ 0.22 19 17.4 29.8 13.4 5.51 5.53 0.56 16.1    

As the first step, the HF calculations without cranking were performed to find the $ \pi{}h_{11/2}^1~\nu{}h_{11/2}^{-1}$ bandheads. Obviously, the energetically most favored state of this configuration is obtained if the valence proton particle and neutron hole occupy the lowest and highest levels of the $ h_{11/2}$ multiplets, respectively. Table 1 gives the obtained $ \beta $ and $ \gamma $ deformations for each isotone and Skyrme parameter set. They practically do not depend on the included time-odd terms, and remain almost constant when cranking is applied later on in our calculations. Note that the present values of $ \beta $ are up to 1.5 times larger than those found in the PQTAC/SCTAC calculations quoted in Section 3.1. Also the values of $ \gamma $ are more distant from the maximum triaxiality of $ 30^\circ$ as compared to the earlier results by other authors.

In $ ^{134}$Pr and $ ^{136}$Pm, two minima with the same $ \pi h_{11/2}^1~\nu
h_{11/2}^{-1}$ configuration were found, which differ by the occupation of positive-parity states. The energetically lower minima have similar positive-parity s.p. structure as in $ ^{130}$Cs and $ ^{132}$La, but they correspond to almost oblate shapes of $ \gamma=53^{\circ}$-to- $ 58^{\circ}$. The other minima have $ \gamma=19^{\circ}$-to- $ 22^{\circ}$, thus corresponding to triaxial shapes. In the following, those two kinds of minima in $ ^{134}$Pr and $ ^{136}$Pm are conventionally referred to as oblate and triaxial. Such a structure of minima and configurations appears for both interactions studied here, SkM* and SLy4, and the corresponding sets of results are very similar to one another. Therefore, to save space, below only the SkM* results are shown for the triaxial minima, and only the SLy4 results for the oblate ones.

In Section 2, we introduced the intrinsic frame of a nucleus as formed by the principal axes of the quadrupole tensor. Below, by the short ($ s$), medium ($ m$), and long ($ l$) axes of our triaxial solutions we understand the intrinsic axes indexed so that $ \langle x_s^2\rangle<\langle x_m^2\rangle<\langle x_l^2\rangle$, where $ x_i$ is the Cartesian coordinate for axis $ i=s$, $ m$, or $ l$.


next up previous
Next: Properties of the valence Up: Results Previous: Details of the calculations
Jacek Dobaczewski 2005-12-28