Next: About this document ...
Up: Convergence of density-matrix expansions
Previous: Convergence of density-matrix expansions
-
- 1
-
G. Giuliani and G. Vignale, Quantum theory of the electron liquid
(Cambridge University Press, Cambridge, 2005).
- 2
-
J.W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972).
- 3
-
J.W. Negele and D. Vautherin, Phys. Rev. C 11, 1031 (1975).
- 4
-
M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121
(2003).
- 5
-
P. Finelli, N. Kaiser, D. Vretenar, and W. Weise, Nucl. Phys. A770, 1
(2006).
- 6
-
S.K. Bogner, R.J. Furnstahl, and L. Platter, Eur. Phys. J. A 39, 219
(2009).
- 7
-
B. Gebremariam, T. Duguet, and S.K. Bogner, arXiv:0910.4979.
- 8
-
J.E. Drut, R.J. Furnstahl, and L. Platter, Prog. Part. Nucl. Phys. 64,
120 (2010).
- 9
-
J. Dobaczewski, B.G. Carlsson, and M. Kortelainen, arXiv:1002.3646.
- 10
-
B.G. Carlsson, J. Dobaczewski, and M. Kortelainen, Phys. Rev. C 78,
044326 (2008); 81, 029904(E) (2010).
- 11
-
S. Weinberg, The Quantum Theory of Fields (Cambridge University Press,
Cambridge, 1996-2000) Vols. I-III.
- 12
-
B.G. Carlsson, J. Dobaczewski, J. Toivanen, and P. Veselý, arXiv:0912.3230.
- 13
-
B.G. Carlsson et al., to be published.
- 14
-
E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A
635, 231 (1998).
- 15
-
J.-F. Berger, M. Girod, and D. Gogny, Comput. Phys. Comm. 63, 365
(1991).
- 16
-
J. Dobaczewski et al., Comput. Phys. Commun. 180, 2361 (2009).
- 17
-
Using () gives RMS deviations of 0.41 (0.77) MeV at sixth order.
Jacek Dobaczewski
2010-07-28