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Abstract. In dimensions d = 1, 2, 3, the Laplacian can be perturbed by
a point potential. In higher dimensions, the Laplacian with a point po-
tential cannot be defined as a self-adjoint operator. However, for any
dimension there exists a natural family of functions that can be inter-
preted as Green’s functions of the Laplacian with a spherically symmet-
ric point potential. In dimensions 1, 2, 3, they are the integral kernels of
the resolvent of well-defined self-adjoint operators. In higher dimensions,
they are not even integral kernels of bounded operators. Their construc-
tion uses the so-called generalized integral, a concept going back to Riesz
and Hadamard. We consider the Laplace(–Beltrami) operator on the Eu-
clidean space, the hyperbolic space and the sphere in any dimension. We
describe the corresponding Green’s functions, also perturbed by a point
potential. We describe their limit as the scaled hyperbolic space and the
scaled sphere approach the Euclidean space. Especially interesting is the
behavior of positive eigenvalues of the spherical Laplacian, which undergo
a shift proportional to a negative power of the radius of the sphere. We
expect that in any dimension our constructions yield possible behaviors of
the integral kernel of the resolvent of a perturbed Laplacian far from the
support of the perturbation. Besides, they can be viewed as toy models
illustrating various aspects of renormalization in quantum field theory,
especially the point-splitting method and dimensional regularization.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-024-01496-1&domain=pdf
http://orcid.org/0000-0002-6268-1935
http://orcid.org/0000-0003-4059-6817
http://orcid.org/0000-0002-7086-4504


J. Dereziński et al. Ann. Henri Poincaré

1. Introduction

1.1. Euclidean, Hyperbolic and Spherical Laplacian

Let H
d and S

d denote the hyperbolic space and the unit sphere, respectively,
both d-dimensional. Let Δd, Δh

d and Δs
d denote the Laplace(–Beltrami) oper-

ators on R
d, Hd and S

d, respectively. It is convenient to shift the hyperbolic
Laplacian by − (d−1)2

4 and the spherical Laplacian by (d−1)2

4 . Our paper is
devoted to the operators

Hd:= − Δd,

Hh
d := − Δh

d − (d − 1)2

4
,

Hs
d:= − Δs

d +
(d − 1)2

4
,

(1.1)

possibly perturbed by a point potential.
The operators Hd, Hh

d and Hs
d can be viewed as self-adjoint operators on

L2(Rd), L2(Hd) and L2(Sd), respectively. For z ∈ C outside of the spectrum
of Hd, Hh

d and Hs
d, one can define their resolvent (Green’s operator)

Gd(z):=(−z + Hd)−1,

Gh
d(z):=(−z + Hh

d )−1,

Gs
d(z):=(−z + Hs

d)
−1.

(1.2)

The spectrum of Hd and Hh
d is continuous and coincides with [0,∞[. The

spectrum of Hs
d is discrete and equals

{(
l + d−1

2

)2 | l = 0, 1, . . .
}

⊂ [0,∞[.
Therefore, it is often convenient to represent the spectral parameter z ∈
C\[0,∞[ as z = −β2 with �β > 0, so that

Gd(−β2) = (β2 + Hd)−1,

Gh
d(−β2) = (β2 + Hh

d )−1,

Gs
d(−β2) = (β2 + Hs

d)
−1. (1.3)

Sometimes we will also write ζ2 for z.
For 0 ≤ a < b, one can define the spectral projections onto [a, b]:

Pd(a, b):=1l[a,b](Hd), P
h
d(a, b):=1l[a,b](Hh

d ), P
s
d(a, b):=1l[a,b](Hs

d). (1.4)

We can also introduce the spectral projections onto eigenvalues of Hs
d:

P
s
d,l:=1l(l+ d−1

2 )2(Hs
d). (1.5)

The integral kernels of the resolvents (1.3), denoted by Gd(−β2;x, x′),
Gh

d(−β2;x, x′) and Gs
d(−β2;x, x′), are often called Green’s functions. The

integral kernels of the spectral projections (1.4) are denoted Pd(a, b;x, x′),
P

h
d(a, b;x, x′), Ps

d(a, b;x, x′). The integral kernel of (1.5) is denoted P
s
d,l(x, x′).

Explicit formulas for these in terms of special functions are known, and for
convenience of the reader, we provide them in our paper.
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The integral kernels related to Hd are expressed in terms of functions from
the Bessel family. The integral kernels related to Hh

d and Hs
d are expressed in

terms of Gegenbauer functions. Here are, for instance, the formulas for Green’s
functions:

Gd

(− β2;x, x′) =
1

(2π)
d
2

(β

r

) d
2 −1

K d
2 −1

(
βr
)
, (1.6)

Gh
d

(− β2;x, x′) =
√

πΓ(d−1
2 + β)√

2(2π)
d
2 2β

Z d
2 −1,β

(
cosh(r)

)
, (1.7)

Gs
d

(− β2;x, x′) =
Γ(d−1

2 + iβ)Γ(d−1
2 − iβ)

(4π)
d
2

S d
2 −1,iβ

(− cos(r)
)
. (1.8)

Above, r denotes the Euclidean, hyperbolic and spherical distance between x
and x′, respectively. Kα is the Macdonald function (one of the functions from
the Bessel family). Sα,λ and Zα,λ are two kinds of Gegenbauer functions, see
Appendix C.

One should note that Bessel and Gegenbauer functions have special prop-
erties when their parameter α is half-integer or integer. For half-integer α,
Bessel and Gegenbauer functions can be expressed as elementary functions.
For integer α, Bessel and Gegenbauer functions have a logarithmic singular-
ity. From the point of view of Green’s operators, these values are important:
half-integer α is used in odd dimensions and integer α in even dimensions.

All Green’s functions (1.6), (1.7) and (1.8) behave similarly for x, x′ close
to one another, which follows from well-known expansions of Kα, Sα,λ and
Zα,λ. However, for large distances they are rather different. This can be seen
by comparing the expansions of (1.6), (1.7) and (1.8) for large distances, which
we describe in (2.19), (3.14) and (4.13).

1.2. Point Potentials

The main goal of this paper is to extend the above theory to the operators
Hd, Hh

d and Hs
d perturbed by a point potential (also called a contact or delta

potential). It is a well-known fact that the one-dimensional Laplacian can be
perturbed by a delta potential in the form sense [28]. In dimensions 2 and
3, the Laplacian can also be perturbed by a point-like perturbation; however,
one cannot use the naive form formalism anymore [2–4]. Thus, in dimensions
d = 1, 2, 3 we obtain one-parameter families of self-adjoint operators Hγ

d , Hh,γ
d

and Hs,γ
d . We denote their resolvents by Gγ

d(z), Gh,γ
d (z) and Gs,γ

d (z). Their
integral kernels have the form

Gγ
d(z;x, x′) = Gd(z;x, x′) +

Gd(z;x, x0)Gd(z;x0, x
′)

γ + Σd(z)
, (1.9)

Gh,γ
d (z;x, x′) = Gh

d(z;x, x′) +
Gh

d(z;x, x0)Gh
d(z;x0, x

′)
γ + Σh

d(z)
, (1.10)

Gs,γ
d (z;x, x′) = Gs

d(z;x, x′) +
Gs

d(z;x, x0)Gs
d(z;x0, x

′)
γ + Σs

d(z)
, (1.11)
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where x0 is the position of the point potential (e.g., the origin of coordinates
of Rd or the north pole of Sd). Here, the functions Σd, Σh

d and Σs
d satisfy

∂zΣd(z) = −
∫

Rd

Gd(z;x0, x)2dx, (1.12)

∂zΣh
d(z) = −

∫

Hd

Gh
d(z;x0, x)2dx, (1.13)

∂zΣs
d(z) = −

∫

Sd

Gs
d(z;x0, x)2dx. (1.14)

The parameter γ ∈ R ∪ {∞} is a real integration constant and describes the
strength of the perturbation. The function γ + Σ•

d(z), where • is empty, h or
s, will be called the full self-energy. Σ•

d(z) is the reference self-energy, fixed by
imposing some additional conditions.

In dimensions 1 and 3, there exists a natural condition that allows us to
fix the reference self-energy: lim

z→−∞ Σ•
1(z) = 0 and lim

z→−∞(Σ•
3(z) −

√−z
4π ) = 0.

For d = 2, one possible choice for the reference self-energy is to demand
Σ•

2(−β2) ∼ ln β
2π for β → ∞, or equivalently, Σ•

2(−1) = 0. This, however,
distinguishes a certain length scale corresponding to β = 1. In order to avoid
such an a priori unphysical distinction, we treat all possible full self-energies on
an equal footing as members of a family of reference self-energies parametrized
by a real parameter ε = −2πγ:

γ + Σ•
2(z) =: Σ•,ε

2 (z). (1.15)

γ (and ε in d = 2) are closely related to the so-called scattering length a used
in the physical literature. Here are the relations between these two parameters:

d = 1, a = −2γ; (1.16)

d = 2, a = e2πγ = e−ε; (1.17)

d = 3, a = − 1
4πγ

. (1.18)

It is well known that the Laplacian is essentially self-adjoint on
C∞

c (Rd\{0}) in dimensions d ≥ 4 [28]. In other words, there are no point-
like perturbations of the Laplacian in dimensions d ≥ 4, if we stick to the
usual Hilbert space setting. This corresponds to the divergence of the integrals
in (1.12), (1.13) and (1.14) defining the self-energies.

The description of Green’s functions for the Laplacians with a point po-
tential in dimensions d ≥ 4 is probably the main novelty of our paper. Our
starting points are Eqs. (1.9), (1.10) and (1.11). Hence, we need to give mean-
ing to divergent self-energies. We will consider two different but consistent
methods to do this. The first will be called the point-splitting method and the
second the minimal subtraction method.

In the first method, we start with replacing the integrals (1.12), (1.13),
(1.13) by their “point-split versions,” which are then repeatedly differentiated
in z (the “energy”) until convergent integrals are obtained. Then we repeat-
edly integrate them to get the self-energy. Integration constants from multiple
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integrations can be gathered in a polynomial γ(z), which replaces the inte-
gration constant γ used in lower dimensions. γ(z) is a polynomial of degree
≤ n =

⌊
d−2
2

⌋
, i.e., n = d−3

2 if d is odd and degree n = d−2
2 if d is even.

The second approach to define self-energies is to replace (1.12), (1.13),
(1.14) with the corresponding generalized integrals. Then the self-energies Σ•

d(z)
are well defined in all dimensions up to only one integration constant.

As we explain in Appendix A, the generalized integral is a natural exten-
sion of the classical integration to a certain class of not necessarily integrable
functions. It resembles the minimal subtraction scheme in QFT. Clearly, it is
only one of many linear extensions of the integration functional. Other exten-
sions differ by an additional polynomial of degree ≤ ⌊d−2

2

⌋
, whose parameters

can be viewed as arbitrary “renormalization constants.” Thus, both approaches
to defining self-energies agree.

A generalized integral is said to have a scaling anomaly if it transforms
inhomogeneously upon a rescaling of the integration variable. There is a big
difference between non-anomalous and anomalous generalized integrals. In the
non-anomalous case, the computation of a generalized integral essentially re-
duces to the analytic continuation of the usual integral in a certain parameter,
which often (in particular, in our case) can be interpreted as the dimension. In
the anomalous case, in addition to analytic continuation one has to perform
an appropriate subtraction.

One could ask whether it is natural to fix a certain full self-energy, and
to call it the reference self-energy. We would like our reference self-energies to
be algebraically as simple as possible; in particular, they should be factorized
in simple factors.

The generalized integral suggests a certain expression, which we denote
Σ•,ms

d , (where we fix a single integration constant in some natural way and
ms stands for “minimal subtraction”). In odd dimensions d ≥ 5, there is an
obvious choice of reference self-energy which is given by an algebraically simple
expression. This reference self-energy is equal to Σ•,ms

d and can also be obtained
by formally extending Σ•

d(z) to complex d in the region |�d − 2| < 2 (d �= 2),
and then by using analytic continuation.

In even dimensions d ≥ 4, we are in the anomalous case, which is much
more complicated. The generalized integrals on the right-hand side of (1.12),
(1.13) and (1.14) involve non-elementary functions: the logarithm or the
digamma function ψ(z) := Γ′(z)

Γ(z) .
The anomalous generalized integral is not invariant under a change of

variables. In the Euclidean case, the natural variable is r, the distance from
the origin in some fixed units. Since the generalized integral is invariant under
a change of variable r → rα for any α > 0, one can equivalently use the
coordinate r2.

In the hyperbolic and spherical cases, the variables r (or r2), now denoting
the hyperbolic and spherical distance, respectively, seem not convenient to
compute self-energies. Instead, in [10], to this end we used the variables w =
2(cosh(r) − 1) in the hyperbolic case and w = 2(1 − cos(r)) in the spherical
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case. These variables are convenient in calculations involving resolvents of the
Laplacian, and they seem to be a natural choice. Note that w = r2 + O(r4)
is a function of r2 in both cases. Anyway, if we change the variable in the
generalized integral according to (A.8), the resulting change in the self-energy
is a polynomial of degree ≤ ⌊d−2

2

⌋
, which is consistent with the ambiguity in

the point-splitting approach.1

Thus, for even d ≥ 4, selecting in some way the integration constant,
we can introduce the self-energy given by the generalized integral Σ•,ms

d . All
self-energies are given by γ(z) + Σ•,ms

d (z), where γ is of degree ≤ d−2
2 . In the

hyperbolic and spherical cases, Σ•,ms
d is rather complicated and has no obvi-

ous factorization. There exists, however, a one-parameter family of factorized
expressions Σ•,ε

d (z), ε ∈ R, which one can use as reference self-energies. We
absorb the highest term of the polynomial γ in ε, so that now the remaining
freedom consists of a polynomial η(z) of degree only ≤ d−4

2 . Thus, the general
form of a full self-energy in even dimensions is now given by η(z) + Σ•,ε

d (z).
Summarizing, for odd d we obtained the families of functions

Gγ
d(z;x, x′) = Gd(z;x, x′) +

Gd(z;x, x0)Gd(z;x0, x
′)

γ(z) + Σd(z)
, (1.19)

Gh,γ
d (z;x, x′) = Gh

d(z;x, x′) +
Gh

d(z;x, x0)Gh
d(z;x0, x

′)
γ(z) + Σh

d(z)
, (1.20)

Gs,γ
d (z;x, x′) = Gs

d(z;x, x′) +
Gs

d(z;x, x0)Gs
d(z;x0, x

′)
γ(z) + Σs

d(z)
, (1.21)

parametrized by an arbitrary polynomial γ of degree ≤ d−3
2 .

For even d, we need to slightly modify (1.19), (1.20) and (1.21): We
replace the superscript γ with ε, η and γ(z) + Σ•

d(z) with η(z) + Σ•,ε
d (z). Here

ε is a real number and η is an arbitrary polynomial of degree ≤ d−4
2 .

In what follows, abusing the notation, we will sometimes write γ for a pair
ε, η. G•,γ

d (z) will be called Green’s functions. For d ≥ 4, they are not integral
kernels of bounded operators. Hence, for such d, they are not resolvents of
well-defined self-adjoint operators.

Here is the list of the reference self-energies in various dimensions:

d = 1 : Σ1(−β2) = − 1

2β
,

Σh
1(−β2) = − 1

2β
,

Σs
1(−β2) = − coth πβ

2β
; (1.22a)

d = 2 : Σε
2(−β2) =

1

2π

(
ln β − ε

)
,

1We remark that it makes a difference whether we allow for coordinate changes that are

functions of r or only of r2. In the latter case, the generalized integral transforms anoma-
lously only in even dimensions. In the former case, it transforms anomalously also in odd
dimensions, giving a polynomial freedom in any dimension. Since w is a function of r2, the
change of variables r2 → w does not affect the generalized integral in odd dimensions.
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Σh,ε
2 (−β2) =

1

2π

(
ψ( 1

2
+ β) − ε

)
,

Σs,ε
2 (−β2) =

1

4π

(
ψ( 1

2
+ iβ) + ψ( 1

2
− iβ) − 2ε

)
; (1.22b)

d = 3 : Σ3(−β2) =
β

4π
,

Σh
3(−β2) =

β

4π
,

Σs
3(−β2) =

β coth πβ

4π
; (1.22c)

even d ≥ 4 : Σε
d(−β2) =

1

(4π)
d
2 Γ
(

d
2

)
(
ln(β2) − 2ε

)
(−β2)

d−2
2 ,

Σh,ε
d (−β2) =

ψ
(
3−d
2

+ β
)
+ ψ

(
d−1
2

+ β
)− 2ε

(4π)
d
2 Γ
(

d
2

)

d−4
2∏

j=0

(
− β2 +

(
1
2

+ j
)2)

,

Σs,ε
d (−β2) =

ψ
(

d−1
2

+ iβ
)
+ ψ

(
d−1
2

− iβ
)− 2ε

(4π)
d
2 Γ( d

2
)

d−4
2∏

j=0

(− β2 − ( 1
2

+ j)2
)
;

(1.22d)

odd d ≥ 5 : Σd(−β2) =
π

(4π)
d
2 Γ( d

2
)
β(−β2)

d−3
2 ,

Σh
d(−β2) =

π

(4π)
d
2 Γ
(

d
2

)β
d−3
2∏

k=1

(− β2 + k2
)
,

Σs
d(−β2) =

π coth(πβ)

(4π)
d
2 Γ
(

d
2

)β
d−3
2∏

k=1

(− β2 − k2
)
. (1.22e)

Of course, some items of the above list are well known. The self-energy in
the Euclidean case for d = 1, 2, 3 belongs to standard knowledge of contempo-
rary quantum physics. The Euclidean self-energy for d ≥ 4 obtained with help
of the generalized integral is partially covered in the literature, see, e.g., [21] for
odd dimensions. The self-energies for the hyperbolic and spherical Laplacian
appear to be new.

As we stressed above, for d ≥ 4, the functions (1.9), (1.10) and (1.11)
do not define bounded operators and their inverses do not define self-adjoint
operators. It is natural to ask what is their meaning.

One approach that can be found in the literature is to extend the Hilbert
space, typically, to a Pontryagin space (with an indefinite metric product).
This approach is described, e.g., in [20].

One can also consider a different interpretation. Fix a point x0 in R
d, Hd

or S
d. Suppose that H•

d + V is a self-adjoint operator obtained by perturbing
Hd in a ball around x0 of small radius r. We expect that far away from that
ball, the integral kernel of (H•

d + V − z)−1 is well approximated by G•,γ
d for

some γ determined by V . Thus, coefficients of γ summarize universal long
distance properties of V . We will discuss this idea further in a separate paper,
which is in preparation.
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The reference self-energies (corresponding to γ = 0 in odd dimensions
and η = 0 in even dimensions) are in some sense distinguished—the poles of
the corresponding Green’s functions can be easily computed. In the Euclidean
case, they are also distinguished by their scaling property. (They are “fixed
points of the renormalization group.”)

Our analysis of point interactions in dimensions d ≥ 4 resembles renor-
malization in quantum field theory. In QFT, especially in the Wilsonian ap-
proach, one does not worry too much whether the quantities computed by
renormalization techniques correspond to a well-defined Hamiltonian. They
should reproduce the “infrared behavior of correlation functions.” We apply a
similar philosophy to Green’s functions. Note in particular that the borderline
case when the perturbed Green’s functions do not correspond to self-adjoint
operators is d = 4—the physical dimension of our space-time. (Our space-time
has a Lorentzian signature; however, using the Wick rotation it can often be
replaced by the Euclidean R

4.)
Our analysis can be viewed as a toy model illustrating various aspects of

renormalization in QFT. As explained above, we use two methods to define
self-energies. The first applies the so-called point splitting and then regular-
ization by differentiation in the energy. The second method, using generalized
integrals, resembles the minimal subtraction method. To compute them, we use
dimensional regularization. Both methods have their widely used counterparts
in QFT.

1.3. Flat Limit

Let R > 0 and let H
d
R, S

d
R denote the rescaled hyperbolic space of curva-

ture − 1
R2 and the rescaled sphere of curvature 1

R2 (that means, of radius R).
Intuitively it is clear that in some sense H

d
R, Sd

R converge to R
d as R → ∞.

Green’s functions on the rescaled spaces are

Gh
d,R(−β2;x, x′) = R−d+2Gh

d

(
− (βR)2,

x

R
,
x′

R

)
, (1.23)

Gs
d,R(−β2;x, x′) = R−d+2Gs

d

(
− (βR)2,

x

R
,
x′

R

)
. (1.24)

We describe the convergence of these Green’s functions to the Euclidean ones
Gd(−β2;x, x′). This is of course well known, see, e.g., [5].

On the rescaled spaces, the reference self-energies are defined as follows:

Σh
d,R(−β2) := R2−dΣh

d

(− (βR)2
)
, odd d,

Σh,ε
d,R(−β2):=R2−dΣh,ε+ln R

d

(− (βR)2
)
, even d,

Σs
d,R(−β2) := R2−dΣs

d

(− (βR)2
)
, odd d,

Σs,ε
d,R(−β2):=R2−dΣs,ε+ln R

d

(− (βR)2
)
, even d. (1.25)

Note that in even dimensions we need an additional additive renormalization,
which can be traced back to rescaling of the variable in a generalized integral.

Using the above self-energies, we define the corresponding Green’s func-
tions. We prove that they converge to the Euclidean Green’s function with a
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point potential and the same parameters. That is, in odd dimensions
Ghγ

d,R(−β2;x, x′) and Gs,γ
d,R(−β2;x, x′) converge to Gγ

d(−β2;x, x′), and in even
dimensions, Gh,ε,η

d,R (−β2;x, x′) and Gs,ε,η
d,R (−β2;x, x′) converge to Gε,η

d (−β2;x, x′).
This convergence is, perhaps, not very surprising. However, it requires a rather
careful treatment of the self-energy (including the choice of renormalization),
especially for even d ≥ 4, when there is the scaling anomaly.

1.4. Poles of Green’s Functions

In dimensions 1,2,3, the singularities of Green’s functions G•,γ
d (z) and G•,ε,η

d (z)
are located at the spectrum H•,γ

d (z) and H•,ε,η
d (z). In the Euclidean and hy-

perbolic case, the continuous spectrum remains [0,∞[, but the point potential
may introduce an additional eigenvalue. In the spherical case, the point po-
tential shifts the old eigenvalues and may introduce a new one. For example,
in the Euclidean case we have the following new eigenvalues:

Hγ
1 : − 1

a2
, if a < 0, (1.26)

Hε
2 : − 1

a2
, (1.27)

Hγ
3 : − 1

a2
, if a > 0, (1.28)

where we use the scattering length a (see Subsect. 2.2 for its relation to γ and
ε).

For dimensions d ≥ 4, the point potential may introduce additional poles
of Green’s functions located at z satisfying

γ(z) + Σ•
d(z) = 0, odd d; (1.29)

η(z) + Σ•,ε
d (z) = 0, even d. (1.30)

The interpretation of these singularities is less clear. We may call them eigen-
values of H•,γ

d , H•,ε,η
d , even though strictly speaking these Hamiltonians do

not exist in the Hilbert space sense. For d ≥ 4, these poles may appear out-
side of the real line. (After all, they are not eigenvalues of a true self-adjoint
operator.)

For pure reference self-energies, the additional singularities are easy to
determine. If d ≥ 3 is odd, the singularities originating from (1.29) with γ = 0
are as follows:

H0
d : z = 0;

Hh,0
d : z = −k2, k = 0, 1, . . . ,

d − 3
2

;

Hs,0
d : z =

(
k + 1

2 )2, k ∈ N0. (1.31)

If d ≥ 2 is even, the singularities originating from (1.30) with η = 0 are

H0
d : z = −e2ε, and if d ≥ 4 also z = 0;

Hh,0
d : z solving ψ

(
3−d
2 +

√−z
)

+ ψ
(

d−1
2 +

√−z
)

= 2ε,
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and z = −(k + 1
2 )2, k = 0, 1, . . . ,

d − 4
2

;

Hs,0
d : z solving ψ

(
d−1
2 + i

√−z
)

+ ψ
(

d−1
2 − i

√−z
)

= 2ε

and z = (k + 1
2 )2, k = 0, 1, . . . ,

d − 4
2

. (1.32)

What is especially interesting are eigenvalues (or poles of Green’s func-
tions) in the spherical case inside [0,∞[ for a general point potential, which
we discuss in Subsect. 4.4. In the unperturbed case for the sphere of radius R,
they are located at

(l + d−1
2 )2

R2
, with multiplicity

(2l + d − 1)(d + l − 2)!
(d − 1)!l!

, l = 0, 1, . . . .

(1.33)
One effect of the perturbation is that the multiplicity of each of these eigen-
values is decreased by one (in particular

(
d−1
2R

)2
is not an eigenvalue) and a

shifted eigenvalue appears.
Let Eγ

d,l,R be the lth shifted eigenvalue in the odd case. Below we give
formulas for Eγ

d,l,R in the generic case γ(z) �= 0. If ν denotes the order of
vanishing of γ(z) at z = 0, we find:

Eγ
1,l,R =

(l + 1
2 )2

R2
+

4γ(l + 1
2 )2

πR3
+ O

(
γ2

R4

)
, (1.34)

Eγ
d,l,R =

(l + d−1
2 )2

R2
− 2(l + d−1

2 )2
∏ d−3

2
k=0

(
(l + d−1

2 )2 − k2
)

(4π)
d
2 Γ(d

2 )Rdγ
(

(l+ d−1
2 )2

R2

)

+ O(R2−2d+4ν), odd d ≥ 3. (1.35)

Note that d = 1 is special.
Now consider the lth shifted eigenvalue Eε,η

d,l,R in the even-dimensional
case. We have

Eε
2,l,R =

(l + 1
2 )2

R2
+

l + 1
2

R2 ln(Reε)
+ O

( 1
R2 ln2(Reε)

)
, (1.36)

Eε,η
d,l,R =

(l + d−1
2 )2

R2
− 2(l + d−1

2 )
∏ d−4

2
j=0

(
(l + d−1

2 )2 − (j + 1
2 )2
)

(4π)
d
2 Γ(d

2 )Rdη
(

(l+ d−1
2 )2

R2

)

+ O
(

ln(eεR)R−2d+2+4ν
)
, even dgen4.

(1.37)

Note that for d ≥ 3 we have a systematic shift of the lth eigenvalue
asymptotically proportional to γ(0)−1 or η(0)−1, respectively, and inversely
proportional to the volume of Sd. The scaling of the shift with R is changed if
γ(0) = 0 and η(0) = 0, respectively.

In particular, for d = 3 the l = 0 eigenvalue moves up by

≈ − 1
|S3|γ =

4πa

|S3| , (1.38)
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where |S3| is the volume of S3. It is interesting to ask whether a similar formula
is true for other compact manifolds.

1.5. Comparison with the Literature

Explicit formulas for the Euclidean, hyperbolic and spherical Green’s functions
in any dimension are known in the literature, see, e.g., [5,13]. In our presenta-
tion, we made an effort to describe various facets of these Green’s functions in
a (hopefully) complete and transparent way. In particular, we use the Gegen-
bauer functions with the conventions of Appendix C, because they yield much
simpler expressions than the so-called associated Legendre functions, which
are commonly found in the literature [5,26] in this context.

Point potentials in dimension d = 3 go back to Fermi [14], and since then,
they have been often used in the physics literature. Berezin and Faddeev [4]
seem to have been the first who interpreted them in a rigorous way. They are
the subject of an extensive mathematical literature, confer, for example, [2,3].
Point potentials in dimension d = 1, 2, 3 are special cases of singular perturba-
tions, that is, perturbations which cannot be interpreted as operators. As we
mentioned above, the case d = 1 can be interpreted as a form perturbation, so
that one can use the so-called KLMN theorem [28]. For d = 2, 3, the form tech-
nique is not applicable; therefore, in these dimensions point potentials belong
to the class of form singular perturbations.

The formula for the resolvent of the form (1.9) is often called the Krein
formula [19]. One can also find the name Aronszajn–Donoghue theory for this
kind of treatment of singular rank one perturbations, see, e.g., [9]. (1.9) is
essentially the singular version of the formula for the resolvent of an oper-
ator with a rank one perturbation, sometimes called the Sherman–Morrison
formula.

There exist a large literature about point potentials on R
d for d ≥ 4.

These potentials are examples of supersingular perturbations. In order to in-
terpret them as true linear operators, one needs to extend the Hilbert space
by adding additional dimensions, see, e.g., [21]. This is reviewed in [20]. Note
that our approach is different: We do not look for the perturbed operator,
and we try to compute Green’s function associated with point potentials in all
dimensions. It seems that the formulas (1.22e), (1.22d) are new, at least in the
hyperbolic and spherical case.

It is clear that point potentials can be defined on a manifold of dimension
1,2,3, and have then similar properties as on the Euclidean space. Nevertheless,
we have never seen their analysis on hyperbolic and spherical spaces including
an explicit formula for their resolvent. So we think that also the identities
(1.22b) and (1.22c) in the hyperbolic and spherical case are new.

The concept of a generalized integral goes back to independent consider-
ations of Hadamard [16,17] and Riesz [29]. The generalized integral is a linear
extension of the integration functional to not necessarily integrable functions.
It is closely related to the extension of homogeneous distributions [18]. More
recent accounts are given in [22,27]. In a parallel work [10], we revisited this
concept in a manner that is well suited for our applications.
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The flat limit of hyperbolic and spherical Green’s functions (without
point potentials) is discussed in [5]. Note that the latter reference uses the
associated Legendre equation instead of the Gegenbauer equation. The two
equations are equivalent. The relation between Gegenbauer functions in our
convention and associated Legendre functions can be found in [10].

Our results about the energy shift of eigenvalues of the spherical Lapla-
cian in dimensions d ≥ 3 seem to be new. They are consistent with the fol-
lowing known fact, implicit, e.g., in [24]: In dimension 3, in a large box the
ground state energy of the Schrödinger Hamiltonian with a short-range poten-
tial characterized by scattering length a has the ground state energy ≈ 4πa

Vol ,
where Vol is the volume of the box (compare with (1.38)). This fact plays an
important role in the well-known asymptotics of the bound state energy of the
three-dimensional N -body Bose gas.

The ground state energy of a dilute Bose gas as in dimensions d ≥ 4
was studied in [1], where a similar asymptotics as for d = 3 was obtained
and analogs of the concept of the scattering length for higher dimensions
proved useful. Our interest in point potentials in higher dimension was par-
tially sparked by this paper.

Our paper extensively uses results of the companion paper [10] by the
same authors. In particular, we use the conventions for special functions de-
scribed in [10]. These conventions are also explained in [7,8].

An important source of inspiration for our paper is renormalization in
quantum field theory. In fact, our paper applies the ideas of two distinct meth-
ods: the point splitting followed by differentiation in the energy, as well as
dimensional regularization followed by the minimal subtraction. This is de-
scribed, e.g., in [6].

1.6. Strategy of the Paper

The study of the operators Hd, Hh
d and Hs

d and their point-like perturbations is
carried out in Sects. 2, 3 and 4, respectively. In all three cases (Rd,Hd and S

d),
the general strategy to determine the family of renormalized Green’s function
is the same:

1. We first describe (the well-known) Green’s functions and spectral projec-
tions of the unperturbed operators.

2. The subsequent analysis of point potentials greatly varies with the dimen-
sion. The computations in dimensions d = 1, 2, 3 are straightforward and
only employ the standard integral. These three dimensions are spelled
out separately. Odd and even dimensions d ≥ 4 need a more careful
treatment. We present two methods: the point-splitting method and the
minimal subtraction method. In particular, following the latter approach
we compute the self-energy derived from the generalized integral. In the
case of odd dimensions d ≥ 5, this integral is non-anomalous and yields
easily the reference self-energy. In the case of even dimensions d ≥ 4,
the generalized integral is anomalous and was computed in [10] via the
method of dimensional regularization. We describe how to pass from the
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minimal subtraction self-energy to the family of reference self-energies
that seem to be preferable.

3. In the hyperbolic and spherical cases, we describe the flat limit of the
free and perturbed Green’s functions.

4. In the spherical case, we discuss the poles of the perturbed Green’s func-
tions Gs,γ

d and Gs,ε,η
d .

This paper has four appendices. In Appendix A, we briefly introduce
the generalized integral and list its relevant properties. Appendices B and C
contain basic information on Bessel and Gegenbauer functions as well as a
collection of their bilinear generalized integrals, which are needed in our anal-
ysis of point-like perturbations. Moreover, Appendix C contains a list of the
asymptotic behaviors of Gegenbauer functions, relevant in our description of
the flat limit. Both appendices are based on our parallel work [10], where the
focus lies on properties of the generalized integral and of Bessel and Gegen-
bauer functions. Finally, Appendix D contains some useful formulas related to
Pochhammer symbols and harmonic numbers.

1.7. Notation for Operators on Hilbert Spaces

The integral kernel A(x, y) of an operator A on L2(Rd) is the function, or
sometimes distribution, on R

d × R
d, such that

(f |Ag) =
∫

dx

∫
dyf(x)A(x, y)g(y). (1.39)

More generally, one can also define the integral kernel of an operator on
L2(M,dμ), where M is a manifold with a measure dμ, and the scalar product
is given by

∫
f(x)g(x)dμ(x). Then we define the integral kernel of an operator

A, also denoted A(x, y), by

(f |Ag) =
∫

dμ(x)
∫

dμ(y)f(x)A(x, y)g(y).

Let H be a self-adjoint operator. σ(H) will denote its spectrum. For
z ∈ C\σ(H), we can define its resolvent (−z + H)−1. We will denote the
spectral projection of H corresponding to a ∈ σ(H) by 1la(H). We will denote
by 1l[a,b](H) the spectral projection of H corresponding to the closed interval
[a, b].

The spectral projections can be computed with help of the resolvent:

1la(H) = −s− lim
ε↘0

iε(−a − iε + H)−1, (1.40)

1l[a,b](H) − 1
2
(
1la(H) + 1lb(H)

)

= s− lim
ε↘0

∫ b

a

ds

2πi
(
(−s − iε + H)−1 − (−s + iε + H)−1

)
. (1.41)

s− lim denotes the limit in the strong operator topology. (1.41) is called the
Stone formula.

If z ∈ σ(H), then (−z + H)−1 is not well defined. However, in an ap-
propriate topology (−z + H)−1 may have well-defined limits on the spectrum.
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Usually, the limit is different when we approach the spectrum from above and
from below. These limits are denoted by (−z ∓ i0 + H)−1.

Let G(z):=(−z+H)−1 be the resolvent of a self-adjoint operator H. Then

(H − z)G(z) = 1l, G(z)∗ = G(z̄),
d
dz

G(z) = G(z)2. (1.42)

2. Green’s Operators on Euclidean Space

2.1. The Euclidean Laplacian

As explained in the introduction, in this subsection we consider Hd:= − Δd,
where Δd is the Laplacian on L2(Rd). We first recall the well-known formulas
for the integral kernel of its resolvent

Gd(z):=(−z + Hd)−1 = (β2 + Hd)−1, (2.1)

where we indicate two notations for the spectral parameter that we will use,
z = −β2. We also describe the integral kernel of Pd(a, b), the spectral pro-
jection of Hd onto [a, b]. We express them in terms of various functions from
the Bessel family: Kα, Jα and H±

α . Relevant properties of these functions are
listed in Appendix B. For completeness, we sketch a proof of this theorem.

Theorem 2.1. 1. For �β > 0, we have

Gd(−β2;x, x′) =
1

(2π)
d
2

( β

|x − x′|
) d

2 −1

K d
2 −1

(
β|x − x′|). (2.2)

2. Green’s function possesses limits on ]0,∞[ from above and below. For
ζ ∈ R, ζ > 0, these limits are

Gd(ζ2 ± i0;x, x′) = ± i
4

( ζ

2π|x − x′|
) d

2 −1

H±
d
2 −1

(
ζ|x − x′|). (2.3)

3. For d > 2, there exists also a limit at z = 0:

Gd(0;x, x′) =
Γ(d

2 − 1)

4π
d
2 |x − x′|d−2.

(2.4)

4. Finally, the integral kernels of the spectral projections are

Pd(a, b;x, x′) =
∫ √

b

√
a

( ζ

2π

) d
2 J d

2 −1

(
ζ|x − x′|)

|x − x′| d
2 −1

dζ. (2.5)

Proof. Let r:=|x−x′|. By Euclidean invariance, there exists a function Gd(z, r)
such that Gd(z;x, x′) = Gd(z, r). Away from r = 0, we can write

0 =
(

− ∂2
r − d − 1

r
∂r + β2

)
Gd(−β2, r)

= r1− d
2

(
− ∂2

r − 1
r
∂r +

(d
2 − 1)2

r2
+ β2

)
r−1+ d

2 Gd(−β2, r). (2.6)
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Then we find the solution vanishing at infinity and behaving for r → 0 as

Gd(−β2, r) ∼
{

Γ( d
2 −1)

4π
d
2

r2−d, d �= 2,

− 1
2π ln r, d = 2,

(2.7)

which implies the distributional differential equation

(−Δd − z)Gd(z;x, x′) = δ(x, x′). (2.8)

Since Gd(−z;x, x′) is an integrable function of x − x′, i.e.,
∫ ∣∣∣Gd(−z;x, x′)

∣∣∣dx =
∫ ∣∣∣Gd(−z;x, 0)

∣∣∣dx =: C, (2.9)

Young’s inequality for convolutions [23, Theorem 4.2] implies
∣∣∣∣∣

∣∣∣∣∣
∫

Gd(−z; ·, x)f(x)dx

∣∣∣∣∣

∣∣∣∣∣
2

≤ C||f ||2, f ∈ L2(Rd). (2.10)

Thus, Gd(−z;x, x′) is the integral kernel of a bounded operator, and hence,
by (2.8) the integral kernel of the resolvent of Hd. This shows (2.2).

To derive the limits (2.3), write β = βR + iβI with βR > 0. Then

z = −(βR + iβI)2 =
(|βI| − iβRsgn(βI)

)2 →
βR↘0

|βI|2 − i0 sgn(βI). (2.11)

Hence, to get z = ζ2 ± i0 we need to insert β = ∓i(ζ ± i0) with ζ > 0.
(2.5) follows from (2.3) by (1.41):

lhs of (2.5) =
1

2πi

∫ √
b

√
a

2ζ
(
Gd(ζ2 + i0;x, x′) − Gd(ζ2 − i0;x, x′)

)
dζ. (2.12)

�

We remark that the function

Gd(−β2, r) :=
1

(2π)
d
2

(β

r

) d
2 −1

K d
2 −1

(
βr
)

(2.13)

is well defined for all d ∈ C, and not only for positive integers. Note its sym-
metry:

G4−d(−β2, r) =
( β

2πr

)2−d

Gd(−β2, r), (2.14)

coming from the symmetry of the Macdonald function Kα(z) = K−α(z) [25].
We have also the homogeneity relation

Gd(−(λβ)2, λ−1r) = λd−2Gd(−β2, r), (2.15)

which is equivalent to the fact that Hd is an operator homogeneous of degree
−2.
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Let us sum up the properties of Green’s function for various d (not only
positive integers). The behavior near zero is described by the power series (cf.
(B.2), (B.5)):

Gd(−β
2
; r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

4π
d
2 rd−2

∞∑
k=0

(−1)kΓ( d−2
2 − k)

k!

(
βr
2

)2k

+
βd−2

(4π)
d
2

∞∑
j=0

(−1)jΓ( 2−d
2 − j)

j!

(
βr
2

)2j
, d �∈ 2Z;

(2.16a)

1

4π
d
2 rd−2

d−4
2∑

k=0

(−1)k( d−4
2 − k)!

k!

(
βr
2

)2k
+

βd−2(−1)
d
2

(4π)
d
2

∞∑
j=0

2 ln( βr
2 ) + 2γE − Hj − H d−2

2 +j

j!( d−2
2 + j)!

(
βr
2

)2j
, d = 2, 4, 6, . . . .

(2.16b)

Note that the singular part of the first line of (2.16a) has the same form as
the first line of (2.16a), and that for �d < 2 + 2n there exists the limit

lim
x→0

∂n

∂zn
Gd(z;x, 0) =

Γ( 2−d
2 + n)

(4π)
d
2

βd−2−2n. (2.17)

The latter equation can be derived from the power series (2.16a) and (2.16a).
Note that there is no logarithmic singularity as r → 0 for d = 2, 4, 6, . . .
because 2n > d − 2, and hence, at least one derivative must act on ln

(
βr
2

)
.

There is an elementary formula for odd dimensions (cf. (B.7)):

Gd(−β2;x, x′) =
1

2(2π)
d−1
2

(
− 1

r
∂r

) d−3
2 e−βr

r
, d = 3, 5, . . . . (2.18)

For β > 0, the behavior for large r can be described by the following asymptotic
(divergent) series (cf. (B.6)):

Gd(−β2;x, x′) � 1
2β

( β

2πr

) d−1
2

e−βr
∞∑

j=0

(d−1
2 − j)2j

j!(2βr)j
. (2.19)

2.2. Point Potentials on Euclidean Space

Suppose that Hγ
d is a self-adjoint extension of the restriction of Hd to

C∞
c (Rd\{0}). Consider its resolvent

Gγ
d(z) = (Hγ

d + β2)−1 = (Hγ
d − z)−1. (2.20)

By (1.42), the integral kernel of Gγ
d(z), denoted Gγ

d(z;x, x′), satisfies

(−Δx + β2)Gγ
d(z;x, x′) = δ(x − x′), x, x′ �= 0, (2.21)

Gγ
d(z;x, x′) = Gγ

d(z;x′, x), (2.22)

∂zG
γ
d(z;x, x′) =

∫
Gγ

d(z;x, y)Gγ
d(z; y, x′)dy. (2.23)
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To solve these equations, we make an ansatz

Gγ
d(z;x, x′) = Gd(z;x, x′) +

1
γ(z) + Σd(z)

Gd(z;x, 0)Gd(z; 0, x′), (2.24)

which already incorporates the conditions (2.21) and (2.22). The denominator
of the second term is split as γ(z)+Σd(z) because this expression will depend
on some number of free parameters. We will fix Σd(z) for every dimension and
collect all free parameters in γ(z).

Remark 2.2. Note that (2.24) describes a spherically symmetric perturbation.
In particular, it excludes the δ′ potential for d = 1.

Let us insert (2.24) into (2.23) to determine Σd(z). Gγ
d(z;x, x′) satisfies

(2.23) if

d
dz

(γ(z) + Σd(z)) = −σd(z), (2.25)

where

σd(z) :=
∫

Rd

Gd(z; 0, y)Gd(z; y, 0)dy =
(β2)

d
2 −12π

d
2

(2π)dΓ(d
2 )

∫ ∞

0

K d
2 −1(βr)2rdr.

(2.26)
Note that the rightmost integral in (2.26) makes sense for complex d. It

converges only for |�(d − 2)| < 2, which includes the dimensions d = 1, 2, 3
[15]:

σd(−β2) =
Γ
(

4−d
2

)

(4π)
d
2

βd−4, |�(d − 2)| < 2. (2.27)

For these dimensions, we take Σd(z) to be a fixed antiderivative of σd(z). Then
(2.25) says that γ is a constant. Gγ

d is the integral kernel of the resolvent of a
closed operator Hγ

d , which is self-adjoint if γ is real. One has Hd = H∞
d .

Below we propose how to define Σd(z) in all dimensions. It will be seen
that in contrast to d = 1, 2, 3, it is natural to take γ(z) to be a polynomial in z
of degree depending on d. Hence, Gγ

d depends on several parameters. For every
choice of γ(z), Gγ

d(z;x, x′) is a well-defined locally integrable function, but for
d ≥ 4 it is not the integral kernel of a bounded operator. It describes the
asymptotic behavior of Green’s function of a Laplacian with a perturbation of
a very small support, as explained in a separate paper. Let us discuss various
dimensions separately.

Dimension 1. We have σ1(−β2) = 1
4β3 , so we define Σ1(−β2) = − 1

2β , homoge-
neous and vanishing at infinity. We have

Gγ
1(−β2;x, x′) =

e−β|x−x′|

2β
+

e−β|x|e−β|x′|

(2β)2
(
γ − 1

2β

) . (2.28)

Sometimes a:=−2γ is called the scattering length. The operator Hγ
1 is the per-

turbation of H1 by the quadratic form 2
aδ(x). If γ = 0, it is −Δd with Dirichlet

boundary condition at 0, and it is homogeneous of degree −2. Functions in the
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domain of Hγ
1 with γ �= 0 have the leading singularity near zero proportional

to |x|
a − 1. For a < 0, there exists a bound state e

|x|
a with eigenvalue − 1

a2 .

Dimension 2. The full self-energy is now

γ + Σ2(−β2) = γ +
ln β

2π
. (2.29)

Σ2(−β2) diverges if both β → 0 and β → ∞. γ is an arbitrary constant of
integration. It is convenient to replace (2.29) by a family of reference self-
energies introducing ε:= − 2πγ and

Σε
2(−β2):=

1
2π

(ln β − ε). (2.30)

Then a:= exp(2πγ) = e−ε specifies a length scale, in the physics literature
again called the scattering length. We find

Gε
2(−β2;x, x′) =

K0(β|x − x′|)
2π

+
K0(β|x|)K0(β|x′|)

2π ln(βe−ε)
. (2.31)

In contrast to d = 1, the scattering length cannot be negative. The denom-
inator of the second term of (2.31) can be rewritten as 2π ln(βa). Functions
in the domain of Hε

2 behave near zero as ln( |x|
2a ) + γE, where γE is the Euler–

Mascheroni constant. For all a, there is a bound state K0

( |x|
a

)
with eigenvalue

− 1
a2 .

Dimension 3. In this case, we take Σ3(−β2) = β
4π , homogeneous and vanishing

at 0. We have

Gγ
3(−β2;x, x′) =

e−β|x−x′|

4π|x − x′| +
e−β|x|e−β|x′|

(4π)2|x||x′|(γ + β
4π )

. (2.32)

As in lower dimensions, one usually introduces the scattering length, now
given by a = − 1

4πγ . The denominator of the second term of (2.32) can be
rewritten as 4π(β − 1

a )|x||x′|. Functions in the domain of Hγ
3 behave as 1− a

|x|
near 0. Operator H0

3 is homogeneous of degree −2. For a > 0, there is a bound
state 1

|x| exp(− |x|
a ) with eigenvalue − 1

a2 .

Higher dimensions. We will describe two methods of introducing self-energy
in higher dimensions. The first, in the physical terminology, is based on the
differentiation with respect to the energy and point splitting. First we rewrite
the definition of σd from (2.26) as

σd(z) = lim
x→0

∫
Gd(z;x, y)Gd(z; y, 0)dy = lim

x→0

∂

∂z
Gd(z;x, 0). (2.33)

The limit on the right in general does not exist. However, if d < 2 + 2n and
we differentiate both sides n times in z, then the limit becomes finite:

σ
(n−1)
d (z) = lim

x→0

∂n

∂zn
Gd(z;x, 0) =

Γ( 2−d
2 + n)

(4π)
d
2

βd−2−2n, (2.34)

where we inserted (2.17) in the last step.
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We take n to be the smallest integer greater than d−2
2 and choose some

Σd(z) satisfying

Σ(n)
d (z) = −Γ( 2−d

2 + n)

(4π)
d
2

βd−2−2n. (2.35)

Then differentiating (2.25) n − 1 times, we find that γ(z) is a polynomial of
degree n − 1.

The second method of defining the self-energy yields a concrete Σd sat-
isfying (2.35) for every dimension. To this end, we define σd(z) by replacing
the Lebesgue integral in (2.26) with the generalized integral gen

∫∞
0

, which is
defined in (A.2). Then we can choose Σd to be an antiderivative of −σd(z).

We will check that thus defined Σd satisfies (2.35) by explicit computa-
tion, separately for odd and even dimensions. One can also see this by the
following general argument.

Consider

σd(z) :=
2π

d
2

(2π)dΓ(d
2 )

gen
∫ ∞

0

βd−2K d
2 −1(βr)2rdr. (2.36)

Since the exponents of terms non-integrable near 0 do not depend on z, one
can check that

∂n−1

∂zn−1
σd(z) =

2π
d
2

(2π)dΓ(d
2 )

gen
∫ ∞

0

∂n−1

∂zn−1

(
βd−2K d

2 −1(βr)2
)
rdr. (2.37)

If d < 2 + 2n, the generalized integral on the right-hand side converges in the
classical sense, and we can write

∂n−1

∂zn−1
σd(z) =

2π
d
2

(2π)dΓ(d
2 )

∫ ∞

0

∂n−1

∂zn−1

(
βd−2K d

2 −1(βr)2
)
rdr

=
∫

∂n−1

∂zn−1
lim
x→0

(
Gd(z;x, y)Gd(z; y, 0)

)
dy

=
∫

lim
x→0

∂n−1

∂zn−1

(
Gd(z;x, y)Gd(z; y, 0)

)
dy. (2.38)

Next, we rename y = yn and express the derivative in the last line as an
(n − 1)-fold integral using the resolvent identity repeatedly:

∂n−1

∂zn−1
σd(z) =

∫
lim
x→0

(∫
Gd(z;x, y1) · · · Gd(z; yn, 0)dy1 · · · dyn−1

)
dyn.

(2.39)

Since Gd(z;x, y1) · · · Gd(z; yn, 0) is an integrable function of y1, . . . , yn, we may
take the limit out of the integral.2 Therefore,

∂n−1

∂zn−1
σd(z) = lim

x→0

∫
Gd(z;x, y1) · · · Gd(z; yn, 0)dy1 · · · dyn. (2.40)

The integral can now be computed using the resolvent identity again. This
shows that (2.34), and hence (2.35), is satisfied.

2If f ∈ L1(RN ) and fa(x):=f(x−a) for a ∈ R
N , then fa → f strongly in L1(RN ) as a → 0.
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One could use other definitions of generalized integration, for example,
in other coordinates (cf. (A.8)). An inspection of formulas (2.16a), (2.16a) and
(A.4) shows that the resulting σd(z) differs only by a polynomial of degree
n − 2, where n is the smallest integer greater than d−2

2 . Integrating to find
Σd(z) leads to another integration constant, and this accounts for the same
freedom in the choice of Σd(z) as suggested by (2.35).

We note that the leading term of Σd(z) for large z is uniquely deter-
mined either by (2.35) or by calculation of generalized integrals. The term
γ(z) containing free parameters is of lower order for large z.

Odd dimensions d ≥ 5. If (2.26) is understood as a generalized integral and d
is not an even integer, then expression (2.27) remains valid. It is convenient to
rewrite (2.27) as

σd(−β2) = βd−4 π

(4π)
d
2 Γ
(

d−2
2

)
cos
(
π d−3

2

) , d ∈ C \ 2Z. (2.41)

Therefore, we take

Σd(−β2) = βd−2 π

(4π)
d
2 Γ
(

d
2

)
cos
(
π d−3

2

) , d ∈ C \ 2Z, (2.42)

homogeneous and vanishing at 0. Since the generalized integral is non-anomalous
for d ∈ C \ 2Z, the same result is obtained using the generalized integral with
the integration variable λr for any constant λ > 0. Specifying d to be an odd
integer, we obtain

Σd(−β2) = (−β2)
d−3
2 β

π

(4π)
d
2 Γ(d

2 )
. (2.43)

The polynomial γ(z) is of degree d−3
2 , so it depends on 2 parameters for d = 5,

on 3 parameters for d = 7, etc. For large z, it is subleading with respect
to Σd(z) by at least one power of β, and in contrast to Σd, it may contain
even powers of β. The function G0

d (i.e., with γ(z) = 0) satisfies the same
homogeneity relation (2.15) as Gd.

Even dimensions d ≥ 4. The expression (2.27) for σd(−β2) is not valid, even
in the generalized sense because of the scaling anomaly. For d = 4, 6, . . . , we
find (cf. App. B)

σd(−β2) = − (−β2)
d−4
2

(4π)
d
2 Γ
(

d
2

)
(
1 + (d − 2)

(
ln β

2 + 1 − ψ
(

d
2

)))
, (2.44)

and therefore, the self-energy given by the minimal subtraction method is

Σms
d (−β2) =

(−β2)
d−2
2

(4π)
d
2 Γ
(

d
2

)
(
2 − 2ψ

(
d
2

)
+ ln β2

4

)
, (2.45)

to which we can add a polynomial γ of degree ≤ d−2
2 . If a rescaled radial

coordinate is used in the generalized integral, the result is shifted by a multiple
of (−β2)

d−2
2 . Note that this power of −β2 is also the leading term of γ(−β2),

but it is still subleading in the self-energy due to the presence of the logarithm
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in (2.45). Therefore, there are 2 parameters for d = 4, 3 parameters for d = 6,
etc.

It is convenient to introduce a scale-dependent reference self-energy

Σε
d(−β2):=

1

(4π)
d
2 Γ(d

2 )
(−β2)

d−2
2 (ln β2 − 2ε), (2.46)

where ε is used to absorb the highest term γd−2
2

(−β2)
d−2
2 in γ:

−2ε = (4π)
d
2 Γ
(

d
2

)
γ d−2

2
+ 2 − 2ψ

(
d
2

)− ln 4. (2.47)

Thus, we obtain a family of Green’s functions

Gε,η
d (z;x, x′) = Gd(z;x, x′) +

1
η(z) + Σε

d(z)
Gd(z;x, x0)Gd(z;x0, x

′), (2.48)

where η is an arbitrary polynomial of degree ≤ d−4
2 .

Remark 2.3 (Scattering length in higher dimensions). Let d ≥ 3 be odd. If x
is small, y large and z = 0, then

Gγ
d(0;x, y) ≈ Gd(0; 0, y)

(
1 +

Gd(0;x, 0)
γ(0)

)
= Gd(0; 0, y)

(
1 − a

|x|d−2

)
,

(2.49)

where, following [24, Appendix C], we introduced the scattering length

a:= − Γ(d
2 − 1)

4π
d
2 γ(0)

. (2.50)

If d ≥ 4 is even, we can do the same, replacing Gγ
d with Gε,η

d and γ(0) with
η(0).

Calling a a length is actually a misnomer, since now (2.50) does not have
the dimension of length, unlike for d = 1, 2, 3. Moreover, (2.50) is not consistent
with the definition of a for d = 1, 2.

3. Green’s Operators on Hyperbolic Space

3.1. Hyperbolic Laplacian

The space R
1+d equipped with the bilinear form

[x|y] = x0y0 − x1y1 − · · · − xdyd

will be denoted R
1,d. The set

H
d:={x ∈ R

1,d | [x|x] = 1, x0 > 0}
equipped with the Riemannian metric inherited from R

1,d is called the hyper-
bolic space. The geodesic distance between x, x′ ∈ H

d is given by

dh(x, x′) = cosh−1
(
[x|x′]

)
, cosh dh(x, x′) = [x|x′]. (3.1)

H
d has also a measure induced by the metric.
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In this section, we study

Hh
d := − Δh

d − (d − 1)2

4
, (3.2)

where Δh
d is the Laplacian on L2(Hd) induced by the metric. Hh

d is a self-adjoint
operator. For z ∈ C\σ(Hh

d ) = C\[0,∞[, we define the hyperbolic Green’s op-
erator Gh

d(z):=(−z + Hh
d )−1. The spectral projection of Hh

d onto [a, b[⊂ [0,∞[
is denoted P

h
d(a, b). In the following theorem, we express the integral kernels

of Gh
d(z) and P

h
d(a, b) in terms of two kinds of Gegenbauer functions, Sα,β and

Zα,β , which are defined in Appendix C.

Theorem 3.1 1. For �β > 0, the integral kernel of Gh
d(−β2) is

Gh
d

(
− β2;x, x′

)
=

√
πΓ(d−1

2 + β)√
2(2π)

d
2 2β

Z d
2 −1,β

(
[x|x′]

)
. (3.3)

2. For ζ > 0, it has the following limits

Gh
d(ζ2 ± i0;x, x′) =

√
πΓ(d−1

2 ∓ iζ)√
2(2π)

d
2 2∓iζ

Z d
2 −1,∓iζ

(
[x|x′]

)
. (3.4)

3. The integral kernel of Ph
d(a, b) is

P
h
d(a, b;x, x′) =

∫ √
b

√
a

2ζ sinh(πζ) Γ(d−1
2 + iζ)Γ(d−1

2 − iζ)

π(4π)
d
2

S d
2 −1,iζ

(
[x|x′]

)
dζ.

(3.5)

Proof The isometry group of H
d acts transitively on pairs (x, x′) with fixed

[x|x′], so there exists a function Gh
d(z;w) such that Gh

d(z;x, x′) = Gh
d(z;w),

w:=[x|x′]. We have

0 =
(
(1 − w2)∂2

w − dw∂w + β2 − (d−1
2

)2)
Gh

d(−β2, w). (3.6)

Near the diagonal, the hyperbolic Green’s function should have the same
asymptotics as Green’s function of the Laplacian:

Gh
d

(− β2, cosh(r)
) ∼

{
Γ( d

2 −1)

4π
d
2

r2−d, d �= 2,

− 1
2π ln r, d = 2.

(3.7)

Besides, it should vanish for w → ∞. This fixes uniquely Gh
d(−β2, w) to be

(3.3). (3.4) follows immediately.
To derive (3.5), we note that by (1.41)

lhs of (3.5) =
1

2πi

∫ √
b

√
a

2ζ
(
Gh

d

(
ζ2 + i0;x, x′

)
− Gh

d

(
ζ2 − i0;x, x′

))
dζ. (3.8)

Then we use the following identity, which is a consequence of (C.13):√
π√
2

(
2iζZα,−iζ(z)Γ

(1
2

+ α − iζ
)

− 2−iζZα,iζ(z)Γ
(1

2
+ α + iζ

))

= i2−α sinh(πζ)Γ
(1

2
+ α + iζ

)
Γ
(1

2
+ α − iζ

)
Sα,iζ(z). (3.9)
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�

We can view Gh
d(−β2, w) as defined for all d ∈ C. It satisfies the symmetry

Gh
4−d(−β2, cosh r) =

1
( 3−d

2 + β)d−2(2π sinh r)2−d
Gh

d(−β2, cosh r). (3.10)

Here are explicit formulas for the hyperbolic Green’s function useful for small
r. They follow from (3.3), the connection formula (C.13), (C.2), (C.3) and
cosh(r)−1

2 = sinh2 r
2 :

G
h
d(−β

2
; r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(4π)
d
2 sinh( r

2 )d−2

∞∑
k=0

(−1)kΓ( d−2
2 − k)( 1

2 + β − k)2k

k!
sinh

2k
( r
2 )

+
1

(4π)
d
2

∞∑
j=0

(−1)j( 3−d
2 +β−j)d−2+2jΓ( 2−d

2 −j)

j!
sinh

2j
( r
2 ), d �∈ 2Z; (3.11a)

1

(4π)
d
2 sinh( r

2 )d−2

d−4
2∑

k=0

( 1
2 + β − k)2k( d−4

2 − k)!(−1)k

k!
sinh

2k ( r
2

)

+
(−1)

d−2
2

(4π)
d
2

∞∑
j=0

( 3−d
2 + β − j)d−2+2j

j!(j + d−2
2 )!

sinh
2j ( r

2

)(
H d−2

2 +j
+ Hj − 2γE

−ψ( d−1
2 + β + j) − ψ( 3−d

2 + β − j) − ln
(
sinh

2
( r
2 )
))

, d = 2, 4, . . . .

(3.11b)
From this, one easily gets for 2 + 2n > �d

lim
x→x′

∂n

∂zn
Gh

d(z;x, x′)

=
∂n

∂zn

Γ( 2−d
2 )(3−d

2 +
√−z)d−2

(4π)
d
2

, d �∈ 2Z,

=
∂n

∂zn

(−1)
d
2 ( 3−d

2 +
√−z)d−2

(4π)
d
2 Γ(

d
2 )

(
ψ
(

d−1
2 +

√−z
)

+ ψ
(

3−d
2 +

√−z
))

, d = 2, 4, . . .

(3.12)

For odd dimensions, we have an expression in terms of elementary func-
tions:

Gh
d(−β2;x, x′) =

1

2(2π)
d−1
2

(
− 1

sinh r
∂r

)d−3
2 e−βr

sinh r
, d = 3, 5, . . . (3.13)

To describe the behavior near infinity, we use the expansions (C.5), respectively
(C.6), as well as cosh(r)+1

2 = cosh2( r
2 ) and cosh(r)−1

2 = sinh2( r
2 ):

Gh
d(−β2;x, x′) =

1

(4π)
d
2

∞∑
j=0

Γ( 1
2 + β + j)Γ(d−1

2 + β + j)

j!Γ(1 + 2β + j)
(
cosh( r

2 )
)2j+d−1+2β

=
Γ
(

d−1
2 + β

)

(4π)
d
2
(
sinh( r

2 )
)d−2

∞∑
j=0

Γ
(

1
2 + β + j

)(− d+1
2 + β

)
j

j!Γ(1 + 2β + j)
(
cosh( r

2 )
)2j+1+2β

. (3.14)

Note that (3.11a), (3.11b), (3.13) and (3.14) are the analogs of (2.16a), (2.16a),
(2.18) and (2.19).
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3.2. Point Potentials on Hyperbolic Space

We fix the point x0:=(1, 0, . . . , 0) in H
d. Green’s function of the hyperbolic

Laplacian with a point-like potential located at x0 has the form

Gh,γ
d (z;x, x′) = Gh

d(z;x, x′) +
1

γ(z) + Σh
d(z)

Gh
d(z;x, x0)Gh

d(z;x0, x
′), (3.15)

where3

− d
dz

(γ(z) + Σh
d(z)) = σh

d(z):=
∫

Hd

Gh
d(z;x0, x)2dx

=
∫ ∞

1

Gh
d(z, w)2|Sd−1|(w2 − 1)

d
2 −1dw (3.16)

=
πΓ
(

d−1
2 + β

)2

22β+1(4π)
d
2 Γ
(

d
2

)
∫ ∞

2

Zd
2 −1,β

(w)2(w2 − 1)
d
2 −1d2w.

(3.17)

The integrand of (3.17) is well defined for any complex d. As in the flat case,
the integral is convergent only for |�(d−2)| < 2, which includes the dimensions
d = 1, 2, 3:

σh
d(−β2) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

π( 3−d
2 + β)d−2Hd−2( 3−d

2 + β)

(4π)
d
2 2βΓ(d

2 ) sin
(
π d

2

) , |�d − 2| < 2, d �= 2;

ψ′( 1
2 + β)
4πβ

, d = 2.

(3.18)

In terms of z = −β2, these formulas can be conveniently rewritten as

σh
d(z) =

⎧
⎪⎪⎨
⎪⎪⎩

π ∂z ( 3−d
2 +

√−z)d−2

(4π)
d
2 Γ
(

d
2

)
sin
(
π d

2

) , |�d − 2| < 2, d �= 2;

− 1
2π

∂zψ( 1
2 +

√−z), d = 2.

(3.19)

Based on the same arguments as in the Euclidean case, we define σh
d(z)

for higher dimensions as a generalized integral, choose an antiderivative Σh
d

and let γ(z) be a polynomial of degree the smallest integer greater than d−4
2 .

As in the Euclidean case, this Σh
d satisfies for n large enough

∂n

∂zn
Σh

d(z) = − lim
x′→x

∂n

∂zn
Gh

d(z;x, x′), (3.20)

3 Note that we choose the integration variable 2w in (3.17). This choice is only important

when replacing the standard integral by the anomalous generalized integral, which is needed

in even d ≥ 4 and has the scaling anomaly (A.9). Using 2w instead of w ensures that
the reference self-energy given by the generalized integral is asymptotic to the reference
self-energy given by the flat generalized integral in any dimension—c.f. Subsection 3.3.
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and the right-hand side was computed in (3.12). For the following discussion
of special cases, we introduce the notation [x|x′] = cosh r, [x|x0] = cosh θ and
[x′|x0] = cosh θ′.

Dimension 1. We have

Z−1
2 ,β

(cosh r) =
2β

Γ(1 + β)
e−βr and Gh

1(−β2;x, x′) =
e−βr

2β
. (3.21)

Moreover, (3.19) gives

σh
1 (z) =

1
2
∂z

1√−z
. (3.22)

Imposing Σh
1(−∞) = 0, we find

Σh
1(−β2) = − 1

2β
, (3.23)

which coincides with the Euclidean Σ1(−β2). Thus,

Gh,γ
1 (−β2;x, x′) =

e−βr

2β
+

e−βθe−βθ′

(2β)2
(
γ − 1

2β

) , (3.24)

and we obtain the same expression as in the Euclidean case, in accord with
the isometry H

1 ∼= R
1.

Dimension 2. We have

Gh
2(−β2;x, x′) =

Γ
(

1
2 + β

)
√

2π2β+1
Z0,β(cosh r). (3.25)

From (3.19), we obtain a family of self-energies depending on a parameter
ε:= − 2πγ:

Σh,ε
2 (−β2) =

1
2π

(
ψ( 1

2 + β) − ε
)
. (3.26)

Thus,

Gh,ε
2 (−β2;x, x′) =

Γ
(

1
2 + β

)
√

2π2β+1
Z0,β(cosh r)

+
Γ
(

1
2 + β

)2
22β+2

Z0,β(cosh θ)Z0,β(cosh θ′)
ψ( 1

2 + β) − ε
. (3.27)

Dimension 3. We have

Z 1
2 ,β

(cosh r) =
2β

Γ(1 + β)
e−βr

sinh r
and Gh

3(−β2;x, x′) =
e−βr

4π sinh r
. (3.28)

Moreover, (3.19) gives
σh

3 (z) = − 1
4π ∂z

√−z, (3.29)

so that imposing Σh
3(0) = 0 yields

Σh
3(−β2) =

β

4π
. (3.30)
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In dimension 3, the hyperbolic self-energy equals the Euclidean self-energy:
Σh

3(−β2) = Σ3(−β2). However, Green’s function is different:

Gh,γ
3 (−β2;x, x′) =

e−βr

4π sinh r
+

e−βθe−βθ′

(4π)2 sinh θ sinh θ′(γ + β
4π

) . (3.31)

Odd dimensions d ≥ 5. The identities (3.18) and (3.19) remain valid for d ∈
C\2Z if the integrals are interpreted in the generalized sense. Therefore, we
can set

Σh
d(−β2) = − π ( 3−d

2 + β)d−2

(4π)
d
2 Γ
(

d
2

)
sin
(
π d

2

) . (3.32)

If d is an odd integer, we can rewrite (3.32) as

Σh
d(−β2) =

π

(4π)
d
2 Γ
(

d
2

)β
d−3
2∏

j=1

(− β2 + j2
)
. (3.33)

Inserting (3.13) and (3.33) into (3.15), we obtain an expression for Gh,γ
d (z;x, x′).

Even dimensions d ≥ 4.
In this case, the formula (3.32) is not applicable. Instead we introduce a

family of reference self-energies parametrized by ε ∈ R:

Σh,ε
d (−β2):=

ψ
(

3−d
2 + β

)
+ ψ
(

d−1
2 + β

)− 2ε

(4π)
d
2 Γ
(

d
2

)

d−4
2∏

j=0

(
− β2 +

(
1
2 + j

)2)
.

(3.34)

We obtain a family of Green’s function

Gh,ε,η
d (z;x, x′) = Gh

d(z;x, x′) +
Gh

d(z;x, x0)Gh
d(z;x0, x

′)

η(z) + Σh,ε
d (z)

, (3.35)

where deg η ≤ d−4
2 .

Let us derive (3.34) from the integral (3.17). For d ∈ 2Z, d > 2, it has to
be understood in the generalized anomalous sense and is not equal to (3.18).
Instead, the anomalous integral given by (C.21) yields

σh
d(−β2) =

(−1)
d
2 −1( 3−d

2
+ β)d−2

(4π)
d
2 Γ( d

2
)

(
ψ′( 3−d

2 +β)+ψ′( d−1
2 +β)

2β

+
H d−2

2
( 1
2

− β) − H d−2
2

( 1
2

+ β)

2β
ln 4

+

d−4
2∑

k=0

ψ( 3
2

+ k + β) + ψ(− 1
2

− k + β) − ψ( d
2

− 1 − k) − ψ(1 + k)

β2 − ( 1
2

+ k)2

)
. (3.36)

We notice that ∂z = − 1
2β ∂β and ∂z(z)k = Hk(z)(z)k. Using this, the Leib-

niz rule for ∂z and identities satisfied by the Pochhammer symbol, harmonic
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numbers and the digamma function (see Appendix D) yields

σh
d(z) =

(−1)
d
2

(4π)
d
2 Γ
(

d
2

)∂z

((
ψ
(

3−d
2 +

√−z
)

+ ψ
(

d−1
2 +

√−z
)− ln 4

)

d−4
2∏

j=0

(
− z − ( 1

2 + j
)2)
)

+
1

(4π)
d
2 Γ
(

d
2

)πh
d(z), (3.37)

where πh
d(z) is the polynomial of degree d−4

2 defined by

πh
d(z) =

( d−4
2∑

k=0

ψ
(

d−2
2 − k

)
+ ψ(1 + k)

z +
(

1
2 + k

)2

+

d−4
2∑

k=0

d−4
2∑

l=k+1

2l + 1(
z +
(

1
2 + k

)2)(
z +
(

1
2 + l

)2)
) d−4

2∏
j=0

(
z +
(

1
2 + j

)2)
.

Therefore, the following function is an antiderivative of minus (3.37) and
is a possible self-energy:

Σh,ms
d (−β2) =

ψ
(

3−d
2 + β

)
+ ψ
(

d−1
2 + β

)− ln 4

(4π)
d
2 Γ
(

d
2

)

d−4
2∏

j=0

(
− β2 +

(
1
2 + j

)2)

+
1

(4π)
d
2 Γ
(

d
2

)Πh
d(−β2), (3.38)

where

Πh
d(z):= −

∫ z

0

πh
d(τ)dτ, (3.39)

which is a polynomial of degree d−2
2 with Πh

d(0) = 0. (3.38) will be called the
reference self-energy based on minimal subtraction. (The superscript ms stands
for the “minimal subtraction.”)

As in the Euclidean case, we can add to (3.38) an arbitrary polynomial
γ(−β2) of degree ≤ d−2

2 . Let ln 4−2ε

(4π)
d
2 Γ( d

2 )
be the coefficient at the term z

d−2
2 of

Πh
d(z)

(4π)
d
2 Γ( d

2 )
+ γ(z). Then we can write

Σh,ms
d (−β2) + γ(−β2) = Σh,ε

d (−β2) + η(−β2), (3.40)

where η is a polynomial of degree ≤ d−4
2 and Σh,ε

d was introduced in (3.34).
We prefer the latter as the family of reference self-energies because of the
factorized form.

Remark 3.2 We have two proposals for the reference self-energy for even d ≥ 4:
Σh,ε

d , ε ∈ R, in (3.34) and Σh,ms
d in (3.38). We choose the former as the standard

one, because of its simplicity. In particular, it is factorized, which allows to
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determine easily its zeros responsible for singularities of the corresponding
Green’s functions.

However, Σh,ms
d is also in some sense special. It is obtained with the help

of the generalized integral, a concept closely related to the minimal subtraction
method in QFT. One can criticize it saying that because of anomaly it depends
on the choice of the integration variable, which in the hyperbolic case is chosen
to be 2(w − 1) = 2(cosh r − 1). However, this is actually a natural variable. It
is closely related to the family of conformal transformations, which are best
expressed in the variable w:

φλ(w) =
λ−1(w + 1) + λ(w − 1)
λ−1(w + 1) − λ(w − 1)

. (3.41)

φλ form a one-parameter group φλ ◦ φμ = φλμ and φ1 = id.
As outlined in the introduction, Green’s functions that we introduce most

likely describe the asymptotics of the resolvent of the Laplacian with a per-
turbation supported in a shrinking region. We expect that fine-tuning the
perturbation we should be able to see Green’s functions corresponding to var-
ious ε, η. One can ask the question whether the self-energy Σh,ms

d (based on
the generalized integral) is distinguished and obtained by a special way of
shrinking the perturbation. As of now, we do not know.

Spectral properties. Green’s functions Gh,γ
d (z) and Gγ

d(z) have a cut at z ∈
[0,∞[, which in dimensions 1, 2, 3 corresponds to the continuous spectrum of
Hh,γ

d and Hγ
d . There may be also some singularities outside of [0,∞[, which

in the hyperbolic case, apart from dimension d = 1, 3, have a more compli-
cated structure than in the flat case, because the logarithm is replaced by the
digamma function. Note that in dimensions d = 1, 3 the poles are exactly the
same as in the flat case, because

Σh
1(−β2) = Σ1(−β2) and Σh

3(−β2) = Σ3(−β2). (3.42)

3.3. Flat Limit of the Hyperbolic Laplacian

Let R > 0. Instead of the hyperbolic space of curvature −1, we can use its
scaled version of curvature − 1

R2 :

H
d
R:={x ∈ R

1,d | [x|x] = R2}.

We can introduce various objects from the previous subsection corresponding
to H

d
R, which will be distinguished by the subscript R. Clearly, Hd

1 = H
d �

x �→ Rx ∈ H
d
R is a bijection and

dh
R(Rx,Rx′) = R dh(x, x′).

The map UR : L2(Hd) → L2(Hd
R) given by

URf(x):=R− d
2 f
( x

R

)
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is unitary. If K(x, x′) is the integral kernel of K on L2(Hd) and KR(x, x′) is
the integral kernel of URKU−1

R on L2(Hd
R), then

KR(x, x′) = R−dK
( x

R
,
x′

R

)
. (3.43)

The hyperbolic Laplacian on L2(Hd
R) is

Δh
d,R =

1
R2

URΔh
dU−1

R . (3.44)

We set

Hh
d,R:= − Δh

d,R − (d − 1)2

4R2
, (3.45)

so that σ(Hh
d,R) = [0,∞[. For z ∈ C\[0,∞[, we set

Gh
d,R(z):=(−z + Hh

d,R)−1, (3.46)

P
h
d,R(a, b):=1l[a,b](Hh

d,R). (3.47)

Note that

Gh
d,R(−β2;x, x′) = R−d+2Gh

d

(
− (βR)2;

x

R
,
x′

R

)
, (3.48)

P
h
d,R(a, b;x, x′) = R−d

P
h
d

(
aR2, bR2;

x

R
,
x′

R

)
. (3.49)

Proceeding as for R = 1, we introduce

Gh,γ
d,R(z;x, x′) = Gh

d,R(z;x, x′) +
Gh

d,R

(
z;x,Rx0

)
Gh

d,R

(
z;Rx0, x

′)

γ(z) + Σh
d,R(z)

, (3.50)

where γ(z) is a polynomial (of degree as for R = 1) and Σh
d,R is a particular

solution of

− d
dz

Σh
d,R(z) = σh

d,R(z):=
∫

H
d
R

Gh
d,R(z;x,Rx0)2dx. (3.51)

For dimensions d for which the integral does not converge, we integrate over
angles and then compute the generalized integral with respect to the radial
coordinate 2RwR = R2[ x

R |x0]:

σh
d,R(z) = gen

∫ ∞

2R2
|Sd−1|Gh

d,R(z; x, Rx0)2(w2
R − R2)

d−2
2 R

d(2RwR)

2R

= Rd gen

∫ ∞

2R2
|Sd−1|(R−d+2Gh

d(R2z; w))2(w2 − 1)
d−2
2

d(2R2w)

2R2

= R−d+4

⎧
⎪⎨
⎪⎩

σh
d(R2z), d �∈ {4, 6, . . . },

σh
d(R2z) − 2(−1)

d
2

(4π)
d
2 Γ( d

2 )

∂

∂(R2z)

Γ
(

d−1
2

+
√−R2z

)

Γ
(
3−d
2

+
√−R2z

) ln R, d ∈ {2, 4, . . . }.

(3.52)

In the last equality, we used (A.11); the scaling anomaly coefficient f−1 was
computed in [10]. In even dimensions, we prefer to use

Gh,ε,η
d,R (z;x, x′) = Gh

d,R(z;x, x′) +
Gh

d,R

(
z;x,Rx0

)
Gh

d,R

(
z;Rx0, x

′)

η(z) + Σh,ε
d,R(z)

. (3.53)
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We choose the reference self-energies to be

Σh
d,R(−β2):=R2−dΣh

d

(− (βR)2
)
, d odd;

Σh,ε
d,R(−β2):=R2−dΣh,ε+ln R

d

(− (βR)2
)
, d even.

Theorem 3.3 Let −β2 ∈ C\[0,∞[. We have

Gh
d,R

(− β2; r
)

= Gd

(− β2; r
)(

1 + O( 1
βR

)
+ O( r

R

))
(3.54)

and

Σh
d,R

(− β2
)

= Σd

(− β2
)(

1 + O( 1
βR

))
, d odd; (3.55)

Σh,ε
d,R

(− β2
)

= Σε
d

(− β2
)(

1 + O( 1
βR

))
, d even. (3.56)

Thus, if we have a family xR, x′
R ∈ H

d
R and x, x′ ∈ R

d such that

lim
R→∞

dh
R(xR, x′

R) = |x − x′|,
lim

R→∞
dh

R(xR, Rx0) = |x|,
lim

R→∞
dh

R(x′
R, Rx0) = |x′|, (3.57)

then

lim
R→∞

Gh,γ
d,R

(− β2;xR, x′
R

)
= Gγ

d(−β2;x, x′), d odd; (3.58)

lim
R→∞

Gh,ε,η
d,R

(− β2;xR, x′
R

)
= Gε,η

d (−β2;x, x′), d even. (3.59)

Proof Using the asymptotics of the Gegenbauer functions from Thm. C.1, we
find

Gh
d,R(−β2, rR) = R−d+2Gh

d

(
− (βR)2, cosh

rR

R

)

=
R−d+2Γ(d−1

2 + βR)
Γ( 3−d

2 + βR)

√
πΓ( 3−d

2 + βR)√
2(2π)

d
2 2βR

Z d−2
2 ,βR

(
cosh

rR

R

)

=
( rR

R )
d−1
2

(sinh rR

R )
d−1
2 (2π)

d
2

( β

rR

) d−2
2

K d−2
2

(βrR)
(
1 + O( 1

βR

))

=
1

(2π)
d
2

( β

rR

) d−2
2

K d−2
2

(βrR)
(
1 + O( 1

βR

)
+ O( rR

R

))
. (3.60)

This proves (3.54). (3.55) follows from C.2 and

ψ
(

1
2 ± α + βR

)− ln(βR) = O( 1
βR

)
. (3.61)

Now let

rR : = dh
R(xR, x′

R), θR : = dh
R(xR, Rx0), θ′

R : = dh
R(x′

R, Rx0), (3.62)

r : = |x − x′|, θ : = |x − x0|, θ′ : = |x′ − x0|. (3.63)

By (3.54) and (3.55), we obtain

Gh,γ
d,R(−β2;xR, x′

R) = Gh
d,R(−β2, rR) +

Gh
d,R

(− β2, θR

)
Gh

d,R

(− β2, θ′
R

)

γ(−β2) + Σh
d,R(−β2)
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= Gd(−β2, rR)
(
1 + O( 1

βR

)
+ O( rR

R

))

+
Gd

(− β2, θR

)
Gd

(− β2, θ′
R

)

γ(−β2) + Σd

(− β2
)(

1 + O( 1
βR

))
(
1 + O( 1

βR

)
+ O( θR

R

)
+ O( θ′

R

R

))
. (3.64)

Now (3.57) implies rR

R , θR

R and θ′
R to be O( 1

R ). Hence, the limit R → ∞ of the
right-hand side is

Gd(−β2, r) +
Gd

(− β2, θ
)
Gd

(− β2, θ′)

γ(−β2) + Σd

(− β2
) = Gγ

d(−β2;x, x′), (3.65)

which proves (3.58). �

4. Green’s Operators on the Sphere

4.1. Spherical Laplacian

Equip the space R
1+d with the Euclidean bilinear form

(x|y) = x0y0 + x1y1 + · · · + xdyd.

The set

S
d := {x ∈ R

1+d | (x|x) = 1}
equipped with the Riemannian metric inherited from R

1+d is called the (unit)
sphere. The geodesic distance between x, x′ ∈ S

d is given by

ds(x, x′) = cos−1(x|x′), cos ds(x, x′) = (x|x′). (4.1)

S
d has also a natural measure, so one can define L2(Sd).

In this section, we study the operator

Hs
d := −Δs

d +
(d − 1)2

4
, (4.2)

where Δs
d is the spherical Laplacian. For z ∈ C\σ(Hs

d) ⊃ C\[0,∞[, we define
the spherical Green’s operator Gs

d(z) := (−z + Hh
d )−1. Eigenfunctions of Hs

d

with eigenvalue (l + d−1
2 )2 are called spherical harmonics of degree l. The

corresponding spectral projection will be denoted

P
s
d,l := 1ll(l+d−1)

(− Δs
d

)
= 1l(l+ d−1

2 )2

(
Hs

d

)
. (4.3)

In the following theorem, we express the integral kernels of Gs
d(z) and

P
s
d,l in terms of Gegenbauer function Sα,β and Gegenbauer polynomials Cα

l ,
see Appendix C.

Theorem 4.1 1. For �β > 0, the integral kernel of Gs
d(−β2) is

Gs
d(−β2;x, x′) =

Γ(d−1
2 + iβ)Γ(d−1

2 − iβ)

(4π)
d
2

S d
2 −1,iβ

(− (x|x′)
)
. (4.4)
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2. (4.4) is true also on the real line away of the spectrum of Hs
d. It is con-

venient to rewrite it as follows: For ζ ∈ R, ζ − d−1
2 �∈ {0, 1, 2, . . . },

Gs
d(ζ

2;x, x′) =
Γ(d−1

2 + ζ)Γ(d−1
2 − ζ)

(4π)
d
2

S d
2 −1,ζ

(− (x|x′)
)
. (4.5)

3. The integral kernel of Ps
d,l is

P
s
d,l(x, x′) =

(2l + d − 1)Γ(d−1
2 )

4π
d+1
2

C
d−1
2

l

(
(x|x′)

)
(4.6)

Proof Let w := −(x|x′). By the spherical symmetry, there exists a function
Gs

d(z, w) such that, Gs
d(z, x, x′) =: Gs

d(z, w). We obtain the differential equa-
tion

0 =
(

(1 − w2)∂2
w − dw∂w − β2 −

(d − 1
2

)2
)

Gs
d(−β2, w). (4.7)

Then we need to find the solution regular near w = −1 and such that

Gs
d

(− β2,− cos(r)
) ∼

{
Γ( d

2 −1)

4π
d
2

r2−d, d �= 2,

− 1
2π ln r, d = 2,

(4.8)

This yields (4.4), (4.5). To see (4.6), we use (1.40):

lhs of (4.6)

= lim
ε↘0

((
l + iε +

d − 1
2

)2

−
(
l +

d − 1
2

)2)
Gs

d

((
l + iε +

d − 1
2

)2

;x, x′
)

= lim
ε↘0

iε(2l + d − 1)
Γ(−l − iε)Γ(d − 1 + l + iε)

2dπ
d
2

S d
2 −1, d−1

2 +l+iε

(− (x|x′)
)
.

=
(−1)l(2l + d − 1)Γ(d − 1 + l)

l!2dπ
d
2

S d
2 −1, d−1

2 +l

(− (x|x′)
)

=
(2l + d − 1)Γ(d−1

2 )

4π
d+1
2

C
d−1
2

l

(
(x|x′)

)
. (4.9)

At the end, we used (C.11) and
√

πΓ(d − 1) = 2d−2Γ(d−1
2 )Γ(d

2 ).
�

The function Gs
d(−β2,− cos r) can be defined for any d ∈ C. However, we

do not have a symmetry similar to (3.10), except for even integers. To obtain
formulas describing the behavior close to r = 0, we use (C.12), (C.2), (C.3)
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and 1−cos r
2 = sin2( r

2 ):

Gs
d(−β2, r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

sind−2( r
2
)

∞∑
k=0

( 1
2

+ iβ − k)2kΓ( d−2
2

− k)

(4π)
d
2 k!

sin2k
(

r
2

)

+

∞∑
j=0

(−1)j( 1
2

+ iβ) d−2
2 +j

( 1
2

− iβ) d−2
2 +j

Γ( 2−d
2

− j)

(4π)
d
2 j!

sin2j
(

r
2

)
, d �∈ 2Z;

(4.10a)

1

sind−2( r
2
)

d−4
2∑

k=0

( 1
2

+ iβ − k)2k( d−4
2

− k)!

(4π)
d
2 k!

sin2k
(

r
2

)

+
∞∑

j=0

(−1)j( 3−d
2

+ iβ − j)d−2+2j

(4π)
d
2 j!(j + d−2

2
)!

sin2j
(

r
2

)(
H d−2

2
+j

+ Hj − 2γE

−ψ( d−1
2

+ iβ + j) − ψ( d−1
2

− iβ + j) − ln
(
sin2( r

2
)
))

, d = 2, 4, . . . .

(4.10b)

If 2 + 2n > �d, then
lim

x→x′ ∂
n
z G

s
d(z; x, x

′
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γ
( 2−d

2

)

(4π)
d
2

∂n
z

(
( 1
2 + i

√−z) d−2
2

( 1
2 − i

√−z) d−2
2

)
, d �∈ 2Z;

(−1)
d
2

(4π)
d
2 Γ
(

d
2

)∂n
z

(
(ψ( d−1

2 + i
√−z) + ψ( d−1

2 − i
√−z))

∏ d−4
2

j=0 (( 1
2 + j)2 − z)

)
, d = 2, 4, . . . .

(4.11)

For odd integers, we have an expression in terms of elementary functions:

Gs
d(−β2; x, x′) =

1

2(2π)
d−1
2 sinh πβ

(
− 1

sin r
∂r

) d−3
2 sinh

(
β(π − r)

)
sin r

, d = 3, 5, . . .

(4.12)

To describe the behavior close to pairs of antipodal points, that is close to
r = π, we use (C.2), (C.3) as well as 1+cos r

2 = cos2( r
2 ) and 1−cos r

2 = sin2( r
2 ):

Gs
d(−β2;x, x′) =

1

(4π)
d
2

∞∑
j=0

Γ(d−1
2 + iβ + j)Γ(d−1

2 − iβ + j)
Γ(d

2 + j)j!
cos2j

(
r
2

)

=
Γ(d−1

2 + iβ)Γ(d−1
2 − iβ)

(4π)
d
2
(
sin2

(
r
2

))d−2
2

∞∑
j=0

(
1
2 + iβ

)
j

(
1
2 − iβ

)
j

Γ
(

d
2 + j

)
j!

cos2j
(

r
2

)
.

(4.13)

For integer d, (4.13) can be simplified as follows:

G
s
d(−β

2
, r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)
d−2
2 π

(4π)
d
2 cosh πβ

∞∑
j=0

(−1)j( 3−d
2 − j + iβ)d−2+2j

( d−2
2 + j)!j!

cos
2j ( r

2

)
, d = 2, 4, . . . ;

(4.14a)
(−1)

d−1
2 π

(4π)
d
2 i sinh πβ

∞∑
j=0

(−1)j( 3−d
2 − j + iβ)d−2+2j

Γ( d
2 + j)j!

cos
2j ( r

2

)
, d = 3, 5, . . . .

(4.14b)



J. Dereziński et al. Ann. Henri Poincaré

Note that (4.10a), (4.10a), (4.12) and (4.13) are the analogs of (2.16a), (2.16a),
(2.18) and (2.19).

4.2. Point Potentials on the Sphere

Denote the north pole of the sphere by x0 = (1, 0, . . . , 0). Green’s function of
the spherical Laplacian with a point-like potential located at x0 ∈ S

d has the
form

Gs,γ
d (z;x, x′) = Gs

d(z;x, x′) +
Gs

d(z;x, x0)Gs
d(z;x0, x

′)
γ(z) + Σs

d(z)
, (4.15)

where (with z = −β2)

−∂zΣs
d(z) = σs

d(z) :=
∫

Sd

Gs
d(z;x0, x)2dx

=
∫ 1

−1

Gs
d(z;w)2|Sd−1|(1 − w2)

d
2 −1dw (4.16)

=
Γ
(

d−1
2 + iβ

)2Γ(d−1
2 − iβ

)2
22dπ

d
2 Γ
(

d
2

)
∫ 2

−2

Sd
2 −1,iβ

(w)2(1 − w2)
d
2 −1d2w.

(4.17)

The integrand of (4.17) is well defined for any complex d. Again, the integral
is convergent only for |�(d−2)| < 2, which includes the dimensions d = 1, 2, 3:

σs
d(z) =

⎧
⎪⎪⎨
⎪⎪⎩

Γ( 2−d
2 )

(4π)
d
2

∂z

(
( 1
2 + i

√−z) d−2
2

( 1
2 − i

√−z) d−2
2

)
, |�d − 2| < 2, d �= 2;

− 1
4π

∂z

(
ψ
(

1
2 + i

√−z
)

+ ψ
(

1
2 − i

√−z
))

, d = 2.

(4.18)

Let us discuss specific dimensions. Except for dimension 1, we will use
the notation cos r = (x|x′), cos θ = (x|x0), cos θ′ = (x′|x0).

Dimension 1. This case can be solved in an elementary way. Solving (−∂2
θ +

β2)g(θ) = δ(θ) on S
1 = R/2πZ, we obtain g(θ) = cosh(β(θ−π))

2β sinh(πβ) , |θ − π| < π.
This yields the following description of the one-dimensional Green’s function:

Gs
1(−β2; θ, θ′) =

cosh(β(θ − θ′ − π))
2β sinh(πβ)

, (4.19)

where θ − θ′ ∈]0, 2π[. We put the contact potential at θ = π and compute

σs
1(−β2) =

∫ π

−π

Gs
1(−β2, π, θ)2dθ =

π

4β2 sinh2(πβ)
+

cosh(πβ)
4β3 sinh(πβ)

, (4.20)

Σs
1(−β2) = −

∫ ∞

β2
σs

1(−ρ)dρ = −coth(πβ)
2β

. (4.21)

Thus,

Gs,γ
1 (−β2; θ, θ′) =

cosh(β(θ − θ′ − π))
2β sinh(πβ)

+
cosh(θβ) cosh(θ′β)

(2β)2 sinh2(πβ)
(
γ − 1

2β coth(πβ)
) .

(4.22)
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Let us show that it also follows from the general theory. We check that

S− 1
2 ,iβ

(− cos(θ − θ′)
)

=
1√
π

cosh(β(θ − θ′ − π)), (4.23)

Γ(iβ)Γ(−iβ) =
π

β sinh(πβ)
. (4.24)

Thus,

Gs
1(−β2; θ, θ′) =

Γ(iβ)Γ(−iβ)
2
√

π
S− 1

2 ,iβ

(− cos(θ − θ′)
)

(4.25)

yields (4.19). The formula (4.18) specified to d = 1 gives

σs
1(z) = ∂z

coth(π
√−z)

2
√−z

. (4.26)

Imposing the condition Σs
1(−∞) = 0 yields

Σs
1(−β2) = −coth(πβ)

2β
. (4.27)

Dimension 2. We have

Gs
2(−β2;x, x′) =

S0,iβ(− cos r)
4 cosh(πβ)

. (4.28)

From (4.18), we obtain a family of self-energies depending on the parameter
ε := −2πγ:

Σs,ε
2 (−β2) =

1
4π

(
ψ
(

1
2 + iβ

)
+ ψ
(

1
2 − iβ

)− 2ε
)
. (4.29)

Thus,

Gs,ε
2 (−β2;x, x′) =

S0,iβ(− cos r)
4 cosh(πβ)

+
π

4 cosh2(πβ)
S0,iβ(− cos θ)S0,iβ(− cos θ′)
ψ( 1

2 + iβ) + ψ( 1
2 − iβ) − 2ε

. (4.30)

In contrast to the Euclidean case, Σs,ε
d (−β2) has a singularity at −∞ but not

at 0.

Dimension 3. We have

S 1
2 ,iβ(− cos r) =

2 sinh
(
(π − r)β

)
β
√

π sin r
, (4.31)

Gs
3(−β2, x, x′) =

1
4π

sinh
(
(π − r)β

)
sinh(πβ) sin r

. (4.32)

Using (4.18) and choosing the integration constant so that Σs
3(−β2) = Σ3(−β2)

+ o(1)β→∞,

Σs
3(−β2) =

β coth(πβ)
4π

. (4.33)
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Therefore,

Gs,γ
3 (−β2, x, x′) =

sinh
(
β(π − r)

)
4π sinh(βπ) sin r

+
sinh

(
β(π − θ)

)
sinh

(
β(π − θ′)

)

(4π)2 sin θ sin θ′ sinh2(βπ)
(
γ + β coth(πβ)

4π

) . (4.34)

Odd dimensions d ≥ 5. Equation (4.18) is still valid if understood in the
generalized sense for all d ∈ C \ 2Z. Therefore, we can set for such d

Σs
d(−β2) = − Γ( 2−d

2 )

(4π)
d
2

( 1
2 + iβ) d−2

2
( 1
2 − iβ) d−2

2
. (4.35)

Due to (D.6), (4.35) specified to odd integer values is

Σs
d(−β2) =

πβ coth(πβ)

(4π)
d
2 Γ(d

2 )

d−3
2∏

k=1

(
− k2 − β2

)
. (4.36)

Combining (4.12), (4.36) and (4.15), we obtain Gs,γ
d (−β2;x, x′).

Even dimensions d ≥ 4. Similarly as in the flat and hyperbolic case, the formula
(4.35) is not applicable. As we will argue below, for d ∈ 2Z, d ≥ 4, we will
introduce a family of reference self-energies parametrized by ε ∈ R:

Σs,ε
d (−β2) :=

ψ
(

d−1
2 + iβ

)
+ ψ
(

d−1
2 − iβ

)− 2ε

(4π)
d
2 Γ
(

d
2

)

d−4
2∏

j=0

(
−β2−( 1

2 +j
)2)

. (4.37)

Thus, we obtain a family of Green’s functions

Gs,ε,η
d (z;x, x′) = Gs

d(z;x, x′) +
Gs

d(z;x, x0)Gs
d(z;x0, x

′)
η(z) + Σs,ε

d (z)
, (4.38)

parametrized by ε ∈ R and a polynomial η with deg η ≤ d−4
2 .

Let us derive (4.37) using the integral in (4.17) as the starting point. For
d ∈ 2Z, d ≥ 4, unfortunately, (4.17) has to be understood in the anomalous
generalized sense and is not equal to (4.18). Instead, it is given by (C.16) and
we have

σs
d(−β2) =

(−1)
d−2
2 ( 1

2
+ iβ) d−2

2
( 1
2

− iβ) d−2
2

Γ( d
2
)(4π)

d
2

(
i

2β

(
ψ′( d−1

2
+ iβ

)− ψ′( d−1
2

− iβ
))

− i

2β

(
H d−2

2

(
1
2

+ iβ) − H d−2
2

(
1
2

− iβ)
)

ln 4

+

d−4
2∑

k=0

ψ
(− 1

2
− k + iβ

)
+ ψ

(− 1
2

− k − iβ
)− ψ( d−2

2
− k) − ψ(1 + k)(

1
2

+ k
)2

+ β2

)
.

(4.39)
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As in the hyperbolic case, application of the Leibniz rule and identities satisfied
by the Pochhammer symbol, harmonic numbers and the digamma function (see
Appendix D) yields

σs
d(z) = − 1

Γ( d
2
)(4π)

d
2

∂z

((
ψ
(

d−1
2

+ i
√−z

)
+ ψ

(
d−1
2

− i
√−z

)− ln 4
) d−4

2∏
j=0

(
z − ( 1

2
+ j)2

)
)

+
1

Γ( d
2
)(4π)

d
2

πs
d(z), (4.40)

where πs
d is a polynomial of degree d−4

2 given by

πs
d(z) =

d−4
2∏

j=0

(
z − ( 1

2 + j)2
)
( d−4

2∑
k=0

ψ
(

d−2
2 − k

)
+ ψ(1 + k)

z − ( 1
2 + k)2

−
d−4
2∑

k=0

d−4
2∑

l=k+1

2l + 1(
z − ( 1

2 + k
)2)(

z − ( 1
2 + l

)2)
)

. (4.41)

We define

Πs
d(z) := −

∫ z

0

πs
d(τ)dτ, (4.42)

a polynomial of degree d−2
2 with Πs

d(0) = 0 and

Σs,ms
d (z) =

1

Γ( d
2
)(4π)

d
2

(
ψ
(

d−1
2

+ i
√−z

)
+ ψ
(

d−1
2

− i
√−z

)− ln 4
) d−4

2∏
j=0

(
z − ( 1

2
+ j)2

)

+
1

Γ( d
2
)(4π)

d
2

Πs
d(z). (4.43)

Then Σs,ms
d is an antiderivative of minus (4.40) and will be called the reference

self-energy based on the minimal subtraction. From Σs,ms
d , we pass to the family

of reference self-energies Σs,ε
d by absorbing Πs

d(z) into ε and η(z) as in the
hyperbolic case.

4.3. Flat Limit of the Spherical Laplacian

Let R > 0. Instead of the unit sphere, we can consider the sphere of radius R

S
d
R := {x ∈ R

1+d | (x|x) = R2}.

Various objects defined using S
d
R instead of Sd will have the subscript R. We

have a bijection S
d = S

d
1 � x �→ Rx ∈ S

d
R. The distance in S

d
R satisfies

ds
R(Rx,Rx′) = Rds(x, x′). (4.44)

The Laplace–Beltrami operator on S
d
R, denoted Δs

d,R, is a self-adjoint operator
on L2(Sd

R) and

σ(−Δs
d,R) =

{
l(l + d − 1)

R2

∣∣ l = 0, 1, 2, . . .

}
. (4.45)
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We set Hs
d,R := −Δs

d,R + (d−1)2

4R2 . For �β > 0 and a < b, we set

Gs
d,R(z) :=

(− z + Hs
d,R

)−1
, (4.46)

P
s
d,l,R := 1l 1

R2 (l+ d−1
2 )2

(
Hs

d,R

)
, (4.47)

P
s
d,R(a, b) := 1l[a,b]

(
Hs

d,R

)
. (4.48)

We have

Gs
d,R(−β2;x, x′) = R−d+2Gs

d

(
− (βR)2;

x

R
,
x′

R

)
, (4.49)

P
s
d,l,R(x, x′) = R−d

P
s
d,l

( x

R
,
x′

R

)
, (4.50)

P
s
d,R(a, b;x, x′) = R−d

P
s
d

(
R2a,R2b;

x

R
,
x′

R

)
. (4.51)

The self-energy on S
d
R is defined analogously to the hyperbolic case and

comes out to be

Σs
d,R(−β2) := R2−dΣs

d

(− (βR)2
)
, d odd;

Σs,ε
d,R(−β2) := R2−dΣs,ε+ln R

d

(− (βR)2
)
, d even.

Let x, x′ ∈ S
d
R. The perturbed Green’s functions on S

d
R in odd and even

dimensions, respectively, are

Gs,γ
d,R(z;x, x′) = Gs

d,R(z;x, x′) +
Gs

d,R

(
z;x,Rx0

)
Gs

d,R

(
z;Rx0, x

′)

γ(z) + Σs
d,R(z)

; (4.52)

Gs,ε,η
d,R (z;x, x′) = Gs

d,R(z;x, x′) +
Gs

d,R

(
z;x,Rx0

)
Gs

d,R

(
z;Rx0, x

′)

η(z) + Σs,ε
d,R(z)

. (4.53)

Note that γ(z) and η(z) on the right-hand sides of (4.52) and (4.53) do
not depend on R. This choice of renormalization is analogous to the hyperbolic
case. Then all Green’s functions have the correct flat limit in the following
sense:

Theorem 4.2 Let −β2 ∈ C\[0,∞[. Then

Gs
d,R

(− β2, r
)

= Gd

(− β2, r
)(

1 + O( 1
βR

)
+ O( r

R

))
, (4.54)

Σs
d,R(−β2) = Σd

(− β2
)(

1 + O( 1
βR

))
, d odd; (4.55)

Σs,ε
d,R(−β2) = Σε

d

(− β2
)(

1 + O( 1
βR

))
, d even. (4.56)

Thus, if we have a family xR, x′
R ∈ S

d
R and x, x′ ∈ R

d such that

lim
R→∞

ds
R(xR, x′

R) = |x − x′|,
lim

R→∞
ds

R(xR, Rx0) = |x|,
lim

R→∞
ds(xR, Rx0) = |x′|, (4.57)
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then

lim
R→∞

Gs,γ
d,R

(− β2;xR, x′
R

)
= Gγ

d(−β2, x, x′), d odd; (4.58)

lim
R→∞

Gs,ε,η
d,R

(− β2;xR, x′
R

)
= Gε,η

d (−β2, x, x′), d even. (4.59)

Proof Using the asymptotics of the Gegenbauer functions from Thm. C.1, we
find

Gs
d,R(−β2; rR) = R−d+2Gs

d

(
− (βR)2;− cos

rR

R

)

=
R−d+2Γ(d−1

2 + iβR)Γ(d−1
2 − iβR)

(4π)
d
2

S d−2
2 ,iβR

(
− cos

rR

R

)

=
βd−2πe−πRβ

2
d−2
2 (2π)

d
2

S d−2
2 ,iβR

(
− cos

rR

R

)(
1 + O( 1

βR

))

=
( rR

R )
d−1
2

(sin rR

R )
d−1
2 (2π)

d
2

( β

rR

) d−2
2

K d−2
2

(βrR)
(
1 + O( 1

βR

))
. (4.60)

This proves (4.54). To prove (4.55), we use Thm. C.2 and

ψ
(

1
2 + α ± iβR

)− ln(βR) ∓ iπ
2 = O( 1

βR

)
. (4.61)

Then we argue as in the hyperbolic case. �

4.4. Poles of Green’s Functions and Spectral Properties

All singularities of Green’s functions Gs,γ
d,R(z) are isolated. In dimensions d =

1, 2, 3, they correspond to the point spectrum of Hs,γ
d,R. In this section, we

analyze the location of these singularities. They come in two types: poles of
Gs

d,R and zeros of γ(z) + Σs
d,R(z), and η(z) + Σs,ε

d,R(z). First we discuss the
former.

Let l ∈ N0 and let ωd,l = d−1
2 + l parametrize the eigenvalues R−2ω2

d,l of
the unperturbed operator. It is well known that the multiplicity of R−2ω2

d,l, or
in other words the dimension of the range of Ps

d,l,R, is md,l =
(
d+l
d

)− (d+l−2
d

)
.

Therefore, ∫
P

s
d,l,R(x,Rx0)2dx = P

s
d,l,R(Rx0, Rx0) =

md,l

|Sd|Rd
. (4.62)

The right-hand side of (4.62) can be verified explicitly using an appropriately
rescaled version of (4.6). Moreover, the rank of the residue of the unperturbed
Green’s operator Gs

d,R(z) at z = R−2ω2
d,l is md,l. Let us show that after per-

turbation this rank drops by 1.

Theorem 4.3 Gs,γ
d,R(z) has a pole of rank md,l − 1 at R−2ω2

d,l. In particular,
since md,0 = 1, the perturbed Green’s function does not have a pole at R−2ω2

d,0.

Proof We have

Gs
d,R(z;x, x′) =

P
s
d,l,R(x, x′)

R−2ω2
d,l − z

+ R(z;x, x′), (4.63)
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with a remainder R(z;x, x′) non-singular at z = R−2ω2
d,l and satisfying

∫

S
d
R

P
s
d,l,R(x, x′)R(z;x′, x′′)dx′ = 0. (4.64)

From this and (4.62), we can deduce that near z = R−2ω2
d,l, function σs

d,R(z)
is given by

σs
d,R(z) =

∫
Gs

d,R(z; 0, y)2dy (4.65)

=
1

(R−2ω2
d,l − z)2

∫
P

s
d,l,R(x,Rx0)2dx + O(1) (4.66)

=
1

(R−2ω2
d,l − z)2

md,l

|Sd|Rd
+ O(1). (4.67)

The self-energy thus satisfies

Σs
d,R(z) = − 1

R−2ω2
d,l − z

md,l

|Sd|Rd
+ O(1). (4.68)

In particular, γ(z) + Σs
d,R(z) �= 0 at z = R−2ω2

d,l due to the singularity of
Σs

d,R(z) at this point. Hence,

Gs,γ
d,R(z; x, x′) =

P
s
d,l,R(x, x′) − |Sd|Rd

md,l
P
s
d,l,R(x, Rx0)Ps

d,l,R(Rx0, x′)

R−2ω2
d,l − z

+ O(1). (4.69)

Now note that
√

|Sd|Rd

md,l
P

s
d,l,R(·, Rx0) =

√
|Sd|Rd

md,l
P

s
d,l,R(Rx0, ·) is a real-valued

and L2-normalized vector in the range of Ps
d,l,R. We remark that

√
|Sd|Rd

md,l
P

s
d,l,R

(·, Rx0) may be characterized as the unique normalized vector in the range of
P

s
d,l,R which is invariant under orthogonal transformations preserving Rx0 and

is nonnegative at Rx0. Hence, the numerator in (4.69) is (the integral kernel

of) the orthogonal projection onto the orthogonal complement of
√

|Sd|Rd

md,l
P

s
d,l,R

(·, Rx0) in the range of Ps
d,l,R. In particular, it is the kernel of a projection of

rank md,l − 1. �

The rank of the residue at R−2ω2
d,l drops by one because the pole corre-

sponding to one “eigenvector” is shifted. We find the shifted poles by solving
the equations

γ(z) + Σs
d,R(z) = 0, d odd,

η(z) + Σs,ε
d,R(z) = 0, d even. (4.70)

First let us consider dimension 1. The unperturbed poles are at z =
R−2l2, with multiplicity 1 for l = 0 and multiplicity 2 for l = 1, 2, . . . . The
perturbation cancels the pole at 0 and decreases the multiplicity for l ≥ 1 to
1. Putting βR = it and ε = γ

R , the equation for shifted poles takes the form

− 1
2t

cot(πt) = ε. (4.71)
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If γ = 0, then ε = 0 and the solutions are half-integers. Negative solutions
correspond to the same z, so we focus at positive half-integers. If γ �= 0, then
ε is nonzero but small, so we can use the implicit function theorem to find a
solution at

t = l +
1
2

+
2l + 1

π
ε + O(ε2). (4.72)

We remark that if γ ∈ R, this solution is in ]l, l + 1[ (no matter the size of ε).
Unpacking the notation, the above calculation proves:

Theorem 4.4 Gs,γ
1,R(z) has poles at z = R−2l2 with l = 1, 2, . . . and at

Eγ
1,l,R =

(
l + 1

2

R

)2(
1 +

4γ

πR
+ O

(
γ2

R2

))
, l = 0, 1, . . . . (4.73)

All residues are rank one projections.

We see that for d = 1 and large R, the eigenvalues are approximated
by these for γ = 0. Starting from dimension 2, the eigenvalues approach the
unperturbed ones (infinite γ) instead.

Theorem 4.5 For d = 2, 3, the lth (l = 0, 1, . . . ) shifted pole of Gs,γ
d,R is at

• d = 2: Eγ
2,l,R = 1

R2

(
(l + 1

2 )2 + l+ 1
2

ln R
a

+ O
(

1
ln2 R

a

))
, where a = e2πγ = e−ε,

• d = 3: Eγ
3,l,R = (l+1)2

R2

(
1 − 1

2π2Rγ + O
(

1
R2γ2

))
, except for the case γ =

0, in which the pole is at E0
3,l,R = (l+ 1

2 )2

R2 .
The residues are rank one projections.

Proof The claim about residues is obvious. We consider the equation for the
shifted eigenvalue. Throughout the proof, we set βR = it. First consider d = 2.
We have the equation

ψ(1
2 + t) + ψ( 1

2 − t) = 2 ln
R

a
. (4.74)

The right-hand side blows up for R → ∞, so we denote it 1
ε . We expand the

left-hand side around the unperturbed pole: Writing t = l + 1
2 + δ, we obtain

1
δ

+ O(1)δ→0 =
1
ε
. (4.75)

By the implicit function theorem, there exists a solution δ = ε + O(ε2).
Next consider d = 3. We have the equation

− t cot(πt) = 4πRγ. (4.76)

We denote the right-hand side by 1
ε and expand the left-hand side around l+1,

finding a solution of the form

t = (l + 1)
(
1 − ε

π
+ O(ε2)

)
. (4.77)

Separate analysis of γ = 0 (hence ε = ∞) is elementary. �
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Due to the presence of the polynomials γ(z) and η(z), the situation is
more complicated in higher dimensions, especially in even dimensions d ≥ 4.
We distinguish three cases:

1. γ(z) ≡ 0 and η(z) ≡ 0, respectively, where the poles correspond to the
zeros of the reference self-energies. We might call this the unitary gas
case.

2. γ(z) and η(z), respectively, are non-constant polynomials. The shifted
poles of the perturbed Green’s functions are located near the poles of the
unperturbed Green’s function. As we will see, the rate of convergence of
perturbed poles to unperturbed ones as R → ∞ is modified if γ(z) and
η(z) vanish at zero and depend on the degree of vanishing.

3. γ(z) = γ0 and η(z) = η0 respectively, are nonzero constants. This could
be treated on the same footing as case 2. with γ(z) and η(z) not vanishing
at zero, but since the conclusions are particularly simple we prefer to state
them separately.

Odd dimensions d ≥ 5. Let us first find the zeros and poles of the reference
self-energy:

Lemma 4.6 Let d ≥ 5 be an odd integer. The zeros and poles of the reference
self-energy are located at ζ = iβ ≥ 0 such that

Σs
d,R(ζ2) = 0 ⇔ ζ =

l + 1
2

R
, l ∈ N0,

Σs
d,R(ζ2) has a pole ⇔ ζ =

k

R
, k = l +

d − 1
2

, l ∈ N0. (4.78)

Proof The reference self-energy is

Σs
d,R(−β2) =

π coth(πβR)β

(4π)
d
2 Γ(d

2 )

d−3
2∏

k=1

(
− k2

R2
− β2

)
, l ∈ N0. (4.79)

Writing β = iζ with ζ ≥ 0, we find

Σs
d,R(ζ2) =

π

(4π)
d
2 Γ(d

2 )
cos(πζR)

ζ
∏ d−3

2
k=1

(
ζ2 − k2

R2

)

sin(πζR)
. (4.80)

The zeros of Σs
d,R are located at the zeros of the cosine. The poles are located

at the zeros of the sine, except for the first few, which are canceled by the
zeros of the numerator. �

Note that the location of the poles of Σs
d,R precisely corresponds to the

unperturbed eigenvalues.

Theorem 4.7 Let d ≥ 5 be an odd integer.
1. Suppose that γ(z) ≡ 0 vanishes identically, then Gs,γ

d,R has a sequence of
isolated poles located at

E0
d,l,R =

(
l + 1

2

)2
R2

, l ∈ N0. (4.81)
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2. Suppose that γ(z) does not vanish identically and let ν be the order of
vanishing of γ(z) at 0 (ν = 0 if γ(0) �= 0). The lth shifted pole of Gs,γ

d,R is
located at

Eγ
d,l,R =

ω2
d,l

R2

⎛
⎝1 − 2

∏ d−3
2

k=1(ω2
d,l − k2)

(4π)
d
2 Γ(d

2 )Rd−2γ
(
R−2ω2

d,l

) + O(R−2d+4+4ν)

⎞
⎠ .

(4.82)

3. In the special case where γ(z) = γ0 ∈ R \ {0} is constant, the lth shifted
pole of Gs,γ

d,R is located at

Eγ
d,l,R =

ω2
d,l

R2

⎛
⎝1 − 2

∏ d−3
2

k=1(ω2
d,l − k2)

(4π)
d
2 Γ(d

2 )Rd−2γ0

+ O(R−2(d−2)
)
⎞
⎠ . (4.83)

In particular, the first correction to the unperturbed eigenvalues is in-
versely proportional to the volume of the sphere.

Proof The first case γ(z) ≡ 0 follows directly from Lemma 4.6. The third case
is a special case of the second, and the latter can be derived analogously to
lower dimensions. The only complication is that γ(z) may vanish at zero, in
which case the scaling of the pole shift with R is modified. This is taken into
account by the introduction of ν. �

We note that ν can be as large as d−3
2 , in which case the shift of the

eigenvalue is proportional to R−3 and the first neglected term is proportional
to R−4. That is, the scaling of the unperturbed eigenvalue and the scaling of
the shift with R differ only by a single power.

Even dimensions d ≥ 4. In even dimensions, we considered a family of
reference self-energies parametrized by ε ∈ R. We look for the zeros of the
reference self-energies first.

Lemma 4.8 Let d ≥ 4 be an even integer. For large R, the zeros of the family
of reference self-energies are located at ζ = iβ ≥ 0 such that

ζ2 =

⎧
⎪⎪⎨
⎪⎪⎩

1
R2

(
1
2 + j

)2
, j = 0, . . . , d−4

2 ,

1
R2

(
ω2

d,l +
ωd,l

ln(eεR)
+ O

( 1
ln2(eεR)

))
, l ∈ N0.

. (4.84)

Proof Let βR = it. The reference self-energies are

Σs,ε
d,R

(
t2

R2

)
=

1

(4π)
d
2 Γ
(

d
2

)
(
ψ
(

d−1
2 + t

)
+ ψ
(

d−1
2 − t

)− 2ε − 2 ln R
)

× R2−d

d−4
2∏

j=0

(
t2 − ( 1

2 + j
)2)

.
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The zeros of the second line are obvious. If t = 0, the whole expression is
∼ R2−d ln R, which neither corresponds to a pole nor a zero (but it is an
approximate zero for large R).

We look for the zeros of the first line, which correspond to

ψ
(

d−1
2 + t

)
+ ψ
(

d−1
2 − t

)
= 2ε + 2 ln R. (4.85)

The right-hand side is large for large R, so as for d = 2, we denote it 1
ε . (Note

the difference between ε and ε.) We perturb the left-hand side around the
unperturbed poles by setting t = d−1

2 + l + δ for l ∈ N0. We obtain

1
δ

+ O(1)δ→0 =
1
ε
, (4.86)

so by the implicit function theorem there exists a solution δ = ε + O(ε2). �

Lemma 4.8 allows us to describe the poles of the perturbed Green’s func-
tions.

Theorem 4.9 Let d ≥ 4 be an even integer.

1. Suppose that η(z) ≡ 0 vanishes identically, then Gs,ε,0
d,R has a sequence of

isolated poles located at

Eε,0
d,l,R =

1
R2

(
ω2

d,l +
ωd,l

ln(eεR)
+ O

( 1
ln2(eεR)

))
, l ∈ N0, (4.87)

and a finite number of additional poles at

Eε,0,exceptional
d,j,R =

1
R2

(
j +

1
2

)2

, j = 0, . . . , d−4
2 . (4.88)

2. Suppose that η(z) does not vanish identically and let ν be the order of
vanishing of η(z) at 0 (ν = 0 if η(0) �= 0). The lth shifted pole of Gs,γ

d,R is
located at

Eε,η
d,l,R =

1

R2

⎛
⎜⎜⎝ω2

d,l −
2ωd,l

∏ d−4
2

j=0

(
ω2

d,l − ( 1
2

+ j
)2)

(4π)
d
2 Γ
(

d
2

)
Rd−2η

(ω2
d,l

R2

) + O
(

ln(eεR)R−2d+4+4ν
)
⎞
⎟⎟⎠ .

(4.89)

3. In the special case where η(z) = η0 ∈ R \ {0} is constant, we have

Eε,η0
d,l,R =

1
R2

⎛
⎜⎜⎝ω2

d,l −
2ωd,l

∏d−4
2

j=0

(
ω2

d,l − ( 1
2 + j

)2)

(4π)
d
2 Γ
(

d
2

)
Rd−2η0

+ O
(

ln(eεR)R−2(d−2)
)
⎞
⎟⎟⎠ .

(4.90)

In particular, the first correction to the unperturbed eigenvalues is in-
versely proportional to the volume of the sphere.
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Proof The first statement follows from Lemma 4.8. To show the second state-
ment, we need to consider the equation

(
ψ
(

d−1
2 + t

)
+ ψ
(

d−1
2 − t

))
d−4
2∏

j=0

(
t2 − ( 1

2 + j
)2)

= −(4π)
d
2 Γ
(

d
2

)
Rd−2η

(
t2

R2

)
+ 2 ln(eεR)

d−4
2∏

j=0

(
t2 − ( 1

2 + j
)2)

. (4.91)

If t = j + 1
2 for some j = 0, . . . , d−4

2 , then (4.91) becomes

0 = Rd−2η
(
R−2

(
j + 1

2

)2)
. (4.92)

The right-hand side of (4.92) is a polynomial in R. Therefore, Eq. (4.92) is not
satisfied if R is large enough. Hence, t = j + 1

2 with j = 0, . . . , d−4
2 does not

correspond to a pole of Green’s function. We may rewrite (4.91) as

ψ
(

d−1
2 + t

)
+ ψ
(

d−1
2 − t

)
= − (4π)

d
2 Γ
(

d
2

)
Rd−2η

(
t2

R2

)

∏d−4
2

j=0

(
t2 − ( 1

2 + j
)2) + 2 ln(eεR). (4.93)

The first term on the right-hand side is of order Rd−2−2ν and the second term
is ∼ ln R, so both blow up for R → ∞. Now as before, we denote the right-
hand side by 1

ε and write t = ωd,l + δ. This gives (4.89). The third claim is a
special case of the second. �

We remark that for simplicity we did not indicate the dependence of error
terms in the in higher dimensions on γ and η. Moreover, in all results of this
section the error bounds are not uniform in l.

A more precise analysis of the poles of the perturbed Green’s function—
including a detailed analysis of the dependence of the error terms on the poly-
nomials γ and η and estimates that are uniform in l—is desirable but beyond
the scope of the current paper.
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A Generalized Integrals

Generalized integrals go back to ideas of Hadamard [16,17] and Riesz [29]. In a
parallel work [10], we revisited this concept in a manner that is well suited for
our applications. In the latter reference, the proofs for all generalized integrals
appearing in Appendices B and C are displayed in detail.

Definition A1 Let a ∈ R. We say that a function f on ]a,∞[ is integrable in
the generalized sense if it is integrable on ]a + 1,∞[ and if there exists a finite
set Ω ⊂ C and complex coefficients (fk)k∈Ω such that

f −
∑
k∈Ω

fk(r − a)k (A.1)

is integrable on ]a, a + 1[. We define

gen

∫ ∞

a

f(r)dr :=
∑

k∈Ω\{−1}

fk

k + 1
+

∫ a+1

a

(
f(r) −

∑
k∈Ω

fk(r − a)k
)
dr +

∫ ∞

a+1

f(r)dr.

(A.2)

Note that the set {k ∈ Ω | �k ≤ −1} and the corresponding fk are
uniquely determined by f . It is convenient to allow k ∈ Ω with �k > −1.
The generalized integral of f does not depend on the choice of Ω.

Clearly

gen
∫ ∞

a

f(r)dr =
∫ ∞

a

f(r)dr for f ∈ L1[a,∞[. (A.3)

If Φ is any other extension of the integration functional from L1[a,∞[ to the
class of all functions integrable in the generalized sense, then Φ is given by

Φ(f) = gen
∫ ∞

a

f(r)dr +
∑
k∈Ω

�k≤−1

fkλk (A.4)

for some coefficients λk. Conversely, for any set of λk one may define an exten-
sion Φ by (A.4). To some extent, the definition of gen

∫∞
a

is arbitrary and one
could use some other extension instead. gen

∫∞
a

has several simple properties
which make it a useful reference point.

The generalized integral is invariant with respect to translations and tak-
ing power of the integration variable,

gen
∫ ∞

a

f(r)dr = gen
∫ ∞

a−α

f(u + α)du, α ∈ R, (A.5)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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gen
∫ ∞

0

f(r)dr = gen
∫ ∞

0

f(uα)αuα−1du, α > 0. (A.6)

Due to the first property, there is no loss in assuming a = 0.
Generalized integral behaves in an interesting way under coordinate trans-

formations. Let g : [0,∞[→ [0,∞[ be a bijection, smooth down to 0, such that
g(0) = 0 and g′(0) �= 0. The map f �→ (f ◦ g)g′ preserves the class of functions
integrable in the generalized sense and (by the change of variables formula) the
classical integration functional. Hence, one may define generalized integration
in the changed coordinate system as

geng

∫ ∞

0

f(r)dr = gen
∫ ∞

0

f(g(u))g′(u)du. (A.7)

The corresponding coefficients λk in the comparison formula (A.4) have been
calculated in [10]:

geng

∫ ∞

0

f(r)dr = gen
∫ ∞

0

f(r)dr + f−1 ln
1

g′(0)

+
∞∑

l=2−l∈Ω

f−l
1

(l − 1)(l − 1)!
dl−1

dul−1

( u

g(u)

)l−1
∣∣∣∣
u=0

. (A.8)

This involves only coefficients f−1, f−2, . . . . Other fk appear if one considers
more general coordinate transformations. For example, if g(n)(0) = 0 for n =
0, . . . , N − 1 but g(N)(0) �= 0, then also nonzero coefficients f− k

N
, k ∈ N, will

cause anomalous behavior. Note that the sum on the right-hand side of (A.8)
is finite and that the number of appearing derivatives of g is governed by the
scaling behavior of the integrand.

A particularly important change of variables is the scaling:

gen
∫ ∞

0

f(αu)αdu = gen
∫ ∞

0

f(r)dr − f−1 ln α, α > 0. (A.9)

One should carefully distinguish this integral from integration with respect to
coordinate αu (which amounts to relabeling u to αu):

gen
∫ ∞

0

f(αu)dαu = gen
∫ ∞

0

f(u)du. (A.10)

Combining with (A.9), one obtains the formula

gen
∫ ∞

0

f(u)dαu = α

(
gen
∫ ∞

0

f(u)du + f−1 ln α

)
. (A.11)

As seen from (A.9) and (A.11), the generalized integral is only scale
invariant on the class of function with f−1 = 0. If f−1 �= 0, we say that the
integral has a scaling anomaly. On the grounds of (A.8), integrals with fk �= 0
for any k = −1,−2, . . . were called anomalous in [10].

In quantum field theory jargon, generalized integrals with a scaling anom-
aly depend on the choice of a renormalization scale. In Definition A1, we set
this scale for 1 for mathematical convenience.
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The coefficient f−1 plays a special role also in computations of general-
ized integrals by analytic continuation, as in the method of dimensional reg-
ularization. More details on this and other properties of generalized integrals
can be found in the parallel work [10] and the aforementioned literature [16–
18,22,27,29]. We remark that dimensional regularization was used in [10] to
compute generalized integrals in Appendices B and C.

B The Bessel Equation

The modified Bessel equation,(
∂2

r +
1
r
∂r − α2

r2
− 1
)

v(r) = 0, (B.1)

has two kinds of standard solutions: the modified Bessel function, which can
be defined by the power series

Iα(r) =
∞∑

n=0

(
r
2

)2n+α

n!Γ(α + n + 1)
, (B.2)

and at zero behaves as ∼ 1
Γ(α+1)

(
r
2

)α, and the Macdonald function, which for
�(r) > 0 and all α can be defined by the absolutely convergent integral

K−α(r) = Kα(r) :=
1
2

∫ ∞

0

exp
(
−r

2
(s + s−1)

)
sα−1ds. (B.3)

The Macdonald function can be characterized by its asymptotics at infinity:
for | arg r| < π − ε, ε > 0,

lim
|r|→∞

Kα(r)
e−r

√
π√

2r

= 1. (B.4)

Note the connection formula

Kα(r) =
π

2 sin πα
(I−α(r) − Iα(r)), (B.5)

and an asymptotic expansion for r → ∞ in the sector | arg r| < π − ε, ε > 0
[25]:

Kα(r) � √
πe−r

∞∑
n=0

( 1
2 + α − n)2n

n!(2r)n+ 1
2

. (B.6)

In the half-integer case, we have an expression in terms of elementary functions
[25]:

K±( 1
2+k)(r) =

(π

2

) 1
2
r

1
2+k
(

− 1
r
∂r

)k e−r

r
. (B.7)

We will need the following bilinear integral identities for �b > 0 [15]:∫ ∞

0

Kα(br)22rdr =
πα

b2 sin(πα)
, α �= 0, |�(α)| < 1, (B.8)

∫ ∞

0

K0(br)22rdr =
1
b2

. (B.9)
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If we replace the conditions |�α| < 1, α �= 0 with α �∈ Z and in the
integrals replace

∫
with gen

∫
, then (B.8) remains true. (B.8) can also be

generalized to α ∈ Z using anomalous generalized integrals [10]:

gen
∫ ∞

0

Kα(br)22rdr =
(−1)α

b2

(
1 + |α| ln ( b2

4

)
+ 2|α|(1 − ψ(1 + |α|))

)
.

(B.10)

The (standard) Bessel equation is obtained by setting r → ±ir in the
modified one:

(
∂2

r +
1
r
∂r − α2

r2
+ 1
)

v(r) = 0. (B.11)

We have several kinds of standard solutions of (B.11). The most impor-
tant is the Bessel function, defined as

Jα(r) = e±iπ α
2 Iα(∓ir). (B.12)

The two Hankel functions also solve (B.11):

H±
α (r) =

2
π

e∓i π
2 (α+1)Kα(∓ir). (B.13)

Remark B.1 In the literature, the usual notation for Hankel functions is

H(1)
α (r) = H+

α (r), H(2)
α (r) = H−

α (r). (B.14)

C The Gegenbauer Equation

The Gegenbauer equation is the special case of the hypergeometric equation
with the symmetry w → −w and the singular points put at −1, 1,∞:

(
(1 − w2)∂2

w − 2(1 + α)w∂w + λ2 − (α + 1
2

)2)
f(w) = 0. (C.1)

The Gegenbauer equation is closely related to the associated Legendre equa-
tion, see, for example, [15,25,30]. Moreover, there exist various conventions for
the parameters of the Gegenbauer equation (cf. [11,12], [7,8]). The convention
as in (C.1) is the most convenient for our purposes.

One of its standard solutions is the function the function Sα,β character-
ized by asymptotics ∼ 1

Γ(α+1) at 1:

Sα,±λ(w) := 2F1

(
1
2 + α + λ, 1

2 + α − λ; 1 + α; 1−w
2

)
(C.2)

=
(

2
w+1

)α

2F1

(
1
2 + λ, 1

2 − λ; 1 + α; 1−w
2

)
(C.3)

=
(

2
w+1

) 1
2+α±λ

2F1

(
1
2 + α ± λ, 1

2 ± λ; 1 + α; w−1
w+1

)
, (C.4)
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where 2F1(a, b; c; z) :=
∑∞

j=0
(a)j(b)j

Γ(c+j)j!z
j is the Gauß hypergeometric function in

Olver’s normalization. There is also the solution characterized by asymptotics
∼ 1

w
1
2 +α+λΓ(λ+1)

at ∞:

Zα,λ(w) :=
Γ(1 + 2λ)

Γ(1 + λ)(w ± 1)
1
2+α+λ 2F1

(
1
2 + λ, 1

2 + λ + α; 1 + 2λ; 2
1±w

)

(C.5)

=
Γ(1 + 2λ)

Γ(λ + 1)(w ± 1)
1
2+λ(w ∓ 1)α

2F1

(
1
2 + λ, 1

2 + λ − α; 1 + 2λ; 2
1±w

)
.

(C.6)

The equality of the series representations (C.2), (C.3), (C.4), respectively
(C.5), (C.6) follows from Kummer’s table of hypergeometric functions (see,
e.g., [25]). In fact, only (C.2), (C.3) and the expressions with the +-sign in
(C.5), (C.6) are convergent in the whole region of physical interest.

It is convenient to introduce the notation

(w2 − 1)α
• := (w − 1)α(w + 1)α, (C.7)

where (w∓1)α are the usual principal branches with the domains C\]−∞,±1].
We note the identities

Sα,λ(w) = Sα,−λ(w), Zα,λ(w) =
Z−α,λ(w)
(w2 − 1)α•

(C.8)

as well as the slightly more subtle Whipple transformations:

Zα,λ(w) := (w2 − 1)− 1
4 − α

2 − λ
2• Sλ,α

(
w

(w2 − 1)
1
2•

)
, (C.9)

Sα,λ(w) := (w2 − 1)− 1
4 − α

2 − λ
2• Zλ,α

(
w

(w2 − 1)
1
2•

)
, �w > 0. (C.10)

For n = 0, 1, . . . , we define the Gegenbauer polynomials:

C
α+ 1

2
n (w) :=

Γ(α + 1)(2α + 1)n

n!
Sα, 1

2+α+n(w). (C.11)

Here are the connection formulas:

Sα,λ(−w) = −cos(πλ)
sin(πα)

Sα,λ(w)

+
22απ

sin(πα)Γ( 1
2 + α + λ)Γ( 1

2 + α − λ)
S−α,−λ(w)
(1 − w2)α

,

(C.12)

Zα,λ(w) = − 2λ−α− 1
2
√

π

sin(πα)Γ( 1
2 − α + λ)

Sα,λ(w)

+
2λ+α− 1

2
√

π

sin(πα)Γ( 1
2 + α + λ)

S−α,−λ(w)
(w2 − 1)α•

.

(C.13)
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For �α > −1, we can compute the following generalized bilinear integrals
of S functions. For α �∈ Z, they are non-anomalous [10]:

gen
∫ 2

−2

Sα,iβ(w)2(1 − w2)αd2w =
22α+1i cosh(πβ)

β sin πα Γ( 1
2 + α − iβ)Γ( 1

2 + α + iβ)

×
(
ψ
(

1
2 + α + iβ

)− ψ
(

1
2 + α − iβ

)
+ ψ
(

1
2 − iβ

)− ψ
(

1
2 + iβ

))
, (C.14)

gen
∫ 2

−2

Sα,0(w)2(1 − w2)αd2w =
22α+1

(
π2 − 2ψ′( 1

2 + α
))

sin(πα)Γ( 1
2 + α)2

, (C.15)

For |�α| < 1, the integrals (C.14) and (C.15) are standard. For α ∈ N, we
have anomalous generalized integrals:

gen
∫ 2

−2

Sα,iβ(w)2(1 − w2)αd2w

=
(−1)α22α+2 cosh(πβ)

πΓ( 1
2 + α + iβ)Γ( 1

2 + α − iβ)

(
i

2β

(
ψ′( 1

2 + α + iβ
)− ψ′( 1

2 + α − iβ
))

− i
2β

(
Hα

(
1
2 + iβ) − Hα

(
1
2 − iβ)

)
ln 4

+
α−1∑
k=0

ψ
(− 1

2 − k + iβ
)

+ ψ
(− 1

2 − k − iβ
)− ψ(α − k) − ψ(1 + k)(

1
2 + k

)2 + β2

)
,

(C.16)

gen
∫ 2

−2

Sα,0(w)2(1 − w2)αd2w =
22α+2(−1)α

πΓ
(

1
2 + α

)2
(

− ψ′′( 1
2 + α

)
+ H ′

α

(
1
2

)
ln 4

+
α−1∑
k=0

2ψ
(− 1

2 − k
)− ψ(α − k) − ψ(1 + k)(

1
2 + k

)2
)

. (C.17)

If α = 0, then (C.16) and (C.17) are still true as standard integrals. Besides,
they greatly simplify:

∫ 2

−2

S0,iβ(w)2d2w =
2i cosh2(πβ)

(
ψ′( 1

2 + iβ) − ψ′( 1
2 − iβ)

)

βπ2
, (C.18)

∫ 2

−2

S0,0(w)2d2w = −4ψ′′( 1
2

)
π2

. (C.19)

Here are generalized integrals of squares of Z functions for �λ > 0, as
computed in [10]. For α ∈ C \ Z, we have non-anomalous integrals.

gen
∫ ∞

2

Zα,λ(w)2(w2 − 1)αd2w =
22λ(ψ( 1

2 + α + λ) − ψ( 1
2 − α + λ))

λ sin παΓ( 1
2 − α + λ)Γ( 1

2 + α + λ)
.

(C.20)

For |�α| < 1, (C.20) is a standard integral.
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For α ∈ Z\{0} and �λ > 0, we have anomalous integrals:

gen
∫ ∞

2

Zα,λ(w)2(w2 − 1)αd2w =
(−1)α22λ+1

πΓ
(

1
2 − α + λ

)
Γ
(

1
2 + α + λ

)

×
(

ψ′( 1
2 − α + λ) + ψ′( 1

2 + α + λ)
2λ

+
H|α|( 1

2 − λ) − H|α|( 1
2 + λ)

2λ
ln 4

+
|α|−1∑
k=0

ψ( 3
2 + k + λ) + ψ(− 1

2 − k + λ) − ψ(|α| − k) − ψ(1 + k)

λ2 − ( 1
2 + k

)2
)

.

(C.21)

If α = 0, then (C.21) is still true in the sense of standard integrals.
Besides, it greatly simplifies:

∫ ∞

2

Z0,λ(w)2d2w =
22λ+1ψ′( 1

2 + λ)
πλΓ( 1

2 + λ)2
. (C.22)

The Gegenbauer functions have the following asymptotics [10] (see also
[25,26]):

Theorem C.1 Let α ≥ − 1
2 and π > δ > 0 be fixed. Then we have the following

estimates:

1. Uniformly for θ ∈ [0, π − δ] and β → ∞,

πe−πβ(sin θ)α+ 1
2

2αθα+ 1
2

Sα,±iβ(− cos θ) = (θβ)−αKα(βθ)
(
1 + O(β−1)

)
. (C.23)

2. Uniformly for θ ≥ 0 and λ → ∞,
√

πΓ( 1
2 − α + λ)(sinh θ)α+ 1

2

2λ+ 1
2 θα+ 1

2
Zα,λ(cosh θ) = (λθ)−αKα(λθ)

(
1 + O(λ−1)

)
.

(C.24)

Correspondingly, the bilinear generalized integrals of Gegenbauer func-
tions that are needed to determine the Green’s functions of point-like pertur-
bations have the expected asymptotics [10]:

Theorem C.2 For β, λ → ∞, we have

π2e−2πββ2α

22α
gen
∫ 2

−2

Sα,iβ(w)2(1 − w2)αd2w

=
(
1 + O( 1

β

))
gen
∫ ∞

0

Kα(βr)22rdr, �(α) > −1,

(C.25)

πΓ
(

1
2 + α + λ

)2
22λ+1λ2α

gen
∫ ∞

2

Zα,λ(w)2(w2 − 1)αd2w

=
(
1 + O( 1

λ

))
gen
∫ ∞

0

Kα(λr)22rdr, α ∈ C. (C.26)
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D Pochhammer Symbols and Harmonic Numbers

The Pochhammer symbol, as it is usually defined, is a generalization of the
factorial:

(a)n := a(a + 1) · · · (a + n − 1), (1)n = n!. (D.1)
We will also use the harmonic numbers

Hn(a) :=
1
a

+
1

a + 1
+ · · · +

1
a + n − 1

, Hn:=Hn(1). (D.2)

Sometimes it is convenient to extend the definitions (D.1) and (D.2) to complex
parameters z:

(a)z:=
Γ(a + z)

Γ(a)
, Hz(a):= ψ(a + z) − ψ(a), z ∈ C \ (−a − N0). (D.3)

We have

∂a(a)z = (a)zHz(a). (D.4)

For n ∈ N, we have the useful identities

(−1)n( 1
2 − a)n( 1

2 + a)n = (a − n + 1
2 )2n =

n−1∏
j=0

(
a2 − ( 1

2 + j)2
)
, (D.5)

(−1)n( 1
2 − a)n+ 1

2
( 1
2 + a)n+ 1

2
= cot(πa)(a − n)2n+1 = cot(πa)a

n∏
j=1

(
a2 − j2

)
.

(D.6)
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[10] Dereziński, J., Gaß, C., Ruba, B.: Generalized integrals of Bessel and Gegenbauer
functions, To appear in CONM proceedings arXiv:2304.06515

[11] Durand, L.: Expansion formulas and addition theorems for Gegenbauer func-
tions. J. Math. Phys. 17, 1933–1948 (1976)

[12] Durand, L.: Asymptotic Bessel-function expansions for Legendre and Jacobi
functions. J. Math. Phys. 60, 013501 (2019)

[13] Durand, L.: Mehler-Fock transforms and retarded radiative Green functions in
hyperbolic and spherical spaces. J. Math. Phys. 64, 063502 (2023)

[14] Fermi, E.: Sul moto dei neutroni nelle sostanze idrogenate, Ricerca Scientifica,
7,: 13–52 (In Italian.), English translation in E. Fermi, Collected papers, vol. I,
Italy 1921–1938, Univ. of Chicago Press. Chicago 1962, 980–1016 (1936)

[15] Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, Trans-
lated by Scripta Technica Inc, 7th edn. Academic Press, Amsterdam (2007)

[16] Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equa-
tions. Dover Phoenix Dover Publications, New York (1923)

[17] Hadamard, J.: Le problème de Cauchy et les équations aux dérivées partielles
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