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Abstract. Our paper investigates one-dimensional Schrédinger operators defined
as closed operators on L?(R) or L?(R. ) that are exactly solvable in terms of con-
fluent functions (or, equivalently, Whittaker functions). We allow the potentials to
be complex. They fall into three families: Whittaker operators (or radial Coulomb
Hamiltonians), Schrodinger operators with Morse potentials and isotonic oscilla-
tors. For each of them, we discuss the corresponding basic holomorphic family
of closed operators and the integral kernel of their resolvents. We also describe
transmutation identities that relate these resolvents. These identities interchange
spectral parameters with coupling constants across different operator families. A
similar analysis is performed for one-dimensional Schrédinger operators solvable
in terms of Bessel functions (which are reducible to special cases of Whittaker
functions). They fall into two families: Bessel operators and Schrédinger oper-
ators with exponential potentials. To make our presentation self-contained, we
include a short summary of the theory of closed one-dimensional Schrodinger op-
erators with singular boundary conditions. We also provide a concise review of
special functions that we use.

1. Introduction

One-dimensional Schrodinger operators are operators of the form
L:=-0?+V(x), (1.1)

where V' (z) is the potential, which in this paper is allowed to be a complex-valued
function. In some rare cases, (not necessarily square integrable) eigenfunctions of
(1.1) can be computed in terms of standard special functions. We call such operators
exactly solvable.

Our paper is devoted to several families of operators of the form (1.1), inter-
preted as closed operators on L?(]a,b]) for appropriate —oo < a < b < 400, which
are exactly solvable in terms of confluent functions, or equivalently, Whittaker func-
tions.
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We study three categories of one-dimensional Schrodinger operators:

(1) those reducible to the Bessel equation, having two families: the Bessel operator
and the Schrodinger operator with an exponential potential [8,15,18,21,28,34];

(2) those associated with the Whittaker equation, which includes three families:
the Whittaker operator, the isotonic oscillator, and the Schrédinger operator
with Morse potential [15,32];

(3) finally, for completeness, we include the (well-known) harmonic oscillator, re-
ducible to the Weber equation.

Note that Bessel and Weber functions can be reduced to subclasses of Whittaker
functions. One can also remark that there exist several classes of one-dimensional
Schrédinger equations exactly solved in terms of the Gauss hypergeometric function
[2,15,24,44], which are not considered in this paper.

On the algebraic level, all these families are discussed in many references, e.g.,
[4,5,15,19]. They are usually treated as formal differential expressions without a
functional-analytic setting. In this paper, we consider them as closed operators on
an appropriate Hilbert space. For exactly solvable Schrodinger operators, we are
able to express their resolvent in terms of special functions. We can do the same
with eigenprojections and the spectral measure. Sometimes we can also compute
other related operators, such as their exponential or Mgller (wave) operators.

Exactly solvable Schrodinger operators, interpreted as closed (usually self-
adjoint) operators, are essential in applications, serving as reference models for
various perturbation and scattering problems. They are widely used by theoretical
physicists to model real quantum systems and for instructional purposes in quantum
mechanics (see, e.g., [23,27]).

Sturm—Liouville operators, which are given by an expression of the form

b
w(z)

q(z)
w(x)

Dup()0, + L) (1.2)
can be reduced to one-dimensional Schrodinger operators by the so-called Liouwville
transformation (at least for real 5)((2))) [20,31] (see also [15] Subsections 2.1 and 2.3).

Therefore, our paper is also related to many works describing Sturm—Liouville
operators, such as [22,25,26,38,39], which, however, are usually restricted to real
potentials.

We always choose the Hilbert space to be L?(]a, b[), where a and b are singular
points of the corresponding eigenvalue equation, with the possibility that a = —oo
and b = 4+o00. With these endpoints, for most parameters, in order to define a closed
realization of (1.1), there is no need to choose boundary conditions (b.c.). There
are, however, exceptional parameter ranges where b.c. must be selected. Following,
e.g., [13], we will say that the endpoint has index 0 if b.c. are not needed. We will
say that it has index 2 otherwise.

Remark 1.1. Throughout the paper, we use terminology appropriate for complex
potentials. Most readers are probably more familiar with related concepts applicable
to real potentials, where one is usually interested in finding self-adjoint realizations
of (1.1). For real potentials, the case of index 2 is often called “limit circle,” and the
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case of index 0 “limit point,” which is not quite appropriate for real potentials (see
Remark 2.1).

Note also that for real potentials the operator (1.1) restricted to C°(]a,b])
is Hermitian (or, as it is commonly termed, symmetric). The three cases - both
endpoints have index 0, one of them has index 0 and the other index 2, and both
have index 2 - correspond to the deficiency indices (0,0), (1,1), and (2,2), respec-
tively. However, if the potential is not real, then this operator is not Hermitian, and
deficiency indices are, in principle, not well-defined.

The operators that we study depend on (complex) parameters. We try to or-
ganize them into holomorphic families of closed operators, as advocated, e.g., in
[6,16]. To find such families, first, we identify a subset of parameters that uniquely
determine a closed extension. In the terminology we use, L has index zero at both
endpoints. In all cases that we consider, this subset forms a large set of parameters
with a non-empty interior. We obtain a holomorphic family of closed realizations of
L, which is then extended to its largest possible domain of holomorphy. The holo-
morphic family obtained in this way will be called basic. In Table 1, we describe all
basic holomorphic families of Schrédinger operators considered in this paper.

Schrodinger operators with potentials from Table 1 can have realizations that
do not belong to their basic holomorphic families. This occurs, in particular, when
the index of an endpoint is 2 for a given parameter. In such cases, there is a whole
family of closed realizations of a single formal expression, of which at most two are
basic. Boundary conditions that define a closed realization that does not belong
to a basic holomorphic family will be called mized b.c. In particular, Bessel and
Whittaker operators, as well as the isotonic oscillator, can have mixed b.c. at 0 for
—1 < Re(m) < 1. They are not discussed in this paper. For further details, see [10]
for Bessel operators and [12] for Whittaker operators.

The domain of holomorphy, by definition, is an open set. Schrodinger opera-
tors with exponential and Morse potentials, as well as the harmonic and isotonic
potentials, have a domain of holomorphy with a boundary at Re(k) = 0. The basic
holomorphic family can be extended by continuity to this boundary. In all cases,
operators with parameters on this boundary must be treated separately. We discuss
them all, with the exception of Morse potentials.

If A is an operator on L?(]a,b[), then the integral (or possibly distributional)
kernel of the operator A will be denoted A(z,y), x,y €]a,b]. Le.,

(f1Ag) = / F@A(z, y)g(y) dedy. (1.3)

As mentioned above, for all operators from Table 1, we will compute their spectrum
o, their point spectrum o, and for parameters outside their spectrum the integral
kernel of their resolvent. (By the point spectrum we mean the set of eigenvalues
with square integrable eigenfunctions). We will see that Hamiltonians with very
different properties can be solved in terms of the same class of special functions.
It is curious to observe that they are linked by somewhat mysterious identities
involving their resolvents. In these identities, we can observe a “transmutation” of
spectral parameters where the resolvents are evaluated into coupling constants.
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Here is the transmutation identity involving the resolvent of the Bessel operator
and of the Schrédinger operator with the exponential potential:

(Mg +m?) Y, y) = e 2 (H,y, + k%) 71 (e, e¥) e %, (1.4)
Note that on the left m? is the spectral parameter, and on the right it is the coupling
constant. On the left k2 is the coupling constant, on the right it is the spectral
parameter. Thus, their roles are curiously interchanged.
For the three families solved in terms of Whittaker functions, we have trans-
mutations involving three parameters: m, k, and 3:

(Nigm — 28) " (u,v) = 2(“22)‘1‘(115,7; + k)Y (“22 “22) (”22) (1.5)
(Mg +m?*) "N (2,y) = e 2 (Hpm + k*) (e, )0 2, (1.6)
(Nion — 26) " (u,v) = 2(“;)‘1‘ (M + (%)2)71(105; U;,log ”22) (”22) (1.7)

The case Re(k) = 0 of the exponential potential is quite curious and analyzed
in our paper. Setting k = i/, we can rewrite it as:

M) = =02 — (%e*". (1.8)

In this operator, we need to fix a b.c. at oo, which can be naturally parametrized by
v € CU{oo}. The parameter ¢ > 0 is not very interesting—in fact, the translation
by In ¢ yields unitary equivalence with the case ¢ = 1. Note that v — M} is a family
of operators holomorphic away from 0 or co. We prove that M& with v = 0,00 can
be reached as limits of the family Mj. The transmutation of the resolvents for M)
into resolvents of H,, is quite interesting:

(M), +m?*) Nz, y) = (ememi_,y)efgé(—ﬁ 10+ Hyp) " (e, e¥)e 8
e R =0+ Hy) e (1)

Note also that M) for v # 0, 0o possess point spectrum at elmm
was recently described independently in [42].

Let us briefly describe the structure of the paper. We begin with a concise
overview of the basic theory of 1-dimensional Schrodinger operators, presented in
Sect. 2. This is a classic subject covered in various textbooks. We primarily follow
the presentation in [13]. We explain how to determine when boundary conditions
are needed to define a closed realization with a non-empty resolvent set. We also
demonstrate how to fix b.c. with the help of the Wronskian. Finally, we describe
the integral kernel for a candidate of the resolvent.

In Sect. 3, we discuss families of closed operators solved in terms of Bessel
functions; in Sect. 4, the families solved in terms of Whittaker functions; and in
Sect. 5, the harmonic oscillator, solved in terms of Weber functions.

In the appendices, we concisely describe elements of the theory of special func-
tions used in our paper. In Appendix A, we discuss various kinds of Bessel functions,
as well as the o F; functions. First of all, one can distinguish between the trigono-
metric and hyperbolic Bessel equations. The former has oscillating solutions, while

= . This spectrum
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the solutions of the latter behave exponentially. One can pass from the former to the
latter by rotating the complex plane by the angle +7. Secondly, both the trigono-
metric and hyperbolic Bessel equations have forms adapted to all dimensions. In
most of the literature, the standard Bessel equation, which is 2-dimensional and
trigonometric, and the modified Bessel equation, which is 2-dimensional and hyper-
bolic, are considered. In our paper, it is also convenient to use functions that solve
the 1-dimensional Bessel equation, both trigonometric and hyperbolic. All these
variations of the Bessel equation are equivalent to one another, and they are also
equivalent to the so-called oF} equation. They can also be reduced to a subclass of
the confluent equation.

The Whittaker equation is equivalent to the confluent equation, which exists
in two equivalent variants: 1 F; and oF{. Therefore, the confluent equation, which
we put in the title of this manuscript, can be replaced by the Whittaker equation.
There are also varieties of the Whittaker equation for any dimension. In our paper,
we use those corresponding to d = 1 and d = 2. We also introduce modifications
of Whittaker functions adapted to the isotonic oscillator. All of this is described in
Appendix B.

Finally, in Appendix C, we briefly describe the Weber equation, which is equiv-
alent to the Hermite equation and to a subclass of the Whittaker equation.

In order to define closed realizations of (1.1), we will specify their operator do-
main and compute their resolvents. There exists a different strategy for dealing with
unbounded operators: one can try to specify their form domain. Strictly speaking,
the latter strategy, in its orthodox version, is limited to certain classes of operators,
such as positive operators that are bounded from below [38,39].

In our paper, we do not discuss the form domains of the operators under study.
We expect that this topic will be addressed in a separate paper, generalizing the
analysis of Bessel operators defined as bilinear forms in [14].

2. Basic Theory of 1-Dimensional Schrodinger Operators

2.1. Boundary Conditions

Let us sketch the theory of closed realizations of 1-dimensional Schrodinger operators
with complex potentials. This is a classic subject, discussed in various textbooks and
presented in several forms. Our presentation follows mostly [13]. Note that we avoid
using the so-called boundary triplets and Krein-type formulas.

Consider an open interval |a, b], where —oco < a < b < +o0. (In our paper,
we will consider only R and R, ; however, the theory in this section applies to an
arbitrary interval ]a, b[). Consider a complex function V' € L{ (]a,b[). Suppose L is
formally given by

L:=-02+V(x). (2.1)
We would like to describe closed realizations of L on L?(]a,b[) possessing a non-

empty resolvent set and compute its resolvent. (A linear operator possessing a non-
empty resolvent set is sometimes called well-posed [13,21]).
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Note that in most of the literature only real V' are considered, and the authors
are interested only in self-adjoint realizations of L. If L, is such a realization of L, its
spectrum, denoted o(Ls), is contained in R. Thus its resolvent set is automatically
non-empty. In our paper, however, we will consider also complex potentials and
non-self-adjoint realizations.

Let z € C. Let AC*(Ja, b]) denote the set of functions on the open interval ]a, b
whose derivative is absolutely continuous. The space

N(L—2):={¥ € AC (Ja,b]) | (L — 2)¥(z) =0} (2.2)

is 2-dimensional. Let U, (z) denote the subspace of N'(L — z) solutions square inte-
grable near a. One can show that one of the following holds:

either dim,(z) =2 for all z € C; (2.3)
or dimi,(z) <1 for all z € C. (2.4)

In the first case we say that the index of the endpoint a, denoted v,(L), is 2, and
in the second case it is 0. There are analogous definitions associated to the second
endpoint b.

Remark 2.1. In the context of real potentials, the case v,(L) = 2 is called “limit
circle” and v,(L) = 0 is called “limit point”. This terminology goes back to an old
paper by H. Weyl [43] and is explained, e.g., in [38, Appendix to X.1.]. These names
are not fully appropriate for complex potentials. For example, if ImV < 0, then an
analysis similar to Weyl’s yields a trichotomy instead of a dichotomy [41]; see also
[13, Subsection 8.5].

Let us define

D(L™™) :={f € L*(Ja,b]) N AC"(]0,00[) | Lf € L*(la,b]) }, (2.5)
D(L™™) := the closure in the graph norm of {f € D(L™™) | f =0 near a and b}.
(2.6)

(The graph norm is || f||la :== /|| Lf||? + || f]|?.) One can show that
dim D(L™*) /D(L™™) = v,(L) + vp(L). (2.7)
We define the maximal and minimal realization of L:

Lmax fp—

min . _ ‘ (2.8)

D(Lmex)’ D(Lmin)

In what follows, we will need the Wronskian for two functions ® and =, defined
as
W(P,E)(z) := &(x)Z/ () — ®'(2)E(x). (2.9)
Note that if ®,= € N (L — z), then W(®,E)(x) is a constant. In this case, we will
simply write W(®, =) without specifying the argument. Besides, if ®,= € D(L™**),
then the Wronskian, a priori defined in ]a, b[, can be extended to the endpoints:

W(@.Z)(a) = m W(®.E)(2), W®.E)0) = lImW(@.)@). (210
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We also can equip D(L™**)/D(L™") with a non-degenerate bilinear antisymmetric
form:

W(P,E)(a) — W(P,E)(b) = —(LP|Z) + (O|LY). (2.11)
(The identity in (2.11) is sometimes called the Lagrange identity or the integrated
Green identity.)

If (2.7)= 0, then there exists a unique closed realization of L, which coincides
with L& = [™min - Qtherwise o(L™**) = o(L™") = C, and therefore the operators
L™ and L™ are not well-posed. In order to define operators that may have a
non-empty resolvent set, one needs to select a space D(L,) such that

D(L™™) € D(L,) C D(L™™), (2.12)
. 1
dim D(L™*)/D(Le) = dim D(L,)/D(L™") = é(ya + ). (2.13)
Then we set Ly := L™&* .
D(L.)
To do this it is convenient to introduce the boundary space
B := (D(L™)/D(L™"))’, (2.14)

where the prime denotes the dual. Clearly dim B = 2v, + 2v,.
If dimB = 2, in order to define L, satisfying (2.13) we need to fix a single
nonzero functional ¢, € B to define the domain of an operator

D(L) = {= € DL™) | 64(2) = 0}. (2.15)

This corresponds to two possibilities. If v,(L) = 2 and v4,(L) = 0, a convenient
way to define a functional ¢, is to choose ®, # 0, which near a belongs to D(L™**)
but does not belong to D(L™"), and then to set

6(E) == W(@,,Z)(a) = 0. (2.16)

A good choice for ®, is an element of U, (z) for some z € C. (Usually, z = 0 is most
convenient). The condition (2.16) will be called the boundary condition (b.c.) at a
set by D,,.

Note that what is important in (2.16) is a nonzero functional on D(L™?*)
vanishing on D(L™"), which depends only on the behavior of = near a. Sometimes
for this end it is convenient to use a well chosen ®,, which does not belong to
D(L™*). We will see an example of this in the definition of the Whittaker operator.

Similarly, we proceed if v, (L) = 0 and v,(L) = 2. We select ®;, # 0 which near
b belongs to D(L™**) but not D(L™™), and set

be(E) :=W(P4,Z) (D). (2.17)

In our paper, we will not consider operators with dim B = 4, that is, v,(L) =
vp(L) = 2. Nevertheless, for completeness let us discuss briefly this case. To define
a realization satisfying (2.13), we need to fix two linearly independent functionals

o1, Pe2 € B and set
D(Ls) = {Z € D(L™) | ¢e1(Z) = ¢e2(Z) = 0}. (2.18)

In particular, often one considers the so-called separated boundary conditions, where
o1 is @ b.c. at a and ¢e2 is a b.c. at b.
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2.2. Candidate for Resolvent

Suppose now that we want to describe the spectrum and resolvent of L. First
consider the case v,(L) = (L) = 0. Suppose z € C satisfies dim,(z) > 1 and
dimUy,(z) > 1. We select

Vol(z,-) € Uy (2)\{0}, Wp(z,-) € Up(2)\{0}, and set
W(z) = W (T(2,), Talz,")).
Then, we define

R.(Z;f]j',y) =

1 {\pa(z,w)‘l’b(sz ifa<e<y<h, (2.19)

W(z) | Uu(z,y)Up(z,7) ifa<y<az<b.
If v,(L) = 2, (L) = 0, then we need to select ®,, setting the b.c. at a, and

we define
D(Ls) = {2 € D(L™) | W(E, ®,)(a) = 0}. (2.20)

Similarly, if v,(L) = 0, vp(L) = 2, then we need to select @, setting the b.c. at b,
so that

D(Le) = {Z € D(L™*) | W(Z, Pp)(b) = 0}. (2.21)
If v,(L) = 2, vp(L) = 2 and we use separated b.c, then
D(Ls) = {Z € D(L™) | W(E, ®,)(a) = W(E, Pp)(b) = 0}. (2.22)

Note that ¥, and W, above are defined uniquely up to a multiplicative constant.
Re(z;x,y) does not depend on this choice. The operator R,(z) defined by the kernel
Re(2;,y) sends C¢(]a, b]) into functions in L?(]a, b]) satisfying the b.c.. Besides, we
have

(=92 +V(z) = 2)Re(ziz,y) = (= 05 + V(y) — 2)Re(z;2,y) = 6(x —y). (2.23)
The following theorem is proven in [13, Propositions 7.8 and 7.9]:

Theorem 2.2. The following conditions are equivalent:

1. dimU,(z) > 1, dim Up(z) > 1 and Re(z) is bounded;
2. z € C\o(Ls).

If the above conditions hold, then
(Lo = 2) "' (z,y) = Re(2;7,y). (2.24)

Hence, the strategy for studying 1-dimensional Schrédinger operators on
L?(]a, b[) given by the expression (2.1) is the following:

For each z € C, determine N (L — z).

Determine U, (z) and Up(z).

If vo(L) =2 or vp(L) = 2, fix b.c. defining L,.

For these b.c. (if needed), and if dim,(z) > 1 and dim Uy(z) > 1, write down
R, (2), using equation (2.19), which is a candidate for the resolvent (L, —2)~!.

5. Check whether R,(z) is bounded. If so, z € C\o(L,) and Re = (Le — 2)~ L.

W=
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2.3. Boundedness of Resolvent

Let us quote two useful lemmas for proving the boundedness of an operator K on
L?(]a,b]) given by the integral kernel K (x,v).

Lemma 2.3. The Hilbert-Schmidt norm of K is given by
K= VERE = [ 1K(w.9) dody)” (2.25)

and we have || K| < ||K]||2.

Lemma 2.4. (Special case of Schur’s Criterion) Suppose that

b b
sup / K(z,y)|dy =1, sup / K(zy)de=co.  (2.26)
z€la,b[Ja y€la,b[Ja

Then ||K|| < /cica.

Note that, if applicable, Lemma 2.3 is superior to Lemma 2.4, because it esti-
mates a stronger norm. For translation-invariant operators, we can also use a special
case of the Young inequality, which actually follows from Schur’s criterion:

Lemma 2.5. If K(z,y) = f(z —y), then

T / ()] da. (2.27)

Let us make some remarks on how to check the boundedness of an operator
of the form (2.19). More precisely, suppose that R is an operator with the integral
kernel

V() ¥p(y) fa<z<y<b,

. (2.28)
Uu(y) Up(z) fa<y<z<ib

R($7 y) = {

where U, resp. Wy, is square integrable near a, resp. b. Choose ¢ such that a < ¢ < b.
Then we can split the operator R into the sum of four operators

R=R _+R +Ry_+Riy (2.29)
with kernels
R__(z,y) :==60(c—z)0(c—y)R(x,y), (2.30a)
Ry (z,y) = 0(x — ¢)f(c — y) Rz, y), (2.30D)
R_i(z,y) :=0(c—2)0(y — c)R(z,y), (2.30c)
Ry (2,9) = 0z — Oy — OR(z,) (2.304)

Now R,_ and R_, are bounded because both ||Ri_||% and ||R_||% can be
estimated by

c b
/ 0, () da / Ty (y) 2 dy. (2.31)

Thus, we obtain the following criterion:

Lemma 2.6. R is bounded iff R__ and Ry, are bounded.
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2.4. Krein Formula

We will always use equation (2.19) to construct the resolvent of a Schrédinger op-
erator. In the literature, in similar situations, one often uses the so-called Krein
formula and the formalism of boundary triplets [1,17]. In this subsection, we com-
pare the two approaches. We will not use boundary triplets in this paper; however,
we discuss them briefly for the convenience of the reader.

Suppose, for definiteness, that v,(L) = 2 and v,(L) = 0. Suppose we fix a basis
{¢Y, ¢'} of the boundary space B defined in (2.14). (This is equivalent to fixing two
distinct b.c. at a.) Then, for any k € CU{oo}, we can define a closed realization L,
of L by setting

D(Ly) == {2 € D(L™™) | ¢°(E) + r¢'(E) =0}, k€T (2.32)
D(Ls) :={Z € D(L™™) | $!(E) =0}, &= oo (2.33)
Let z € C and 0 # Uy(z,-) € Up(z). Note that under our assumptions Wy(z,-) €
L?(Ja,b]).
Let 0 # Wi (z,-) € Ua(2) = N(L — 2) with ¢ (Vi(z,-)) =0, =0,1. Set
Wi(z) == W(¥y(2,-), Vi(z,), i=0,1. (2.34)
It follows from (2.19) that
1 (\Ifg(z, z) + rUL(z, a:)) Uy(z,y) fa<z<y<b,
Bulzay) = WVO(2) + KV (2)) {(\pg(z,y) +RUL(2,1)) Up(z,7)  ifa<y<z<b. (2.35)
is a candidate for the kernel of R,(z) := (L, — z)~'. It is easy to check that
Wi(2)
1 . 0 . —
W(wi(z,) - () VA ) (e, ) =0. (2.36)
Therefore, changing if needed the normalization of ¥y(z,-), we can assume that
Wi(2)
Uiz, (2 = Wy(z,). 2.37
a(zﬂ ) WO ( ) ( ) b(Z, ) ( )
Using this we can rewrite (2.35) as
\\ \\
Ry(zi2.y) = Bofzi.) + i 1 V0l20) (2.38)

RTIWO(2) + Wl(z)
This is often called Krein formula, which is the basis of the boundary triplet ap-
proach. It expresses the resolvent with mixed b.c. by the resolvent with unperturbed
b.c. plus a rank one perturbation. Note that if we check the boundedness of Ry(z),
then R, (z) is well-defined and bounded unless x~1W°(2) + W!(z) = 0.

Thus, in the above approach, one introduces three objects: the space B and
a pair of its distinguished linearly independent elements ¢ and ¢!. Jointly, they
are often called a boundary triplet [1,17]. If V' is integrable near a € R, one usually
chooses the Dirichlet and Neumann b.c., that is, ¢°(Z) = Z(a) and ¢'(Z) = Z/(a).
More generally, in most (but not all) Hamiltonians considered in this paper, we have
a similar distinguished pair. For example, for the Bessel operator with |[Re(m)| < 1,
m # 0, these are the b.c. set by r2t™ and r2=™. For m = 0, one can choose r2 and
rz In r; however, one can argue that only the first is truly distinguished.
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3. Schrodinger Operators Related to the Bessel Equation
3.1. Bessel Operator

Various elements of the material of this subsection can be found in the literature,
e.g., in [26,29,34]. We treat [6,10] as the main references.
Let m € C. The Bessel operator is formally given by
H,, = 0% + (m2 - i)riz (3.1)
We would like to interpret it as a closed operator on L?(R).

Note that when we deal with (3.1), it is more convenient to use 1d Bessel func-
tions rather than the (usual) 2d Bessel functions. Depending on the circumstances,
one may prefer to use hyperbolic or elliptic Bessel functions—therefore, for some
quantities, we provide expressions in terms of both. For more detail about 1d Bessel
functions, see Appendix A, especially Sects. A.3 and A.5.

In the following table, for each parameter and for each eigenvalue, we provide a
few functions that span the space of eigenfunctions of (3.1) (usually, but not always,
a basis of this space). After checking the square integrability of these functions near

Figenvalue Parameters Figenfunctions

—k? with k # 0 Tim(kx), Kp(kx)
0 m # 0 :U%im

0 m =20 xz, 22 Inx

the endpoints, we see that the endpoints have the following types:

Endpoint Parameters Index
0 [Re(m)| < 1 2
0 |[Re(m)| >1 0
+0o0 0

The following theorem describes the basic holomorphic family of Bessel opera-
tors:

Theorem 3.1. For Re(m) > 1, there exists a unique closed operator H,, in the
sense of L?(R.), which on C2°(]0,00[) is given by (3.1). The family m — H,, is
holomorphic and possesses a unique holomorphic extension to Re(m) > —1.

The spectrum and the point spectrum of H,, are

U(Hm> = [0700[7 Gp(Hm) - @ 9 (32)

and its resolvent is

_ 1T (k y) if0<z<uy,
(Hy +42) 1<x,y>—k{ i

Ko (K |
Km(kz) if 0 <y <z, Re(k) > 0; (3.3)
x)
)

jE(k:y) if 0<z<y,

x)
y)
(Hp — k)" a,y) = £ { ((Z Zi(kx) i 0cyey k>0 (34)



Vol. 93 (2025) Exactly Solvable Schrédinger Operators 121

Proof. For Re(m) > —1, we define H,, to be the closed realization of (3.1) with the
b.c. at 0 given by z2+™. From the table above, we see that for Re(m) > 1, it is the
unique realization of (3.1).
We check that, for such Re(m) > —1,
lm W(Z, (ka), 22 7™) = 0, (3.5)

x—0

and Z,,(kx) is square integrable near zero. Moreover, K, (kx) is square integrable
near +oo if and only if Re(k) > 0. We also find

W(Tn (k) K (k) = k. (3.6)

Next we apply (2.19), which yields the kernel on the rhs of (3.3) as a candidate for
the resolvent of H,,. We check that it is bounded. Hence it equals (H,, +k?)~1. We
also verify that it depends holomorphically on m on a larger domain {Re(m) > —1}.
Therefore, {Re(m) > —1} 3 m +— H,, is a holomorphic family.

See [6] for the details. O

Here is a description of the basic family of Bessel operators with real m. Again,
its proof can be found, e.g., in [6].

Theorem 3.2. For m €] — 1,00|, the operator H,, defined in Theorem 3.1 is self-
adjoint. For m € [1,00[, Hy, is essentially self-adjoint on C°(]0,00[). For m €
[0,00[, it is the Friedrichs extension of (3.1) restricted to C2°(]0,00[). For m €
| —1,0], it is the Krein extension of (3.1) restricted to C°(]0, 00]).

Let us go back to complex m satisfying Re(m) > —1. The Bessel operator is
exactly solvable in a very strong sense. Besides the resolvent, one can also compute
the integral kernel of the holomorphic semigroup generated by H,,, see, e.g., [29].
It can also be written in two equivalent ways.

t 2 12 92
e-zﬂmu,y):\/;zm(f”j’)e— 7, Re(t) > 0; (37)

it i 2 Fiz?xiy?
EHHun (g y) = HEFHD) - jm<:%y) e 2 LIm(t) > 0. (3.8)
As noted in [6,34], we have the identity
H,, =2 AK'Z,,(4), (3.9)
where
F(m+21+it)

. 1
= (t) =¢! ln(2)tm, A= Z(I’am + 8$$)7 and K := SUQ. (310)
2

The operator Z,,,(A) is called the Hankel transformation. Its integral kernel can be
also computed:

Em(A)(z,y) = \/zjm(wy)- (3.11)

Note that (3.9) describes diagonalization of the Bessel operator—transforming it
into the multiplication operator K 1.

Remark 3.3. For —1 < Re(m) < 1, we can also consider mixed b.c.. For more
details, see e.g. [10].
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3.2. Exponential Potentials

For k € C, the Schrddinger operator with the exponential potential is formally given
by
My == =02 + k*e*". (3.12)

We will interpret it as a closed operator on L?(IR). Without restricting the generality
we can assume that Re(k) > 0.

Note that M is very common in the literature. For example, it has important
applications in Liouville CFT, see, e.g., [40, Chapter 4], and on hyperbolic manifolds.

For » = e¢”, we have the following formal identity:

]. x x
(024 (m? = h) 5 + k2 =¥ (= 02+ K% 4 m?)eE, (3.13)
r
Using this, we can express eigenfunctions of M}, in terms of Bessel functions. In this
case, 2-dimensional Bessel functions are more convenient than 1-dimensional ones,
see Appendix, Sect. A.2.
Eigenvalues and corresponding eigenfunctions of (3.12) are given by:

Eigenvalue Parameters Eigenfunctions

—m? Re(k) >0, k#0 Iy (ke®), K, (ke®)
-m? m ;é 0 k=20 etmz

0 k=0 1, =

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index
—00 Re(k) >0 0
+00 Re(k) >0or k=0 0
400 Re(k) =0, k#0 2

The following theorem describes the basic holomorphic family of Schrodinger
operators with the exponential potential:

Theorem 3.4. For Re(k) > 0 or k =0, the expression (3.12) defines a unique closed
operator on L*(R), which will be denoted M. The spectrum and point spectrum are
o(My) = [0,00[, op(My) = 0.

Moreover, {Re(k) > 0} > k +— My, is a holomorphic family of closed operators,
and for Re(m) > 0, the resolvent is given by

I, (ke®) K (keV)  if z <y,
L, (ke¥) K., (ke®) ify < x.
Proof. The case k = 0 is well known, let us restrict ourselves to Re(k) > 0. We check

that for Re(m) > 0 I,,,(ke”) is up to a multiplicative constant the only eigensolution
square integrable close to —oo. Similarly for K,,(ke”) close to +00. We check that

W (I (ke®), K (ke¥)) = 1. (3.15)

(Mi +m?) " (z,y) = { (3.14)
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Next, we apply (2.19), which yields the kernel on the rhs of (3.14) as a candidate for
the resolvent of M. Let us denote it by Ry(—m?;z,y). In Lemma 3.5, following the
strategy given in Sect. 2.3, we check the boundedness of Ry (—m?) and its analyticity
wrt k. This ends the proof of the theorem. O

Lemma 3.5. (Boundedness of Kernel) Let Re(m) > 0 and Re(k) > 0. Let R(—m?)
be the operator with kernel (3.14). Then Ry(—m?) is a bounded operator and the
map k — Ri(—m?) is a holomorphic family of bounded operators, which does not
have a holomorphic extension to a larger subset of the complex plane.

Proof. Since (a) both modified Bessel functions I,,, and K,, are analytic for fixed m
with Re(m) > 0 and (b) the function ke” is analytic in k, the kernel Ry(—m?;z,y)
is an analytic function of parameter k. It is easy to see that for any f,g € C°(R),
the quantity

(fIRi(~m?) g) = / F@) Ri(—m? 2, y) g(y) dady

is analytic in k. Since C2°(R) is a dense subset of L?(R), it remains to prove that
Ry (—m?; x,y) is locally bounded in k.

To proceed further, we use the method of Sect. 2.3. We split the resolvent as in
(2.29) and (2.30) with ¢ = 0. By Lemma 2.6, we need to prove the boundedness of

R__ and R++
We have, for z — 0,

Im(x)~1)<‘;)m, m#—1,-2,...,

Re(T'(m) (2)™) if Re(m) = 0,m # 0,
~In(2) - if m =0,
Ko (@) ~ F<m>(( ))m7 if Re(m
)

) >0
> (2)™ if Re(m) <0,

)

and, for r — o0,

We check
|R;,~ (—m?* z,y)|

S Cm,k: (e—Re(m)xeRe(m)y]l_Oo<y<m<0($’ y) + eRe(m)xe_Re(m)yﬂ—oo<z<y<0(l'a y)) .

Since
sup / efR,c(m)zeRC(’m)yn_Oc<y<x<0($7y) dy
€ ]—00,0] .
" 1 1
_ sup e—Re(m)z / eRe(m)y dy = sup e—Re(m)z eRe(m)z _ ,
z€ | —00,0] —oo z€ |—00,0] Re(m) R‘e(m)

sup /efRe<m)zeRe(m)y1—oo<y<z<0(5'37y) dz
Y€ ]—00,0]

1

Re(m)

-0
_ sup eRc(m)y / e—Rc(m)z de = sup eRc(m)y 1
Yy

—y
(7 / eRc(m)z d.’E) —
y€]-o00,0] y€]-o00,0] Re(m) " Jo
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by Schur’s criterion we obtain
| R, ~ (=m?)|| < 2C k-

For the R} *(—m?), we have the following: Since Re(k) > 0, we obtain
R+ (—m?,y)| < Cm’ke—We—Re(k)\e”—eyl < Cpore” =3
Therefore, the Hilbert—Schmidt norm of R; ™ (—m?) is finite.

Now, we prove that Rj(—m?) cannot be extended to a holomorphic family of
bounded operators beyond the axis Re(k) = 0. Let us fix ¢ € C°(R). For k —
Ry (=m?)g, with values in L _(R) is entire analytic. If Ry(—m?) could be extended
to a holomorphic family of bounded operators, when applied to the function ¢ this
extension should coincide with Ry(—m?)g. Then, for x below the support of g, we
have

Rk(_mQ)g(x) = / I (ke®) Ko (ke¥)g(y) dy = In(ke™) / Ko (ke”)g(y) dy = Co o I (ke™)

and
Ri(—m?)g(x) = / Ko (ke®) I (ke*)g(y) dy = Ko (ke?) / L (ke")g(y) dy = Coni o (ke?)

for some constant C,, j.
If Re(k) < 0, then I,,,(ke®) & L*(R) because |I,,(z)| diverges as |Re(z)| — oc.
Hence, the map cannot be extend to Re(k) < 0. U

Remark 3.6. One of applications of perturbed Bessel operators to quantum physics
is the concept of Regge poles [36]. They are defined as poles of the holomorphic
function m + (H,, + V + k?)71, where V is typically a short-range potential.
Substituting r = e” similarly to (3.13), we obtain
r2(Hp + V(r) + k%) = e2 ( — 02 + ke + e*V (e) + mQ)e_%.

This substitution is quite useful in many cases and sometimes called the Langer
substitution [30, Eq. (22)]. Set W (z) := e?*V (e®). Then, the transmutation property
(1.4) can be generalized to include a potential:

(M +W +m?) " a,y) =e 2 (Hp +V + k)71, e¥) e 2. (3.16)

Thus Regge poles coincide with the poles of m +— (My + W + m?)~1. Therefore, we
have another equivalent definition of Regge poles, which is used e.g. in [3].

3.3. Negative Exponential Potential

The previous subsection covered the case Re(k) > 0. In this subsection, we consider
the case Re(k) = 0, k # 0, that is, the Schrddinger operator with a negative expo-
nential potential. Surprisingly, it appears in interesting physical applications, e.g.,
it is the main ingredient of the Feynman propagator on the Poincaré patch of the
de Sitter and anti-de Sitter space. Clearly, it defines a Hermitian operator, which
possesses a 1-parameter family of closed realizations on L?(R).

In this section, for convenience, we introduce the parameter ¢ > 0, so that
k = if, and we consider the formal expression

Mg = —02 — (%7, (3.17)
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(a) For My, := —02 + k*¢* with k € C (b) For —82 + ce** with c€ C

FIGURE 1 Domains of the parameters k and ¢ = k?

The corresponding maximal and minimal operators of Mj, in L?(R) are denoted
Mpa* and M3, The domain of M** is given by
D(M™) = {f € L*(R) | (=02 — (?*") f € L*(R)},
and M3 is the closure of the restriction of (3.17) to C2°(R).
In order to set b.c., we will use the Hankel functions

2\z 4
Hi(r) = :Fi(—) F et
2 o

We could use HZE(r) with other m, but the parameter i gives especially simple
m 2
elementary functions.)
First, we describe the two distinguished realizations:

Theorem 3.7. Let £ > 0. Then there exists two closed operators in the sense of L*(R)
that on C2°(]0, 00[) is given by (3.17) and satisfy the following b.c. at +o0:

D(MY) = {2 € DOME™) | Tim W(H (¢e”), Z(2)) =0}, (3.18)

D(MF) = {2 € DOME™) | lim W(H] (¢e), E(@)) =0} (3.19)
Tr— 00 2
Both M) and M do not have point spectrum, more precisely,
o(My) = o(MF) = [0,00], 0p(My) =o0p(M7) =0, (3.20)

and, for Re(m) > 0,

: ’ 2 | Im(le¥) Hy (Le”) if y < x; '
i ’ 2 | Jn(le¥)H, (Le”) ify <m. '
Proof. First we check that
lim W(HT (le®), H:(te")) = 0. (3.23)

Therefore, the rhs of (3.21), resp. (3.22) are good candidates for the inverses of
MP +m?, resp. M)+m?. But the rhs of (3.21), resp. (3.22) coincide with Ry (—m?)
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for k = il, resp. k = —i¢, in the notation of Lemma 3.5 (see the proof of Thm 3.8).
And the proof of this lemma applies. O

In the following theorem, we prove that the realizations described above are
limiting cases of the basic holomorphic family from the previous subsection.

Theorem 3.8. We have the following weak convergence:

1. We have
W ii{%(Mg +m?) 7t = (=02 +m?) L. (3.24)
2. For £ >0 and Re(m) > 0, we have
W Mm (Mesie +m?) ™ = (M +m?)™, (3.25)
W g%(Ms_ig +m?) 7t = (MY +m?) L (3.26)

Proof. Note that
T (0e™) = eI (Fite™) and  HE(le¥) — %eﬁ%(mH)Km(:ery).
Then, for all x < y, either
I, (e +10)e”) K., ((e +10)eY) — ng(fex)H;l(éey) = I,,(ile") K, (ile?)
or
I, ((e +10)e”) K, ((e +10)eY) — J (—le®)H I (—le¥) = I, (—ile”) K, (—ileY)

as € — 0. Similar convergence can be obtained for y < z. Then, as £ # 0 with
uniform boundness of I, and K,, and Lebesgue dominate convergence theorem
gives the norm convergence. ]

From Theorem 3.8, we see that by setting
My := -2, My := MY, M_y:=DM); (>0, (3.27)
we extend the basic holomorphic family {Re(k) > 0} > k — M}, to a continuous

family {Re(k) > 0} 3 k — M.
Before we continue, let us note that J,,(fe*) belong to L?(R) for Re(m) > 0.

Indeed,
1

where the last 1dent1ty is e.g. in [33, Eq. ( 10 22 57)] with a = 1, p = v = m, and
A=1.

Now, we are ready describe the remaining mixed realizations (see [42] for a
similar result).

Theorem 3.9. Let ¢ > 0 and v € C\ {0}. There exists a unique closed operator in
the sense of L*(R) that on C°(]0,00|) is given by (3.17) and satisfies the following
b.c. at +oo:

D(My) ={ € D(M™) | lim W(HT (be”) +H; (te7), E(x)) :o}. (3.29)
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C\{0} > v — M, is a holomorphic family of closed operators. If v = €'*, the
eigenvalues and eigenfunctions of M, are

—(a+n)?  Jain(le®), ne2Z, Re(a+n)>0. (3.30)

its spectrum, point spectrum and resolvent are
o (M) = [0,00[ U op (M), (3.31)
op(M]) ={—(n+a)® | Re(n+a) >0, n€2Z}, (3.32)

(M +m?) " (w,y) = 5 {Jm(éex) (™™ Hy, (Ce?) +yH,, ((e¥))  if @ <y,

2T =) | T (le?) (T H, (te") + v Hy (6e7)) if y < .
(3.33)

4. Schrodinger Operators Related to the Whittaker Equation
4.1. Whittaker Operator

This is another classic problem, described in many sources. We treat [11,12] as the
main references for this subsection.

Let m, 8 € C. The Whittaker operator is formally defined by

Hpi= =02+ (m? = }) 5~ . (4.)

It is the radial part of the Schrodinger operator with the Coulomb potential, in
dimension 3 used to describe the Hydrogen atom. We will interpret it as a closed
operator on L?(R,).

We will use 1d Whittaker functions with conventions described in Appendix,
Subsect. B.3.

We first find eigenvalues and corresponding eigenfunctions of (4.1):

Eigenvalue Parameters Eigenfunctions

— k2 with k 7& 0 I%%’im(QkT), K%,T(ri)

0 B#0 73 Taom (2VEr), 15 Ha,, (2V/5T)
0 =0, m#0 radm

0 =0, m=0 rz, rz In(r)

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index
0 |[Re(m)| < 1 2
0 |[Re(m)| > 1 0
+00 0

Let us describe the basic holomorphic family of Whittaker operators:
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Theorem 4.1. For Re(m) > 1, there exists a unique closed operator Hg ,, in the
sense of L*(R,.), which on C(]0, 00[) is given by (4.1). It depends holomorphically
on B,m. It can be uniquely extended to a holomorphic family of closed operators on
L?(Ry) defined for Re(m) > —1, B € C, (8,m) # (0,—3%). Its spectrum and point
spectrum are

o(Hp,m) = [0,00[ U op(Hpm) (4.2)
oo (H ):{—62(71+m+17é0 Re(L>>O neN}
PR gm 4n+m+ 3)? 277 n+m+ 3 ’ 0f

(4.3)

Outside of the spectrum, the kernel of the resolvent of Hg , is

7 2kx)KC 2k or 0 < x <y,
(Hoon +12) 09) 1= 25 T +m— ) { oo PR @R ’
I%M(Qk:y)lC%?ka‘x) forO<y <.

(4.4)

Proof of Theorem 4.1. We define Hg,, for Re(m) > —1, (8,m) # (0,—%) by the
b.c. at 0 given by 23 Jap (2¢/Bx). We check that for Re(m) > —1

lim W(Z%im(%x), 2% Tom (2 gg;)) —0. (4.5)

z—0
Moreover, K il . (2kx) is square integrable near 4+-00. We also find
2k
(Grm-5)
Next, we apply (2.19), which yields the kernel on the right-hand side of (3.3) as a

candidate for the resolvent of Hpg,,. We check that it is bounded. Hence, it equals
(Hg,m + k*)~'. We also verify that it depends analytically on 8 and m. Therefore,

C x {Re(m) > —1}\(0,—1) 5 (8,m) — Hym (4.7)

W(I%ym(%x), K%jm(%‘x)) - (4.6)

is an analytic family. For Re(m) > 1, the b.c. is not needed, hence Hg ,, is then
uniquely defined.
See [11] for details. O

The operator Hg ,, is sometimes called the Whittaker operator with pure b.c..

Note that for m > —%, we can simplify the b.c. — we can set it by z2tm For —1 <
B

1+2m)

Re(m) < —3, interestingly, this does not work. Instead, we can use zatm(1—
to set the b.c.. Details can be found in [11].

Note that (0, —3) is a singularity of the holomorphic function (3,m) — Hg .
Additionally, we set Hj _ 1= H_ 1 Then, the basic family of Whittaker operators

extends the basic family of Bessel operators:
Hom = H,,, Re(m)>—1. (4.8)

Remark 4.2. For —1 < Re(m) < 1, # € C, we can also consider mixed b.c.. We do
not study them here, see e.g. [12].



Vol. 93 (2025) Exactly Solvable Schrédinger Operators 129

4.2. Morse Potentials
The Schrodinger operator with the Morse potential is formally given by

Mg == =02 + k*e* — [Be”. (4.9)

We will interpret it as a closed operator on L?(R). Without restricting the generality
we can assume that Re(k) > 0.
For r = e”, we have the following formal identity:

]. x x
7"2( — 2+ (m® — %)—2 _b + k2> =e2 ( — 02 + k*e* — Be” + mz)e_f. (4.10)
r r
Therefore, eigenfunctions of Mg can be expressed in terms of Whittaker func-
tions. In this subsection instead of the standard (1-dimensional) Whittaker func-
tions Zg y,, Kg,m it is more convenient to use 2d Whittaker functions I3 ,, Kg m,
see Appendix B.4.

We first find eigenvalues and corresponding eigenfunctions of (4.17):

Eigenvalue Parameters Eigenfunctions
—m? Re(k) >0, k#0 Ip 4o (2ke™), Ky o (2ke™)

2 ’ x 2k x
—m? k=0, B#0 Loy (vV—4Be2), Kom(v/—4Be?)
—m? with m #0 k=0, =0 etme
0 k=0, =0 1, =z

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index
— o0 0
+o0 Re(k) >0 0
+00 k=0,8€C\Rsg 0
+o0 Re(k) =0,k #0 2
+00 k=0,6>0 2

Here is a description of the basic holomorphic family of Schrédinger operators with
Morse potentials:

Theorem 4.3. For 3,k € C with Re(k) > 0 there exists a unique closed operator in
the sense of L*(R), denoted Mg ) which on C>(R) it is given by (4.9). It forms a
holomorphic family of closed operators.

Its spectrum and point spectrum are

J(M/&k) = [0,00[ U O'p(Mng), (4.11)
O'p(M@k):{—mQ ‘m:%—n—%, Re(m) > 0, nGNO}. (4.12)
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Outside of the spectrum, its resolvent is given by

1o (2

- 35 ) m( key)7 if v <y,
(Mg +m?) " (z,y) == T(5 +m - 37) {I

2ke” K% 2
(2key)K%’m(2kem), ify <.
(4.13)

8
2k

Proof. The uniqueness of a closed realization of N ,, for Re(k) > 0 follows from
the table above. I% m(2ke”) is then square integrable near —oo and K% o (2ke”)
2k 2k

is square integrable near +o00. We compute the Wronskian:

1

W s, (2ke"), K 5, (2ke")) = r(ltm-—2)

(4.14)

Now, by (2.19) the kernel on the rhs of (4.13) is a candidate of the resolvent of
Mg 1. The boundedness is obtained with the help of Lemma 4.4, similarly as in the
previous (sub)section. (]

Lemma 4.4. Let k,3 € C with Re(k) > 0 and fix m with Re(m) > 0 and —m?
outside of (4.12). Let Rg x(—m?) be the operator with the kernel on the right hand
side of (4.13). Then Rg(—m?) is bounded and depends analytically on 3, k.

Proof. The proof is very similar to that of Lemma 3.5. We use the method of
Sect. 2.3. We split the resolvent as in (2.29) and (2.30) with ¢ = 0. Then we prove
the boundedness of R__ and R, . O

Remark 4.5. Clearly, the family of Morse potentials extends the family of exponen-
tial potentials:

Moy ), = My, (4.15)

i.e., if 8§ = 0, then the Morse potential is the exponential potential covered in
Sect. 3.2.

Remark 4.6. If k = 0 and 8 € C\ Ry, then after scaling, the Morse potential is
the exponential potential covered in Sect.3.2. This case is covered in Fig. 1b with
8 =—c If k=0 and 8 > 0, then after scaling, Morse potentials is the negative
exponential covered in Sect. 3.3.

Let A= w where p = —10,. Let U, := €74 be the dilation operator. It acts
on functions as follows:

(U-f)(x) = e? f(eTx).
Then with U, we have the following identity:

_ B . 1 A1
Uiz M50 Uin> =U1n12(—3§—ﬂe )Uln2 = *<—3§+(—4ﬁ)e2 ) =M=

4
(4.16)

Remark 4.7. We have not analyzed the case Re(k) = 0, except for k = 0, which is
discussed above. We leave it for future research.
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4.3. Isotonic Oscillator

The isotonic harmonic oscillator is formally defined by
1
Nim 1= —02 + (m? — i)v—z + k%02 (4.17)

It appears in physics as the radial part of the radially symmetric harmonic oscillator
in any dimension > 1. The name “isotonic” indicates that the frequencies in all
directions are the same. We will interpret (4.17) as a closed operator on L?(R.).
Without restricting the generality, we can assume that Re(k) > 0.

Consider the change of variables r = g We have the formal identity, which
connects the Whittaker operator with the isotonic oscillator:

m2 1 ﬁ _3 1 -1

—R (D) -k = 2(—8§+(m2—i)ﬁ+k202—26)v 5. (4.18)
Therefore, eigenfunctions of the isotonic oscillator can be expressed in terms of
the Whittaker functions. The details are described in Appendix B.5, where the

functions I and K are introduced. We will use them in the following table describing
eigenvalues and corresponding eigenfunctions of (4.17):

Eigenvalue Parameters Eigenfunctions

23 Re(k) >0, k#0 Lo o (VEV), Ks , (Vko)
—p? with p # 0 k=0 Zim(pv), Km(pv)

0 k=0, m#0 paEm

0 k=0, m=0 v%, v2 lnw

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index
0 |Re(m)| < 1 2
0 [Re(m)| > 1 0
+oo 0

Let us describe the basic family of isotonic harmonic oscillators:

Theorem 4.8. For Re(k) > 0 and Re(m) > 1 there exists a unique closed operator
Ni.m in the sense of L2(Ry.) given on C°(]0,00[) by (4.17). It uniquely extends by
analyticity in m to Re(k) > 0 and Re(m) > —1.
1. For Re(k) > 0, Re(m) > —1 we have a holomorphic family with the spectrum
o(Nim) = 0p(Nim) = {28 =2k(2n+m+1) | n € No}. (4.19)
Outside of its spectrum, its resolvent is given by

ﬁ) {vam(\/%“) KK

(VEkv) if0<u <o,
— -1 — 1 1l,.m __ B ,m
Nk =29) )= 3 0(3 5 =50 1107

(Vku) if0<v <.
(4.20)

Mo »w
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2. Let Re(k) = 0, k # 0 with k =
0p(Nk.m) =0 and, for £Im25 > 0
L Ly , (VFku)K s | (VFkv) if0<u<w,

(Nian —28) " (u,0) = 3 T(34% = 5¢) § 7F |
¥ ]I%7 (VFkv) %’m(\/ﬂu) if0<v<u.

For Re(k) =0, k # 0 with k = —il, £ > 0, we set Ny = N_j .
3. The case k = 0 coincides with the Bessel operators: No m, = Hy,.

il, ¢ > 0. Then, we have o(Ngm) = R,

K
. (4.21)

m

Proof. For Re(k) > 0 and Re(m) > —1, we define Nj_,, by setting the b.c. at zero
with vz ™. We check that

W0zt s (Viv)) =0 (4.22)

and 1 s .. (V/kv) is square integrable near 0.
Let us now consider Cases 1,2,3 separately.
For Re(k) > 0, Ks . (V/kv) is square integrable near +o0o. We check that

2
Pz +% = 5)
Now, (2.19) yields the kernel on the rhs of (4.20) as a candidate of the resolvent of
Ni.m. In Lemma 4.9.1., we check that it is bounded and depends analytically on

parameters k,m. This proves Case 1.
For k =i/, £ > 0, and +£Im(253) > 0, we have

Re(fk) - ;# <0, (4.24)

thus, K s (v/Fkv), which can be estimated by Cv_%JrRe%, is square integrable
Tk

near +o0o. Therefore, using (2.19) the rhs of (4.21) is a candidate of the kernel of
the resolvent of Ny, ,,,. We check that £Imf < 0 and Re(m) > —1, ¢ > 0 implies
that there are no solutions of

28 = 2(Fil)(2n +m + 1). (4.25)

Therefore, besides R there is no spectrum of Ny, ,,. In Lemma 4.9.2, we check that
(4.21) is bounded and depends analytically on m. This proves Case 2.
Finally, Case 3 was treated before. O

W(H%m(\/%u),K%m(ﬁu)) = (4.23)

Lemma 4.9. For k # 0, let Ry ,n(203) denote the operator with the integral kernel
(4.20). Let Re(m) > —1.

1. If Re(k) > 0 and 2§ is outside of the spectrum, then Ry, ,,,(2(3) is bounded and
depends analytically on k,m.
2. If k = Fil, £ > 0, and £Im(23) > 0, then Ry ., (20) is bounded and depends

analytically on m.

1

VIEl
CuztRe(m)yz—Re(m) if () <4 < v < c,
CozTRe(m)ys—Re(m) it () < ¢ <y < c,

Proof. We use Lemma 2.6 with, say, ¢ = , to split Ry, ,,. We have the estimates

Ry (265 u,0) - <

m # 0; (4.26)
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Cuzvz|l if 0
(R0 (—28;u,v)] < ufvf‘ n(v) phsusvso (4.27)
’ Cvzuz|In(u)] f0<v<u<c,
Cu—3—Refy=3tReZ o’ —v")Re(k)  if ¢ <« 4 <
++ . < ’
|Rk;,m( 2ﬂ7u77})‘ — {Cv_é_Regu_%_,'_R %e(v —uQ)Re(k) lf c < v < w. (428)

Now, we use (4.26), (4.27) and the Hilbert-Schmidt estimate to prove the bounded-
ness of R, (2f3), both in Case 1 and 2. Then, we use (4.28) to prove the boundedness

of Rﬁjn@ﬁ) We treat separately for Case 1 and Case 2.
Let Re(k) > 0. Set b := —Re(%). Using (4.28) we see that that

(Inu—Inwv)
R;;(—%; u,v) < Cre~ oI (Ta= b (urv)Re(k) (4.29)

The function

[e, 00[X[e, 0] 3 (u,v) — Mb + (u+ v)Re(k)

is continuous and goes to 400 as u — +o0o or v — +o00. Therefore, away from
a bounded set, it can be bounded from below by some e > 0. Hence, (4.29) can
be estimated from above by < Cie~l*~vl¢. Now (4.29) is the kernel of a bounded
operator by Young’s inequality or Schur’s criterion. This proves Case 1.

Now assume Re(k) = 0. Let b := —Re (%), as before. We now have b > 0. We
have

1 1 .
Cu—ztby= 27t ifc<u<uw,

4.30
Co~ 2ty 37Y ife<ov<u. ( )

IR (—285u,0)] < {

Without loss of generality, one may let ¢ = 0. Making substitutions u = ef,

v = e°, we obtain

(f\RZjn(—QB; u,v)g / / w)|g(v |u_%+bv_%_b + (u < v)dvdu (4.31)
/ / e")llg(e*)]es 3 4 (5 o ) dsdt

<2 [ireopeta)’ ( [lateeeras)’
=2( [1seoran)*( [loerar)* (1.3

This shows Case 2. OJ

Remark 4.10. The operators N -1 are the harmonic oscillators on Ry with the
Neumann and Dirichlet conditions, respectively. We can denote them as follows:

Nj_1 =Ny, Npi=: Ny (4.33)

Here are their spectra:
o(Ny) = {k(4n+1) | n € No}, (4.34)
o(NP) = {k(4n+3) | n € No}. (4.35)
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In the next section we will consider them again.

Remark 4.11. For —1 < Re(m) < 1, we can also consider mixed b.c.. They can be
analyzed similarly as for Bessel operators.

5. Harmonic Oscillator

This section is devoted to the harmonic oscillator, formally defined on L?(R) by
Np = —0% + K%, (5.1)

We will consider its closed realizations on L?(R). Without loss of generality, we
assume that Re(k) > 0.

For real k, the self-adjoint realization of Ny, is one of the best-known operators in
Quantum Mechanics. For complex k, its closed realization is an interesting example
of an operator with sometimes surprising properties, and has been studied, e.g., in
[7,35].

To describe the eigenfunctions of (4.17), we will use Weber functions, defined
in Appendix C.

Eigenvalue Parameters Eigenfunctions

23 Re(k) >0, k#0 H%i(ﬁv), K%(i\/Ev)
—p? with p # 0 k=0 e’ e7PY

0 k=0 v, 1

The endpoints have always index 0:

Endpoint Parameters Index
—00 Re(k) > 0 0
+00 Re(k) >0 0

For the harmonic oscillator, we have a unique closed realization for all param-
eters:

Theorem 5.1. Let Re(k) > 0. There exist a unique closed operator in the sense of
L?(R), which on C>=(R) coincides with (5.1). It will be denoted Ny.

1. {Re(k) > 0} © k +— Ny is a holomorphic family of closed operators with the
following spectrum:

o(Ny) = 0p(Ni) = {k(2n+1) | n € No}. (5.2)

For 23 away of its spectrum, its resolvent is given by
) {K (—Vku) K%(\/Ev) if u<w,
K ,(_\/EU) K%(\/Eu) if v <.

=@

(Nk —20) " u,v) = 575= 27 T(5 — (5.3)

2

9
3
=@

o =w
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2. LetRe(k) =0, k # 0 with k = il, £ > 0. Then, we have c(Ny) =R, 0,(Ng) = 0
and, for £Im23 > 0,

(VFkv) if u<w,

K
N —26)" (u,v 27 (L — £ Ke %
(=20 ) = g 2 G - ) K (- Fv) K (VFRu) ifv<u.
(5.4)
For Re(k) =0, k # 0 with k = —il, £ > 0, we set Ny = N_.
3. Finally, 0(No) = [0,00[, 0p(No) = 0 and, for Re(p) > 0,
(No +p”) (uav)_T (5.5)

Proof. The uniqueness of a closed realization follows immediately from the table.

For Re(k) > 0, K%(—\/EU) is square integrable near —oo and K%(\/Ev) is
square integrable near —oo. Using (C.5) and (C.6), and then Legendre’s duplication
formula, we get the Wronskian:

47 B 2V 2w
B 3 8y B ’
=) (g —35) 2% (3 — 9

W(Ks (— Vku), Kg(fu)) (5.6)

0

Now, we apply (2.19) to have the kernel on the rhs of (5.3) as a candidate of the
resolvent of Ny, denoting it by Rx(—2(3). The boundedness of Rj(—24) is immediate
from the subsection on the isotonic oscillator.

For k =il, ¢ > 0, and +Im(203) > 0, we have

g Imf3

Re(L ) =5, <0, 5.7

o) =F 7 © 5.7

thus, K%(\/ Filv) is square integrable near +oo and K%(—\/xiév) near —oo. The
Fi Fi

boundedness of Ry(—2/3) is proven as for the isotonic oscillator.
The case k = 0 is just the well-known free 1d Laplacian. O

=

As is well-known, the propagator for N can be expressed in elementary func-
tions. It is given by the so-called Mehler’s formula

SRR = T TS

—it

where p = e

Remark 5.2. Recall that in (4.33) we introduced the harmonic oscillators with the
Neumann and Dirichlet boundary conditions N,lj /D = Ny + 1 on R4, as special
cases of the isotonic harmonic oscillator. They are closely related to the harmonic
oscillator Ny, on R.

Let L% (R) denote the subspace of L?(R) consisting of even, resp. odd functions.
Let us define the unitary operators

Us: L*(Ry) — LA(R), (5.9)

(U, 9)(v) = \ggqv\), veR; (5.10)
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V-0 = Egu), ve (5.11)
so that

(UL)(v) = V2f(v), veRy. (5.12)
Then

N, = U NJUT +U_NPU*, (5.13)

where “+7 can be replaced by “@” in the sense of the direct sum L*(R) = L2 (R) ®
L? (R). Consequently,

o(Ng) = o(NP) U a(NY) (5.14)

where the spectra of NP and N} were computed in (4.34).

Acknowledgements

J.D. was supported by National Science Center (Poland) under the grant UMO-
2019/35/B/ST1/01651. J. L. was supported by the Swiss National Science Founda-
tion through the NCCR SwissMAP, the SNSF Eccellenza project PCEFP2_181153,
by the Swiss State Secretariat for Research and Innovation through the project
P.530.1016 (AEQUA), and Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-
2024-00411072).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights
to this article under a publishing agreement with the author(s) or other rightsh-
older(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

A. Bessel Equation

There are several kinds of Bessel equations, all equivalent to one another. Their
main application is the Helmholtz equation in d dimensions:

(=Aqy+ E)f=0. (A.1)
If E >0, (A.1) can be simplified to F = 1, a case often referred to as hyperbolic.
Conversely, if £ < 0, which can similarly be simplified to £ = —1, the case is

sometimes known as trigonometric. The radial part of (A.1) on spherical harmonics
of order ¢ is

(—83—(dr_l)&+<(€+g—1)2—(g—1)2)1+E>f:0. (A.2)

r2
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The versions of (A.2) for various dimensions are equivalent by gauging (or conju-
gating) the operator with a power of r.!

The standard Bessel equation corresponds to the 2d trigonometric case, while
the so-called modified Bessel equation corresponds to the 2d hyperbolic case. How-
ever, sometimes it is convenient to use versions of the Bessel equation for other
dimensions. In our paper, in some cases 1d Bessel functions are more convenient; in
others, 2d Bessel functions. Therefore, we will discuss both.

All forms of the Bessel equation are equivalent to the so-called ¢F} equation,
which is not as well-known. In fact, one could argue that the oF} equation and its
standard solutions F,, and U, have a simpler theory than the usual Bessel equation
and functions.

In this section, we first discuss the ¢F; equation and its solutions. Then we
describe hyperbolic and trigonometric 1d and 2d Bessel equations and functions.

In the whole appendix, the variables w, z, v, and r are complex, although
elsewhere in this paper we usually restrict them to |0, ool.

A.l1. oF; Equation
Let ¢ € C. The standard solution of the the ¢ F} equation

(w02 + ¢y — 1) f(w) =0 (A.3)
is the hypergeometric oFy function

w?’L

oFi(cw) =) O (A.4)
n=0 nee

where for k € Ny
(c) = Lc+k) Jele+D)(c+2)--(c+k—1), ifk>1;
T T | ifk=0.
If c#0,—1,-2,..., then it is the only solution of the o} equation ~ 1 at 0. It is

convenient to normalize it differently:

Fi(c;w > w"
oF1(c;w) := OF((C)) = Z m, (A.5)

n=0

Y

so that it is defined for all c.
The oF} equation can be reduced to a special class of the confluent equation
by the so-called Kummer’s 2nd transformation:

4 w 1 w
283+08271:—6_7(233+(20717w)3wfc+§)ef, (A.6)
w
where w = +4./z, z = %wQ. Using this, we can derive an expression for the oF}
function in terms of the confluent function (B.3):

2c—1

oFi(c;2) = eﬂF2ﬁ1F1< 12¢ — 1; :|:4\/§>.

!By gauging (or conjugating) the operator A with a function f(r), we mean replacing it with
F(r)Af(r)7t. See, for example, (A.6), (A.12), (A.19), (B.10), or (B.23) for gauging with a power of
r, and (A.6) and (B.10) for gauging with an exponential.
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Instead of ¢, it is often more natural to use a := ¢ — 1, and rewrite (A.3) as

(202 + (a+1)0, — 1)v(2) =0, (A.7)
and set
Fo(2) :=0F1(a+1;2), Fu(z):=oF1(a+1;2). (A.8)
The following function is also a solution of the oF} equation (A.7):
a 1 1 1 1
= e 2VE, 5 - g
Ua(z)' S z 2F0<2 +Oé,2 a5 —; 4\/2>>

where we used the o Fpy function (B.7). Obviously,
Ua(2) = 27 U_n(2).
As |z| — oo and |argz| < § — ¢, we have
1 @ 1
Ua(z) ~exp(—222)z" 27 1. (A.9)

U, is a unique solution of (A.7) with this property.
We can express U, in terms of the solutions of with a simple behavior at zero

Uns) = —Y" po() 4+ YT moF (2. (A.10)

sinm(—a) sin rov

A.2. Hyperbolic 2d Bessel Equation

The usual modified Bessel equation has the form

1 m?
J— 2 _—— — =
( 02— 0, + 5 + 1>g 0. (A.11)

We use the name the hyperbolic 2d Bessel equation for (A.11). It is equivalent to
the oF} equation:

w2 (woL + (1+m)dy — w™ 2 :834-18,«—1—7:— (A.12)

2
where w = -, r = £2\/w.

The hyperbolic 2d Bessel function I, is defined by
2

r\m™ r
I (1) = <§> oF1 (m +1; Z) (A.13)
We have the Wronskian
2sin(7mm)
I, I )= ——2—, A.14
Wil 1) = =20 (A14)
and for m € Z
L, (r) =1_p,(7). (A.15)
The 2d Macdonald function K,, is defined by
B Ty 72
K_pm(r) = Kp(r) := 7(5) Un <Z) (A.16)
T
(I (r) = Ln(r)). (A.17)

T2 sin(mm)
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A.3. Hyperbolic 1d Bessel Equation
The hyperbolic 1d Bessel equation
o7 2 D g0 A18
— 0, + {m”° — Z 73 + g = ( . )
is equivalent to the hyperbolic 2d Bessel equation by a simple gauge transformation:
_1 1 1 1 1 m2
r 2(—af+(m2—1)72+1)r2:-6,%—;ar+r—2+1. (A.19)
The hyperbolic 1d Bessel function Z,, is defined by
2

T (r) = \/7?(’")“”101?1 (m +1; %) = ). (A.20)

We have the Wronskian:
W(Zpn, L) = —sin(mwm) (A.21)
and for m € Z,
I (1) =T (7). (A.22)
The 1d Macdonald function IC,, is defined by

Ko (1) = Ko (r) = (;)+mUm<f> _ %Km(r) (A.23)
- Sm(;m)(z_m(r) CT(). (A.24)

A.4. Trigonometric 2d Bessel Equation

The usual Bessel equation, which can be called the trigonometric 2d Bessel equation,

has the form
2

(—83—%87—1—%—1)9:0. (A.25)

We can pass from the hyperbolic 2d to the trigonometric 2d Bessel equation by the
substitution r — ir.
The (usual) Bessel function (or the trigonometric 2d Bessel function) is

T (1) = 2™ (eFizy), (A.26)

We also have two Hankel functions:

HE(r) = 2eF 3D (oFiFp). (A.27)
T

Note that the traditional notation for H 52 is Hf# ) and Hq(qf ). The authors believe
that their notation is more handy.
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A.5. Trigonometric 1d Bessel Equation

We also have the trigonometric 1d Bessel equation:

<—83+<m2—i>%2—1)g:0. (A.28)

We can pass from hyperbolic 1d to trigonometric Bessel equations by the substitu-
tion r — ir.

We can introduce various kinds of solutions of the 1d trigonometric Bessel
equation: the 1d Bessel function

Ton(r) = eHEMENT ((FiFpy = %Jm(r), (A.29)
and the 1d Hankel function of the 1st/2nd kind
Hor (1) 1= eFE DK, (FEr) = | [T (). (A.30)

B. Whittaker Equation

The 1 F} equation, the 5 F equation, and the Whittaker equation are equivalent to
one another by certain substitutions and gauge transformations. In this section, we
briefly describe conventions and properties of solutions to these equations.

Note that our definitions of Whittaker functions differ slightly from some of
the literature, e.g., [33]. In particular, we use what is sometimes called Olver’s nor-
malization, which is advantageous because it avoids singularities for the parameters
under consideration. We follow the conventions of [9,11].

The Whittaker equation is equivalent to the radial part of the Schrodinger
equation with the Coulomb potential in any dimension:

6 1
<—Ad—;+1)f—0. (B.1)
Therefore, there exists a variant of the Whittaker equation for any dimension. The
standard one corresponds to d = 1. We will also find it convenient to consider the
Whittaker equation for d = 2.
In the following subsections, we review several equations, equivalent to one
another: the | F} equation, the 5F{ equation, the 1d Whittaker equation, the 2d

Whittaker equation, and the eigenequation of the isotonic oscillator.

B.1. 1 F; Equation

The 1 F1 hypergeometric equation, also called the confluent equation has the form

(ro?+(c—r)9, —a)f(r) = 0. (B.2)
Its standard solution is Kummer’s confluent hypergeometric function 1Fy(a;c;-)
o (a)g

1Fi(a;e;r) = ,;) (NS (B.3)
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It is the only solution of (B.2) behaving as 1 in the vicinity of r = 0. It is often
convenient to normalize it differently:

k

r* 1 Fi(a;cr)
F( - § L= . B.4
1Fa(a;¢m) F T(c) (B4)

It satisfies 1st Kummer’s identity
1Fi(a; ¢;r) =e"1Fi(c—a; ¢; —r). (B.5)

B.2. 5 Fpy Equation
The o Fy hypergeometric equation has the form
(w202 + (=1 + (1 + a + b)w) 0y + ab)v(w) = 0. (B.6)

The 5 Fy equation has a distinguished solution, which can be expressed as a limit of
the Gauss hypergeometric function:

oFo(a,b; —;w) := lim  oF(a,b;c; cw), (B.7)

CcC— 00

where we take the limit over | arg(c) — 7| < m—e with £ > 0, and the above definition
is valid for w € C\[0, 4+-o00[. Obviously one has

2 Fo(a,b; —;w) = 2 Fy(b, a; —; w). (B.8)

The function extends to an analytic function on the universal cover of C\{0} with
a branch point of an infinite order at 0, and the following asymptotic expansion
holds:

2Fo(a Z w”, |arg(w)| <7 —e.

B.3. The 1d Whittaker Equation

The usual Whittaker equation corresponds to dimension 1 and has the following

form:
1.1 g 1
2 2 _
(=02 (=) =L+ ) =0 (B.9)
It can be reduced to the ; Fj-equation,
1 r 1,1 B\ 1 -r
—p2TMaz < — 83 + (m2 — Z)T’? — ; + Z)TQime 2 = 7"63 + (C_ r)ar —a (BlO)

for the parameters ¢ = 1 £ 2m and a = % + m — (3. Here the sign + has to be
understood as two possible choices. The following function solves the Whittaker
equation (B.9):

T 1
Igm(r) = ritmets Ry <§ +mF f; 1+ 2m; :l:r). (B.11)

Note that the sign independence comes from the 15* Kummer’s identity. We have
the Wronskian
sin(27mm
W(Zs.m, Lg,—m) = —(W ) (B.12)
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The Whittaker equation is also equivalent to the 5 Fjy equation. Indeed by setting

w = —r~! we obtain

r ]. 1 1 r
_ T2—5e§(_ 92 + (m? — 1)72 _ g i Z>rﬁe—§

= w202 + (=1 + (14 a+b)w)dy + ab

for the parameters a:%—I—m—ﬁandb: % —m — (.
We define

.1 1
Kgm(r) := rﬁe*szo(§ tm=f, 5 —m == —?"*1),

which is thus a solution of the Whittaker equation (B.9). The symmetry relation

(B.8) implies that
Kpm(r) =Ks,—m(r).

The following connection formulas hold for 2m ¢ Z:

Kgm(r) = — T <_ F( Zg,m(r) " Ig,—m(r) >’

sin(27m) t-m-p8) TE+m-p)
F(l _m+5) iTm ir —imm —im
Iam(r) = 2T (e K_gm(e™r)+e K_gm(e r))

Here is an estimate for small r:

patm
Iam(r) = m(l + O(r)).
If Re(m) > 0, then
_ F(Qm) %—m %—m
Ksm(r) = T +m-p) (7” + o(|r| ))~

For large r, if € > 0, then for |argr| < 7 — ¢,
Kpm(r)=rle 2 (1+0(™).

This together with (B.15) implies the estimates

1 r m
Tom(r) = ————1rPe2(1+0(r™")), |argr|<= —¢

1 s
Tom(r)| < ——————— ¢ R 11 00", |argr| = =.
Tom® S =g 0O, Jargr| =3

The relation of the functions Zy ,, and Ko ,, with Z,, and KC,, reads

2 r r

Zo,m(r) = wzm <§>, Kom(r) = /Cm(i).

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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B.4. The 2d Whittaker Equation

The 2d Whittaker equation has the form

2
(—83—%8r+%—§+%)v:0. (B.22)

It is equivalent to the 1d Whittaker equation by a simple gauge transformation

2
r_%(—83+<m2—1)ri2—g+i)r% :—83—%8T+%—§+Z.
In order to make our presentation more transparent, similarly as in the case of
Bessel functions, beside the usual (1d) Whittaker functions, we define 2d Whittaker
functions, which solve the 2d Whittaker equation:

Ig (1) := \/ngm(r) Kgm(r) = \/ZKﬁ’m(r)' (B.24)

B.5. Eigenequation of Isotonic Oscillator

(B.23)

The eigenequation of the isotonic harmonic oscillator (4.17) (with & = 1) has the
form

( — 92+ (m® — l)i + 02 — 2ﬁ)f(u) = 0. (B.25)

41)2

Let us recall the following identity (4.18) involving the change of variables
2

v_.

1 1 1
—a,%+(m7—i)—2—§+k2 :v*%<—ag+( 2—&)?%%2—25)@*5. (B.26)

Is %(27’), K s ’%(27') are annihilated by the left hand side of (B.26). Therefore,

(B.25) is solved in terms of the following functions:

1 1,2 1
Ig.m(v) = v2 T2V | Fy (#:Fﬁ, 1+ m; :I:v2> (B.27)
= viélg’%(ﬁ), (B.28)
11,2 1 -3 1—m-—
Kgm(v) = 1P 2e= 2" QFO( “;L 8 ”; 8, ,-ﬂ) (B.29)
= v—%/c%%(zﬂ). (B.30)
Note from (B.13) that Kz, (r) = Kg _(r),
9 i
W(lgm,lp,—m) = —Lr:rm, (B.31)
7T Igm(v) g -m(v)
K ( ] ) B.32
ST A e==a R ez B
r(l=mtsy . . .
Ly (v) = 27;(elamK,B,m(ew) + e—lamK,ﬁ,m(e—lau)). (B.33)
For small v, we have
pztm

=—— (1+0(?). (B.34)
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Hence,
Kgm(v) = F(i(“?ﬂ) (w37 + (o). (B.35)
For large v we have the asymptotics
Kpm(v) =07 e~ % (14 0(07), |arge| <2, €>0. (B.36)
Together with (B.33), this implies
Ig.m(v) = F(Hlygﬁ)v_’g_%evj(l +0(w™?), |argv| < % —€ (B.37)
Ly (v)] < mv—ﬁe<ﬁ>—%(1 £OW ), Jargy| =T (B.38)

C. Weber Equation

The Weber equation (also called the parabolic cylinder equation) has the form

(=02 +v* —28) f(v) =0. (C.1)

It is the eigenequation of the harmonic oscillator and a special case of (B.25), the
eigenequation of the isotonic oscillator, with m = :t%.

Note that (C.1), unlike (B.25), does not have a singularity at v = 0. Therefore,
its solutions are analytic at v = 0.

Let us introduce notation for distinguished solutions of (C.1):

Igx(v) =15 £1(v), (C.2)
Kp(v) = Kﬁ,:ﬁ:%(v)' (C.3)

(In the literature, they are called Weber(-Hermite) functions or parabolic cylinder
functions). Note that (C.2) and (C.3) should be understood as follows: we first define
the functions on [0, 00[ as in (B.27) and (B.28); then we extend them analytically
to the whole complex plane.

The equation (C.1) is invariant with respect to the mirror symmetry. Therefore,

it is spanned by even and odd solutions. It is easy to see that Ig 4 is even and Iz _
is odd:

Ig+(—v) = £lg +(v). (C.4)
The function Kg(v) has the decaying asymptotics (B.36) in the positive direc-
tion. In the negative direction, it usually blows up. Kg(—wv) is also a solution of the

Weber equation. It decays in the negative direction.
We have
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