Perturbations of Fefferman spaces over CR three-manifolds

arXiv:2303.07328

Arman Taghavi-Chabert

GRIEG meets Chopin
Warsaw meeting on geometric methods in science
IMPAN, 13 July 2023

MOTIVATION

Interaction between conformal geometry and Cauchy–Riemann geometry:

- Fefferman (1976): Construction of a canonical Lorentzian conformal structure from a CR manifold
- Lewandowski-Nurowski (1990) (Robinson, Trautman, Penrose...):
 Description of algebraically special Einstein Lorentzian four-manifold in terms of CR geometry.

Aim

Exhibit the conformal structure of algebraically special Einstein Lorentzian four-fold as 'generalisations' of Fefferman conformal spaces.

This is a subtopic of (almost) Robinson geometry: See Nurowski-Trautman (2002) and Fino-Leistner-TC (2023)

CR GEOMETRY

- A Cauchy-Riemann manifold consists of a triple (\mathcal{M}, H, J) where
 - \mathcal{M} is a smooth (2m+1)-manifold,
 - $H \subset TM$ a rank-2m distribution,
 - **□** $J \in \Gamma(\text{End}(H))$ s.t. $J^2 = -\text{Id}$ with involutive eigenbundles, i.e. $\mathbf{C} \otimes H = H^{(1,0)} \oplus H^{(0,1)}$ with $[H^{(1,0)}, H^{(1,0)}] \subset H^{(1,0)}$
- Levi form $\mathcal{L}: H^{(1,0)} \times H^{(0,1)} \to \frac{\mathsf{C} \otimes T\mathcal{M}}{\mathsf{C} \otimes H}: (v, \overline{w}) \mapsto -2\mathrm{ipr}([v, \overline{w}])$ assumed to be non-degenerate

Model:

Hermitian
$$(\mathbb{V}, \langle \cdot, \cdot \rangle) \cong \mathbf{C}^{m+1,1} \longleftrightarrow (\mathbb{V}, \langle \cdot, \cdot \rangle_{\mathbf{R}}) \cong \mathbf{R}^{2m+2,2}$$

$$C = \{Z \in \mathbb{V}, \langle Z, \overline{Z} \rangle = 0\}$$

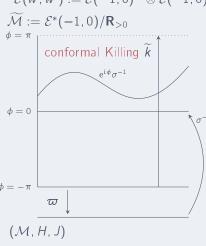
$$\mathbb{P}_{\mathbf{R}}$$

$$(S^{2m+1} \times S^1)/\mathbf{Z}_2 \subset \mathbf{R}\mathbb{P}^{2m+3}$$

FEFFERMAN SPACE Fefferman (1976), Lee (1986), Cap-Gover (2008)

Density bundle
$$\mathcal{E}(-1,0) := (\bigwedge^{m+1} (\operatorname{Ann} H^{(0,1)}))^{\frac{1}{m+2}}$$

 $\mathcal{E}(w,w') := \mathcal{E}(-1,0)^w \otimes \overline{\mathcal{E}(-1,0)}^{w'}$



Fefferman metric
$$\widetilde{g}_{\theta} := 4\varpi^*\theta \odot \left(\widetilde{\omega}^{\theta} - \frac{1}{m+2}\mathsf{P}^{\theta}\theta\right) + \varpi^*h^{\theta}$$

$$\begin{array}{cccc} \theta \mapsto \widehat{\theta} = \mathrm{e}^{\varphi}\theta & \leadsto & \widetilde{g}_{\widehat{\theta}} = \mathrm{e}^{\varphi}\widetilde{g}_{\theta} \\ & \leadsto \mathsf{conformal\ structure\ }\widetilde{\mathbf{c}} \end{array}$$

Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k})$

canonical
$$\theta \in \Gamma(T^*\mathcal{M} \otimes \mathcal{E}(1,1))$$

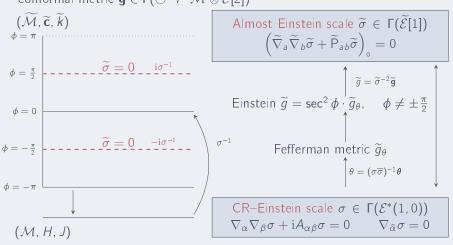
 $\Gamma(\mathcal{E}(1,0)) \ni \sigma \mapsto (\sigma\overline{\sigma})^{-1}\theta = \theta$

 $\theta \in \Gamma(\mathrm{Ann}(H))$, Levi form $h^{\theta} := \mathrm{d}\theta|_{H}$ Webster connection ∇^{θ} on $T\mathcal{M}$ Induced connection $\widetilde{\omega}^{\theta}$ on $\widetilde{\mathcal{M}}$ Webster–Schouten scalar P^{θ}

Characterisations: Sparling, Graham (1987), Čap-Gover (2008)

ALMOST EINSTEIN SCALES Leitner (2005), Čap-Gover (2008)

Density bundle $\widetilde{\mathcal{E}}[1] := \left(\bigwedge^{2m+2} T^* \widetilde{\mathcal{M}} \right)^{-\frac{1}{2m+2}} \rightsquigarrow \widetilde{\mathcal{E}}[w] := (\widetilde{\mathcal{E}}[1])^w$ conformal metric $\widetilde{\mathbf{g}} \in \Gamma(\odot^2 T^* \widetilde{\mathcal{M}} \otimes \widetilde{\mathcal{E}}[2])$



Lewandowski (1988):

No almost Einstein scales for non-conformally flat Fefferman four-spaces

[5/11]

PERTURBATIONS OF FEFFERMAN SPACES

- Start with a Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k}) \to (\mathcal{M}, H, J)$
- Any 1-form $\widetilde{\xi}$ on $\widetilde{\mathcal{M}}$ with $\widetilde{\xi}(\widetilde{k})=0$ defines a perturbed Fefferman space $(\widetilde{\mathcal{M}},\widetilde{\mathbf{c}}_{\widetilde{\xi}},\widetilde{k})$ with the property that for any Fefferman metric $\widetilde{g}_{\theta}\in\widetilde{\mathbf{c}}$,

$$\widetilde{\mathbf{c}}_{\widetilde{\varepsilon}} \ni \widetilde{g}_{\theta \, \widetilde{\varepsilon}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\xi}.$$

• Pick some $\sigma \in \Gamma(\mathcal{E}(1,0))$ and adapted coframe $(\theta,\theta^{\alpha},\overline{\theta}^{\bar{\alpha}})$, and Fourier expand $\widetilde{\xi}$

$$\widetilde{\boldsymbol{\xi}} = \left(\sum \boldsymbol{\xi}_{\alpha}^{(k)} e^{ik\phi}\right) \boldsymbol{\theta}^{\alpha} + c.c. + \left(\sum \boldsymbol{\xi}_{0}^{(k)} e^{ik\phi}\right) \boldsymbol{\theta}$$

$$\times \boldsymbol{\sigma}^{\frac{k}{2}} \overline{\boldsymbol{\sigma}}^{-\frac{k}{2}}$$

$$\times \boldsymbol{\sigma}^{\frac{k-2}{2}} \overline{\boldsymbol{\sigma}}^{-\frac{k+2}{2}}$$

$$\boldsymbol{\xi}_{\alpha}^{(k)} \in \Gamma(\mathcal{E}_{\alpha}(\frac{k}{2}, -\frac{k}{2}))$$

$$\boldsymbol{\xi}_{0}^{(k)} \in \Gamma(\mathcal{E}(\frac{k-2}{2}, -\frac{k+2}{2}))$$

• Collect non-zero densities as CR data $\left(\boldsymbol{\xi}_{\alpha}^{(j)}, [\nabla, \boldsymbol{\xi}_{0}^{(j)}]_{\sim}\right)_{i \in \mathcal{I} \subset \mathbf{Z}, j \in \mathcal{J} \subset \mathbf{Z}_{\geq 0}}$ where

$$(\nabla, \boldsymbol{\xi}_{0}^{(k)}) \sim (\widehat{\nabla}, \widehat{\boldsymbol{\xi}}_{0}^{(k)}) \iff \begin{cases} \widehat{\nabla}_{\alpha} = \nabla_{\alpha} + \Upsilon_{\alpha} \\ \widehat{\boldsymbol{\xi}}_{0}^{(k)} = \boldsymbol{\xi}_{0}^{(k)} - i\boldsymbol{\xi}_{\alpha}^{(k)}\boldsymbol{\Upsilon}^{\alpha} + i\boldsymbol{\xi}_{\bar{\alpha}}^{(k)}\overline{\boldsymbol{\Upsilon}}^{\bar{\alpha}} \end{cases}$$

THEOREM I: CHARACTERISATION

Let $(\widetilde{\mathcal{M}}', \widetilde{\mathbf{c}}')$ be a Lorentzian conformal four-manifold admitting a vector field \widetilde{k}' tangent to a twisting non-shearing congruence of null geodesics, i.e.

$$\widetilde{k}'_a\widetilde{k}'^a=0\;,\qquad \qquad \widetilde{\nabla}_{(a}\widetilde{k}'_{b)_\circ}=\widetilde{k}'_{(a}\widetilde{\alpha}_{b)}\;,\qquad \qquad \widetilde{k}'_{[a}\widetilde{\nabla}_b\widetilde{k}'_{c]}\neq 0\;.$$

Suppose that the Weyl tensor and the Bach tensor satisfy

$$\widetilde{W}(\widetilde{k}',\widetilde{v},\widetilde{k}',\cdot)=0$$
, $\widetilde{B}(\widetilde{k}',\widetilde{k}')=0$, $\widetilde{v}\in\Gamma(\langle\widetilde{k}'\rangle^{\perp})$,

respectively.

Then locally, $(\widetilde{\mathcal{M}}', \widetilde{\mathbf{c}}')$ is conformally isometric to a perturbed Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\epsilon}}, \widetilde{k})$ with CR data

$$\left(\xi_{\alpha}^{(-2)}, \xi_{\alpha}^{(0)}, [\nabla, \xi_{0}^{(0)}, \xi_{0}^{(2)}], \xi_{0}^{(4)}\right)$$

where $\boldsymbol{\xi}_0^{(0)} = \mathrm{i} \nabla_{\alpha} \boldsymbol{\xi}_{(0)}^{\alpha} - \mathrm{i} \nabla^{\alpha} \boldsymbol{\xi}_{\alpha}^{(0)} + 3 \boldsymbol{\xi}_{(2)}^{\alpha} \boldsymbol{\xi}_{\alpha}^{(-2)}$.

THEOREM II: PURE RADIATION

Let $(\widetilde{\mathcal{M}}', \widetilde{\mathbf{c}}')$ be a Lorentzian conformal four-manifold admitting a vector field \widetilde{k}' tangent to a twisting non-shearing congruence of null geodesics. Suppose it admits an almost pure radiation scale $\widetilde{\sigma} \in \Gamma(\widetilde{\mathcal{E}}[1])$, i.e.

$$\left(\widetilde{\nabla}_{a}\widetilde{\nabla}_{b}\widetilde{\sigma}+\widetilde{P}_{ab}\widetilde{\sigma}\right)_{o}=\frac{1}{2}\widetilde{\Phi}_{ab}\widetilde{\sigma}\,,\qquad \widetilde{\Phi}_{a}{}^{b}\widetilde{\nabla}_{b}\widetilde{\sigma}+\frac{1}{2}\widetilde{\sigma}\widetilde{\nabla}_{b}\widetilde{\Phi}_{a}{}^{b}=0\,.$$

where $\widetilde{\Phi}_{ab} = \widetilde{\Phi} \widetilde{k}_a \widetilde{k}_b$, $\widetilde{\Phi} \in \Gamma(\widetilde{\mathcal{E}}[-4])$. That is, away from $\widetilde{\sigma} = 0$, there exists a metric \widetilde{g}' in $\widetilde{\mathbf{c}}'$ whose Ricci tensor satisfies

$$\widetilde{\mathrm{Ric}}_{ab} = \widetilde{\Phi} \widetilde{k}_a \widetilde{k}_b + \widetilde{\Lambda} \widetilde{g}_{ab}$$
, $\widetilde{\Lambda}$ constant.

Then, $\widetilde{W}(\widetilde{k}',\widetilde{v},\widetilde{k}',\cdot)=0$, $\widetilde{B}(\widetilde{k}',\widetilde{k}')=0$, $\widetilde{v}\in\Gamma(\langle\widetilde{k}'\rangle^{\perp})$. Thus, $(\widetilde{\mathcal{M}}',\widetilde{\mathbf{c}}')$ is conf. isometric to a perturbed Fefferman space $(\widetilde{\mathcal{M}},\widetilde{\mathbf{c}}_{\widetilde{\xi}},\widetilde{k})\to(\mathcal{M},H,J)$ with CR data $\left(\boldsymbol{\xi}_{\alpha}^{(-2)},\boldsymbol{\xi}_{\alpha}^{(0)},[\nabla,\boldsymbol{\xi}_{0}^{(0)},\boldsymbol{\xi}_{0}^{(2)}],\boldsymbol{\xi}_{0}^{(4)}\right)$. In addition, (\mathcal{M},H,J) admits a $\sigma\in\Gamma(\mathcal{E}(1,0))$ such that

where
$$\overset{\xi}{\nabla}_{\alpha} := \nabla_{\alpha} + \boldsymbol{\xi}_{\alpha}^{(0)}$$
.

CR EMBEDDABILITY

Recast

$$\overset{\xi}{\nabla}_{\alpha}\overset{\xi}{\nabla}_{\beta}\sigma+\mathrm{i}A_{\alpha\beta}\sigma=0 \quad (1) \quad \overset{\lambda_{\alpha}=\mathrm{i}\sigma^{-1}\overset{\xi}{\nabla}_{\alpha}\sigma}{\mathrm{as}} \quad \nabla_{\alpha}\lambda_{\beta}-\mathrm{i}\lambda_{\alpha}\lambda_{\beta}-A_{\alpha\beta}=0 \quad (2)$$

Theorem (Proof based on Hill-Lewandowski-Nurowski's Lemma (2008)

A CR three-manifold locally admits a CR function if and only if there exists a solution λ_{α} to (2).

Now recast

$$\overset{\xi}{\nabla}_{\alpha}\boldsymbol{\xi}_{0}^{(4)} - \left(\sigma^{-1}\overset{\xi}{\nabla}_{\alpha}\sigma\right)\boldsymbol{\xi}_{0}^{(4)} = 0 \qquad \overset{\tau^{-3} := \overline{\sigma}^{-1}\boldsymbol{\xi}_{0}^{(-4)}}{\text{as}} \qquad \overset{\xi}{\nabla}_{\bar{\alpha}}\tau = 0 \quad (3)$$

Theorem (Proof based on Jacobowitz' Theorem (1988)

A CR three-manifold is locally realisable as a hypersurface in \mathbf{C}^2 if and only if there exist densities σ and τ of weight (1,0) solving (1) and (3) respectively.

PURE RADIATION METRICS

Corollary

A Lorentzian conformal four-manifold endowed with a twisting non-shearing congruence of null geodesics and admitting an almost pure radiation scale is locally fibered over an embeddable CR three-manifold.

Cf: Lewandowski-Nurowski-Tafel (1990), Hill-Lewandowski-Nurowski (2008) $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k})$ Almost pure radiation scale $\widetilde{\sigma} \in \Gamma(\widetilde{\mathcal{E}}[1])$ $\widetilde{\sigma}=0$ i σ^{-1} pure radiation metric $\widetilde{g} = \sec^2 \phi \cdot \widetilde{g}_{\theta \, \widetilde{\epsilon}}, \quad \phi \neq \pm \frac{\pi}{2}$ $\phi = 0$ perturbed Fefferman metric $\widetilde{g}_{\theta \, \widetilde{\varepsilon}}$ $\phi = -\frac{\pi}{2}$ $\phi = -\pi$ CR data + $\sigma \in \Gamma(\mathcal{E}(1,0))$ + d.e.

Thank you for your attention!

Project: Conformal and CR methods in general relativity; acronym: ConfCRGR; registration number: 2020/37/K/ST1/02788; obtained funding as part of the POLS NCN competition research projects financed from the Norwegian Financial Mechanism for 2014-2021