Generalisations of Fefferman's conformal structure and their Einstein metrics

Arman Taghavi-Chabert

Geometric structures, compactifications and group actions University of Strasbourg, 28 June 2022

MOTIVATION

Interaction between conformal geometry and Cauchy–Riemann geometry:

- Fefferman (1976): Construction of a canonical Lorentzian conformal structure from a CR manifold
- Lewandowski-Nurowski (1990) (Robinson, Trautman, Penrose...): Description of algebraically special Einstein Lorentzian four-fold in terms of CR geometry.

MOTIVATION

Interaction between conformal geometry and Cauchy–Riemann geometry:

- Fefferman (1976): Construction of a canonical Lorentzian conformal structure from a CR manifold
- Lewandowski-Nurowski (1990) (Robinson, Trautman, Penrose...): Description of algebraically special Einstein Lorentzian four-fold in terms of CR geometry.

Aim

Understand algebraically special Einstein Lorentzian four-fold as generalisations of Fefferman spaces.

Based on

- TC (2022): Twisting non-shearing congruences of null geodesics, almost CR structures and Einstein metrics in even dimensions. *Ann. Mat. Pura Appl.* (4) **201** (2022), no. 2, 655–693.
- TC: In preparation

Caution

Most considerations will be local.

Almost CR geometry

• An almost CR manifold consists of a triple (\mathcal{M}, H, J) where:

- (\mathcal{M}, H) is a smooth contact (2m + 1)-fold, i.e. $T\mathcal{M} = H + [H, H]$;
- $J \in \text{End}(H)$ satisfies $J^2 = -\delta_H$, and its i-eigenbundle $H^{(1,0)}$ is partially integrable, i.e. $[H^{(1,0)}, H^{(1,0)}] \subset \mathbf{C} \otimes H$.

Assume the Levi form $\mathbf{h} : H^{(1,0)} \times H^{(0,1)} \to (\mathbf{C} \otimes T\mathcal{M}/H)^*$ to be positive definite.

We say that (\mathcal{M}, H, J) is a CR manifold if $[H^{(1,0)}, H^{(1,0)}] \subset H^{(1,0)}$.

Almost CR geometry

- An almost CR manifold consists of a triple (\mathcal{M}, H, J) where:
 - (\mathcal{M}, H) is a smooth contact (2m + 1)-fold, i.e. $T\mathcal{M} = H + [H, H]$;
 - $J \in \text{End}(H)$ satisfies $J^2 = -\delta_H$, and its i-eigenbundle $H^{(1,0)}$ is partially integrable, i.e. $[H^{(1,0)}, H^{(1,0)}] \subset \mathbf{C} \otimes H$.

Assume the Levi form $\mathbf{h} : H^{(1,0)} \times H^{(0,1)} \to (\mathbf{C} \otimes T\mathcal{M}/H)^*$ to be positive definite.

We say that (\mathcal{M}, H, J) is a CR manifold if $[H^{(1,0)}, H^{(1,0)}] \subset H^{(1,0)}$.

- Complex density bundles $\mathcal{E}(w, w')$, $w, w' \in \mathbf{C}$, $w w' \in \mathbf{Z}$ Canonical bundle $\wedge^{m+1} \operatorname{Ann}(H^{(0,1)}) \cong \mathcal{E}(-m-2, 0)$
- A (real) CR scale $\tau \in \mathcal{E}(1, 1)$ corresponds to a pseudo-Hermitian structure, i.e. a choice of contact form θ . For each choice of contact form, there is a unique compatible Webster connection ∇ with prescribed torsion. Under a change of contact forms:

$$\theta o \widehat{\theta} = e^{\varphi} \theta \implies \nabla o \widehat{\nabla} = \nabla + \Upsilon + \dots, \qquad (\Upsilon = d\varphi).$$

• Abstract index notation: $\mathcal{E}^{\alpha} := H^{(1,0)}$, $\mathcal{E}^{\bar{\alpha}} := H^{(0,1)}$ with duals \mathcal{E}_{α} , $\mathcal{E}_{\bar{\alpha}}$

FEFFERMAN SPACE

- Fefferman (1976): Original construction for real smooth hypersurfaces in complex space
- For abstract CR structures, we follow Lee (1986), Čap-Gover (2008); For almost CR structures: Leitner (2010):
- Define \mathcal{M} to be the S^1 -bundle $\mathcal{E}(-1, 0)/\mathbb{R}^*$. For each contact form θ with Levi form h and Webster-Schouten scalar P, we associate the (Lorentzian) Fefferman metric

$$\widetilde{g}_{ heta} = 4 heta \odot \left(\mathrm{d}\phi + rac{\mathrm{i}}{2} \left(\sigma^{-1}
abla \sigma - \overline{\sigma}^{-1}
abla \overline{\sigma} \right) - rac{1}{m+2} \mathsf{P} heta
ight) + h$$
 ,

for any choice of $\sigma \in \mathcal{E}(1,0)$ such that $\sigma\overline{\sigma}$ determines θ and a fibre coordinate ϕ .

• Under a change of contact forms,

$$\theta \mapsto \widehat{\theta} = \mathrm{e}^{\varphi} \theta \implies \widetilde{g}_{\widehat{\theta}} \mapsto \widetilde{g}_{\widehat{\theta}} = \mathrm{e}^{\varphi} \widetilde{g}_{\theta} \,,$$

from which we define the Fefferman conformal structure $\tilde{\mathbf{c}}$. • We refer to $(\widetilde{\mathcal{M}}, \tilde{\mathbf{c}})$ the Fefferman space (for (\mathcal{M}, H, J)).

CHARACTERISATION

Theorem (TC)

A Lorentzian conformal (2m + 2)-fold $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}})$ is locally the Fefferman space of some almost CR manifold if and only if it admits a null conformal Killing field \widetilde{k} , i.e. $\pounds_{\widetilde{k}}\widetilde{\mathbf{g}} = 0$, and the following integrability conditions are satisfied for any $\widetilde{g} \in \widetilde{\mathbf{c}}$:

$$\frac{1}{(2m+2)^2} (\widetilde{\nabla}_a \widetilde{k}^a)^2 - \widetilde{\mathsf{P}}_{ab} \widetilde{k}^a \widetilde{k}^b - \frac{1}{2m+2} \widetilde{k}^a \widetilde{\nabla}_a \widetilde{\nabla}_b \widetilde{k}^b < 0, \qquad (\star)$$

$$\widetilde{k}^a \widetilde{W}_{abcd} \widetilde{k}^d = 0, \qquad \widetilde{k}^a \widetilde{Y}_{abc} \widetilde{k}^c = 0,$$

$$\widetilde{W}_{ab}{}^{cd} \widetilde{\tau}_{cd} - 2\widetilde{k}^c \widetilde{Y}_{cab} - \frac{1}{2} \left(\widetilde{\tau}_{c[a} \widetilde{k}^d \widetilde{W}_{b]d}{}^{ef} \widetilde{W}_{efg}{}^c \widetilde{k}^g - \widetilde{\kappa}_{[a} \widetilde{k}^c \widetilde{W}_{b]c}{}^{de} \widetilde{Y}_{fde} \widetilde{k}^f \right) = 0,$$

where $\widetilde{\boldsymbol{\kappa}} = \widetilde{\boldsymbol{g}}(\widetilde{k}, \cdot)$, $\widetilde{\boldsymbol{\tau}} = d^{\widetilde{\nabla}} \widetilde{\boldsymbol{\kappa}}$, \widetilde{W}_{abcd} and \widetilde{Y}_{abc} are the Weyl and Cotton tensors.

- Sparling, Graham (1987), Lewandowski (1991), Čap-Gover (2010): Involutive case characterised by (*) and $\widetilde{k}^{a}\widetilde{W}_{abcd} = \widetilde{k}^{a}\widetilde{Y}_{abc} = 0$.
- Henceforth, write $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k}) \longrightarrow (\mathcal{M}, H, J)$ for a Fefferman space.

FEFFERMAN-EINSTEIN METRICS

Theorem (TC (2022),TC)

A Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k}) \longrightarrow (\mathcal{M}, H, J)$ of dimension (2m + 2) admits an Einstein metric if and only if (\mathcal{M}, H, J) is almost–CR–Einstein, i.e. it admits a contact form such that its Webster torsion $A_{\alpha\beta}$ and the Webster–Schouten tensor $P_{\alpha\overline{\beta}}$, and the Nijenhuis torsion $N_{\alpha\beta\gamma}$ satisfy

$$A_{\alpha\beta} = 0$$
, $\nabla^{\gamma} N_{\gamma(\alpha\beta)} = 0$, $\left(\mathsf{P}_{\alpha\bar{\beta}} - \frac{1}{m+2} \mathsf{N}_{\alpha\gamma\delta} \mathsf{N}_{\bar{\beta}}{}^{\gamma\delta} \right)_{\circ} = 0$,

i.e. *M* locally fibered over an almost Kähler–Einstein 2m-fold.

• Leitner (2007), Čap-Gover (2008): involutive case $(N_{\alpha\beta\gamma}=0)$

FEFFERMAN-EINSTEIN METRICS

Theorem (TC (2022),TC)

A Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k}) \longrightarrow (\mathcal{M}, H, J)$ of dimension (2m + 2) admits an Einstein metric if and only if (\mathcal{M}, H, J) is almost–CR–Einstein, i.e. it admits a contact form such that its Webster torsion $A_{\alpha\beta}$ and the Webster–Schouten tensor $P_{\alpha\overline{\beta}}$, and the Nijenhuis torsion $N_{\alpha\beta\gamma}$ satisfy

$$A_{\alpha\beta} = 0$$
, $\nabla^{\gamma} N_{\gamma(\alpha\beta)} = 0$, $\left(\mathsf{P}_{\alpha\bar{\beta}} - \frac{1}{m+2} \mathsf{N}_{\alpha\gamma\delta} \mathsf{N}_{\bar{\beta}}{}^{\gamma\delta} \right)_{\circ} = 0$,

i.e. *M* locally fibered over an almost Kähler–Einstein 2m-fold.

- Leitner (2007), Čap-Gover (2008): involutive case (N $_{\alpha\beta\gamma}=0)$
- Lewandowski (1988): Any Fefferman space of dimension four that admits an Einstein metric is conformally flat, and its underlying CR structure is flat.

However..

There are many non-conformally flat Einstein Lorentzian four-fold arising from CR three-folds...

GENERALISED FEFFERMAN SPACES

Prototypes: Leitner (2010), Schmalz-Ganji (2019)

• Let $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a Fefferman space. For any 1-form $\widetilde{\lambda}$ on \mathcal{M} satisfying $\widetilde{\lambda}(\widetilde{k}) = 0$, we define a generalised Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ by the property that for any Fefferman metric $\widetilde{g}_{\theta} \in \mathbf{c}$,

$$\widetilde{\mathbf{c}}_{\widetilde{\lambda}} \ni \widetilde{g}_{\theta,\widetilde{\lambda}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\lambda}$$
.

GENERALISED FEFFERMAN SPACES

Prototypes: Leitner (2010), Schmalz-Ganji (2019)

Let (*M̃*, *c̃*, *k̃*) → (*M*, *H*, *J*) be a Fefferman space. For any 1-form *λ̃* on *M* satisfying *λ̃*(*k̃*) = 0, we define a generalised Fefferman space (*M̃*, *c̃_{λ̃}, <i>k̃*) → (*M*, *H*, *J*) by the property that for any Fefferman metric *g̃*_θ ∈ **c**,

$$\widetilde{\mathbf{c}}_{\widetilde{\lambda}} \ni \widetilde{g}_{\theta,\widetilde{\lambda}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\lambda}$$
.

• Choose an adapted coframe $(\theta, \theta^{\alpha}, \overline{\theta}^{\overline{\alpha}})$ and Fourier expand:

$$\widetilde{\lambda} = \left(\sum \lambda_{\alpha}^{(k)} e^{ik\phi}\right) \theta^{\alpha} + c.c. + \left(\sum \lambda_{0}^{(k)} e^{ik\phi}\right) \theta,$$

where $\lambda_{\alpha}^{(k)} \in \mathcal{E}_{\alpha}(\frac{k}{2}, -\frac{k}{2})$, and $\lambda_{0}^{(k)} \in \mathcal{E}(\frac{k-2}{2}, -\frac{k+2}{2})$ transform as
 $\widehat{\lambda}_{0}^{(k)} = \lambda_{0}^{(k)} - i\lambda_{\alpha}^{(k)}\Upsilon^{\alpha} + i\lambda_{\overline{\alpha}}^{(k)}\overline{\theta}^{\overline{\alpha}}.$

We refer to $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k \in \mathbb{Z}}$ as the CR data for $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k})$.

GENERALISED FEFFERMAN SPACES

Prototypes: Leitner (2010), Schmalz-Ganji (2019)

Let (*M̃*, *c̃*, *k̃*) → (*M*, *H*, *J*) be a Fefferman space. For any 1-form *λ̃* on *M* satisfying *λ̃*(*k̃*) = 0, we define a generalised Fefferman space (*M̃*, *c̃_{λ̃}, <i>k̃*) → (*M*, *H*, *J*) by the property that for any Fefferman metric *g̃*_θ ∈ **c**,

$$\widetilde{\mathbf{c}}_{\widetilde{\lambda}} \ni \widetilde{g}_{\theta,\widetilde{\lambda}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\lambda}$$
.

• Choose an adapted coframe $(\theta, \theta^{\alpha}, \overline{\theta}^{\overline{\alpha}})$ and Fourier expand:

$$\widetilde{\lambda} = \left(\sum \lambda_{\alpha}^{(k)} \mathrm{e}^{\mathrm{i}k\phi}\right) \theta^{\alpha} + c.c. + \left(\sum \lambda_{0}^{(k)} \mathrm{e}^{\mathrm{i}k\phi}\right) \theta$$
,

where $\lambda_{\alpha}^{(k)} \in \mathcal{E}_{\alpha}(\frac{k}{2}, -\frac{k}{2})$, and $\lambda_{0}^{(k)} \in \mathcal{E}(\frac{k-2}{2}, -\frac{k+2}{2})$ transform as $\widehat{\lambda}_{0}^{(k)} = \lambda_{0}^{(k)} - i\lambda_{\alpha}^{(k)}\Upsilon^{\alpha} + i\lambda_{\bar{\alpha}}^{(k)}\overline{\theta}^{\bar{\alpha}}$.

We refer to $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k \in \mathbb{Z}}$ as the CR data for $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k})$.

• The vector field \tilde{k} generates a (twisting) non-shearing congruence of null geodesics, i.e.

$$\pounds_{\widetilde{k}}\widetilde{\mathbf{g}}_{\widetilde{\lambda}} = \widetilde{\mathbf{g}}_{\widetilde{\lambda}}(\widetilde{k}, \cdot) \odot \widetilde{\alpha} \qquad \text{for some 1-form } \widetilde{\alpha}.$$

EINSTEIN METRICS IN DIMENSIONS $2m + 2 > 4\,$

Theorem (TC (2022), TC)

Let $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a generalised Fefferman space of dimension 2m + 2 > 4, with CR data $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k \in \mathbb{Z}}$. Suppose that the Weyl tensor of $\widetilde{\mathbf{c}}_{\widetilde{\lambda}}$ satisfies

$$\widetilde{W}(\widetilde{k},\widetilde{v},\widetilde{k},\cdot)=0$$
 , for all $\widetilde{v}\in\langle\widetilde{k}
angle^{\perp}$

Then $\widetilde{\mathbf{c}}_{\widetilde{\lambda}}$ contains an Einstein metric with constant $\widetilde{\Lambda} = \frac{1}{2m} \widetilde{\mathrm{Sc}}$ if and only if

- 1. $(\mathcal{M}, \mathcal{H}, J)$ admits an almost-CR-Einstein structure given by some complex density $\sigma \in \mathcal{E}(1, 0)$, with constant $\Lambda = \frac{1}{m} (Sc + ||N||_{\mathbf{h}}^2)$,
- 2. all the CR data are zero except for

$$\lambda_0^{(2k)} = \left(\frac{1}{2m+1}\widetilde{\Lambda} - \frac{1}{2m+2}\Lambda + \mathrm{i}M\right)c_{2k}\sigma^{k-1}\overline{\sigma}^{-k-1} \quad k = 1, \dots, m+1,$$

where M is a 'mass' parameter, and the $c_{2k} = c_{2k}(k, m)$ are constants.

EINSTEIN METRICS IN DIMENSION FOUR

Theorem (TC)

Let $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a generalised Fefferman space of dimension four, with CR data $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k \in \mathbb{Z}}$. Suppose $\widetilde{\mathbf{c}}_{\widetilde{\lambda}}$ contains an Einstein metric. Then $\lambda_{\alpha}^{(0)}, \lambda_{\alpha}^{(-2)}$ and $\lambda_{0}^{(\pm 4)}$ determine $[\lambda_{0}^{(0)}]$ and $[\lambda_{0}^{(\pm 2)}]$, and the remaining CR data are zero.

• Main feature: $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ introduce non-linearity...

EINSTEIN METRICS IN DIMENSION FOUR

Theorem (TC)

Let $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a generalised Fefferman space of dimension four, with CR data $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k \in \mathbb{Z}}$. Suppose $\widetilde{\mathbf{c}}_{\widetilde{\lambda}}$ contains an Einstein metric. Then $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ and $\lambda_{0}^{(\pm 4)}$ determine $[\lambda_{0}^{(0)}]$ and $[\lambda_{0}^{(\pm 2)}]$, and the remaining CR data are zero.

• Main feature: $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ introduce non-linearity...

Lemma (TC)

A CR three-fold admits a CR function if and only if it admits a solution $\lambda_\alpha\in \mathcal{E}_\alpha$ to

$$abla_{lpha}\lambda_{eta} - \mathrm{i}\lambda_{lpha}\lambda_{eta} - A_{lphaeta} = 0$$
 .

This is CR invariant provided $\hat{\lambda}_{\alpha} = \lambda_{\alpha} + i \Upsilon_{\alpha}$.

• Kerr coordinates: Robinson-Trautman (1962), Kerr (1963) CR embeddability: Lewandowski-Nurowski-Tafel (1990), Hill-Lewandowski-Nurowski (2008)

CONCLUDING REMARKS

Any Einstein metric g̃_{Ein} on (M̃, c̃_λ, k̃) → (M, H, J) can be written in a normal form

$$\widetilde{g}_{Ein} = \sec^2 \phi \cdot \widetilde{g}_{\theta, \widetilde{\lambda}}$$
 .

where ϕ and θ are determined by some $\sigma \in \mathcal{E}(1, 0)$. Note that $\tilde{g}_{Ein} \to \pm \infty$ as $\phi \to \pm \frac{\pi}{2}$. Interpret $\phi = \pm \frac{\pi}{2}$ as future/past infinities. We can then describe the asymptotics of \tilde{g}_{Ein} in terms of CR data.

CONCLUDING REMARKS

Any Einstein metric g̃_{Ein} on (M̃, c̃_λ, k̃) → (M, H, J) can be written in a normal form

$$\widetilde{g}_{\textit{Ein}} = \sec^2 \phi \cdot \widetilde{g}_{ heta, \widetilde{\lambda}}$$
 .

where ϕ and θ are determined by some $\sigma \in \mathcal{E}(1, 0)$. Note that $\tilde{g}_{Ein} \to \pm \infty$ as $\phi \to \pm \frac{\pi}{2}$. Interpret $\phi = \pm \frac{\pi}{2}$ as future/past infinities. We can then describe the asymptotics of \tilde{g}_{Ein} in terms of CR data.

- Weaker conditions on the Ricci tensor are also possible.
- Prescription on the Weyl tensor restricts the CR data.

Claim тс

In dimension four, any Lorentzian conformal structure admitting a twisting non-shearing congruence of null geodesics locally looks like a generalised Fefferman space. For an Einstein metric, the Weyl tensor is algebraically special (Goldberg-Sachs (1962), Hill-Gover-Nurowski (2011)). Similar considerations apply in higher even dimensions.

EXAMPLE: THE KERR SPACETIME

 Kerr (1963): Ricci-flat Lorentzian manifold *M* = {u, ϑ, φ, r} describing a black hole with rotation parameter a and mass M:

$$\begin{split} \widetilde{g} &= 4\theta \left(\mathrm{d}r + a \sin^2 \vartheta \mathrm{d}\varphi + \left(\frac{Mr}{r^2 + a^2 \cos^2 \vartheta} - \frac{1}{2} \right) \kappa \right) + 2(r^2 + a^2 \cos^2 \varphi) \theta^1 \overline{\theta}^{\overline{1}} ,\\ \theta &= \frac{1}{2} \left(\mathrm{d}t + a \sin^2 \vartheta \mathrm{d}\varphi \right) , \qquad \theta^1 = \mathrm{d}\vartheta + \mathrm{i}\sin \vartheta \mathrm{d}\varphi . \end{split}$$

- Twisting non-shearing congruence of null geodesics generated by $k := \frac{\partial}{\partial r}$.
- The leaf space $\mathcal{M} = \{u, \vartheta, \varphi\}$ of k is endowed with a CR structure (H, J) where

$$H := \operatorname{Ann}(\theta)$$
, $H^{(0,1)} := \operatorname{Ann}(\theta, \theta^1)$.

Easy exercise

Cast the Kerr metric into normal form and identify the CR data...

