Generalisations of Fefferman's conformal structure and their Einstein metrics

Arman Taghavi-Chabert

Geometric structures, compactifications and group actions University of Strasbourg, 28 June 2022

MOTIVATION

Interaction between conformal geometry and Cauchy–Riemann geometry:

- Fefferman (1976): Construction of a canonical Lorentzian conformal structure from a CR manifold
- Lewandowski–Nurowski (1990) (Robinson, Trautman, Penrose...): Description of algebraically special Einstein Lorentzian four-fold in terms of CR geometry.

MOTIVATION

Interaction between conformal geometry and Cauchy–Riemann geometry:

- Fefferman (1976): Construction of a canonical Lorentzian conformal structure from a CR manifold
- Lewandowski–Nurowski (1990) (Robinson, Trautman, Penrose...): Description of algebraically special Einstein Lorentzian four-fold in terms of CR geometry.

Aim

Understand algebraically special Einstein Lorentzian four-fold as generalisations of Fefferman spaces.

Based on

- TC (2022): Twisting non-shearing congruences of null geodesics, almost CR structures and Einstein metrics in even dimensions. Ann. Mat. Pura Appl. (4) 201 (2022), no. 2, 655–693.
- TC: In preparation

Caution

Most considerations will be local.

ALMOST CR. GEOMETRY

• An almost CR manifold consists of a triple (M, H, J) where:

 (M, H) is a smooth contact $(2m + 1)$ -fold, i.e. $T\mathcal{M} = H + [H, H]$;

 $J\in \mathrm{End}(H)$ satisfies $J^2=-\delta_H$, and its i-eigenbundle $H^{(1,0)}$ is partially integrable, i.e. $[H^{(1,0)},H^{(1,0)}]\subset\mathsf{C}\otimes H.$

Assume the Levi form $\textsf{h}:H^{(1,0)}\times H^{(0,1)}\to (\textsf{C}\otimes \mathcal{T}\mathcal{M}/H)^*$ to be positive definite.

We say that (\mathcal{M},H,J) is a CR manifold if $[H^{(1,0)},H^{(1,0)}]\subset H^{(1,0)}.$

ALMOST CR. GEOMETRY

- An almost CR manifold consists of a triple (M, H, J) where:
	- (M, H) is a smooth contact $(2m + 1)$ -fold, i.e. $TM = H + [H, H]$;
	- $J\in \mathrm{End}(H)$ satisfies $J^2=-\delta_H$, and its i-eigenbundle $H^{(1,0)}$ is partially integrable, i.e. $[H^{(1,0)},H^{(1,0)}]\subset\mathsf{C}\otimes H.$

Assume the Levi form $\textsf{h}:H^{(1,0)}\times H^{(0,1)}\to (\textsf{C}\otimes \mathcal{T}\mathcal{M}/H)^*$ to be positive definite.

We say that (\mathcal{M},H,J) is a CR manifold if $[H^{(1,0)},H^{(1,0)}]\subset H^{(1,0)}.$

- Complex density bundles $\mathcal{E}(w, w')$, w, $w' \in \mathbb{C}$, $w w' \in \mathbb{Z}$ Canonical bundle $\wedge^{m+1} \text{Ann}(H^{(0,1)}) \cong \mathcal{E}(-m-2,0)$
- A (real) CR scale $\tau \in \mathcal{E}(1, 1)$ corresponds to a pseudo-Hermitian structure, i.e. a choice of contact form θ . For each choice of contact form, there is a unique compatible Webster connection ∇ with prescribed torsion. Under a change of contact forms:

$$
\theta \to \widehat{\theta} = e^{\varphi} \theta \implies \nabla \to \widehat{\nabla} = \nabla + \Upsilon + \dots,
$$
\n $(\Upsilon = d\varphi).$

Abstract index notation: ${\cal E}^\alpha:=H^{(1,0)},$ ${\cal E}^{\bar\alpha}:=H^{(0,1)}$ with duals ${\cal E}_\alpha$, ${\cal E}_{\bar\alpha}$

FEFFERMAN SPACE

- Fefferman (1976): Original construction for real smooth hypersurfaces in complex space
- For abstract CR structures, we follow Lee (1986), Čap–Gover (2008); For almost CR structures: Leitner (2010):
- Define $\overline{\mathcal{M}}$ to be the S¹-bundle $\mathcal{E}(-1, 0)/\mathbf{R}^*$. For each contact form θ with Levi form h and Webster-Schouten scalar P, we associate the (Lorentzian) Fefferman metric

$$
\widetilde{g}_{\theta} = 4\theta \odot \left(\mathrm{d}\phi + \tfrac{\mathrm{i}}{2} \left(\sigma^{-1} \nabla \sigma - \overline{\sigma}^{-1} \nabla \overline{\sigma} \right) - \tfrac{1}{m+2} \mathsf{P}\theta \right) + h,
$$

for any choice of $\sigma \in \mathcal{E}(1,0)$ such that $\sigma\overline{\sigma}$ determines θ and a fibre coordinate φ.

Under a change of contact forms,

$$
\theta \mapsto \widehat{\theta} = e^{\varphi} \theta \qquad \Longrightarrow \qquad \widetilde{g}_{\theta} \mapsto \widetilde{g}_{\widehat{\theta}} = e^{\varphi} \widetilde{g}_{\theta} ,
$$

from which we define the Fefferman conformal structure \tilde{c} . • We refer to (M,\widetilde{c}) the Fefferman space (for (M, H, J)).

CHARACTERISATION

Theorem (TC)

A Lorentzian conformal $(2m + 2)$ -fold $(\widetilde{M}, \widetilde{\mathbf{c}})$ is locally the Fefferman space of some almost CR manifold if and only if it admits a null conformal Killing field k, i.e. $\pounds_{\widetilde{k}}\widetilde{\mathbf{g}}=0$, and the following integrability conditions are
satisfied for any $\widetilde{a}\in\widetilde{\Xi}$: satisfied for any $\widetilde{g} \in \widetilde{\mathbf{c}}$:

$$
\frac{1}{(2m+2)^2} (\tilde{\nabla}_a \tilde{k}^a)^2 - \tilde{P}_{ab} \tilde{k}^a \tilde{k}^b - \frac{1}{2m+2} \tilde{k}^a \tilde{\nabla}_a \tilde{\nabla}_b \tilde{k}^b < 0, \qquad (*)
$$
\n
$$
\tilde{k}^a \tilde{W}_{abcd} \tilde{k}^d = 0, \qquad \tilde{k}^a \tilde{Y}_{abc} \tilde{k}^c = 0,
$$
\n
$$
\tilde{W}_{ab}{}^{cd} \tilde{\tau}_{cd} - 2\tilde{k}^c \tilde{Y}_{cab} - \frac{1}{2} \left(\tilde{\tau}_{c[a} \tilde{k}^d \tilde{W}_{b]d}{}^{ef} \tilde{W}_{efg}{}^c \tilde{k}^g - \tilde{\kappa}_{[a} \tilde{k}^c \tilde{W}_{b]c}{}^{de} \tilde{Y}_{fde} \tilde{k}^f \right) = 0,
$$

where $\widetilde{\boldsymbol{\kappa}} = \widetilde{\boldsymbol{g}}(\widetilde{k},\cdot)$, $\widetilde{\boldsymbol{\tau}} = \mathrm{d}^\nabla \widetilde{\boldsymbol{\kappa}}$, \widetilde{W}_{abcd} and \widetilde{Y}_{abc} are the Weyl and Cotton tensors.

- Sparling, Graham (1987), Lewandowski (1991), Čap–Gover (2010): Involutive case characterised by (\star) and $\widetilde{k}^a \widetilde{W}_{abcd} = \widetilde{k}^a \widetilde{Y}_{abc} = 0$.
- Henceforth, write $(\widetilde{M},\widetilde{\mathsf{c}},\widetilde{k}) \longrightarrow (M,H,J)$ for a Fefferman space.

Fefferman–Einstein metrics

Theorem (TC (2022),TC)

A Fefferman space $(\widetilde{M},\widetilde{\mathsf{c}},\widetilde{k}) \longrightarrow (M,H,J)$ of dimension $(2m+2)$ admits an Einstein metric if and only if (M, H, J) is almost–CR–Einstein, i.e. it admits a contact form such that its Webster torsion $A_{\alpha\beta}$ and the Webster–Schouten tensor $P_{\alpha\bar{\beta}}$, and the Nijenhuis torsion $N_{\alpha\beta\gamma}$ satisfy

$$
A_{\alpha\beta} = 0, \qquad \nabla^{\gamma} \mathsf{N}_{\gamma(\alpha\beta)} = 0, \qquad \left(\mathsf{P}_{\alpha\bar{\beta}} - \frac{1}{m+2} \mathsf{N}_{\alpha\gamma\delta} \mathsf{N}_{\bar{\beta}} \gamma^{\delta} \right)_{\circ} = 0,
$$

i.e. M locally fibered over an almost Kähler–Einstein 2m-fold.

o Leitner (2007), Čap–Gover (2008): involutive case $(N_{\alpha\beta\gamma} = 0)$

Fefferman–Einstein metrics

Theorem (TC (2022),TC)

A Fefferman space $(\widetilde{M},\widetilde{\mathsf{c}},\widetilde{k}) \longrightarrow (M,H,J)$ of dimension $(2m+2)$ admits an Einstein metric if and only if (M, H, J) is almost–CR–Einstein, i.e. it admits a contact form such that its Webster torsion $A_{\alpha\beta}$ and the Webster–Schouten tensor $P_{\alpha\bar{\beta}}$, and the Nijenhuis torsion $N_{\alpha\beta\gamma}$ satisfy

$$
A_{\alpha\beta} = 0, \qquad \nabla^{\gamma} \mathsf{N}_{\gamma(\alpha\beta)} = 0, \qquad \left(\mathsf{P}_{\alpha\bar{\beta}} - \frac{1}{m+2} \mathsf{N}_{\alpha\gamma\delta} \mathsf{N}_{\bar{\beta}} \gamma^{\delta} \right)_{\circ} = 0,
$$

i.e. M locally fibered over an almost Kähler–Einstein 2m-fold.

- **o** Leitner (2007), Čap–Gover (2008): involutive case $(N_{\alpha\beta\gamma} = 0)$
- Lewandowski (1988): Any Fefferman space of dimension four that admits an Einstein metric is conformally flat, and its underlying CR structure is flat.

However...

There are many non-conformally flat Einstein Lorentzian four-fold arising from CR three-folds...

Generalised Fefferman spaces

Prototypes: Leitner (2010), Schmalz–Ganji (2019)

• Let $(\widetilde{M},\widetilde{\mathsf{c}},\widetilde{k})\to (\mathcal{M},\mathcal{H},\mathcal{J})$ be a Fefferman space. For any 1-form $\widetilde{\lambda}$ on M satisfying $\widetilde{\lambda}(\widetilde{k}) = 0$, we define a generalised Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathsf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ by the property that for any Fefferman metric $\widetilde{q}_{\theta} \in \mathbf{c}$,

$$
\widetilde{\mathbf{c}}_{\widetilde{\lambda}} \ni \widetilde{g}_{\theta,\widetilde{\lambda}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\lambda}.
$$

Generalised Fefferman spaces

Prototypes: Leitner (2010), Schmalz–Ganji (2019)

• Let $(\widetilde{M}, \widetilde{\mathbf{c}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a Fefferman space. For any 1-form λ on M satisfying $\widetilde{\lambda}(k) = 0$, we define a generalised Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathsf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ by the property that for any Fefferman metric $\widetilde{q}_{\theta} \in \mathbf{C}$,

$$
\widetilde{\mathbf{c}}_{\widetilde{\lambda}} \ni \widetilde{g}_{\theta,\widetilde{\lambda}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\lambda}.
$$

Choose an adapted coframe $(\theta, \theta^{\alpha}, \overline{\theta}^{\overline{\alpha}})$ and Fourier expand:

$$
\widetilde{\lambda} = \left(\sum \lambda_\alpha^{(k)} e^{i k \phi}\right) \theta^\alpha + c.c. + \left(\sum \lambda_0^{(k)} e^{i k \phi}\right) \theta,
$$

where $\lambda_{\alpha}^{(k)} \in \mathcal{E}_{\alpha}(\frac{k}{2},-\frac{k}{2})$, and $\lambda_{0}^{(k)} \in \mathcal{E}(\frac{k-2}{2},-\frac{k+2}{2})$ transform as $\widehat{\lambda}_0^{(k)} = \lambda_0^{(k)} - i \lambda_{\alpha}^{(k)} \Upsilon^{\alpha} + i \lambda_{\bar{\alpha}}^{(k)} \overline{\theta}^{\bar{\alpha}}$.

We refer to $\{\lambda_\alpha^{(k)}, [\lambda_0^{(k)}]\}_{k\in\mathbb{Z}}$ as the CR data for $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}, \widetilde{k}).$

Generalised Fefferman spaces

Prototypes: Leitner (2010), Schmalz–Ganji (2019)

• Let $(\widetilde{M}, \widetilde{\mathbf{c}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a Fefferman space. For any 1-form λ on M satisfying $\widetilde{\lambda}(k) = 0$, we define a generalised Fefferman space $(\widetilde{\mathcal{M}}, \widetilde{\mathsf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ by the property that for any Fefferman metric $\widetilde{q}_{\theta} \in \mathbf{C}$,

$$
\widetilde{\mathbf{c}}_{\widetilde{\lambda}} \ni \widetilde{g}_{\theta,\widetilde{\lambda}} := \widetilde{g}_{\theta} + 4\theta \odot \widetilde{\lambda}.
$$

Choose an adapted coframe $(\theta, \theta^{\alpha}, \overline{\theta}^{\overline{\alpha}})$ and Fourier expand:

$$
\widetilde{\lambda} = \left(\sum \lambda_\alpha^{(k)} e^{i k \phi}\right) \theta^\alpha + c.c. + \left(\sum \lambda_0^{(k)} e^{i k \phi}\right) \theta ,
$$

where $\lambda_{\alpha}^{(k)} \in \mathcal{E}_{\alpha}(\frac{k}{2},-\frac{k}{2})$, and $\lambda_{0}^{(k)} \in \mathcal{E}(\frac{k-2}{2},-\frac{k+2}{2})$ transform as $\widehat{\lambda}_0^{(k)} = \lambda_0^{(k)} - i \lambda_{\alpha}^{(k)} \Upsilon^{\alpha} + i \lambda_{\bar{\alpha}}^{(k)} \overline{\theta}^{\bar{\alpha}}$.

We refer to $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k\in\mathbb{Z}}$ as the CR data for $(\widetilde{\mathcal{M}}, \widetilde{\mathsf{c}}, \widetilde{k})$.

 \bullet The vector field k generates a (twisting) non-shearing congruence of null geodesics, i.e.

$$
\pounds_{\widetilde{k}}\widetilde{\mathbf{g}}_{\widetilde{\lambda}}=\widetilde{\mathbf{g}}_{\widetilde{\lambda}}(\widetilde{k},\cdot)\odot\widetilde{\alpha}\qquad\qquad\text{for some 1-form }\widetilde{\alpha}.
$$

EINSTEIN METRICS IN DIMENSIONS $2m + 2 > 4$

Theorem (TC (2022), TC)

Let $(\widetilde{M}, \widetilde{\mathsf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a generalised Fefferman space of dimension 2m + 2 > 4, with CR data $\{\lambda_{\alpha}^{(k)}, [\lambda_{0}^{(k)}]\}_{k\in\mathbb{Z}}$. Suppose that the Weyl tensor of $\widetilde{\mathbf{c}}_{\widetilde{\mathbf{y}}}$ satisfies

$$
\widetilde{W}(\widetilde{k},\widetilde{v},\widetilde{k},\cdot)=0\,,\qquad\qquad\text{for all }\widetilde{v}\in\langle\widetilde{k}\rangle^{\perp}.
$$

Then $\widetilde{c}_{\widetilde{\lambda}}$ contains an Einstein metric with constant $\widetilde{\Lambda} = \frac{1}{2m} \widetilde{Sc}$ if and only if

- 1. (M, H, J) admits an almost-CR-Einstein structure given by some complex density $\sigma \in \mathcal{E}(1,0)$, with constant $\Lambda = \frac{1}{m} \left(\text{Sc} + ||\text{N}||_h^2 \right)$,
- 2. all the CR data are zero except for

$$
\lambda_0^{(2k)} = \left(\frac{1}{2m+1}\widetilde{\Lambda} - \frac{1}{2m+2}\Lambda + iM\right)c_{2k}\sigma^{k-1}\overline{\sigma}^{-k-1} \quad k = 1, \ldots, m+1,
$$

where M is a 'mass' parameter, and the $c_{2k} = c_{2k}(k, m)$ are constants.

Einstein metrics in dimension four

Theorem (TC)

Let $(\widetilde{M}, \widetilde{\mathsf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a generalised Fefferman space of dimension four, with CR data $\{\lambda_{\alpha}^{(k)}, [\lambda_{\alpha}^{(k)}]\}_{k\in\mathbb{Z}}$. Suppose $\tilde{\mathbf{c}}_{\tilde{\lambda}}$ contains an Einstein metric. Then $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ and $\lambda_{0}^{(\pm 4)}$ determine $[\lambda_{0}^{(0)}]$ and $[\lambda_{0}^{(\pm 2)}]$, and the remaining CR data are zero.

Main feature: $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ introduce non-linearity...

Einstein metrics in dimension four

Theorem (TC)

Let $(\widetilde{M}, \widetilde{\mathsf{c}}_{\widetilde{\lambda}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ be a generalised Fefferman space of dimension four, with CR data $\{\lambda_{\alpha}^{(k)}, [\lambda_{\alpha}^{(k)}]\}_{k\in\mathbb{Z}}$. Suppose $\tilde{\mathbf{c}}_{\tilde{\lambda}}$ contains an Einstein metric. Then $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ and $\lambda_{0}^{(\pm 4)}$ determine $[\lambda_{0}^{(0)}]$ and $[\lambda_{0}^{(\pm 2)}]$, and the remaining CR data are zero.

Main feature: $\lambda_{\alpha}^{(0)}$, $\lambda_{\alpha}^{(-2)}$ introduce non-linearity...

Lemma (TC)

A CR three-fold admits a CR function if and only if it admits a solution $\lambda_{\alpha} \in \mathcal{E}_{\alpha}$ to

$$
\nabla_{\alpha}\lambda_{\beta}-\mathrm{i}\lambda_{\alpha}\lambda_{\beta}-A_{\alpha\beta}=0.
$$

This is CR invariant provided $\hat{\lambda}_{\alpha} = \lambda_{\alpha} + i\Upsilon_{\alpha}$.

Kerr coordinates: Robinson–Trautman (1962), Kerr (1963) CR embeddability: Lewandowski–Nurowski–Tafel (1990), Hill–Lewandowski–Nurowski (2008)

Concluding remarks

• Any Einstein metric \widetilde{g}_{Ein} on $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\mathbf{y}}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ can be written in a normal form

$$
\widetilde{g}_{\text{Ein}} = \sec^2 \phi \cdot \widetilde{g}_{\theta, \widetilde{\lambda}} \, .
$$

where ϕ and θ are determined by some $\sigma \in \mathcal{E}(1, 0)$. Note that $\widetilde{g}_{Ein} \to \pm \infty$ as $\phi \to \pm \frac{\pi}{2}$. Interpret $\phi = \pm \frac{\pi}{2}$ as future/past
infinitios. We can then describe the asymptotics of \widetilde{g}_{\pm} , in terms of (infinities. We can then describe the asymptotics of $\tilde{\tilde{g}}_{Ein}$ in terms of CR data.

Concluding remarks

• Any Einstein metric \widetilde{g}_{Ein} on $(\widetilde{\mathcal{M}}, \widetilde{\mathbf{c}}_{\widetilde{\mathbf{y}}}, \widetilde{k}) \to (\mathcal{M}, H, J)$ can be written in a normal form

$$
\widetilde{g}_{\text{Ein}} = \sec^2 \phi \cdot \widetilde{g}_{\theta, \widetilde{\lambda}} \, .
$$

where ϕ and θ are determined by some $\sigma \in \mathcal{E}(1,0)$. Note that $\widetilde{g}_{Ein} \to \pm \infty$ as $\phi \to \pm \frac{\pi}{2}$. Interpret $\phi = \pm \frac{\pi}{2}$ as future/past
infinitios. We can then describe the asymptotics of \widetilde{g}_{\pm} , in terms of (infinities. We can then describe the asymptotics of \tilde{q}_{Fin} in terms of CR data.

- Weaker conditions on the Ricci tensor are also possible.
- **•** Prescription on the Weyl tensor restricts the CR data.

Claim TC

In dimension four, any Lorentzian conformal structure admitting a twisting non-shearing congruence of null geodesics locally looks like a generalised Fefferman space. For an Einstein metric, the Weyl tensor is algebraically special (Goldberg–Sachs (1962), Hill–Gover–Nurowski (2011)). Similar considerations apply in higher even dimensions.

Example: The Kerr spacetime

• Kerr (1963): Ricci-flat Lorentzian manifold $\mathcal{M} = \{u, \vartheta, \varphi, r\}$ describing a black hole with rotation parameter a and mass M:

$$
\widetilde{g} = 4\theta \left(dr + a \sin^2 \theta d\varphi + \left(\frac{Mr}{r^2 + a^2 \cos^2 \theta} - \frac{1}{2} \right) \kappa \right) + 2(r^2 + a^2 \cos^2 \varphi) \theta^1 \overline{\theta}^1,
$$

$$
\theta = \frac{1}{2} \left(dt + a \sin^2 \theta d\varphi \right), \qquad \theta^1 = d\vartheta + i \sin \vartheta d\varphi.
$$

- Twisting non-shearing congruence of null geodesics generated by $k := \frac{\partial}{\partial r}$.
- The leaf space $M = \{u, \vartheta, \varphi\}$ of k is endowed with a CR structure (H, J) where

$$
H := \text{Ann}(\theta), \qquad H^{(0,1)} := \text{Ann}(\theta, \theta^1).
$$

Easy exercise

Cast the Kerr metric into normal form and identify the CR data...

