Lorentzian conformal manifolds from three-dimensional CR structures, and their Einstein metrics

Arman Taghavi-Chabert

Pseudo-Riemannian Geometry and invariants in General Relativity University of Stavanger, 1 June 2022

Project: Conformal and CR methods in general relativity; acronym: ConfCRGR; registration number: 2020/37/K/ST1/02788; obtained funding as part of the POLS NCN competition research projects financed from the Norwegian Financial Mechanism for 2014-2021

Norway

grants

THE KERR CONGRUENCE

• Kerr spacetime (1963) $\mathcal{M} = \{u, \vartheta, \phi, r\}$ with metric

$$g = 2\kappa \left(\mathrm{d}r + a\sin^2 \vartheta \mathrm{d}\phi + \left(\frac{mr}{r^2 + a^2\cos^2 \vartheta} - \frac{1}{2} \right) \kappa \right) + 2(r^2 + a^2\cos^2 \phi)\theta\overline{\theta} ,$$

$$\kappa = \mathrm{d}t + a\sin^2 \vartheta \mathrm{d}\phi , \qquad \theta = \mathrm{d}\vartheta + \mathrm{i}\sin\vartheta \mathrm{d}\phi , \qquad a, m \in \mathbf{R}^*$$

• Twisting non-shearing congruence of null geodesics (NSCNG) \mathcal{K} generated by null $k = \frac{\partial}{\partial r}$ where $\kappa = g(k, \cdot)$:

$$egin{aligned} \pounds_k g|_{K^\perp} \propto g|_{K^\perp} \,, & K := \mathrm{span}(k) \,, \ \kappa \wedge \mathrm{d} \kappa
eq 0 \,. \end{aligned}$$

THE KERR CONGRUENCE

• Kerr spacetime (1963) $\mathcal{M} = \{u, \vartheta, \phi, r\}$ with metric

$$g = 2\kappa \left(\mathrm{d}r + a\sin^2 \vartheta \mathrm{d}\phi + \left(\frac{mr}{r^2 + a^2\cos^2 \vartheta} - \frac{1}{2} \right) \kappa \right) + 2(r^2 + a^2\cos^2 \phi)\theta\overline{\theta} ,$$

$$\kappa = \mathrm{d}t + a\sin^2 \vartheta \mathrm{d}\phi , \qquad \theta = \mathrm{d}\vartheta + \mathrm{i}\sin\vartheta \mathrm{d}\phi , \qquad a, m \in \mathbf{R}^*$$

• Twisting non-shearing congruence of null geodesics (NSCNG) \mathcal{K} generated by null $k = \frac{\partial}{\partial r}$ where $\kappa = g(k, \cdot)$:

$$egin{aligned} \pounds_k g|_{K^\perp} \propto g|_{K^\perp} \,, & & & \mathcal{K} := \mathrm{span}(k) \,, \ \kappa \wedge \mathrm{d}\kappa
eq 0 \,. \end{aligned}$$

• Robinson structure (N,K): involutive totally null complex 2-plane distribution

$$N = \operatorname{Ann}(\kappa, \theta)$$
, $N \cap \overline{N} = \mathbf{C} \otimes K$, $[N, N] \subset N$.

THE KERR CONGRUENCE

• Kerr spacetime (1963) $\mathcal{M} = \{u, \vartheta, \phi, r\}$ with metric

$$g = 2\kappa \left(\mathrm{d}r + a\sin^2 \vartheta \mathrm{d}\phi + \left(\frac{mr}{r^2 + a^2\cos^2 \vartheta} - \frac{1}{2} \right) \kappa \right) + 2(r^2 + a^2\cos^2 \phi)\theta\overline{\theta} ,$$

$$\kappa = \mathrm{d}t + a\sin^2 \vartheta \mathrm{d}\phi , \qquad \theta = \mathrm{d}\vartheta + \mathrm{i}\sin\vartheta \mathrm{d}\phi , \qquad a, m \in \mathbf{R}^*$$

• Twisting non-shearing congruence of null geodesics (NSCNG) \mathcal{K} generated by null $k = \frac{\partial}{\partial r}$ where $\kappa = g(k, \cdot)$:

$$egin{aligned} \pounds_k g|_{K^\perp} \propto g|_{K^\perp} \,, & & & \mathcal{K} := \mathrm{span}(k) \,, \ \kappa \wedge \mathrm{d}\kappa
eq 0 \,. \end{aligned}$$

• Robinson structure (N,K): involutive totally null complex 2-plane distribution

$$N = \operatorname{Ann}(\kappa, \theta)$$
, $N \cap \overline{N} = \mathbf{C} \otimes K$, $[N, N] \subset N$.

• Contact Cauchy–Riemann (CR) structure ($\underline{H}, \underline{J}$) on the leaf space $\underline{\mathcal{M}} = \{u, \vartheta, \phi\}$ of \mathcal{K} :

$$\underline{H} := \operatorname{Ann}(\kappa), \qquad \underline{H}^{(0,1)} := \operatorname{Ann}(\kappa, \theta)$$

For the Kerr metric, \underline{M} can be realised as a real hypersurface in \mathbf{C}^2 .

NSCNGS AND ROBINSON STRUCTURES

• Conformal Lorentzian 4-fold $(\mathcal{M}, \mathbf{c})$. For null $k \in T\mathcal{M}$, $g \in \mathbf{c}$ given as

$$g = 2\kappa\lambda + 2\theta\overline{ heta}$$
, $\kappa = g(k, \cdot)$,

With $K = \operatorname{span}(k)$ and totally null complex $N = \operatorname{Ann}(\kappa, \theta)$,

 $\begin{array}{ll} {\cal K} \mbox{ non-shearing geodesic } & \Longleftrightarrow & [{\cal K},{\cal N}] \subset {\cal N} \\ & \Longleftrightarrow & [{\cal N},{\cal N}] \subset {\cal N} & \mbox{ Robinson structure} \,. \end{array}$

NSCNGS AND ROBINSON STRUCTURES

• Conformal Lorentzian 4-fold $(\mathcal{M}, \mathbf{c})$. For null $k \in T\mathcal{M}$, $g \in \mathbf{c}$ given as

$$g = 2\kappa\lambda + 2\theta\overline{ heta}$$
, $\kappa = g(k, \cdot)$,

With $K = \operatorname{span}(k)$ and totally null complex $N = \operatorname{Ann}(\kappa, \theta)$,

 $\begin{array}{ll} {\cal K} \mbox{ non-shearing geodesic } & \Longleftrightarrow & [{\cal K},{\cal N}] \subset {\cal N} \\ & \Longleftrightarrow & [{\cal N},{\cal N}] \subset {\cal N} & \mbox{ Robinson structure} \,. \end{array}$

• For the leaf space $\underline{\mathcal{M}}$:

$$(\mathcal{M}, \mathbf{c}) \qquad \qquad \mathcal{K}^{\perp}/\mathcal{K} \xrightarrow{\otimes \mathbf{C}} \mathcal{N}/^{\mathbf{C}}\mathcal{K} \oplus \overline{\mathcal{N}}/^{\mathbf{C}}\mathcal{K}$$

$$\downarrow^{k} \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

$$\underline{\mathcal{M}} \qquad \qquad \underline{\mathcal{H}} \xrightarrow{\otimes \mathbf{C}} \underline{\mathcal{H}}^{(1,0)} \oplus \underline{\mathcal{H}}^{(0,1)} \qquad \qquad \text{CR structure}$$

• K twisting $\iff \underline{H}$ contact

NSCNGS AND ROBINSON STRUCTURES

• Conformal Lorentzian 4-fold $(\mathcal{M}, \mathbf{c})$. For null $k \in T\mathcal{M}$, $g \in \mathbf{c}$ given as

$$g = 2\kappa\lambda + 2\theta\overline{ heta}$$
, $\kappa = g(k, \cdot)$,

With $K = \operatorname{span}(k)$ and totally null complex $N = \operatorname{Ann}(\kappa, \theta)$,

 $\begin{array}{ll} {\cal K} \mbox{ non-shearing geodesic } & \Longleftrightarrow & [{\cal K},{\cal N}] \subset {\cal N} \\ & \Longleftrightarrow & [{\cal N},{\cal N}] \subset {\cal N} & \mbox{ Robinson structure} \,. \end{array}$

• For the leaf space $\underline{\mathcal{M}}$:

$$(\mathcal{M}, \mathbf{c}) \qquad \qquad \mathcal{K}^{\perp} / \mathcal{K} \xrightarrow{\otimes \mathbf{C}} \mathcal{N} / \mathbf{c} \mathcal{K} \oplus \overline{\mathcal{N}} / \mathbf{c} \mathcal{K}$$

$$\downarrow^{k} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\underline{\mathcal{M}} \qquad \qquad \underline{\mathcal{H}} \xrightarrow{\otimes \mathbf{C}} \underline{\mathcal{H}}^{(1,0)} \oplus \underline{\mathcal{H}}^{(0,1)} \qquad \qquad \text{CR structure}$$

• K twisting $\iff \underline{H}$ contact

Problem

Reduce the vacuum Einstein field equations to CR data on the leaf space of a twisting NSCNG.

TIMELINE

- 1904-05 Lorentz–Einstein–Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein–Grossmann–Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator
 - 1961 Robinson theorem: NSCNG and vacuum Maxwell equations
 - 1962 Goldberg–Sachs theorem: NSCNG and Einstein equations
 - 1963 Kerr metric: twisting NSCNG
 - 1967 Kerr–Penrose theorem and twistor theory
 - 1968 Greenfield: abstract CR manifolds 1st use of the term 'CR'
 - 1974 Chern–Moser: invariants of CR manifolds in any dimensions
 - 1975 **Penrose**: hypersurface twistors and CR 5-folds
 - 1976 **Tanaka**: CR manifolds; **Fefferman**'s conformal extension of CR structures; **Sommers**: NSCNG and CR 3-folds
 - 1978 Webster: compatible CR connection
 - 1983 Hill-Penrose-Sparling, LeBrun: non-realisable CR 5-folds
 - 1984 Mason: hypersurface twistors
 - 1985 Tafel: Lewy operator and non-analytic Robinson theorem
 - 1986 Robinson-Trautman: CR structures in optical geometries
 - 1990 Lewandowski–Nurowski–Tafel: Einstein equations and realisable CR 3-folds
 - 2002 Nurowski–Trautman:

Robinson manifolds as Lorentzian analogues of Hermitian manifolds

2021 Fino-Leistner-TC: Almost Robinson geometry

FIRST CR FUNCTION

• Kerr metric: the 1-form $\theta = d\vartheta + i \sin \vartheta d\phi$ satisfies $\theta \wedge d\theta = 0$, i.e.

 $\theta \wedge \mathrm{d} z = 0$

for some smooth $z : \underline{\mathcal{M}} \to \mathbf{C}$ s.t. X(z) = 0 for any $X \in \underline{\mathcal{H}}^{(0,1)}$

• This Kerr coordinate z is referred to as a CR function.

FIRST CR FUNCTION

• Kerr metric: the 1-form $\theta = d\vartheta + i \sin \vartheta d\phi$ satisfies $\theta \wedge d\theta = 0$, i.e.

 $\theta \wedge \mathrm{d} z = 0$

for some smooth $z : \underline{\mathcal{M}} \to \mathbf{C}$ s.t. X(z) = 0 for any $X \in \underline{\mathcal{H}}^{(0,1)}$

- This Kerr coordinate z is referred to as a CR function.
- Kerr (1963), Debney-Kerr-Schild (1969): Given a spacetime (\mathcal{M}, g) equipped with NSCNG $\mathcal{K} \sim (N, K)$ and

$$\operatorname{Ric}(v, v) = 0$$
 for all $v \in N$, $\operatorname{Sc} = 0$,

then there exist coordinates $\{u, z, \overline{z}, r\}$ such that

$$g = 2\kappa\lambda + \frac{2}{r^2 + p^2}\theta\overline{\theta}, \qquad \lambda = \mathrm{d}r + W\mathrm{d}z + \overline{W}\mathrm{d}\overline{z} + H\kappa,$$

$$\kappa = \mathrm{d}u + f\mathrm{d}z + \overline{f}\mathrm{d}\overline{z} \qquad \theta = \mathrm{d}z,$$

the *r*-dependence of all the functions is fully determined, and the form of the metric is subject to residual coordinate freedom.

FIRST CR FUNCTION

• Kerr metric: the 1-form $\theta = d\vartheta + i \sin \vartheta d\phi$ satisfies $\theta \wedge d\theta = 0$, i.e.

 $\theta \wedge \mathrm{d} z = 0$

for some smooth $z : \underline{\mathcal{M}} \to \mathbf{C}$ s.t. X(z) = 0 for any $X \in \underline{\mathcal{H}}^{(0,1)}$

- This Kerr coordinate z is referred to as a CR function.
- Kerr (1963), Debney-Kerr-Schild (1969): Given a spacetime (\mathcal{M}, g) equipped with NSCNG $\mathcal{K} \sim (N, K)$ and

$$\operatorname{Ric}(v, v) = 0$$
 for all $v \in N$, $\operatorname{Sc} = 0$,

then there exist coordinates $\{u, z, \overline{z}, r\}$ such that

$$g = 2\kappa\lambda + \frac{2}{r^2 + p^2}\theta\overline{\theta}, \qquad \lambda = \mathrm{d}r + W\mathrm{d}z + \overline{W}\mathrm{d}\overline{z} + H\kappa,$$

$$\kappa = \mathrm{d}u + f\mathrm{d}z + \overline{f}\mathrm{d}\overline{z} \qquad \theta = \mathrm{d}z,$$

the *r*-dependence of all the functions is fully determined, and the form of the metric is subject to residual coordinate freedom.

• Goldberg-Sachs (1963), Hill-Gover-Nurowski (2011): Such spacetimes are algebraically special.

EINSTEIN EQS AND CR EMBEDDABILITY

• Lewandowski-Nurowski (1990):
Lift
$$(\underline{\mathcal{M}}, \underline{J}, \underline{H})$$
 to (\mathcal{M}, g, N, K) where $\mathcal{M} = \underline{\mathcal{M}} \times \mathbf{R}$ with metric
 $g = e^{2\varphi} \left(4\underline{\theta}^0 \lambda + 2\underline{\theta}^1 \overline{\underline{\theta}}^{\overline{1}} \right)$,
 $\lambda = d\phi + \lambda_1 \underline{\theta}^1 + \lambda_1 \overline{\underline{\theta}}^{\overline{1}} + \lambda_0 \underline{\theta}^0$, $\varphi, \lambda_1, \lambda_0 \in C^{\infty}(\mathcal{M})$
Vacuum field equations (+ cosmological constant and pure radiation

Ric = $\Lambda g + \Phi \left(\underline{\theta}^{0}\right)^{2}$: ϕ -dependence entirely determined Metric $e^{-2\varphi}g$ lives on a circle bundle and $e^{2\varphi} = e^{\underline{\varphi}} \sec^{2}(\phi + \psi)$

EINSTEIN EQS AND CR EMBEDDABILITY

• Lewandowski-Nurowski (1990):
Lift
$$(\underline{\mathcal{M}}, \underline{J}, \underline{\mathcal{H}})$$
 to (\mathcal{M}, g, N, K) where $\mathcal{M} = \underline{\mathcal{M}} \times \mathbf{R}$ with metric
 $g = e^{2\varphi} \left(4\underline{\theta}^0 \lambda + 2\underline{\theta}^1 \overline{\underline{\theta}}^{\overline{1}} \right)$,
 $\lambda = d\phi + \lambda_1 \underline{\theta}^1 + \lambda_{\overline{1}} \overline{\underline{\theta}}^{\overline{1}} + \lambda_0 \underline{\theta}^0$, $\varphi, \lambda_1, \lambda_0 \in C^{\infty}(\mathcal{M})$
Vacuum field equations (+ cosmological constant and pure radiation
 $\operatorname{Ric} = \Lambda g + \Phi \left(\underline{\theta}^0 \right)^2$: ϕ -dependence entirely determined

Metric $e^{-2\varphi}g$ lives on a circle bundle and $e^{2\varphi} = e^{\underline{\varphi}} \sec^2(\phi + \underline{\psi})$

Theorem (Lewandowski-Nurowski-Tafel (1990))

If a CR 3-fold admits a lift to a Ricci-flat metric then it is realisable as a real hypersurface in \mathbb{C}^2 , i.e. it admits two CR functions z and w s.t. $dz \wedge dw \neq 0$.

- Related and further results: Mason (1984/1998), Hill-Lewandowski-Nurowski (2008), Schmalz-Ganji (2018)
- Applications Type N vacuum metric with cosmological constant: Nurowski (2008), Zhang-Finley (2013)

Almost CR geometry

- Almost CR manifold $(\underline{\mathcal{M}}^{2m+1}, \underline{\mathcal{H}}^{2m}, \underline{J})$: smooth (2m+1)-fold $\underline{\mathcal{M}}$, $\underline{\mathcal{H}}^{2m} \subset T\underline{\mathcal{M}}$, bundle complex structure \underline{J} on $\underline{\mathcal{H}}$
- Assume contact and partially integrable, i.e. for any $\underline{\theta}^0 \in \operatorname{Ann}(\underline{H})$

 $\underline{\theta}^0 \wedge (\underline{d}\underline{\theta}^0)^m \neq 0, \qquad \underline{d}\underline{\theta}^0(\underline{v}, \underline{w}) = 0, \qquad \text{for all } \underline{v}, \underline{w} \in H^{(1,0)}.$

• Levi form: weighted Hermitian form $\underline{\mathbf{h}}$ on \underline{H} :

 $\underline{h}(\underline{v},\underline{w}) = -2\mathrm{id}\underline{\theta}^{0}(\underline{v},\underline{w}), \qquad \underline{v} \in \underline{H}^{(1,0)}, \underline{w} \in \underline{H}^{(0,1)}.$

Assume the signature of $\underline{\mathbf{h}}$ to be positive definite.

Almost CR geometry

- Almost CR manifold $(\underline{\mathcal{M}}^{2m+1}, \underline{\mathcal{H}}^{2m}, \underline{J})$: smooth (2m+1)-fold $\underline{\mathcal{M}}$, $\underline{\mathcal{H}}^{2m} \subset T\underline{\mathcal{M}}$, bundle complex structure \underline{J} on $\underline{\mathcal{H}}$
- Assume contact and partially integrable, i.e. for any $\underline{\theta}^0 \in \operatorname{Ann}(\underline{H})$

 $\underline{\theta}^0 \wedge (\underline{d}\underline{\theta}^0)^m \neq 0, \qquad \underline{d}\underline{\theta}^0(\underline{v}, \underline{w}) = 0, \qquad \text{for all } \underline{v}, \underline{w} \in H^{(1,0)}.$

• Levi form: weighted Hermitian form \underline{h} on \underline{H} :

 $\underline{h}(\underline{v},\underline{w}) = -2\mathrm{id}\underline{\theta}^{0}(\underline{v},\underline{w}), \qquad \underline{v} \in \underline{H}^{(1,0)}, \underline{w} \in \underline{H}^{(0,1)}.$

Assume the signature of $\underline{\mathbf{h}}$ to be positive definite.

• Contact form $\underline{\theta}^0 \longrightarrow$ Canonical Webster–Tanaka connection $\underline{\nabla}$:

$$\underline{\theta}^0 \to \underline{\widehat{\theta}}^0 = e^{\underline{\varphi}} \underline{\theta}^0 \implies \underline{\nabla} \to \underline{\widehat{\nabla}} = \underline{\nabla} + \underline{\Upsilon} + \dots, \qquad (\underline{\Upsilon} = d\underline{\varphi}).$$

- CR invariants:
 - Nijenhuis tensor <u>N</u> (m > 1): Involutivity of <u>H</u>^(1,0)
 - Chern–Moser (m > 1) and Cartan (m = 1) tensors: CR flatness
- Pseudo-Hermitian invariants (depend on contact form):
 - Pseudo-Hermitian Webster torsion <u>A</u>: transverse CR symmetry
 - Schouten–Webster tensor \underline{P}

Almost Robinson Geometry

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (\mathcal{M}, g, N, K) where

- (\mathcal{M}, g) is a smooth Lorentzian manifold of dimension 2m + 2,
- N is a totally null complex (m + 1)-plane distribution,
- *K* is the null line distribution given by $\mathbf{C} \otimes K = N \cap \overline{N}$.

Almost Robinson Geometry

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (M, g, N, K) where

- (\mathcal{M}, g) is a smooth Lorentzian manifold of dimension 2m + 2,
- N is a totally null complex (m + 1)-plane distribution,
- *K* is the null line distribution given by $\mathbf{C} \otimes K = N \cap \overline{N}$.

Fino-Leistner-TC (2021): Intrinsic torsion of (N, K)

- Structure group $\mathbf{R}_{>0} \cdot \mathbf{U}(m) \ltimes \mathbf{R}^{2m}$ stabilises $\kappa \in \operatorname{Ann}(K^{\perp})$ and "Hermitian" 3-form $\rho := 3\kappa \wedge \omega$
- Induced geometries on the leaf space $\underline{\mathcal{M}}$ of congruence tangent to K
- Three important (conformally invariant) classes:

geodesic	nearly Robinson	Robinson
$[K, K^{\perp}] \subset K^{\perp}$	$[K, N] \subset N$	$[N, N] \subset N$
$\underline{H}^{2m} \subset T\underline{\mathcal{M}}$	(<u>H</u> , <u>J</u>) almost CR	(<u>H</u> , <u>J</u>) CR

Almost Robinson Geometry

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (M, g, N, K) where

- (\mathcal{M}, g) is a smooth Lorentzian manifold of dimension 2m + 2,
- N is a totally null complex (m + 1)-plane distribution,
- *K* is the null line distribution given by $\mathbf{C} \otimes K = N \cap \overline{N}$.

Fino-Leistner-TC (2021): Intrinsic torsion of (N, K)

- Structure group $\mathbf{R}_{>0} \cdot \mathbf{U}(m) \ltimes \mathbf{R}^{2m}$ stabilises $\kappa \in \operatorname{Ann}(K^{\perp})$ and "Hermitian" 3-form $\rho := 3\kappa \wedge \omega$
- Induced geometries on the leaf space $\underline{\mathcal{M}}$ of congruence tangent to K
- Three important (conformally invariant) classes:

geodesic	nearly Robinson	Robinson
$[K, K^{\perp}] \subset K^{\perp}$	$[K, N] \subset N$	$[N, N] \subset N$
$\underline{H}^{2m} \subset T\underline{\mathcal{M}}$	(<u>H</u> , <u>J</u>) almost CR	(<u>H</u> , <u>J</u>) CR

• ...and a 4th one:

twist-induced almost Robinson $\iff \kappa \wedge \mathrm{d}\kappa \propto \rho$

FEFFERMAN CONFORMAL STRUCTURE

 Fefferman (1976), Lee (1986), Sparling, Graham (1987), Čap-Gover (2010):
 Associate to a CR manifold a Lorentzian conformal structure c:

$$(\mathcal{M}^{2m+2} := C/\mathbf{R}^*, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^k \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(\underline{\mathcal{M}}^{2m+1}, \underline{H}, \underline{J}) \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^0 \xrightarrow{} \underbrace{} \widehat{\theta}^0 = e^{\underline{\varphi}}\underline{\theta}^0$$

where

•
$$C := \wedge^{m+1} \operatorname{Ann}(\underline{T}^{(0,1)}\underline{\mathcal{M}}),$$

• $g = \frac{4}{m+2}\underline{\theta}^0 \odot \left(\mathrm{d}\phi + \mathrm{i}\underline{\Gamma}_{\alpha}{}^{\alpha} - \frac{1}{2}\mathrm{i}\underline{h}^{\alpha\bar{\beta}}\mathrm{d}\underline{h}_{\alpha\bar{\beta}} - \underline{\mathsf{P}}\underline{\theta}^0 \right) + \underline{h}$

• $k = \frac{\partial}{\partial \phi}$ null conformal Killing field \longrightarrow twisting NSCNG

 \bullet Robinson structure determined by $\underline{\theta}^0 \wedge \mathrm{d} \underline{\theta}^0$

FEFFERMAN CONFORMAL STRUCTURE

 Fefferman (1976), Lee (1986), Sparling, Graham (1987), Čap-Gover (2010):
 Associate to a CR manifold a Lorentzian conformal structure c:

$$(\mathcal{M}^{2m+2} := C/\mathbf{R}^*, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{\qquad} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^k \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(\underline{\mathcal{M}}^{2m+1}, \underline{H}, \underline{J}) \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^0 \xrightarrow{\qquad} \widehat{\underline{\theta}}^0 = e^{\underline{\varphi}}\underline{\theta}^0$$

where

•
$$C := \wedge^{m+1} \operatorname{Ann}(\underline{\mathcal{T}}^{(0,1)}\underline{\mathcal{M}}),$$

• $g = \frac{4}{m+2}\underline{\theta}^0 \odot \left(\mathrm{d}\phi + \mathrm{i}\underline{\Gamma}_{\alpha}{}^{\alpha} - \frac{1}{2}\mathrm{i}\underline{h}^{\alpha\bar{\beta}}\mathrm{d}\underline{h}_{\alpha\bar{\beta}} - \underline{\mathsf{P}}\underline{\theta}^0 \right) + \underline{h}$

• $k = \frac{\partial}{\partial \phi}$ null conformal Killing field \longrightarrow twisting NSCNG

- \bullet Robinson structure determined by $\underline{\theta}^0 \wedge \mathrm{d} \underline{\theta}^0$
- Leitner (2007), Čap-Gover (2008):

 $g \in \mathbf{c}$ Einstein $\Longrightarrow (\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{\mathcal{J}}, \underline{\theta}^0)$ CR-Einstein \longrightarrow Kähler-Einstein Lewandowski (1988):

Any Fefferman–Einstein 4-fold must be conformally flat.

FEFFERMAN CONFORMAL STRUCTURE

 Fefferman (1976), Lee (1986), Sparling, Graham (1987), Čap-Gover (2010):
 Associate to a CR manifold a Lorentzian conformal structure c:

$$(\mathcal{M}^{2m+2} := C/\mathbf{R}^*, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{\qquad} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^k \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$(\underline{\mathcal{M}}^{2m+1}, \underline{H}, \underline{J}) \qquad \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^0 \xrightarrow{\qquad} \widehat{\underline{\theta}}^0 = e^{\underline{\varphi}}\underline{\theta}^0$$

where

•
$$C := \wedge^{m+1} \operatorname{Ann}(\underline{T}^{(0,1)}\underline{\mathcal{M}}),$$

• $g = \frac{4}{m+2}\underline{\mathcal{G}}^0 \odot \left(\mathrm{d}\phi + \mathrm{i}\underline{\Gamma}_{\alpha}{}^{\alpha} - \frac{1}{2}\mathrm{i}\underline{h}^{\alpha\bar{\beta}}\mathrm{d}\underline{h}_{\alpha\bar{\beta}} - \underline{\mathsf{P}}\underline{\theta}^0 \right) + \underline{h}$

• $k = \frac{\partial}{\partial \phi}$ null conformal Killing field \longrightarrow twisting NSCNG

- Robinson structure determined by $\underline{\theta}^0 \wedge d\underline{\theta}^0$
- Leitner (2007), Čap-Gover (2008):

 $g \in \mathbf{c}$ Einstein $\Longrightarrow (\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{\mathcal{J}}, \underline{\theta}^0)$ CR-Einstein \longrightarrow Kähler-Einstein Lewandowski (1988):

Any Fefferman–Einstein 4-fold must be conformally flat.

• Leitner (2010), TC (unpublished): Partially integrable case

TWISTING NSCNGS IN HIGHER DIMENSIONS

• Index notation: abstractly $\underline{\mathcal{E}}^{\alpha} := \underline{H}^{(1,0)}$, concretely $\alpha = 1, \dots, m$, etc.

Theorem (TC (2021))

Let $(\mathcal{M}, \mathbf{c})$ be a Lorentzian conformal manifold of dimension 2m + 2 > 4with null line distribution K tangent to a twisting NSCNG K. Denote by $\underline{\mathcal{M}}$ the local leaf space of \mathcal{K} and by W the Weyl tensor of \mathbf{c} .

1. If W(k, v, k, v) = 0 for any $k \in K$, $v \in K^{\perp}$, then the twist of \mathcal{K} induces a nearly Robinson structure (N, K), and $\underline{\mathcal{M}}$ inherits a p.i. contact almost CR structure $(\underline{H}, \underline{J})$ with positive definite Levi form.

TWISTING NSCNGS IN HIGHER DIMENSIONS

• Index notation: abstractly $\underline{\mathcal{E}}^{\alpha} := \underline{H}^{(1,0)}$, concretely $\alpha = 1, \dots, m$, etc.

Theorem (TC (2021))

Let $(\mathcal{M}, \mathbf{c})$ be a Lorentzian conformal manifold of dimension 2m + 2 > 4with null line distribution K tangent to a twisting NSCNG K. Denote by $\underline{\mathcal{M}}$ the local leaf space of \mathcal{K} and by W the Weyl tensor of \mathbf{c} .

- 1. If W(k, v, k, v) = 0 for any $k \in K$, $v \in K^{\perp}$, then the twist of \mathcal{K} induces a nearly Robinson structure (N, K), and $\underline{\mathcal{M}}$ inherits a p.i. contact almost CR structure $(\underline{H}, \underline{J})$ with positive definite Levi form.
- If in addition W(k, v, k, ·) = 0 for any k ∈ K, v ∈ K[⊥], any Einstein metric in c determines a contact form θ⁰ for <u>H</u> such that (<u>H</u>, <u>J</u>, θ⁰) is an almost CR-Einstein structure, i.e.

$$\underline{A}_{\alpha\beta} = 0$$
, $\underline{\nabla}^{\gamma}\underline{N}_{\gamma(\alpha\beta)} = 0$, $\left(\underline{P}_{\alpha\bar{\beta}} - \frac{1}{m+2}\underline{N}_{\alpha\gamma\delta}\underline{N}_{\bar{\beta}}^{\gamma\delta}\right)_{\circ} = 0$,

i.e. \underline{M} locally fibered over an almost Kähler–Einstein 2m-fold.

TWISTING NSCNGS IN HIGHER DIMENSIONS

• Index notation: abstractly $\underline{\mathcal{E}}^{\alpha} := \underline{H}^{(1,0)}$, concretely $\alpha = 1, \dots, m$, etc.

Theorem (TC (2021))

Let $(\mathcal{M}, \mathbf{c})$ be a Lorentzian conformal manifold of dimension 2m + 2 > 4with null line distribution K tangent to a twisting NSCNG K. Denote by $\underline{\mathcal{M}}$ the local leaf space of \mathcal{K} and by W the Weyl tensor of \mathbf{c} .

- 1. If W(k, v, k, v) = 0 for any $k \in K$, $v \in K^{\perp}$, then the twist of \mathcal{K} induces a nearly Robinson structure (N, K), and $\underline{\mathcal{M}}$ inherits a p.i. contact almost CR structure $(\underline{H}, \underline{J})$ with positive definite Levi form.
- If in addition W(k, v, k, ·) = 0 for any k ∈ K, v ∈ K[⊥], any Einstein metric in c determines a contact form θ⁰ for <u>H</u> such that (<u>H</u>, <u>J</u>, θ⁰) is an almost CR-Einstein structure, i.e.

$$\underline{A}_{\alpha\beta} = 0$$
, $\underline{\nabla}^{\gamma}\underline{N}_{\gamma(\alpha\beta)} = 0$, $\left(\underline{P}_{\alpha\bar{\beta}} - \frac{1}{m+2}\underline{N}_{\alpha\gamma\delta}\underline{N}_{\bar{\beta}}^{\gamma\delta}\right)_{\alpha} = 0$,

i.e. \underline{M} locally fibered over an almost Kähler–Einstein 2m-fold.

• 3-parameter family of Einstein metrics: (massive) Fefferman–Einstein and (massless) Taub–NUT-type metrics

TWISTING NSCNGS IN DIMENSION FOUR

• Index notation: abstractly $\underline{\mathcal{E}}^{\alpha} := \underline{H}^{(1,0)}$, concretely $\alpha = 1!$

Theorem (TC

Let (\mathcal{M}, g) be a Lorentzian 4-fold with a twisting NSCNG $\mathcal{K} \sim (N, K)$.

- 1. Suppose $\operatorname{Ric}(v, v) = 0$ for all $v \in N$. Then g is determined by
 - a pseudo-Hermitian structure $(\underline{H}, \underline{J}, \underline{\theta}^0)$ on the leaf space \underline{M} of \mathcal{K} ,
 - a solution $\underline{\lambda}_{\alpha} \in (\underline{H}^{(1,0)})^*$ to

 $\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - i\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0.$

TWISTING NSCNGS IN DIMENSION FOUR

• Index notation: abstractly $\underline{\mathcal{E}}^{\alpha} := \underline{H}^{(1,0)}$, concretely $\alpha = 1!$

Theorem (TC

Let (\mathcal{M}, g) be a Lorentzian 4-fold with a twisting NSCNG $\mathcal{K} \sim (N, K)$.

- 1. Suppose $\operatorname{Ric}(v, v) = 0$ for all $v \in N$. Then g is determined by
 - a pseudo-Hermitian structure $(\underline{H}, \underline{J}, \underline{\theta}^0)$ on the leaf space \underline{M} of \mathcal{K} ,
 - a solution $\underline{\lambda}_{\alpha} \in (\underline{H}^{(1,0)})^*$ to

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - i\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0.$$

2. Suppose that g satisfies the vacuum Einstein field equations with cosmological constant Λ and possibly pure radiation. Then g is uniquely determined by $\underline{\theta}^0$ and $\underline{\lambda}_{\alpha}$ as in 1. and a real density \underline{c} satisfying

 $\underline{\nabla}_{\alpha}(\underline{b} - i\underline{c}) = 3i\underline{\lambda}_{\alpha}(\underline{b} - i\underline{c}),$

where $\underline{b} := -\frac{8}{3}\Lambda + 8\underline{P} - 6\underline{\lambda}_{\alpha}\underline{\lambda}^{\alpha} + 6\mathrm{i}\left(\underline{\nabla}_{\alpha}\underline{\lambda}^{\alpha} - \underline{\nabla}^{\alpha}\underline{\lambda}_{\alpha}\right).$

Some properties

- Agrees with Mason and Hill-Lewandowski-Nurowski-Tafel
- Formulation now in terms of pseudo-Hermitian tensorial quantities
- Form of the metric:

$$g = \sec^2 \phi \left(4\underline{\theta}^0 \left(\mathrm{d}\phi + \left(1 + \frac{1}{2} \mathrm{e}^{-2\mathrm{i}\phi} \right) \underline{\lambda}_{\alpha} \underline{\theta}^{\alpha} + c.c. + \lambda_0 \underline{\theta}^0 \right) + \underline{h} \right) ,$$

where $\mathrm{d}\underline{\theta}^{0} = \mathrm{i}\underline{h}_{\alpha\overline{\beta}}\underline{\theta}^{\alpha} \wedge \overline{\underline{\theta}}^{\overline{\beta}}$.

• For vacuum, possibly with pure radiation,

 $\lambda_0 = \underline{a}_0 + \underline{a}_1 \cos^2 \phi + \underline{a}_2 \cos \phi \sin \phi + \underline{b} \cos^4 \phi + \underline{c} \cos^3 \phi \sin \phi \,,$

where \underline{a}_0 , \underline{a}_1 , \underline{a}_2 , \underline{b} and \underline{c} pseudo-Hermitian quantities.

Some properties

- Agrees with Mason and Hill-Lewandowski-Nurowski-Tafel
- Formulation now in terms of pseudo-Hermitian tensorial quantities
- Form of the metric:

$$g = \sec^2 \phi \left(4\underline{\theta}^0 \left(\mathrm{d}\phi + \left(1 + \frac{1}{2} \mathrm{e}^{-2\mathrm{i}\phi} \right) \underline{\lambda}_{\alpha} \underline{\theta}^{\alpha} + c.c. + \lambda_0 \underline{\theta}^0 \right) + \underline{h} \right) ,$$

where $\mathrm{d}\underline{\theta}^{0} = \mathrm{i}\underline{h}_{\alpha\overline{\beta}}\underline{\theta}^{\alpha} \wedge \overline{\underline{\theta}}^{\overline{\beta}}$.

• For vacuum, possibly with pure radiation,

 $\lambda_0 = \underline{a}_0 + \underline{a}_1 \cos^2 \phi + \underline{a}_2 \cos \phi \sin \phi + \underline{b} \cos^4 \phi + \underline{c} \cos^3 \phi \sin \phi \,,$

where \underline{a}_0 , \underline{a}_1 , \underline{a}_2 , \underline{b} and \underline{c} pseudo-Hermitian quantities.

Problem: Conformal/CR invariance not transparent...

Need an analogue of the Fefferman conformal structure:

$$(\mathcal{M}, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^{k} \qquad \qquad \uparrow \qquad \uparrow$$

$$(\mathcal{M}, \underline{H}, \underline{J}) \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^{0} \xrightarrow{} \cdots \xrightarrow{} \underline{\hat{\theta}}^{0} = e^{\underline{\varphi}}\underline{\theta}^{0}$$

ALG. SPECIAL CONFORMAL STRUCTURES

Theorem (TC)

Let $(\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{J})$ be a contact CR 3-fold and $\mathcal{M} \to \underline{\mathcal{M}}$ be a (trivial) circle bundle with fiber coordinate ϕ . Let $\underline{\lambda}_{0}^{(4)} \in \underline{\mathcal{E}}(-1, -1)$, $\underline{\lambda}_{\alpha}^{(-2)} \in \underline{\mathcal{E}}_{\alpha}$ and $[\underline{\lambda}_{\alpha}^{(0)}] \in \underline{\mathcal{E}}_{\alpha} \{ \frac{1}{2} \}$, i.e. $\underline{\widehat{\lambda}}_{\alpha}^{(0)} = \underline{\lambda}_{\alpha}^{(0)} + \frac{1}{2} \underline{\Upsilon}_{\alpha}$ under a change of contact forms. Choosing a contact form $\underline{\theta}^{0}$ with Levi form \underline{h} , we define a Lorentzian metric on \mathcal{M} by

$$g = 4\underline{\theta}^0 \left(\mathrm{d}\phi + \lambda_{\alpha}\underline{\theta}^{\alpha} + \lambda_{\bar{\alpha}}\overline{\underline{\theta}}^{\bar{\alpha}} + \lambda_0\underline{\theta}^0 \right) + \underline{h} \,, \qquad \mathrm{d}\underline{\theta}^0 = \mathrm{i}\underline{h}_{\alpha\bar{\beta}}\underline{\theta}^{\alpha} \wedge \overline{\underline{\theta}}^{\bar{\ell}}$$

where $\lambda_{\alpha} = \underline{\lambda}_{\alpha}^{(-2)} e^{-2i\phi} + \underline{\lambda}_{\alpha}^{(0)}$ and

$$\begin{split} \lambda_0 &= \underline{\lambda}_0^{(-4)} e^{-4i\phi} + \underline{\lambda}_0^{(-2)} e^{-2i\phi} + \underline{\lambda}_0^{(0)} + \underline{\lambda}_0^{(-2)} e^{-2i\phi} + \underline{\lambda}_0^{(4)} e^{4i\phi} \\ \underline{\lambda}_0^{(0)} &= i \underline{\nabla}_{\gamma} \underline{\lambda}_{(0)}^{\gamma} - i \underline{\nabla}^{\gamma} \underline{\lambda}_{\gamma}^{(0)} + 3 \underline{\lambda}_{\gamma}^{(-2)} \underline{\lambda}_{(2)}^{\gamma} + \underline{P}, \\ \underline{\lambda}_0^{(2)} &= \frac{i}{2} \underline{\nabla}_{\gamma} \underline{\lambda}_{(2)}^{\gamma} + \underline{\lambda}_{\gamma}^{(0)} \underline{\lambda}_{(2)}^{\gamma} + 2 \underline{\lambda}_0^{(4)} . \end{split}$$

Any other contact form $\hat{\underline{\theta}}^0 = \underline{e}^{\underline{\varphi}}\underline{\theta}^0$ yields the conformal related metric $\hat{g} = \underline{e}^{\underline{\varphi}}\underline{g}$. Thus, \mathcal{M} acquires a conformal structure \mathbf{c} , which is in fact algebraically special, and the fibration is a NSCNG.

ALG. SPECIAL CONFORMAL STRUCTURES

Theorem (TC)

Let $(\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{J})$ be a contact CR 3-fold and $\mathcal{M} \to \underline{\mathcal{M}}$ be a (trivial) circle bundle with fiber coordinate ϕ . Let $\underline{\lambda}_{0}^{(4)} \in \underline{\mathcal{E}}(-1, -1)$, $\underline{\lambda}_{\alpha}^{(-2)} \in \underline{\mathcal{E}}_{\alpha}$ and $[\underline{\lambda}_{\alpha}^{(0)}] \in \underline{\mathcal{E}}_{\alpha} \{ \frac{1}{2} \}$, i.e. $\underline{\widehat{\lambda}}_{\alpha}^{(0)} = \underline{\lambda}_{\alpha}^{(0)} + \frac{1}{2} \underline{\Upsilon}_{\alpha}$ under a change of contact forms. Choosing a contact form $\underline{\theta}^{0}$ with Levi form \underline{h} , we define a Lorentzian metric on \mathcal{M} by

$$g = 4\underline{\theta}^0 \left(\mathrm{d}\phi + \lambda_{\alpha} \underline{\theta}^{\alpha} + \lambda_{\bar{\alpha}} \overline{\underline{\theta}}^{\bar{\alpha}} + \lambda_0 \underline{\theta}^0 \right) + \underline{h} \,, \qquad \mathrm{d}\underline{\theta}^0 = \mathrm{i}\underline{h}_{\alpha\bar{\beta}} \underline{\theta}^{\alpha} \wedge \overline{\underline{\theta}}^{\bar{\beta}}$$

where $\lambda_{\alpha} = \underline{\lambda}_{\alpha}^{(-2)} e^{-2i\phi} + \underline{\lambda}_{\alpha}^{(0)}$ and

$$\begin{split} \lambda_0 &= \underline{\lambda}_0^{(-4)} e^{-4i\phi} + \underline{\lambda}_0^{(-2)} e^{-2i\phi} + \underline{\lambda}_0^{(0)} + \underline{\lambda}_0^{(-2)} e^{-2i\phi} + \underline{\lambda}_0^{(4)} e^{4i\phi} \\ \underline{\lambda}_0^{(0)} &= i \underline{\nabla}_{\gamma} \underline{\lambda}_{(0)}^{\gamma} - i \underline{\nabla}^{\gamma} \underline{\lambda}_{\gamma}^{(0)} + 3 \underline{\lambda}_{\gamma}^{(-2)} \underline{\lambda}_{(2)}^{\gamma} + \underline{P}, \\ \underline{\lambda}_0^{(2)} &= \frac{i}{2} \underline{\nabla}_{\gamma} \underline{\lambda}_{(2)}^{\gamma} + \underline{\lambda}_{\gamma}^{(0)} \underline{\lambda}_{(2)}^{\gamma} + 2 \underline{\lambda}_0^{(4)} . \end{split}$$

Any other contact form $\hat{\underline{\theta}}^0 = \underline{e}^{\underline{\varphi}}\underline{\theta}^0$ yields the conformal related metric $\hat{g} = \underline{e}^{\underline{\varphi}}\underline{g}$. Thus, \mathcal{M} acquires a conformal structure \mathbf{c} , which is in fact algebraically special, and the fibration is a NSCNG.

• Idea: Conditions on the Fourier expansion coefficients of the Weyl tensor components.

VACUUM EINSTEIN FIELD EQUATIONS

Theorem (TC)

Let $(\mathcal{M}, \mathbf{c}) \xrightarrow{\varpi} (\mathcal{M}, \underline{H}, \underline{J})$ be the conformal structure of the previous Theorem. The following statements are equivalent:

- 1. **c** (locally) contains a metric g that satisfies the vacuum Einstein field equations with cosmological constant Λ and possibly pure radiation;
- 2. There exists a CR scale $\underline{\sigma} \in \underline{\mathcal{E}}_{R}(1, 1)$ (i.e. a contact form) such that the following CR-invariant equations hold:

$$\underline{\nabla}_{\alpha}\underline{\sigma} + i\left(2\underline{\lambda}_{\alpha}^{(0)} - 4\underline{\lambda}_{\alpha}^{(-2)}\right)\underline{\sigma} = 0, \qquad (1)$$

$$\begin{split} \underline{\nabla}_{\alpha} \left(\underline{\lambda}_{\beta}^{(0)} - \underline{\lambda}_{\beta}^{(-2)} \right) &- 2i \left(\underline{\lambda}_{\alpha}^{(0)} - \underline{\lambda}_{\alpha}^{(-2)} \right) \left(\underline{\lambda}_{\beta}^{(0)} - \underline{\lambda}_{\beta}^{(-2)} \right) - \frac{1}{2} \underline{A}_{\alpha\beta} = 0 , \quad (2) \\ \underline{\lambda}_{0}^{(4)} &+ \underline{\lambda}_{0}^{(-4)} = i \left(\underline{\nabla}_{\alpha} \underline{\lambda}_{(0)}^{\alpha} - \underline{\nabla}^{\alpha} \underline{\lambda}_{\alpha}^{(0)} \right) - 2 \underline{\lambda}_{\alpha}^{(0)} \underline{\lambda}_{(0)}^{\alpha} + \underline{P} - \frac{1}{3} \Lambda \underline{\sigma}^{-1} \\ &- \frac{1}{4} i \left(\underline{\nabla}_{\alpha} \underline{\lambda}_{(2)}^{\alpha} - \underline{\nabla}^{\alpha} \underline{\lambda}_{\alpha}^{(-2)} \right) + \frac{1}{2} \underline{\lambda}_{\alpha}^{(-2)} \underline{\lambda}_{(0)}^{\alpha} + \frac{1}{2} \underline{\lambda}_{\alpha}^{(0)} \underline{\lambda}_{(2)}^{\alpha} + 3 \underline{\lambda}_{\alpha}^{(-2)} \underline{\lambda}_{(2)}^{\alpha} , \\ \underline{\nabla}_{\alpha} \underline{\lambda}_{0}^{(4)} - 2i \left(\underline{\lambda}_{\alpha}^{(0)} + \underline{\lambda}_{\alpha}^{(-2)} \right) \underline{\lambda}_{0}^{(4)} = 0 . \end{split}$$

VACUUM EINSTEIN FIELD EQUATIONS

Theorem (TC)

Let $(\mathcal{M}, \mathbf{c}) \xrightarrow{\varpi} (\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{\mathcal{I}})$ be the conformal structure of the previous Theorem. The following statements are equivalent:

- 1. **c** (locally) contains a metric g that satisfies the vacuum Einstein field equations with cosmological constant Λ and possibly pure radiation;
- 2. There exists a CR scale $\underline{\sigma} \in \underline{\mathcal{E}}_{R}(1, 1)$ (i.e. a contact form) such that the following CR-invariant equations hold:

$$\underline{\nabla}_{\alpha}\underline{\sigma} + i\left(2\underline{\lambda}_{\alpha}^{(0)} - 4\underline{\lambda}_{\alpha}^{(-2)}\right)\underline{\sigma} = 0, \qquad (1)$$

$$\begin{split} & \underline{\nabla}_{\alpha} \left(\underline{\lambda}_{\beta}^{(0)} - \underline{\lambda}_{\beta}^{(-2)} \right) - 2i \left(\underline{\lambda}_{\alpha}^{(0)} - \underline{\lambda}_{\alpha}^{(-2)} \right) \left(\underline{\lambda}_{\beta}^{(0)} - \underline{\lambda}_{\beta}^{(-2)} \right) - \frac{1}{2} \underline{A}_{\alpha\beta} = 0 , \quad (2) \\ & \underline{\lambda}_{0}^{(4)} + \underline{\lambda}_{0}^{(-4)} = i \left(\underline{\nabla}_{\alpha} \underline{\lambda}_{(0)}^{\alpha} - \underline{\nabla}^{\alpha} \underline{\lambda}_{\alpha}^{(0)} \right) - 2 \underline{\lambda}_{\alpha}^{(0)} \underline{\lambda}_{(0)}^{\alpha} + \underline{P} - \frac{1}{3} \Lambda \underline{\sigma}^{-1} \\ & - \frac{1}{4} i \left(\underline{\nabla}_{\alpha} \underline{\lambda}_{(2)}^{\alpha} - \underline{\nabla}^{\alpha} \underline{\lambda}_{\alpha}^{(-2)} \right) + \frac{1}{2} \underline{\lambda}_{\alpha}^{(-2)} \underline{\lambda}_{(0)}^{\alpha} + \frac{1}{2} \underline{\lambda}_{\alpha}^{(0)} \underline{\lambda}_{(2)}^{\alpha} + 3 \underline{\lambda}_{\alpha}^{(-2)} \underline{\lambda}_{\alpha}^{\alpha} , \\ & \underline{\nabla}_{\alpha} \underline{\lambda}_{0}^{(4)} - 2i \left(\underline{\lambda}_{\alpha}^{(0)} + \underline{\lambda}_{\alpha}^{(-2)} \right) \underline{\lambda}_{0}^{(4)} = 0 . \end{split}$$

For an Einstein metric (no pure radiation), additional equation required.
Locally, any algebraically special Einstein spacetime (by the Goldberg-Sachs theorem) arises in this way.

RELATION TO CR FUNCTIONS

• If $\underline{\nabla}_{\alpha}\underline{\sigma} = 0$ and $\underline{\sigma} \neq 0$ then (1) implies $\underline{\lambda}_{\alpha} := \underline{\lambda}_{\alpha}^{(0)} = 2\underline{\lambda}_{\alpha}^{(-2)}$ and (2) becomes

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - i\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0. \qquad (\star)$$

RELATION TO CR FUNCTIONS

• If $\underline{\nabla}_{\alpha} \underline{\sigma} = 0$ and $\underline{\sigma} \neq 0$ then (1) implies $\underline{\lambda}_{\alpha} := \underline{\lambda}_{\alpha}^{(0)} = 2\underline{\lambda}_{\alpha}^{(-2)}$ and (2) becomes

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - i\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0. \qquad (\star)$$

Lemma (TC)

A contact CR 3-fold admits a CR function if and only if it admits a Webster–Weyl structure, i.e. a solution $[\underline{\lambda}_{\alpha}] \in \underline{\mathcal{E}}_{\alpha}\{i\}$ to the CR-invariant equation (*). (Here, $\underline{\widehat{\lambda}}_{\alpha} = \underline{\lambda}_{\alpha} + i\underline{\Upsilon}_{\alpha}$ under a change of contact forms.)

RELATION TO CR FUNCTIONS

• If $\underline{\nabla}_{\alpha} \underline{\sigma} = 0$ and $\underline{\sigma} \neq 0$ then (1) implies $\underline{\lambda}_{\alpha} := \underline{\lambda}_{\alpha}^{(0)} = 2\underline{\lambda}_{\alpha}^{(-2)}$ and (2) becomes

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - i\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0. \qquad (\star)$$

Lemma (TC)

A contact CR 3-fold admits a CR function if and only if it admits a Webster–Weyl structure, i.e. a solution $[\underline{\lambda}_{\alpha}] \in \underline{\mathcal{E}}_{\alpha}\{i\}$ to the CR-invariant equation (*). (Here, $\underline{\widehat{\lambda}}_{\alpha} = \underline{\lambda}_{\alpha} + i\underline{\Upsilon}_{\alpha}$ under a change of contact forms.)

- Two types of solutions:
 - 1. Trivial solutions:

 $\underline{\lambda}_{\alpha} = -i\underline{\Upsilon}_{\alpha} = -i\underline{\nabla}_{\alpha}\underline{\varphi}$, for some smooth function $\underline{\varphi}$

i.e. there exists a transverse CR symmetry

2. Non-trivial solutions: there exists a family of adapted coframes such that the (0, 1)-component of the Webster–Tanaka connection 1-form satisfies

$$\underline{\Gamma}_{\bar{\alpha}} = -\mathrm{i}\underline{\lambda}_{\bar{\alpha}}\,.$$

CONCLUDING REMARKS

- ✓ Conformal and CR invariant properties of algebraically special Einstein metrics (with possibly pure radiation).
- ... Work on a Fefferman-type circle bundle (Cf Schmalz-Ganji (2018)) \rightarrow reinterpretation of the Fourier coefficients $\underline{\lambda}_{\alpha}^{(k)}$, $\underline{\lambda}_{0}^{(k)}$, gauged connection 1-form, etc.
- ... More muscular tractorial approach...
- ... Relation to asymptotic and global properties of spacetime...
- ... Higher dimensions: non-shearing property of null geodesic congruences too strong. But many other 'classes' of almost Robinson manifolds to be investigated...

CONCLUDING REMARKS

- Conformal and CR invariant properties of algebraically special Einstein metrics (with possibly pure radiation).
- Work on a Fefferman-type circle bundle (Cf Schmalz-Ganji (2018)) \rightarrow reinterpretation of the Fourier coefficients $\lambda_{\alpha}^{(k)}$, $\lambda_{\alpha}^{(k)}$, gauged connection 1-form. etc.
- More muscular tractorial approach...
- Relation to asymptotic and global properties of spacetime...
- Higher dimensions: non-shearing property of null geodesic congruences too strong. But many other 'classes' of almost Robinson manifolds to be investigated...

Thank you for your attention!

NATIONAL SCIENCE CENTRE Project: Conformal and CR methods in general relativity: acronym: ConfCRGR: registration number: 2020/37/K/ST1/02788: obtained funding as part of the POLS NCN competition research projects financed from the Norwegian Financial Mechanism for 2014-2021