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THE ROBINSON CONGRUENCE (1960IES)
o Minkowski space Ml = {u, z, Z, r} with null k = 2:

n = 2kdr +2(r* + 1)60

k=mn(k, ) =du—izdz +izdz, 0=dz.

o Twisting non-shearing congruence of null geodesics (NSCNG) K
generated by k:

Linlks ocnlxe, K := span(k),
KAdk #0.
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n = 2kdr +2(r* + 1)60

k=mn(k, ) =du—izdz +izdz, 0=dz.

o Twisting non-shearing congruence of null geodesics (NSCNG) K
generated by k:

Linlkr o< nlke K := span(k),
KAdk #0.

o Robinson structure (N,K): involutive totally null complex 2-plane
distribution

N = Ann(k, ), NNN=C®K, [N.N]C N.

o Contact Cauchy—Riemann (CR) structure (H, J) on the leaf space
M ={u,z z} of K:

H := Ann(k), ﬂ(o’l) = Ann(k, 0).
Hyperquadric M = {(z, w) € C2: 3(w) = |z|*}
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NSCNGS AND ROBINSON STRUCTURES
o Conformal Lorentzian 4-fold (M, ). For null k € TM, g € c given as

g = 2K\ + 200, k=g(k,-),
With K = span(k) and totally null complex N = Ann(k, ),
K non-shearing geodesic <= [K,N]C N
<= [N,N]C N Robinson structure.
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o Conformal Lorentzian 4-fold (M, ). For null k € TM, g € c given as

g = 2K\ + 200, k=g(k,-),
With K = span(k) and totally null complex N = Ann(k, ),
K non-shearing geodesic <= [K,N]C N
<= [N,N]C N Robinson structure.

o For the leaf space M:

(M, c) KLt/K —— N/°K @ N/°K
Jk | |
M H _ec H®0) g HO1) CR structure

o K twisting <= H contact

Problem

Reduce the vacuum Einstein field equations to CR data on the leaf space
of a twisting NSCNG.
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TIMELINE

1907 Poincaré: real hypersurfaces in C?
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THE KERR CONGRUENCE

o Kerr metric (1963): Petrov type D vacuum spacetime
M ={u, ¥, ¢, r} with parameters a and m:

g =2k (dr +asin’ 9d¢ + (s — 1) k) +2(r% + 27 cos” )90,
k = dt + asin®9d¢, 6 = dv¥ +isin0de.

o Twisting NSCNG generated by kK = %
o Robinson structure: N = Ann(x, 0)
o Contact CR structure (H, J) on the leaf space M = {u, ¥, ¢} of K:

H := Ann(k), HOL .= Ann(k, 9).
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THE KERR CONGRUENCE

o Kerr metric (1963): Petrov type D vacuum spacetime
M ={u, ¥, ¢, r} with parameters a and m:

g =2k (dr +asin’ 9d¢ + (s — 1) k) +2(r% + 27 cos” )90,
k = dt + asin®9d¢, 6 = dv¥ +isin0de.

Twisting NSCNG generated by k = %

Robinson structure: N = Ann(k, 6)

© ©

o Contact CR structure (H, J) on the leaf space M = {u, ¥, ¢} of K:
H := Ann(k), HOD .= Ann(k, 9).
o Note 6 = d§ + isin ¥d¢ satisfies 8 Adf = 0, i.e.
ONdz=0

for some smooth z : M — C s.t. X(z) =0 for any X € HOY
z is a CR function (also known as a Kerr coordinate among relativists)
In fact, two CR functions = (M, H, J) realisable

o ©
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KERR SURFACES IN T'WISTOR SPACE

Kerr theorem (Penrose (1967))

Any analytic NSCNG in Minkowski space M locally gives rise to a complex
(Kerr) surface in twistor space PT. Conversely, any such NSCNG arises in
this way.

o Twistor space PT = CP3: space of a-planes in €M
o CR 5-hypersphere PN C PT: space of null geodesics
o NSCNG K =M NN where N is a foliation by a-planes

ol

‘™ PT =~ CP3
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REDUCED EINSTEIN EQUATIONS AS CR DATA

o Kerr (1963), Debney-Kerr-Schild (1969):
Given a spacetime (M, g) equipped with NSCNG K ~ (N, K) and

Ric(v,v) =0 forall v e N, Sc=0, @)
then there exist coordinates {u, z, z, r} such that
2 _ .
g =2KA + ——=00, A =dr + Wdz + Wdz + Hk,
r’ + p?
k =du+ fdz + fdz 6=dz,

the r-dependence is fully determined, and the form of the metric is
subject to residual coordinate freedom.
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REDUCED EINSTEIN EQUATIONS AS CR DATA

o Kerr (1963), Debney-Kerr-Schild (1969):
Given a spacetime (M, g) equipped with NSCNG K ~ (N, K) and

Ric(v,v) =0 forallvenN, Sc=0, @)
then there exist coordinates {u, z, z, r} such that
60, A =dr + Wdz+ Wdz + Hk,

2
S
g K +r2+p2
k =du+ fdz + fdz =dz,

the r-dependence is fully determined, and the form of the metric is
subject to residual coordinate freedom.

Theorem (Mason (1984,1998))

Let (M, H, J) be a contact CR 3-fold. Then, any choice of
o a weighted (1,0)-form 8 such that 8 A d8 = 0, and

o a complex density 3,
determines a metric on a circle bundle associated to A2Ann(H®Y)) that

satisfies the reduced Einstein equations ().
[7/16]



EINSTEIN EQS AND CR EMBEDDABILITY

o Lewandowski-Nurowski (1990):
Lift (M, J, H) to (M, g, N, K) where M = M x R with metric

g =0 (46°2 +20'8") |
A =dg+ MO + A;8' + Xo6°, Q, A1, Ao € C®(M)

Field equations:
Ric(k, k) = 0 for all k € K: Q° = e?sec’(¢ + ) for @, € C(M)
Ric(v, v) =0 for all v € N: ¢-dependence is integrated out in A;
Vacuum (+ pure radiation): ¢-dependence is integrated out in A1, Ao
Reduction in terms of ¢, 9, structure functions and derivatives.
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Lift (M, J, H) to (M, g, N, K) where M = M x R with metric

g =0 (46°2 +20'8") |
A =dg+ MO + A;8' + Xo6°, Q, A1, Ao € C®(M)

Field equations:
Ric(k, k) = 0 for all k € K: Q° = e?sec’(¢ + ) for @, € C(M)
Ric(v, v) =0 for all v € N: ¢-dependence is integrated out in A;
Vacuum (+ pure radiation): ¢-dependence is integrated out in A1, Ao

Reduction in terms of ¢, 1, structure functions and derivatives.

Theorem (Lewandowski-Nurowski-Tafel (1990))

If a CR 3-fold admits a lift to a Ricci-flat metric then it is realisable as a
real hypersurface in C?.

o Generalisations:
Hill-Lewandowski-Nurowski (2008), Schmalz-Ganji (2018)

o Applications — Type N vacuum metric with cosmological constant:
Nurowski (2008), Zhang-Finley (2013) o



ALMOST CR GEOMETRY

o Almost CR manifold (M?™1, H>™ J): smooth (2m + 1)-fold M,
H?™ ¢ TM, bundle complex structure J on H
e Assume contact and partially integrable, i.e. for any 8° € Ann(H)
8° A (A" #£0, d8°v,w) =0, for all v, w € H(0)
o Levi form: weighted Hermitian form h on H:
h(v, w) = —2id8°(v, w) ve HM) we HOD.

Assume the signature of h to be positive definite.
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ALMOST CR GEOMETRY

(+)

©

Almost CR manifold (M?™+1, H2™, J): smooth (2m + 1)-fold M,
H?™ ¢ TM, bundle complex structure J on H
Assume contact and partially integrable, i.e. for any 8° € Ann(H)

8° A (A" #£0, d8°v,w) =0, for all v, w € H(0)
Levi form: weighted Hermitian form h on H:

h(v, w) = —2id8°(v, w) ve HM) we HOD.

Assume the signature of h to be positive definite.
Contact form 8° — Canonical Webster—Tanaka connection V:

Qoﬁgozeﬂgo _ ZH§ZZ+I+.”' (Izdg).

CR invariants:
o Nijenhuis tensor N (m > 1): Involutivity of H!
o Chern—Moser (m > 1) and Cartan (m = 1) tensors: CR flatness
Pseudo-Hermitian invariants (depend on contact form):
o Pseudo-Hermitian Webster torsion A: transverse CR symmetry
o Schouten—Webster tensor P

1,0)
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ALMOST ROBINSON GEOMETRY

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (M, g, N, K) where
o (M, g) is a smooth Lorentzian manifold of dimension 2m + 2,
o N is a totally null complex (m -+ 1)-plane distribution,
o K is the null line distribution given by C® K = NN N.
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o (M, g) is a smooth Lorentzian manifold of dimension 2m + 2,
o N is a totally null complex (m -+ 1)-plane distribution,
o K is the null line distribution given by C® K = NN N.

Fino-Leistner-TC (2021): Intrinsic torsion of (N, K)
o Structure group Rso - U(m) x R®™ stabilises
k € Ann(K+) and  "Hermitian" 3-form p:=3k Aw
o Induced geometries on the leaf space M of congruence tangent to K
o Three important (conformally invariant) classes:
geodesic nearly Robinson Robinson
K, K] c kKt [K,N]C N [N,N]C N
H™c TM | (H,J)almost CR | (H,J)CR
o ...and a 4th one:

twist-induced almost Robinson — KAdk x p
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FEFFERMAN CONFORMAL STRUCTURE

(*]

Fefferman (1976), Lee (1986), Sparling, Graham (1987),
Cap-Gover (2010):
Associate to a CR manifold a Lorentzian conformal structure c:

(M2m+2:= C/R*, c) c > g ~s g =ePyg
J» | [
(M2 H, J) Amn(H) 3 60~ 00 = e2g”
where

o € o= /\mHAnn(I(O'l)M)y
0 g=1460°0 (dp + 715 (iCL,* — P&°)) + h
lé]

o k= 36 null conformal Killing field — twisting NSCNG

Robinson structure determined by 8° A dg°
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where
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o k= a% null conformal Killing field — twisting NSCNG
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o Leitner (2007), Cap-Gover (2008):
g € c Einstein = (M, H, J, QO) CR—Einstein — Kahler—Einstein
Lewandowski (1988):
Any Fefferman—Einstein 4-fold must be conformally flat.
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J» | [
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where

o C:= A" Ann(TOYM),
0 g=40°0 (d¢+ﬁ2 (if,* —P6°) +h
o k= a% null conformal Killing field — twisting NSCNG
o Robinson structure determined by 6° A dg°
o Leitner (2007), Cap-Gover (2008):
g € c Einstein = (M, H, J, QO) CR—Einstein — Kahler—Einstein
Lewandowski (1988):
Any Fefferman—Einstein 4-fold must be conformally flat.
@ Leitner (2010), TC (unpublished): Partially integrable case
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KERR CONGRUENCE IN HIGHER DIMENSIONS

Theorem (Mason-TC (2010))

Let (M, g) be a Lorentzian manifold of dimension 2m + 2 equipped with a
closed conformal Killing—Yano 2-form ®, i.e.

chp:_Wng(v, JAd D, forall ve TM.

Suppose ® is generic. Then (M, g) admits two congruences of null
geodesics, each associated to 2™~ Robinson structures. Each (N, K)
satisfies (v, w) =0, for all v,w € N.
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Theorem (Mason-TC (2010))

Let (M, g) be a Lorentzian manifold of dimension 2m + 2 equipped with a
closed conformal Killing—Yano 2-form ®, i.e.

Vo = —559(v, ) Ad"P, for all v € TM.

Suppose ® is generic. Then (M, g) admits two congruences of null
geodesics, each associated to 2™~ Robinson structures. Each (N, K)
satisfies (v, w) =0, for all v,w € N.

o Congruences are shearing when m > 1.
o Examples:
o Kerr—=NUT—(A)dS Chen-Lii-Pope (2006), Frolov-Kubizhak (2007)
o Myers—Perry (1986): g = n + Hk?
Associated CR structures are contact.
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Theorem (Mason-TC (2010))

Let (M, g) be a Lorentzian manifold of dimension 2m + 2 equipped with a
closed conformal Killing—Yano 2-form ®, i.e.

Vo = —559(v, ) Ad"P, for all v € TM.

Suppose ® is generic. Then (M, g) admits two congruences of null
geodesics, each associated to 2™~ Robinson structures. Each (N, K)
satisfies (v, w) =0, for all v,w € N.

o Congruences are shearing when m > 1.

o Examples:
o Kerr—=NUT—(A)dS Chen-Lii-Pope (2006), Frolov-Kubizhak (2007)
o Myers—Perry (1986): g = n + Hk?

Associated CR structures are contact.

Kerr theorem in even dimensions Hughston-Mason (1988)

Description of the Kerr surface in twistor space TC (2017)

©

©
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TWISTING NSCNGS IN HIGHER DIMENSIONS

Theorem (TC (2021))
Let (M, c) be a Lorentzian conformal manifold of dimension 2m+2 > 4
with null line distribution K tangent to a twisting NSCNG K. Denote by
M the local space of K and by W the Weyl tensor of c.
L. If W(k,v, k,v)=0 forany k € K,v € K+, then the twist of K
induces a nearly Robinson structure (N, K), and M inherits a p.i.

contact almost CR structure (H, J).
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with null line distribution K tangent to a twisting NSCNG K. Denote by
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If W(k, v, k,v) =0 for any k € K,v € K+, then the twist of K
induces a nearly Robinson structure (N, K), and M inherits a p.i.
contact almost CR structure (H, J).

If in addition W(k, v, k,-) =0 for any k € K,v € K+, any Einstein
metric in ¢ determines a contact form 6° for H such that (H. J, QO) Is
an almost CR—Einstein structure, i.e.

1 (4
Aaﬁ =0, y’yﬂfy(cxﬁ) =0, (Eaﬁ_ - mﬂavéﬂﬁ_’y ) =0,

i.e. M locally fibered over an almost Kahler—Einstein 2m-fold.
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TWISTING NSCNGS IN HIGHER DIMENSIONS
Theorem (TC (2021))
Let (M, c) be a Lorentzian conformal manifold of dimension 2m+2 > 4

with null line distribution K tangent to a twisting NSCNG K. Denote by
M the local space of K and by W the Weyl tensor of c.

If W(k, v, k,v) =0 for any k € K,v € K+, then the twist of K
induces a nearly Robinson structure (N, K), and M inherits a p.i.
contact almost CR structure (H, J).

If in addition W(k, v, k,-) =0 for any k € K,v € K+, any Einstein
metric in ¢ determines a contact form 6° for H such that (H. J, QO) Is
an almost CR—Einstein structure, i.e.

1 (4
Aaﬁ =0, y’yﬂfy(cxﬁ) =0, (Eaﬁ_ - mﬂavéﬂﬁ_’y ) =0,

i.e. M locally fibered over an almost Kahler—Einstein 2m-fold.

o 3-parameter family of Einstein metrics:
(massive) Fefferman—Einstein and (massless) Taub—NUT-type metrics

[13/16]



TWISTING NSCNGS IN DIMENSION FOUR

Theorem (TcC)
Let (M, g) be a Lorentzian 4-fold with a twisting NSCNG K ~ (N, K).

1. Suppose Ric(v,v) =0 for all ve N. Then g is determined by

o a pseudo-Hermitian structure (H, J, QO) on the leaf space M of IC,
e a solution A\, € (ﬂ(l'o))* to CR Einstein—Weyl-type equation on M

ZQA5 - iAaAﬁ - Aaﬁ =0.

[14/16]



TWISTING NSCNGS IN DIMENSION FOUR

Theorem (TC)
Let (M, g) be a Lorentzian 4-fold with a twisting NSCNG K ~ (N, K).

Suppose Ric(v, v) =0 for all v € N. Then g is determined by

o a pseudo-Hermitian structure (H, J, QO) on the leaf space M of IC,
e a solution A\, € (ﬂ(w))* to CR Einstein—Weyl-type equation on M

ZQA5 - iAaAﬁ - AQB =0.

Suppose that g satisfies the vacuum Einstein field equations with
cosmological constant \ and possibly pure radiation. Then g is
uniquely determined by 6° and Ay asin 1. and a real density ¢
satisfying

Va(b—ic) =3id,(b—ic),

where b := —3A\ + 8P — 6A A% + 61 (VA% — V*A,).
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SOME PROPERTIES

Agrees with Mason and Hill-Lewandowski—Nurowski—Tafel
Formulation now purely in terms of pseudo-Hermitian quantities
Form of the metric:

1 .
g=sec’ ¢ <49° (dd) i (1 s 2e2‘¢) MO+ cc + >\090> . 29191> .

For vacuum possibly with pure radiation

©

©

©

©

Ao =ag+ a; cos® ¢ + a, cos Psin ¢ + bcos* ¢ 4 ccos® psin g,

where ay, a;, a», b and ¢ all defined in a manifestly pseudo-Hermitian
invariant way.
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Form of the metric:

1 .
g=sec’ ¢ <49° (dd) i (1 s 2e2‘¢) MO+ cc + >\090> . 29191> .

©

©

©

©

For vacuum possibly with pure radiation
Ao =ag+ a; cos2<1>—i—g2 cos ¢sin ¢ + bcos* ¢ + ccos® psin g,

where ay, a;, a», b and ¢ all defined in a manifestly pseudo-Hermitian
invariant way.

Lemma (TC)

A CR 3-fold admits a CR function if and only if it admits either a
transverse CR symmetry or a solution A, to

YQA,B o IAaAﬁ o Aaﬁ =0. (*)
Eq. (») is CR-invariant: A, = A, +iT, whenever 8 — e£6.
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CONCLUDING REMARKS

o Reduction of the Einstein field equations in terms of
pseudo-Hermitian data

o Better integration of the CR-conformal correspondence...

o More muscular tractorial approach...

o How does the CR data fit into the asymptotic properties of
spacetime?

o Higher dimensions: many ‘classes’ of almost Robinson manifolds to be
investigated...
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