Almost Robinson geometry

Arman Taghavi-Chabert

School of Mathematics, Edinburgh 24 February 2022

NATIONAL SCIENCE CENTRE

Norway grants

Project: Conformal and CR methods in general relativity, acronym: ConfCRGR; registration number: 2020/37/K/ST1/02788; obtained funding as part of the POLS NCN competition research projects financed from the Norwegian Financial Mechanism for 2014-2021

THE ROBINSON CONGRUENCE (1960IES)

- Minkowski space $\mathbb{M} = \{u, z, \overline{z}, r\}$ with null $k = \frac{\partial}{\partial r}$: $\eta = 2\kappa dr + 2(r^2 + 1)\theta\overline{\theta}$ $\kappa = \eta(k, \cdot) = du - i\overline{z}dz + izd\overline{z}, \qquad \theta = dz.$
- Twisting non-shearing congruence of null geodesics (NSCNG) *K* generated by *k*:

$$egin{aligned} &\mathcal{L}_k\eta|_{K^\perp}\propto\eta|_{K^\perp}\,, & \mathcal{K}:=\mathrm{span}(k)\,, \ &\kappa\wedge\mathrm{d}\kappa
eq0\,. \end{aligned}$$

THE ROBINSON CONGRUENCE (1960IES)

- Minkowski space $\mathbb{M} = \{u, z, \overline{z}, r\}$ with null $k = \frac{\partial}{\partial r}$: $\eta = 2\kappa dr + 2(r^2 + 1)\theta\overline{\theta}$ $\kappa = \eta(k, \cdot) = du - i\overline{z}dz + izd\overline{z}, \qquad \theta = dz.$
- Twisting non-shearing congruence of null geodesics (NSCNG) *K* generated by *k*:

$$egin{aligned} & \pounds_k \eta|_{K^\perp} \propto \eta|_{K^\perp} \,, & & \mathcal{K} := \mathrm{span}(k) \,, \ & \kappa \wedge \mathrm{d} \kappa
eq 0 \,. \end{aligned}$$

• Robinson structure (N,K): involutive totally null complex 2-plane distribution

$$N = \operatorname{Ann}(\kappa, \theta)$$
, $N \cap \overline{N} = \mathbf{C} \otimes K$, $[N, N] \subset N$.

THE ROBINSON CONGRUENCE (1960IES)

- Minkowski space $\mathbb{M} = \{u, z, \overline{z}, r\}$ with null $k = \frac{\partial}{\partial r}$: $\eta = 2\kappa dr + 2(r^2 + 1)\theta\overline{\theta}$
 - $\kappa = \eta(k, \cdot) = \mathrm{d}u \mathrm{i}\bar{z}\mathrm{d}z + \mathrm{i}z\mathrm{d}\bar{z}, \qquad \theta = \mathrm{d}z.$
- Twisting non-shearing congruence of null geodesics (NSCNG) *K* generated by *k*:

$$egin{aligned} \pounds_k \eta|_{K^\perp} \propto \eta|_{K^\perp}\,, & \mathcal{K} := \mathrm{span}(k)\,, \ \kappa \wedge \mathrm{d}\kappa
eq 0\,. \end{aligned}$$

• Robinson structure (N,K): involutive totally null complex 2-plane distribution

$$N = \operatorname{Ann}(\kappa, \theta)$$
, $N \cap \overline{N} = \mathbf{C} \otimes K$, $[N, N] \subset N$.

• Contact Cauchy–Riemann (CR) structure ($\underline{H}, \underline{J}$) on the leaf space $\underline{\mathcal{M}} = \{u, z, \overline{z}\}$ of \mathcal{K} :

$$\underline{H} := \operatorname{Ann}(\kappa)$$
, $\underline{H}^{(0,1)} := \operatorname{Ann}(\kappa, \theta)$.

Hyperquadric $\underline{\mathcal{M}} = \{(z, w) \in \mathbf{C}^2 : \Im(w) = |z|^2\}$

NSCNGS AND ROBINSON STRUCTURES

• Conformal Lorentzian 4-fold $(\mathcal{M}, \mathbf{c})$. For null $k \in T\mathcal{M}$, $g \in \mathbf{c}$ given as

$$g = 2\kappa\lambda + 2\theta\overline{ heta}$$
, $\kappa = g(k, \cdot)$,

With $K = \operatorname{span}(k)$ and totally null complex $N = \operatorname{Ann}(\kappa, \theta)$,

 $\begin{array}{ll} {\cal K} \mbox{ non-shearing geodesic } & \Longleftrightarrow & [{\cal K},{\cal N}] \subset {\cal N} \\ & \Longleftrightarrow & [{\cal N},{\cal N}] \subset {\cal N} \quad \mbox{ Robinson structure} \,. \end{array}$

NSCNGS AND ROBINSON STRUCTURES

• Conformal Lorentzian 4-fold $(\mathcal{M}, \mathbf{c})$. For null $k \in T\mathcal{M}$, $g \in \mathbf{c}$ given as

$$g = 2\kappa\lambda + 2\theta\overline{ heta}$$
, $\kappa = g(k, \cdot)$,

With $K = \operatorname{span}(k)$ and totally null complex $N = \operatorname{Ann}(\kappa, \theta)$,

 $\begin{array}{ll} {\cal K} \mbox{ non-shearing geodesic } & \Longleftrightarrow & [{\cal K},{\cal N}] \subset {\cal N} \\ & \Longleftrightarrow & [{\cal N},{\cal N}] \subset {\cal N} & \mbox{ Robinson structure} \,. \end{array}$

• For the leaf space $\underline{\mathcal{M}}$:

$$(\mathcal{M}, \mathbf{c}) \qquad \qquad \mathcal{K}^{\perp}/\mathcal{K} \xrightarrow{\otimes \mathbf{C}} \mathcal{N}/^{\mathbf{C}}\mathcal{K} \oplus \overline{\mathcal{N}}/^{\mathbf{C}}\mathcal{K}$$

$$\downarrow^{k} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\underline{\mathcal{M}} \qquad \qquad \underline{\mathcal{H}} \xrightarrow{\otimes \mathbf{C}} \underline{\mathcal{H}}^{(1,0)} \oplus \underline{\mathcal{H}}^{(0,1)} \qquad \qquad \text{CR structure}$$

• K twisting $\iff \underline{H}$ contact

NSCNGS AND ROBINSON STRUCTURES

• Conformal Lorentzian 4-fold $(\mathcal{M}, \mathbf{c})$. For null $k \in T\mathcal{M}$, $g \in \mathbf{c}$ given as

$$g = 2\kappa\lambda + 2\theta\overline{ heta}$$
, $\kappa = g(k, \cdot)$,

With $K = \operatorname{span}(k)$ and totally null complex $N = \operatorname{Ann}(\kappa, \theta)$,

 $\begin{array}{ll} {\cal K} \mbox{ non-shearing geodesic } & \Longleftrightarrow & [{\cal K},{\cal N}] \subset {\cal N} \\ & \Longleftrightarrow & [{\cal N},{\cal N}] \subset {\cal N} & \mbox{ Robinson structure} \,. \end{array}$

• For the leaf space $\underline{\mathcal{M}}$:

$$(\mathcal{M}, \mathbf{c}) \qquad \qquad \mathcal{K}^{\perp} / \mathcal{K} \xrightarrow{\otimes \mathbf{C}} \mathcal{N} / \mathbf{c} \mathcal{K} \oplus \overline{\mathcal{N}} / \mathbf{c} \mathcal{K}$$

$$\downarrow^{k} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\underline{\mathcal{M}} \qquad \qquad \underline{\mathcal{H}} \xrightarrow{\otimes \mathbf{C}} \underline{\mathcal{H}}^{(1,0)} \oplus \underline{\mathcal{H}}^{(0,1)} \qquad \qquad \text{CR structure}$$

• K twisting $\iff \underline{H}$ contact

Problem

Reduce the vacuum Einstein field equations to CR data on the leaf space of a twisting NSCNG.

1907 **Poincaré**: real hypersurfaces in C^2

1907 **Poincaré**: real hypersurfaces in C^2

1932 Cartan: géométrie pseudo-conforme in dimension 3

1907 **Poincaré**: real hypersurfaces in C^2

1932 **Cartan**: *géométrie pseudo-conforme* in dimension 3 1957 **Lewy**: non-solvable differential operator

1907 **Poincaré**: real hypersurfaces in C^2

1932 **Cartan**: *géométrie pseudo-conforme* in dimension 3 1957 **Lewy**: non-solvable differential operator

1968 Greenfield: abstract CR manifolds — 1st use of the term 'CR'

Poincaré: real hypersurfaces in C^2

Cartan: *géométrie pseudo-conforme* in dimension 3 **Lewy**: non-solvable differential operator

Greenfield: abstract CR manifolds — 1st use of the term 'CR' **Chern–Moser**: invariants of CR manifolds in any dimensions

1976 Tanaka: CR manifolds; Fefferman's conformal extension of CR structures;

1907 **Poincaré**: real hypersurfaces in C^2

1932 **Cartan**: *géométrie pseudo-conforme* in dimension 3 1957 **Lewy**: non-solvable differential operator

1968 **Greenfield**: abstract CR manifolds — 1st use of the term 'CR' 1974 **Chern–Moser**: invariants of CR manifolds in any dimensions

1976 Tanaka: CR manifolds; Fefferman's conformal extension of CR structures;

1978 Webster: compatible CR connection

- 1904-05 Lorentz-Einstein-Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein-Grossmann-Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator

- 1968 **Greenfield**: abstract CR manifolds 1st use of the term 'CR' 1974 **Chern–Moser**: invariants of CR manifolds in any dimensions
- 1976 Tanaka: CR manifolds; Fefferman's conformal extension of CR structures;
- 1978 Webster: compatible CR connection

- 1904-05 Lorentz-Einstein-Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein-Grossmann-Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator
 - 1961 Robinson theorem: NSCNG and vacuum Maxwell equations
 - 1962 Goldberg–Sachs theorem: NSCNG and Einstein equations
 - 1963 Kerr metric: twisting NSCNG
 - 1967 Kerr–Penrose theorem and twistor theory
 - 1968 Greenfield: abstract CR manifolds 1st use of the term 'CR'
 - 1974 **Chern–Moser**: invariants of CR manifolds in any dimensions
 - 1976 Tanaka: CR manifolds; Fefferman's conformal extension of CR structures;
 - 1978 Webster: compatible CR connection

- 1904-05 Lorentz–Einstein–Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein–Grossmann–Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator
 - 1961 Robinson theorem: NSCNG and vacuum Maxwell equations
 - 1962 Goldberg–Sachs theorem: NSCNG and Einstein equations
 - 1963 Kerr metric: twisting NSCNG
 - 1967 Kerr–Penrose theorem and twistor theory
 - 1968 Greenfield: abstract CR manifolds 1st use of the term 'CR'
 - 1974 Chern–Moser: invariants of CR manifolds in any dimensions
 - 1975 **Penrose**: hypersurface twistors and CR 5-folds
 - 1976 Tanaka: CR manifolds; Fefferman's conformal extension of CR structures;
 - 1978 Webster: compatible CR connection
 - 1983 Hill-Penrose-Sparling, LeBrun: non-realisable CR 5-folds
 - 1984 Mason: hypersurface twistors

- 1904-05 Lorentz–Einstein–Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein–Grossmann–Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator
 - 1961 Robinson theorem: NSCNG and vacuum Maxwell equations
 - 1962 Goldberg–Sachs theorem: NSCNG and Einstein equations
 - 1963 Kerr metric: twisting NSCNG
 - 1967 Kerr–Penrose theorem and twistor theory
 - 1968 Greenfield: abstract CR manifolds 1st use of the term 'CR'
 - 1974 Chern–Moser: invariants of CR manifolds in any dimensions
 - 1975 **Penrose**: hypersurface twistors and CR 5-folds
 - 1976 **Tanaka**: CR manifolds; Fefferman's conformal extension of CR structures; **Sommers**: NSCNG and CR 3-folds
 - 1978 Webster: compatible CR connection
 - 1983 Hill-Penrose-Sparling, LeBrun: non-realisable CR 5-folds
 - 1984 Mason: hypersurface twistors

- 1904-05 Lorentz-Einstein-Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein–Grossmann–Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator
 - 1961 Robinson theorem: NSCNG and vacuum Maxwell equations
 - 1962 Goldberg–Sachs theorem: NSCNG and Einstein equations
 - 1963 Kerr metric: twisting NSCNG
 - 1967 Kerr–Penrose theorem and twistor theory
 - 1968 Greenfield: abstract CR manifolds 1st use of the term 'CR'
 - 1974 Chern–Moser: invariants of CR manifolds in any dimensions
 - 1975 Penrose: hypersurface twistors and CR 5-folds
 - 1976 **Tanaka**: CR manifolds; Fefferman's conformal extension of CR structures; **Sommers**: NSCNG and CR 3-folds
 - 1978 Webster: compatible CR connection
 - 1983 Hill-Penrose-Sparling, LeBrun: non-realisable CR 5-folds
 - 1984 Mason: hypersurface twistors
 - 1985 Tafel: Lewy operator and non-analytic Robinson theorem
 - 1986 Robinson-Trautman: CR structures in optical geometries
 - 1990 Lewandowski–Nurowski–Tafel: Einstein equations and realisable CR 3-folds

- 1904-05 Lorentz-Einstein-Poincaré: special relativity
 - 1907 **Poincaré**: real hypersurfaces in C^2
- 1913-16 Einstein–Grossmann–Hilbert: general relativity
 - 1932 Cartan: géométrie pseudo-conforme in dimension 3
 - 1957 Lewy: non-solvable differential operator
 - 1961 Robinson theorem: NSCNG and vacuum Maxwell equations
 - 1962 Goldberg–Sachs theorem: NSCNG and Einstein equations
 - 1963 Kerr metric: twisting NSCNG
 - 1967 Kerr–Penrose theorem and twistor theory
 - 1968 Greenfield: abstract CR manifolds 1st use of the term 'CR'
 - 1974 Chern–Moser: invariants of CR manifolds in any dimensions
 - 1975 Penrose: hypersurface twistors and CR 5-folds
 - 1976 **Tanaka**: CR manifolds; Fefferman's conformal extension of CR structures; **Sommers**: NSCNG and CR 3-folds
 - 1978 Webster: compatible CR connection
 - 1983 Hill-Penrose-Sparling, LeBrun: non-realisable CR 5-folds
 - 1984 Mason: hypersurface twistors
 - 1985 Tafel: Lewy operator and non-analytic Robinson theorem
 - 1986 Robinson-Trautman: CR structures in optical geometries
 - 1990 Lewandowski–Nurowski–Tafel: Einstein equations and realisable CR 3-folds
 - 2002 Nurowski–Trautman:

Robinson manifolds as Lorentzian analogues of Hermitian manifolds

2021 Fino-Leistner-TC: Almost Robinson geometry

THE KERR CONGRUENCE

- Kerr metric (1963): Petrov type D vacuum spacetime
 - $\mathcal{M} = \{u, \vartheta, \phi, r\}$ with parameters *a* and *m*:

$$g = 2\kappa \left(\mathrm{d}r + a\sin^2\vartheta \mathrm{d}\phi + \left(\frac{mr}{r^2 + a^2\cos^2\vartheta} - \frac{1}{2}\right)\kappa \right) + 2(r^2 + a^2\cos^2\phi)\theta\overline{\theta},$$

$$\kappa = \mathrm{d}t + a\sin^2\vartheta \mathrm{d}\phi \qquad \theta = \mathrm{d}\vartheta + i\sin\vartheta \mathrm{d}\phi$$

 $\kappa = \mathrm{d}t + a\sin^2\vartheta\mathrm{d}\phi$, $\theta = \mathrm{d}\vartheta + i\sin\vartheta\mathrm{d}\phi$.

- Twisting NSCNG generated by $k = \frac{\partial}{\partial r}$
- Robinson structure: $N = Ann(\kappa, \theta)$
- Contact CR structure $(\underline{H}, \underline{J})$ on the leaf space $\underline{\mathcal{M}} = \{u, \vartheta, \phi\}$ of \mathcal{K} :

$$\underline{H} := \operatorname{Ann}(\kappa)$$
, $\underline{H}^{(0,1)} := \operatorname{Ann}(\kappa, \theta)$.

THE KERR CONGRUENCE

- Kerr metric (1963): Petrov type D vacuum spacetime
 - $\mathcal{M} = \{u, \vartheta, \phi, r\}$ with parameters *a* and *m*:

$$g = 2\kappa \left(\mathrm{d}r + a\sin^2\vartheta \mathrm{d}\phi + \left(\frac{mr}{r^2 + a^2\cos^2\vartheta} - \frac{1}{2}\right)\kappa \right) + 2(r^2 + a^2\cos^2\phi)\theta\overline{\theta},$$

$$\kappa = \mathrm{d}t + a\sin^2\vartheta \mathrm{d}\phi \qquad \theta = \mathrm{d}\vartheta + i\sin\vartheta \mathrm{d}\phi$$

 $\kappa = \mathrm{d}t + a\sin^2 \vartheta \,\mathrm{d}\varphi \,, \qquad \vartheta = \mathrm{d}\vartheta + i\sin \vartheta \,\mathrm{d}\varphi \,.$

- Twisting NSCNG generated by $k = \frac{\partial}{\partial r}$
- Robinson structure: $N = Ann(\kappa, \theta)$
- Contact CR structure $(\underline{H}, \underline{J})$ on the leaf space $\underline{\mathcal{M}} = \{u, \vartheta, \phi\}$ of \mathcal{K} :

$$\underline{H} := \operatorname{Ann}(\kappa), \qquad \underline{H}^{(0,1)} := \operatorname{Ann}(\kappa, \theta).$$

• Note $\theta = d\vartheta + i \sin \vartheta d\phi$ satisfies $\theta \wedge d\theta = 0$, i.e.

$$\theta \wedge \mathrm{d} z = 0$$

for some smooth $z : \underline{\mathcal{M}} \to \mathbf{C}$ s.t. X(z) = 0 for any $X \in \underline{H}^{(0,1)}$

z is a CR function (also known as a Kerr coordinate among relativists)
 In fact, two CR functions ⇒ (<u>M</u>, <u>H</u>, <u>J</u>) realisable

KERR SURFACES IN TWISTOR SPACE

Kerr theorem (Penrose (1967))

Any analytic NSCNG in Minkowski space \mathbb{M} locally gives rise to a complex (Kerr) surface in twistor space \mathbb{PT} . Conversely, any such NSCNG arises in this way.

- Twistor space $\mathbb{PT} \cong \mathbb{CP}^3$: space of α -planes in $^{\mathbb{C}}\mathbb{M}$
- CR 5-hypersphere $\mathbb{PN} \subset \mathbb{PT}$: space of null geodesics
- NSCNG $\mathcal{K} = \mathbb{M} \cap \mathcal{N}$ where \mathcal{N} is a foliation by α -planes

REDUCED EINSTEIN EQUATIONS AS CR DATA

• Kerr (1963), Debney-Kerr-Schild (1969): Given a spacetime (\mathcal{M}, g) equipped with NSCNG $\mathcal{K} \sim (N, K)$ and

$$\operatorname{Ric}(v, v) = 0$$
 for all $v \in N$, $\operatorname{Sc} = 0$, (†)

then there exist coordinates $\{u, z, \overline{z}, r\}$ such that

$$g = 2\kappa\lambda + \frac{2}{r^2 + p^2}\theta\overline{\theta}, \qquad \lambda = \mathrm{d}r + W\mathrm{d}z + \overline{W}\mathrm{d}\overline{z} + H\kappa,$$

$$\kappa = \mathrm{d}u + f\mathrm{d}z + \overline{f}\mathrm{d}\overline{z} \qquad \theta = \mathrm{d}z,$$

the *r*-dependence is fully determined, and the form of the metric is subject to residual coordinate freedom.

REDUCED EINSTEIN EQUATIONS AS CR DATA

• Kerr (1963), Debney-Kerr-Schild (1969): Given a spacetime (\mathcal{M}, g) equipped with NSCNG $\mathcal{K} \sim (N, K)$ and

$$\operatorname{Ric}(v, v) = 0$$
 for all $v \in N$, $\operatorname{Sc} = 0$, (†)

then there exist coordinates $\{u, z, \overline{z}, r\}$ such that

$$g = 2\kappa\lambda + \frac{2}{r^2 + p^2}\theta\overline{\theta}, \qquad \lambda = \mathrm{d}r + W\mathrm{d}z + \overline{W}\mathrm{d}\overline{z} + H\kappa,$$

$$\kappa = \mathrm{d}u + f\mathrm{d}z + \overline{f}\mathrm{d}\overline{z} \qquad \theta = \mathrm{d}z,$$

the *r*-dependence is fully determined, and the form of the metric is subject to residual coordinate freedom.

Theorem (Mason (1984,1998))

Let $(\underline{\mathcal{M}}, \underline{H}, \underline{J})$ be a contact CR 3-fold. Then, any choice of

- a weighted (1,0)-form $\underline{\theta}$ such that $\underline{\theta} \wedge d\underline{\theta} = 0$, and
- a complex density ψ_2^0 ,

determines a metric on a circle bundle associated to $\wedge^2 \operatorname{Ann}(\underline{H}^{(0,1)})$ that satisfies the reduced Einstein equations (†).

EINSTEIN EQS AND CR EMBEDDABILITY

• Lewandowski-Nurowski (1990): Lift $(\underline{\mathcal{M}}, \underline{J}, \underline{\mathcal{H}})$ to (\mathcal{M}, g, N, K) where $\mathcal{M} = \underline{\mathcal{M}} \times \mathbf{R}$ with metric $g = \Omega^2 \left(4\underline{\theta}^0 \lambda + 2\underline{\theta}^1 \overline{\underline{\theta}}^{\overline{1}} \right)$, $\lambda = \mathrm{d}\phi + \lambda_1 \underline{\theta}^1 + \lambda_{\overline{1}} \overline{\underline{\theta}}^{\overline{1}} + \lambda_0 \underline{\theta}^0$, $\Omega, \lambda_1, \lambda_0 \in C^{\infty}(\mathcal{M})$

Field equations:

- 1. $\operatorname{Ric}(k, k) = 0$ for all $k \in \mathcal{K}$: $\Omega^2 = e^{\frac{\varphi}{2}} \sec^2(\phi + \psi)$ for $\varphi, \psi \in C^{\infty}(\underline{\mathcal{M}})$
- 2. $\operatorname{Ric}(v, v) = 0$ for all $v \in N$: ϕ -dependence is integrated out in λ_1
- 3. Vacuum (+ pure radiation): ϕ -dependence is integrated out in λ_1 , λ_0

Reduction in terms of φ , ψ , structure functions and derivatives.

EINSTEIN EQS AND CR EMBEDDABILITY

• Lewandowski-Nurowski (1990): Lift $(\underline{\mathcal{M}}, \underline{J}, \underline{\mathcal{H}})$ to (\mathcal{M}, g, N, K) where $\mathcal{M} = \underline{\mathcal{M}} \times \mathbf{R}$ with metric $g = \Omega^2 \left(4\underline{\theta}^0 \lambda + 2\underline{\theta}^1 \overline{\underline{\theta}}^{\overline{1}} \right)$, $\lambda = \mathrm{d}\phi + \lambda_1 \underline{\theta}^1 + \lambda_{\overline{1}} \overline{\underline{\theta}}^{\overline{1}} + \lambda_0 \underline{\theta}^0$, $\Omega, \lambda_1, \lambda_0 \in C^{\infty}(\mathcal{M})$

Field equations:

1. $\operatorname{Ric}(k, k) = 0$ for all $k \in \mathcal{K}$: $\Omega^2 = e^{\underline{\varphi}} \sec^2(\phi + \underline{\psi})$ for $\underline{\psi}, \underline{\psi} \in C^{\infty}(\underline{\mathcal{M}})$

- 2. $\operatorname{Ric}(v, v) = 0$ for all $v \in N$: ϕ -dependence is integrated out in λ_1
- 3. Vacuum (+ pure radiation): ϕ -dependence is integrated out in λ_1 , λ_0

Reduction in terms of $\underline{\varphi}$, $\underline{\psi}$, structure functions and derivatives.

Theorem (Lewandowski-Nurowski-Tafel (1990))

If a CR 3-fold admits a lift to a Ricci-flat metric then it is realisable as a real hypersurface in \mathbb{C}^2 .

• Generalisations:

Hill-Lewandowski-Nurowski (2008), Schmalz-Ganji (2018)

• Applications — Type N vacuum metric with cosmological constant: Nurowski (2008), Zhang-Finley (2013)

Almost CR geometry

- Almost CR manifold $(\underline{\mathcal{M}}^{2m+1}, \underline{\mathcal{H}}^{2m}, \underline{J})$: smooth (2m+1)-fold $\underline{\mathcal{M}}$, $\underline{\mathcal{H}}^{2m} \subset T\underline{\mathcal{M}}$, bundle complex structure \underline{J} on $\underline{\mathcal{H}}$
- Assume contact and partially integrable, i.e. for any $\underline{\theta}^0 \in \operatorname{Ann}(\underline{H})$

 $\underline{\theta}^0 \wedge (\underline{d}\underline{\theta}^0)^m \neq 0, \qquad \underline{d}\underline{\theta}^0(\underline{v}, \underline{w}) = 0, \qquad \text{for all } \underline{v}, \underline{w} \in H^{(1,0)}.$

• Levi form: weighted Hermitian form $\underline{\mathbf{h}}$ on \underline{H} :

 $\underline{h}(\underline{v},\underline{w}) = -2\mathrm{id}\underline{\theta}^{0}(\underline{v},\underline{w}), \qquad \underline{v} \in \underline{H}^{(1,0)}, \underline{w} \in \underline{H}^{(0,1)}.$

Assume the signature of $\underline{\mathbf{h}}$ to be positive definite.

Almost CR geometry

- Almost CR manifold $(\underline{\mathcal{M}}^{2m+1}, \underline{\mathcal{H}}^{2m}, \underline{J})$: smooth (2m+1)-fold $\underline{\mathcal{M}}$, $\underline{\mathcal{H}}^{2m} \subset T\underline{\mathcal{M}}$, bundle complex structure \underline{J} on $\underline{\mathcal{H}}$
- Assume contact and partially integrable, i.e. for any $\underline{\theta}^0 \in \operatorname{Ann}(\underline{H})$

 $\underline{\theta}^0 \wedge (\underline{d}\underline{\theta}^0)^m \neq 0, \qquad \underline{d}\underline{\theta}^0(\underline{v}, \underline{w}) = 0, \qquad \text{for all } \underline{v}, \underline{w} \in H^{(1,0)}.$

• Levi form: weighted Hermitian form \underline{h} on \underline{H} :

 $\underline{h}(\underline{v},\underline{w}) = -2\mathrm{id}\underline{\theta}^{0}(\underline{v},\underline{w}), \qquad \underline{v} \in \underline{H}^{(1,0)}, \, \underline{w} \in \underline{H}^{(0,1)}.$

Assume the signature of $\underline{\mathbf{h}}$ to be positive definite.

• Contact form $\underline{\theta}^0 \longrightarrow$ Canonical Webster–Tanaka connection $\underline{\nabla}$:

$$\underline{\theta}^0 \to \underline{\widehat{\theta}}^0 = e^{\underline{\varphi}} \underline{\theta}^0 \implies \underline{\nabla} \to \underline{\widehat{\nabla}} = \underline{\nabla} + \underline{\Upsilon} + \dots, \qquad (\underline{\Upsilon} = d\underline{\varphi}).$$

- CR invariants:
 - Nijenhuis tensor <u>N</u> (m > 1): Involutivity of <u>H</u>^(1,0)
 - Chern–Moser (m > 1) and Cartan (m = 1) tensors: CR flatness
- Pseudo-Hermitian invariants (depend on contact form):
 - Pseudo-Hermitian Webster torsion <u>A</u>: transverse CR symmetry
 - Schouten–Webster tensor \underline{P}

Almost Robinson Geometry

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (M, g, N, K) where

- (\mathcal{M}, g) is a smooth Lorentzian manifold of dimension 2m + 2,
- N is a totally null complex (m + 1)-plane distribution,
- *K* is the null line distribution given by $\mathbf{C} \otimes K = N \cap \overline{N}$.

Almost Robinson Geometry

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (M, g, N, K) where

- (\mathcal{M}, g) is a smooth Lorentzian manifold of dimension 2m + 2,
- N is a totally null complex (m + 1)-plane distribution,
- *K* is the null line distribution given by $\mathbf{C} \otimes K = N \cap \overline{N}$.

Fino-Leistner-TC (2021): Intrinsic torsion of (N, K)

- Structure group $\mathbf{R}_{>0} \cdot \mathbf{U}(m) \ltimes \mathbf{R}^{2m}$ stabilises $\kappa \in \operatorname{Ann}(K^{\perp})$ and "Hermitian" 3-form $\rho := 3\kappa \wedge \omega$
- Induced geometries on the leaf space \mathcal{M} of congruence tangent to K
- Three important (conformally invariant) classes:

geodesic	nearly Robinson	Robinson
$[K, K^{\perp}] \subset K^{\perp}$	$[K, N] \subset N$	$[N, N] \subset N$
$\underline{H}^{2m} \subset T\underline{\mathcal{M}}$	(<u>H</u> , <u>J</u>) almost CR	(<u>H</u> , <u>J</u>) CR

Almost Robinson Geometry

Definition (Nurowski-Trautman (2002), Fino-Leistner-TC (2021))

An almost Robinson manifold consists of a quadruple (M, g, N, K) where

- (\mathcal{M}, g) is a smooth Lorentzian manifold of dimension 2m + 2,
- N is a totally null complex (m + 1)-plane distribution,
- *K* is the null line distribution given by $\mathbf{C} \otimes K = N \cap \overline{N}$.

Fino-Leistner-TC (2021): Intrinsic torsion of (N, K)

- Structure group $\mathbf{R}_{>0} \cdot \mathbf{U}(m) \ltimes \mathbf{R}^{2m}$ stabilises $\kappa \in \operatorname{Ann}(K^{\perp})$ and "Hermitian" 3-form $\rho := 3\kappa \wedge \omega$
- Induced geometries on the leaf space $\underline{\mathcal{M}}$ of congruence tangent to K
- Three important (conformally invariant) classes:

geodesic	nearly Robinson	Robinson
$[K, K^{\perp}] \subset K^{\perp}$	$[K, N] \subset N$	$[N, N] \subset N$
$\underline{H}^{2m} \subset T\underline{\mathcal{M}}$	(<u>H</u> , <u>J</u>) almost CR	(<u>H</u> , <u>J</u>) CR

• ...and a 4th one:

twist-induced almost Robinson $\iff \kappa \wedge \mathrm{d}\kappa \propto \rho$

FEFFERMAN CONFORMAL STRUCTURE

 Fefferman (1976), Lee (1986), Sparling, Graham (1987), Čap-Gover (2010):
 Associate to a CR manifold a Lorentzian conformal structure c:

$$(\mathcal{M}^{2m+2} := C/\mathbf{R}^*, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{\qquad} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^k \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$(\underline{\mathcal{M}}^{2m+1}, \underline{H}, \underline{J}) \qquad \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^0 \xrightarrow{\qquad} \widehat{\underline{\theta}}^0 = e^{\underline{\varphi}}\underline{\theta}^0$$

where

•
$$C := \wedge^{m+1} \operatorname{Ann}(\underline{\mathcal{T}}^{(0,1)}\underline{\mathcal{M}}),$$

• $g = 4\underline{\theta}^0 \odot \left(\mathrm{d}\phi + \frac{1}{m+2} \left(\mathrm{i}\underline{\Gamma}_{\alpha}{}^{\alpha} - \underline{\mathsf{P}}\underline{\theta}^0 \right) \right) + \underline{h}$

• $k = \frac{\partial}{\partial \phi}$ null conformal Killing field \longrightarrow twisting NSCNG

• Robinson structure determined by $\underline{\theta}^0 \wedge \mathrm{d} \underline{\theta}^0$

FEFFERMAN CONFORMAL STRUCTURE

• Fefferman (1976), Lee (1986), Sparling, Graham (1987), Čap-Gover (2010): Associate to a CR manifold a Lorentzian conformal structure **c**:

$$(\mathcal{M}^{2m+2} := C/\mathbf{R}^*, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{\qquad} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^k \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(\underline{\mathcal{M}}^{2m+1}, \underline{H}, \underline{J}) \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^0 \xrightarrow{\qquad} \widehat{\underline{\theta}}^0 = e^{\underline{\varphi}}\underline{\theta}^0$$

where

•
$$C := \wedge^{m+1} \operatorname{Ann}(\underline{T}^{(0,1)}\underline{\mathcal{M}}),$$

- $g = 4\underline{\theta}^0 \odot \left(\mathrm{d}\phi + \frac{1}{m+2} \left(\mathrm{i}\underline{\Gamma}_{\alpha}^{\ \alpha} \underline{\mathsf{P}}\underline{\theta}^0 \right) \right) + \underline{h}$
- $k = \frac{\partial}{\partial \phi}$ null conformal Killing field \longrightarrow twisting NSCNG
- Robinson structure determined by $\underline{\theta}^0 \wedge \mathrm{d} \underline{\theta}^0$
- Leitner (2007), Čap-Gover (2008):

 $g \in \mathbf{c}$ Einstein $\Longrightarrow (\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{\mathcal{J}}, \underline{\theta}^0)$ CR-Einstein \longrightarrow Kähler-Einstein Lewandowski (1988):

Any Fefferman–Einstein 4-fold must be conformally flat.

FEFFERMAN CONFORMAL STRUCTURE

• Fefferman (1976), Lee (1986), Sparling, Graham (1987), Čap-Gover (2010): Associate to a CR manifold a Lorentzian conformal structure **c**:

$$(\mathcal{M}^{2m+2} := C/\mathbf{R}^*, \mathbf{c}) \qquad \mathbf{c} \quad \ni \quad g \xrightarrow{\qquad} \widehat{g} = e^{\underline{\varphi}}g$$

$$\downarrow^k \qquad \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(\underline{\mathcal{M}}^{2m+1}, \underline{H}, \underline{J}) \qquad \operatorname{Ann}(\underline{H}) \quad \ni \quad \underline{\theta}^0 \xrightarrow{\qquad} \widehat{\underline{\theta}}^0 = e^{\underline{\varphi}}\underline{\theta}^0$$

where

•
$$C := \wedge^{m+1} \operatorname{Ann}(\underline{T}^{(0,1)}\underline{\mathcal{M}}),$$

•
$$g = 4\underline{\theta}^0 \odot \left(\mathrm{d}\phi + \frac{1}{m+2} \left(\mathrm{i}\underline{\Gamma}_{\alpha}{}^{\alpha} - \underline{\mathsf{P}}\underline{\theta}^0 \right) \right) + \underline{h}$$

- $k = \frac{\partial}{\partial \phi}$ null conformal Killing field \longrightarrow twisting NSCNG
- Robinson structure determined by $\underline{\theta}^0 \wedge \mathrm{d} \underline{\theta}^0$
- Leitner (2007), Čap-Gover (2008):

 $g \in \mathbf{c}$ Einstein $\Longrightarrow (\underline{\mathcal{M}}, \underline{\mathcal{H}}, \underline{\mathcal{J}}, \underline{\theta}^0)$ CR-Einstein \longrightarrow Kähler-Einstein Lewandowski (1988):

Any Fefferman–Einstein 4-fold must be conformally flat.

• Leitner (2010), TC (unpublished): Partially integrable case

KERR CONGRUENCE IN HIGHER DIMENSIONS

Theorem (Mason-TC (2010))

Let (\mathcal{M}, g) be a Lorentzian manifold of dimension 2m + 2 equipped with a closed conformal Killing–Yano 2-form Φ , i.e.

$$abla_v \Phi = -rac{1}{2m+1}g(v,\cdot) \wedge \mathrm{d}^* \Phi$$
, for all $v \in \mathcal{TM}$.

Suppose Φ is generic. Then (\mathcal{M}, g) admits two congruences of null geodesics, each associated to 2^{m-1} Robinson structures. Each (N, K) satisfies $\Phi(v, w) = 0$, for all $v, w \in N$.

KERR CONGRUENCE IN HIGHER DIMENSIONS

Theorem (Mason-TC (2010))

Let (\mathcal{M}, g) be a Lorentzian manifold of dimension 2m + 2 equipped with a closed conformal Killing–Yano 2-form Φ , i.e.

$$abla_v \Phi = -rac{1}{2m+1}g(v,\cdot) \wedge \mathrm{d}^* \Phi$$
, for all $v \in \mathcal{TM}$.

Suppose Φ is generic. Then (\mathcal{M}, g) admits two congruences of null geodesics, each associated to 2^{m-1} Robinson structures. Each (N, K) satisfies $\Phi(v, w) = 0$, for all $v, w \in N$.

- Congruences are shearing when m > 1.
- Examples:
 - Kerr-NUT-(A)dS Chen-Lü-Pope (2006), Frolov-Kubizňák (2007)
 - Myers–Perry (1986): $g = \eta + H\kappa^2$

Associated CR structures are contact.

KERR CONGRUENCE IN HIGHER DIMENSIONS

Theorem (Mason-TC (2010))

Let (\mathcal{M}, g) be a Lorentzian manifold of dimension 2m + 2 equipped with a closed conformal Killing–Yano 2-form Φ , i.e.

$$abla_v \Phi = -rac{1}{2m+1}g(v,\cdot) \wedge \mathrm{d}^* \Phi$$
, for all $v \in \mathcal{TM}$.

Suppose Φ is generic. Then (\mathcal{M}, g) admits two congruences of null geodesics, each associated to 2^{m-1} Robinson structures. Each (N, K) satisfies $\Phi(v, w) = 0$, for all $v, w \in N$.

- Congruences are shearing when m > 1.
- Examples:
 - Kerr-NUT-(A)dS Chen-Lü-Pope (2006), Frolov-Kubizňák (2007)
 - Myers–Perry (1986): $g = \eta + H\kappa^2$

Associated CR structures are contact.

- Kerr theorem in even dimensions Hughston-Mason (1988)
- Description of the Kerr surface in twistor space TC (2017)

TWISTING NSCNGS IN HIGHER DIMENSIONS

Theorem (TC (2021))

Let $(\mathcal{M}, \mathbf{c})$ be a Lorentzian conformal manifold of dimension 2m + 2 > 4with null line distribution K tangent to a twisting NSCNG K. Denote by $\underline{\mathcal{M}}$ the local space of \mathcal{K} and by W the Weyl tensor of \mathbf{c} .

1. If W(k, v, k, v) = 0 for any $k \in K$, $v \in K^{\perp}$, then the twist of \mathcal{K} induces a nearly Robinson structure (N, K), and $\underline{\mathcal{M}}$ inherits a p.i. contact almost CR structure $(\underline{H}, \underline{J})$.

TWISTING NSCNGS IN HIGHER DIMENSIONS

Theorem (TC (2021))

Let $(\mathcal{M}, \mathbf{c})$ be a Lorentzian conformal manifold of dimension 2m + 2 > 4with null line distribution K tangent to a twisting NSCNG K. Denote by $\underline{\mathcal{M}}$ the local space of \mathcal{K} and by W the Weyl tensor of \mathbf{c} .

- 1. If W(k, v, k, v) = 0 for any $k \in K$, $v \in K^{\perp}$, then the twist of \mathcal{K} induces a nearly Robinson structure (N, K), and $\underline{\mathcal{M}}$ inherits a p.i. contact almost CR structure $(\underline{H}, \underline{J})$.
- 2. If in addition $W(k, v, k, \cdot) = 0$ for any $k \in K, v \in K^{\perp}$, any Einstein metric in **c** determines a contact form $\underline{\theta}^0$ for <u>H</u> such that $(\underline{H}, \underline{J}, \underline{\theta}^0)$ is an almost CR-Einstein structure, i.e.

$$\underline{A}_{\alpha\beta} = 0, \quad \underline{\nabla}^{\gamma}\underline{N}_{\gamma(\alpha\beta)} = 0, \quad \left(\underline{P}_{\alpha\bar{\beta}} - \frac{1}{m+2}\underline{N}_{\alpha\gamma\delta}\underline{N}_{\bar{\beta}}{}^{\gamma\delta}\right)_{\circ} = 0,$$

i.e. \underline{M} locally fibered over an almost Kähler–Einstein 2m-fold.

TWISTING NSCNGS IN HIGHER DIMENSIONS

Theorem (TC (2021))

Let $(\mathcal{M}, \mathbf{c})$ be a Lorentzian conformal manifold of dimension 2m + 2 > 4with null line distribution K tangent to a twisting NSCNG K. Denote by $\underline{\mathcal{M}}$ the local space of \mathcal{K} and by W the Weyl tensor of \mathbf{c} .

- 1. If W(k, v, k, v) = 0 for any $k \in K$, $v \in K^{\perp}$, then the twist of \mathcal{K} induces a nearly Robinson structure (N, K), and $\underline{\mathcal{M}}$ inherits a p.i. contact almost CR structure $(\underline{H}, \underline{J})$.
- 2. If in addition $W(k, v, k, \cdot) = 0$ for any $k \in K, v \in K^{\perp}$, any Einstein metric in **c** determines a contact form $\underline{\theta}^0$ for <u>H</u> such that $(\underline{H}, \underline{J}, \underline{\theta}^0)$ is an almost CR-Einstein structure, i.e.

$$\underline{A}_{\alpha\beta} = 0, \quad \underline{\nabla}^{\gamma}\underline{N}_{\gamma(\alpha\beta)} = 0, \quad \left(\underline{P}_{\alpha\bar{\beta}} - \frac{1}{m+2}\underline{N}_{\alpha\gamma\delta}\underline{N}_{\bar{\beta}}{}^{\gamma\delta}\right)_{\circ} = 0,$$

i.e. <u>M</u> locally fibered over an almost Kähler–Einstein 2m-fold.

• 3-parameter family of Einstein metrics: (massive) Fefferman–Einstein and (massless) Taub–NUT-type metrics

TWISTING NSCNGS IN DIMENSION FOUR

Theorem (TC)

Let (\mathcal{M}, g) be a Lorentzian 4-fold with a twisting NSCNG $\mathcal{K} \sim (N, K)$.

- 1. Suppose $\operatorname{Ric}(v, v) = 0$ for all $v \in N$. Then g is determined by
 - a pseudo-Hermitian structure $(\underline{H}, \underline{J}, \underline{\theta}^0)$ on the leaf space \underline{M} of \mathcal{K} ,
 - a solution $\underline{\lambda}_{\alpha} \in (\underline{H}^{(1,0)})^*$ to CR Einstein–Weyl-type equation on $\underline{\mathcal{M}}$

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - \mathrm{i}\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0.$$

TWISTING NSCNGS IN DIMENSION FOUR

Theorem (TC)

Let (\mathcal{M}, g) be a Lorentzian 4-fold with a twisting NSCNG $\mathcal{K} \sim (N, K)$.

- 1. Suppose $\operatorname{Ric}(v, v) = 0$ for all $v \in N$. Then g is determined by
 - a pseudo-Hermitian structure $(\underline{H}, \underline{J}, \underline{\theta}^0)$ on the leaf space \underline{M} of \mathcal{K} ,
 - a solution $\underline{\lambda}_{\alpha} \in (\underline{H}^{(1,0)})^*$ to CR Einstein–Weyl-type equation on $\underline{\mathcal{M}}$

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - \mathrm{i}\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0 \,.$$

2. Suppose that g satisfies the vacuum Einstein field equations with cosmological constant Λ and possibly pure radiation. Then g is uniquely determined by $\underline{\theta}^0$ and $\underline{\lambda}_{\alpha}$ as in 1. and a real density \underline{c} satisfying

$$\underline{\nabla}_{\alpha}(\underline{b} - i\underline{c}) = 3i\underline{\lambda}_{\alpha}(\underline{b} - i\underline{c}),$$

where $\underline{b} := -\frac{8}{3}\Lambda + 8\underline{P} - 6\underline{\lambda}_{\alpha}\underline{\lambda}^{\alpha} + 6i(\underline{\nabla}_{\alpha}\underline{\lambda}^{\alpha} - \underline{\nabla}^{\alpha}\underline{\lambda}_{\alpha}).$

Some properties

- Agrees with Mason and Hill–Lewandowski–Nurowski–Tafel
- Formulation now purely in terms of pseudo-Hermitian quantities
- Form of the metric:

$$g = \sec^2 \phi \left(4\underline{\theta}^0 \left(\mathrm{d}\phi + \left(1 + \frac{1}{2} \mathrm{e}^{-2\mathrm{i}\phi} \right) \underline{\lambda}_1 \underline{\theta}^1 + c.c. + \lambda_0 \underline{\theta}^0 \right) + 2\underline{\theta}^1 \overline{\underline{\theta}}^{\overline{1}} \right)$$

• For vacuum possibly with pure radiation

$$\lambda_0 = \underline{a}_0 + \underline{a}_1 \cos^2 \phi + \underline{a}_2 \cos \phi \sin \phi + \underline{b} \cos^4 \phi + \underline{c} \cos^3 \phi \sin \phi \,,$$

where \underline{a}_0 , \underline{a}_1 , \underline{a}_2 , \underline{b} and \underline{c} all defined in a manifestly pseudo-Hermitian invariant way.

Some properties

- Agrees with Mason and Hill–Lewandowski–Nurowski–Tafel
- Formulation now purely in terms of pseudo-Hermitian quantities
- Form of the metric:

$$g = \sec^2 \phi \left(4\underline{\theta}^0 \left(\mathrm{d}\phi + \left(1 + \frac{1}{2} \mathrm{e}^{-2\mathrm{i}\phi} \right) \underline{\lambda}_1 \underline{\theta}^1 + c.c. + \lambda_0 \underline{\theta}^0 \right) + 2\underline{\theta}^1 \overline{\underline{\theta}}^{\overline{1}} \right)$$

• For vacuum possibly with pure radiation

$$\lambda_0 = \underline{a}_0 + \underline{a}_1 \cos^2 \phi + \underline{a}_2 \cos \phi \sin \phi + \underline{b} \cos^4 \phi + \underline{c} \cos^3 \phi \sin \phi \,,$$

where \underline{a}_0 , \underline{a}_1 , \underline{a}_2 , \underline{b} and \underline{c} all defined in a manifestly pseudo-Hermitian invariant way.

Lemma (TC)

A CR 3-fold admits a CR function if and only if it admits either a transverse CR symmetry or a solution $\underline{\lambda}_{\alpha}$ to

$$\underline{\nabla}_{\alpha}\underline{\lambda}_{\beta} - i\underline{\lambda}_{\alpha}\underline{\lambda}_{\beta} - \underline{A}_{\alpha\beta} = 0. \qquad (\star)$$

Eq. (*) is CR-invariant: $\underline{\lambda}_{\alpha} \rightarrow \underline{\lambda}_{\alpha} + i\underline{\Upsilon}_{\alpha}$ whenever $\underline{\theta} \rightarrow e^{\underline{\varphi}}\underline{\theta}$.

CONCLUDING REMARKS

- Reduction of the Einstein field equations in terms of pseudo-Hermitian data
- Better integration of the CR-conformal correspondence...
- More muscular tractorial approach...
- How does the CR data fit into the asymptotic properties of spacetime?
- Higher dimensions: many 'classes' of almost Robinson manifolds to be investigated...

CONCLUDING REMARKS

- Reduction of the Einstein field equations in terms of pseudo-Hermitian data
- Better integration of the CR-conformal correspondence...
- More muscular tractorial approach...
- How does the CR data fit into the asymptotic properties of spacetime?
- Higher dimensions: many 'classes' of almost Robinson manifolds to be investigated...

Thank you for your attention!

Project: Conformal and CR methods in general relativity; acronym: ConfCRGR; registration number: 2020/37/K/ST1/02788; obtained funding as part of the POLS NCN competition research projects financed from the Norwegian Financial Mechanism for 2014-2021

Norway

grants