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Epigraph 1:
J’ai passionement aimée la Mediterrannée, sans doute parsque venue du Nord, comme
tant d’autres, après tant d’autres...
Fernand Braudel, La Mediterrannée et le Monde Mediterrannéen à l’Époque de Philippe
II.

Epigraph 2:
It may be objected by some that I have concentrated too much on the dry bones, and too
little on the flesch that clothes them, but I would ask such critics to concede at least that
the bones have an austere beauty of their own.
A. Brian Pippard, The Elements of Classical Thermodynamics

Epigraph 3:
There are only two true pillars of theoretical physics: quantum field theory and statistical
mechanics; all the rest are dyrdymały.
I myself. Put it on my tomb.
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LECTURE I (TMD)

Thermal physics or statistical thermodynamics in the large meaning of these terms
encompasses - as Pippard puts it - all ways and methods of understanding and interpreting
properties of matter in so far as they are influenced by changes of temperature. In this
sense it is one of the major subdivision of physical science as such and it employs a
variety of mathematical and experimental techniques, as well as all available information
about microscopic constitution of matter to achieve its goal - the explanation of observed
properties of matter at all temperatures and all conditions. This is, of course, what makes
the subject so interesting as it encompasses essentially all physics (and besides it, also
some parts of sciences like chemistry, biology and others) and is important to practically
all its areas, from condensed matter to cosmology. Briefly, all physics unites in it. Thus,
all general courses of classical mechanics, quantum mechanics, electrodynamics you have
taken in this Department can be considered introductions to statistical thermodynamics.

This general goal has resulted in the quite widespread tendency (in fact not a modern
one: look how the Statistical Physics volume - its first edition appeared in 1939! - of
the famous Landau & Lifschitz theoretical physics course is organized) to present this
subject mixing statistical physics with thermodynamics. I, however, prefer not to proceed
in this way, and would like in these lectures to clearly separate what is called classical
thermodynamics, to which a rather large first part will be devoted, from the statistical
physics part. Perhaps this will make some of you unhappy - those who have already taken
thermodynamics course run here by experimentalists and have hoped to have this awful
thing “aus dem Kopf” once for ever - but I’m convinced (I’m not alone in this) this is
the right way of presenting the subject. First of all, you have in fact only a very poor
knowledge of what thermodynamics really is, and secondly, at this level one cannot go
too far with the true statistical physics - all we are going to discuss will be the three
statistical ensembles applied mainly to systems of nointeracting particles. Going further
would require changing the format of this course to 2+3 at least1 and would require a
better theoretical background (starting from some level statistical mechanics becomes
essentially the quantum field theory od many-body systems). But more importantly, a
good working knowledge of thermodynamics is indispensable because when the statistical
approach is applied to a physical system, the first goal is to recover its thermodynamics
and this, once some basic functions (called thermodynamical potentials) characterizing
this system are computed using statistical physics methods, is accomplished by applying
to these functions the formalism of thermodynamics. So one has first to understand and
master it.

Classical Thermodynamics (CTMD) originated in the XIX century from the study of
machines like steam engines but it was soon recognized to be of such great generality that
it applies to all phenomena and processes in which heat and temperature play important
roles. In physics it provides general understanding of phenomena as different as thermal

1We have managed to convince the Dean to this idea and the parallel English version of this course
runs already in the extended format.
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radiation on one hand and low temperature properties of paramagnetic salts on the other.
CTMD is a phenomenological theory - it does not delve into the microscopic struc-
ture of matter. Its goal is more modest: it is establishing relations between observed
(measured) properties of bodies and substances thereby reducing the very large number of
such properties to only a few; the other ones can be then treated as consequences of these
few. For instance a gas exhibits different behaviours under various conditions, but given
its equation of state in the form f(T, V, p) = 0 and one of its molar heats, say cp(T, p0)
over a range of temperatures (for a single fixed value p0 of the pressure) it is possible
to predict quantitatively how it will behave under various circumstances, e.g. how the
temperature of the gas will change when it is passed through a throttle (a valve), how its
(molar) volume will change with temperature, what is its molar heat cv in the same range
of temperatures for arbitrary molar volumes v, compute the work that can be extracted
when the gas is expanded, etc. On the other hand, while taking (within the statistical
approach) into account the atomic structure of matter it is possible to associate some
particular kinds of macroscopic behaviour of physical systems - e.g. some anomalies in
measured specific heats - with concrete microscopic features of these systems, this is not
possible within pure thermodynamics.

CTMD deals only with equilibrium states of macroscopic physical systems and al-
though it allows to make predictions concerning “processes” in which systems undergo
some changes, following the real time evolution of the system’s state is beyond its scope.2

For this reason some would prefer the name thermostatic. Nevertheless, using essentially
only idealizations like reversible processes, adiathermal isolations, etc. which are limit-
ing cases of real situations, thermodynamics is able to formulate basic restrictions which
apply to real processes and cannot be overcame.

Classical Thermodynamics essentially rests on only four (but in most cases three are
sufficient) laws which I denote nTMDL, n = 0, 1, 2, 3. (The “law” means here something
which cannot be derived from other rules.) These laws constitute a generalization of
a great number of experimental observations. Continued application of the methods of
classical thermodynamics based on these laws to all kinds of practical problems showed
these laws give correct predictions in all cases. This is the empirical justification of these
laws as having very large (practically unlimited) range of validity (they were never falsified
- this is what the term “physical law” really means). The “heart” of thermodynamics is
its second law which is associated with the mysterious quantity called entropy and to
get acquainted with this notion we will discuss it in these lectures from several different
points of view cosidering different formulations of 2TMDL.

Classical Thermodynamics does not attempt to explain the origin of these laws, that
is, it does not inquire how they emerge as a consequence of more fundamental laws which
govern the behaviour of microscopic constituents of matter - this is the goal of statistical

2There exists an extension of thermodynamics called nonequlibrium thermodynamics which allows
to discuss on phenomenological ground also the behaviour of systems which are not in equilibrium but
its range of validity is rather limited (in particular it is limited to systems which are “not too far” from
equilibrium).
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physics which we are going to treat in the second part of this lecture. But we will see that
in fact they cannot be - at least to my taste - fully derived from the laws of mechanics
(be it classical or quantum); they are rather replaced by other postulates (laws, but now
ones formulated in more abstract terms) which again lead to correct predictions in most
cases. However, in statistical physics the problem becomes more complicated because
the practical application of its methods relies in most cases on approximations and/or
on using simplified models of matter. Nevertheless, analyzing the behaviour of systems
consisting of huge numbers of molecules (particles) it can be shown (as Pippard puts it:
with a fair degree of rigor - enough to satisfy most physicists but few pure mathematicians)
that those their general properties which can be treated as macroscopic and which follow
only from statistical averaging, being to a large extent independent of the details of the
microscopic dynamics, do indeed obey the laws of CTMD.

Of course statistical physics, apart from reproducing thermodynamics, providing in-
puts which otherwise (within purely thermodynamical treatment) would have to be la-
boriously reconstructed from experimental data and relating certain general types of ob-
served thermodynamic behaviour (e.g. the already mentioned anomalies in specific heats)
directly to concrete details of the microscopic structure of matter, allows also to ask
and investigate theoretically questions which are entirely beyond the scope of classical
thermodynamics. Here belong for example fluctuations, their spatial and temporal cor-
relations, critical exponents (characterizing continuous phase transitions), etc. One can
also formulate kinetic theories of various phenomena occurring in physical systems and
study theoretically processes of approaching by these systems equilibrium states in various
conditions.

One can therefore think, that classical thermodynamics, which was mainly developed
when the microscopic constitution of matter was not yet fully investigated and its atomic
basis was even questioned, is already “passé” and has become obsolete at least for those
who want to inquire into the deepest mysteries of the physical world and to discover its
most fundamental laws (laws of quantum gravity for example). However:

• Frequently, and almost as a rule in applied sciences, it is of primary interest to
know relations between properties of substances rather than to know from which
fundamental rules these properties follow.

• Thermodynamics greatly reduces the number of properties which have to be deter-
mined experimentally or have to be computed theoretically employing the statistical
physics methods (as has been mentioned: statistical physics will give certain func-
tions - thermodynamical potentials - from which all follows thermodynamically).

• As already said, employing statistical physics to real physical systems one is forced
to make approximations or use simplified models; knowledge of thermodynamics
allows us to clearly see which of the obtained properties are general and which are
valid only in particular models.

• It is practically impossible to analyze with methods of statistical physics very com-
plex systems (e.g. biological ones), whereas the simple rules of thermodynamics still
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allow to make predictions concerning such systems and understand (even if only in
very general terms) their behaviour.

• It sometimes turns out (unexpectedly) that thermodynamics does have something
to do with the deepest fundamental mysteries - vide entropy of black holes (a brief
account of it will be included in these lectures).

• Training of a physicist should involve not only learning fundamental theories, but
also developing sensibility to the ways physical systems behave and for this thermo-
dynamics provides a framework of very general ideas within which understanding of
physical systems can be achieved.

• Last but not least, a less practical reason: the development of thermodynamical
ideas has a formal elegance which is exceedingly satisfying aesthetically (Pippard
again). It approaches the ideal of mathematical rigor (hence attempts to math-
ematicize it - we will not go this way!) closer than any other branch of natural
science; furthermore, its historical development (fascinating as almost all history of
science, but we have to omit it) and notions it introduces (entropy!) have become
part of our culture - for all these reasons it should be an important part of education
of a scientist (and definitely of any physicist).3

“Und somit fangen wir an.” - as says Thomass Mann in the introduction (“Die Geshichte
Hans Castorps die wir erzahlen wollen...”) to his Zauberberg.

Two more quotations for the good start from two Arnolds:

• Thermodynamics is a funny thing: when you learn it for the first time, you don’t
understand it at all. On the second approach you have the impression of under-
standing it all, except for a few small details. At the third approach you already
know that you don’t understand it, but when you get accustomed to this, you cease
to care about. Arnold Sommerfeld

• Every mathematician knows that understanding of an elementary course of thermo-
dynamics is impossible. Wladimir Igorievich Arnold

I will, however, do my best to make thermodynamics as understandable for you as it
can be. In general (this concerns also the statistical part of these lectures), I will try to
at least give you a firm basis on which further study of thermodynamics and statistical
physics can be pursued.

3One can add here that studying thermodynamics is an ideal place where to learn to clearly and in
precise, well defined terms, express in words what is the meaning of mathematical steps taken and what
is the logic behind them. This should help to tame the nowadays widespread tendency to produce only
formulae without discussing the essence of physics considered, to use arbitrarily chosen terms to name
things and to pay little - if at all - attention to the logic of presentations.
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Basic notions

• A system. This portion of the Universe which is chosen for investigation. Here
we will deal only with macroscopic systems (in line with the declaration that
thermodynamics is not concerned with the microscopic constitution of matter). It
will be convenient to distinguis two general kinds of systems:

• Mechanical systems (in the generalized sense). Systems of macroscopic mate-
rial bodies moving under influence of their mutual interactions. These are captured
by laws of classical theories like mechanics, elastomechanics or hydrodynamics, etc.
Related to these theories are the familiar concepts of mechanical energy (kinetic and
potential), work, forces etc. Mechanical energy of such systems is conserved (this
is part of their definition): any work done on such a system by external forces is
exactly equal to the change of the system’s mechanical energy. If the initial and final
state of a mechanical system are static (all velocities and accelerations of its parts
vanish) the changes of its mechanical energy are fully characterized by changes of
the system’s deformative coordinates (variables) which are of a “geometrical” na-
ture, like distances, volumes (if one includes also systems possessing electromagnetic
properties, the system’s magnetization and/or polarization should be also treated
as deformation coordinates). Examples: two massive blocks on one another in the
Earth gravitational field; vertical distance h between their centers is the deforma-
tion variable; if one mass is lifted (by an external force counterbalancing only the
gravitation) the change of the system’s energy is entirely determined by the change
of h. Another one: an elastic rod of length L; if it is shortened or elongated by
applying a force, its energy change depends solely on the change in L. Of course,
mechanical systems are only an idealization.

• Thermodynamic systems. Mechanical energy of most systems is not conserved4

(as experience shows). If a fluid contained in a vessel is at rest, its deformative
coordinate being the volume V , its mechanical energy can be taken as zero. After
stirring it, when the fluid is back at rest, its mechanical energy is still zero, yet
some work has been done on it: to fully characterize the fluid’s state yet one more
variable, called nondeformative, is needed such as the fluid pressure p. In general,
thermodynamic (noncompound) systems are ones the full characterization of static
conditions of which requires a single nondeformation variable. A thermodynamic
system can be:

• Simple. A single homogeneous body or a substance; only two parameters (coordi-
nates), at least one nondeformative, are needed to fully characterize its equilibrium
state - the most widely used example (the “working horse” of the elementary ther-
modynamics) is the fluid (a liquid or a gas - usually the perfect one) characterized
by the variables V (deformative) and p (nondeformative). One can also consider
magnetic substances characterized by the variables like M - its total magnetization

4In mechanics they are classified as dissipative systems.
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(deformative) and H0 - the strength of the applied external magnetic field (nonde-
formative) or dielectric materials - the variables are then P - its total polarization
and E (in both these cases when the volume effects can be neglected, e.g. at zero
pressure).

• Not simple. It is also single homogeneous body or a homogeneous substance, but
more than two parameters are needed (e.g. two deformative variables and a single
nondeformative one); it will be seen later that the number of variables (parameters)
needed to specify its equilibrium state is equal 1 plus the number o − 1 of ways
a quasistatic work can reversibly5 be performed on the system. The deformative
variables (in contrast to the constitutive ones - to be defined below - are “external”
in the sense that their changes are directly related to interactions of the system with
its surrounding. The condition that both, simple and not simple, thermodynamic
systems require always only one nondeformative variable means that they cannot
have internal adiathermal partitions.

• Compound (non-homogeneous). Some systems may consist of several homo-
geneous parts separated from one another by (or in contact with one another
through) some walls of definite properties (to be defined below) alowing or inhibit-
ing different kinds of interactions between them. They may be formed by several
bodies or substances each of which is a simple or not simple (e.g. two containers
with same gas or different gases of which one with magnetic properties). Some-
times also a single nonhomogeneous body (e.g. a gas in the gravitational field) must
be mentally split into small parts which can be treated as homogeneous to make
thermodynamics applicable to it.

• Physico-chemical systems. Systems as defined above (simple or not simple) are
treated as “black boxes” - no variables are associated with their internal composition
(even if some changes in their internal constitution may occur as their parameters
vary) and the amount of matter in each of them is assumed to be constant. However,
in some applications - in particular in chemistry - one may be interested in the
internal composition which may be different in different equilibrium states as a result
of reactions occuring within the system (matter can also be exchanged beetween
different subsystems of compound thermodynamic systems). In such a case one
needs to characterize states of the considered systems by specifying their internal
constitution with the constitutive coordinates: a single n - the number of moles
of the substance - in the case of chemically pure systems (e.g. pure water) or
n1, . . . , nr in the case of homogeneous mixtures of r components6 - e.g, a mixture
of phenol - C6H5OH - and water). This allows then also to admit an exchange of
matter between the system and its surrounding or between different parts of the

5This notion will be explained in due course.
6One can also use n =

∑r
i=1 ni - the total number of moles and the molar fractions x1, . . . , xr ,

xi = ni/n,
∑r

i=1 xi = 1.
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same compound system. Some systems, e.g. the electromagnetic field, cannot be
characterized by constitutive variable(s).

• Composed of Phases. Under certain conditions a given homogeneous system
may split into several phases that is, into separate homogeneous parts (this means
that splitting increases the number of parts of the system) with definite boundaries.
This happens when in the system a phase transition of the first order occurs. A
phase may be chemically pure (one material constituent) or be a mixture - e.g. the
phenol-water mixture can split into phases with different concentrations in each.
Discussing phases one necessarily ceases to treat the thermodynamic system as a
black box. (One speaks also of different phases of a given system when a continuos
transition occurs in it but in this case the phases do not form separate homogeneous
parts.)

What is not included in the system constitutes its surrounding. More precisely, as
the surrounding one takes into account only those parts of the rest of the Universe which
may somehow influence the system under study (here the physical intuition becomes
indispensable). In thermodynamical considerations the surrounding is usually modeled as
consisting of sources of work, heat and matter, which may be exchanged with the system
under study.

Boundaries separating the system from its surrounding or different parts of a com-
pound system can be natural as in the case of the water droplet but frequently they are
artificial or just mental constructions, and are generally called walls (or partitions, if
they separate two parts of a compund system). They should be treated as constraints
the studied system is subjected to. Walls play crucial roles in various thermodynamical
reasonings. They can be of different character and can allow or inhibit different kinds
of interactions of the system with its surrounding or between different parts of the same
(compound) system. For instance, a rigid wall prevents performance of a mechanical work
which requires changing the volume or the shape of the system, i.e. of the so-called volume
work, on the system (gas, liquid, solid) enclosed by it. Walls can also allow or inhibit an
exchange of matter (of all kinds of matter or of only one particular kind of it) between
the system and its surrounding or between different parts of a compound system.

Of particular importance for many thermodynamical reasonings are the adiathermal
walls.7 Normally we would say such walls inhibit a heat transfer to or from the system
(thermal interaction of the system with its surrounding), but since we (officially) don’t
know yet what the heat is, to explain this notion it is better to use the words of Pippard
who says: “the walls of different vessels differ considerably in the ease with which influences
from without may be transmitted to the system within. Water within a thin-walled
glass flask may have its properties readily changed by holding the flask over a flame or
putting it into a refrigerator; or the change brought about by the flame may be simulated

7I deliberately use this term - in place of the commonly used “adiabatic” - to have a clear opposition:
diathermal and adiathermal.
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(though not so easily) by directing an intense beam of radiation onto the flask. If, on
the other hand, the water is contained within a double-walled vacuum flask with silvered
walls (Dewar vessel), the effect of the flame or refrigerator or radiation may be reduced
almost to nothing. (...) it is not a very daring extrapolation to imagine the existence
of a vessel having perfectly isolating walls, so that the substance contained within it is
totally unaffected by any external agency” (except the gravitational field). Another way
of characterizing adiathermal walls is to say that a system in the adiathermal enclosure
impermeable to matter can be disturbed only by mechanical means (which may but may
also not be associated with changing its deformative coordinates; if these do not change,
one speaks of an “isometric change”). Walls which do not have this property are called
diathermal. Two systems contacted with one another through such a wall are said to be
in thermal contact.

One should add that walls which are adiathermal in the above sense and rigid can
still allow for some kinds of work to be done on the system, e.g. electrically (by passing
a current through a resistant wire inserted into the system), or by stirring.

The set of variables characterizing a state of a thermodynamic system consist originally
of deformative variables (like volume V in the case of simple fluids, magnetization M)
and at least one nondeformative (like pressure p or magnetic field strength H0, etc.) all of
which are also of “mechanical” nature (and are directly measurable). In the course of the
development of the theory one defines new thermodynamical quantities like temperature
T , chemical potential(s) µ, enthalpy H , entropy S and others, which can be used to
characterize the system’s state in place of the original ones. Some of the variables can be
combined into pairs - the rule here is that the product of the variables forming a pair has
the physical dimension of energy - and are said to be conjugated to one another. Such
pairs are for instance p and V , H0 and M, T and S; in general the first variable of such
a pair has the character of a (generalized) force and the second one (deformative) of a
(generalized) displacement. All thermodynamic variables fall into two classes: intensive
ones of essentially local character (like p, H0, µ) and extensive ones characterizing the
system as a whole (the system’s total mass M , its volume V , internal energy U). If the
considered system does have the property of extensiveness (most systems which will be
considered do have it), then variables belonging to the latter class are proportional to the
amount of matter in the system (or to its size). It is then convenient to operate with
specific or molar quantities which are extensive quantities referred to a unit of mass or
to one mole, respectively.8 I denote molar quantities by a lower case character (e.g. cv,
cp, u), and the trully specific ones, referred to a unit mass, by a tilde (e.g. c̃v, ũ, etc.). A
quantity the value of which depends uniquely on the (equilibrium) state of the system is
called a state function.

Equilibrium
All classical thermodynamics rests on the following empirical fact: almost every system

8Sometimes, somewhat incorrectly, molar heat capacities, etc. are called “specific”; at any rate convert-
ing molar quantities into specific ones amounts only to multiplying by a constant (for a given substance)
factor.
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shielded by adiathermal walls and not subjected to any external influences tends towards
and eventually (sooner or later) reaches a state in which no further change (of its macro-
scopically defined characteristics) is perceptible, no matter how long one observes it. This
state is called the thermodynamical equilibrium state. In general it is only the state
of equilibrium that can be characterized by only a small number of quantities (intensive
or extensive). One also requires that there be no macroscopic flows in the system like
a steady flux of heat, or an electric current passing through it. Water flowing down a
tube is not strictly speaking a system in equilibrium - it is in the so called steady state;
we will see, however, that to some extent TMD can be applied to it. Systems which
cannot attain an equilibrium state in given conditions are excluded from thermodynamics
considerations.

If the system is compound (has several parts or some heat or work sources are included
in it), in approaching its equilibrium state changes in its individual parts usually occur
- they can exchange heat between them9 (e.g. a mercury in glass thermometer inserted
in water changes but after a while it stabilizes), or perform works on one another but
eventually attain equilibrium. If the external conditions, or walls through which various
parts of a compound system communicate, are changed that is, the constraints to which
the system is subjected are changed, a new equilibrium state is attained and one of the
main roles of thermodynamics is to determine this new state (the Callen’s point of view
which we are going to discuss in due course).

Similarly as in mechanics one can contemplate different kinds of thermodynamical equi-
libria:

• stable mechanical (a ball resting in the global minimum of a potential) - a TMD
analog is e.g. a pure gas at uniform temperature and pressure in a cylinder: upon
a small disturbance (e.g. the pressure and density of a gas is made somewhat
nonuniform by a short external perturbation) it reaches back the same equilibrium
state.

• neutral mechanical (a ball on a flat table) - a mixture of water and its (saturated)
vapour in a cylinder at special T and p - moving the piston causes a change in the
proportions of water and vapour, but the system does not return to the previous
state.

• metastable mechanical (a ball in a local minimum of a potential) - e.g. supercooled
vapour or a mixture of hydrogen H2 and oxygen O2; they look as fully stable - can
remain unchanged perceptibly for a very long time ∼ 10100 years!, and can even by
subject to small disturbances (e.g. of pressure or temperature) - but the effects of a
nucleation center or a spark show these systems are in fact not in equilibrium states.
For many practical purposes, however, they can be, if not artificially perturbed,
treated as being in full equilibrium.

9To avoid the an yet undefined term “heat” one should rather say “can interact through a diathermal
wall”.
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• unstable mechanical - no analogy.

In fact no unstable equilibrium exists in mechanics of real systems too: it is a purely math-
ematical concept, for it relies on many idealizations (pointlike material bodies, neglecting
internal structures of bodies, neglecting minute external influences). Real physical sys-
tems can only be in stable or metastable equilibria, but the range of displacements which
do not cause them to leave their metastable state may be so narrow that we classify them
as unstable.

It will be seen that similarly to mechanics, also in thermodynamics equilibrium states
of a system that is realized in specific conditions (specific constraints) minimize or max-
imize suitable functions called thermodynamics potentials (examples are entropy,
Helmholtz free energy, Gibbs potential, etc).

As a matter of facts, equilibrium of thermodynamical systems is never truly static: mi-
croscopic examination of the behaviour of particles or molecules constituting macroscopic
systems reveals they are always in a state of a continuous agitation (Brownian motions);
for instance the local density of a fluid always fluctuates a little around its mean value.
If one waits long enough one might have a chance - theoretically only, because the times
involved are typically much much longer than the Universe’s lifetime! - of observing a
sizeable departures from the mean state of the system; e.g. a gas filling 1 ccm can spon-
taneously contract to half of this volume and then in less than 10−4 sec. revert to its
average density, but this can occur - it can be estimated - once in 1010

19
years. Of course

the numbers quoted here cannot be obtained in pure thermodynamics, one needs to delve
into the microscopic dynamics, that is, go over to the statistical theory (to the kinetic
theory of gases). Using this theory, in addition to being able to compute such numbers,
one draws a lesson that such fluctuations should be treated as an inherent feature of
every equilibrium state. In general however, for most purposes after a reasonably short
time one can treat every macroscopic physical system as having attained an equilibrium
state (corresponding to the conditions the system is subjected to). If the consequences of
treating it as such are not corroborated by experiment, we must revise this assumption
- evidently the system has not yet attained equilibrium or its fluctuations play a crucial
role in the phenomenon we want to explain.

0TMDL and the (empirical) temperature
To introduce and discuss the concept of temperature, central to the entire TMD, it is
convenient to concentrate first on an especially simple system - a homogeneous fluid (a
liquid or a gas). Its simplicity derives from the fact that the shape of the container is
irrelevant - deformations of its shape which do not cause any change of the volume do not
require any work. (In contrast, the shape of a solid can only be changed by the application
of a stress and its thermal properties are then usually also affected.)

We accept a fact of experience that every equilibrium state of a fixed mass of a fluid is
completely specified by its volume V and its pressure p (we assume the fluid has no electric
or magnetic properties or that external electromagnetic fields are absent altogether so that
these properties do not play any role).

We can fix the volume V of the fluid kept in a cylinder and adjust its pressure p to
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any desired value by placing the fluid (contained within diathermal walls) in an oven or
a refrigerator or by any other means. The important point is: whatever the process by
which the given values of V and p have been reached, the final state is always the same
- same colour, smell, sensation of warmth, thermal conductivity, viscosity etc. Every
macroscopic property that can be measured as characterizing this system can be treated
as a unique function of V and p.

Let us now take any two simple systems, e.g. two fluids for definiteness. If they are
both isolated and reach equilibrium states separately, and are then brought into thermal
contact through a diathermal rigid wall (so that they cannot perform volume works on
one another; we assume also that no other works are being performed on these systems
either), changes in general will be observed to occur in both of them until they reach,
as a compound system, a new equilibrium state. We say they are then in thermal
equilibrium with one another.

On the basis of our sensory experience we are tempted to say that this is so because ini-
tially their temperatures were not equal. But the word “temperature” has no content yet.
What is for the moment important is that two systems may be separately in equilibrium
but not in equilibrium with one another.

Consider now two masses of fluids, adjusted to have V1 and p1 and V2 and p2, respec-
tively, each in equilibrium in itself. They in general will not be in equilibrium with one
another unless V1, p1, V2 and p2 are appropriately correlated: if we fix V1, p1 and V2 then
p2 has to be adjusted in order the two systems are in equilibrium with one another (so
that no changes in their states are observed when they are brought into thermal contact).
So, their equilibrium requires that a relation of the general form

F (V1, p1, V2, p2) = 0 , (1)

holds. The form of the function F can be determined experimentally and depends, of
course, on both systems. To introduce the concept of temperature one has to prove that
this relation always takes the form

φ1(V1, p1) = φ2(V2, p2) , (2)

with the function φ1 being a property of only the first system and φ2 of only the second
one. This can be achieved by relying on

0TMDL
If of the three bodies A, B and C, the bodies A and B are each separately in thermal
equilibrium with the body C, then A and B are also in thermal equilibrium with one
another.

It is useful to have it stated somewhat differently:
Converse 0TMDL
If the three bodies A, B and C are pairwise in thermal contact through appropriate diather-
mal walls and the whole system is in equilibrium, then any two of these bodies taken
separately are also in equilibrium with one another.
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One can illustrate the stated 0TMDL with an example: let C be a mercury in glass
thermometer in which a quantity of Hg is roughly at zero pressure (the thermometer tube
is evacuated) so that h - the height of the column of Hg in the tube - fully specifies its
state. If the height is the same when the thermometer is put in thermal contact first with
the body A and then with the body B, then nothing will happen when A is brought into
thermal contact with B.

So let’s pass to the reasoning. We first give a physical argument and only then sketch
the mathematical one (which is nice, so worth showing).

Let us take two masses of fluids: S - the standard one which is kept at fixed VS and
pS, and T - the one which is being tested. Vary VT and pT in such a way as to maintain
equilibrium between T and S. In the plane (VT , pT ) this determines a curve which will
be called the isotherm. The isotherm does not depend on the standard body, for if
another body S ′ is taken which is in thermal equilibrium with S, by virtue of 0TMDL,
the same isotherms of the system T will be obtained. In other words, the isoterms reflect
the properties of the test body itself.

Changing now VS and pS we can produce many isotherms of the tested body T . One
can now introduce a system (however arbitrary) of labeling these isotherms by numbers
t. In this way we define a function (which need not even be analytic at this stage but to
avoid complications we will assume it is such)

φT (VT , pT ) = t ,

and we call t the empirical temperature. Once this is done, we can produce isotherms
of other simple bodies taking the test one for the standard. But if a consistency is to
be achieved, there is no more freedom in labeling isotherms of other bodies: with each
such a body there must be associated a function φbody depending on the parameters fully
characterizing equilibrium states of that body and this function must take values equal
φT (VT , pT ) = t if the body is in equilibrium with the test body at VT and pT . In this way
one establishes the existence of another state function - the (empirical) temperature t. It
should be also clear that the reasoning extends to nonsimple bodies (systems): if more
than two parameters are needed to completely characterize equilibrium states of a such a
body, say X1, . . . , Xo−1, y (Xi are its deformative coordinates and y is the nondeformative
one), its isotherms are not curves, but hypersurfaces of dimension o−1 (or of codimension
1) determined by the equation

φbody(X1, . . . , Xo−1, y) = t . (3)

A relation of this sort, more frequently written in the form f(t, X1, . . . , Xo−1, y) = 0 is
called the equation of state of the body (substance, system).

Now the mathematical reasoning. Consider three fluids A, B and C. If A and C are
in equilibrium with one another, then

F1(VA, pA, VC , pC) = 0 , so pC = f1(VC , VA, pA) .
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Similarly, if B and C are in equilibrium with one another,

F2(VB, pB, VC , pC) = 0 , so pC = f2(VC , VB, pB) .

It then follows that

f1(VC , VA, pA) = f2(VC , VB, pB) . (4)

But according to 0TMDL A and B are also in equilibrium with one another, so

F3(VA, pA, VB, pB) = 0 ,

and (4) must be equivalent to this relation. But since VC does not enter F3, it must drop
out from the relation f1 = f2. This is so if f1(VC , VA, pA) = φ1(VA, pA)ψ(VC) + η(VC) and
f2(VC , VB, pB) = φ2(VB, pB)ψ(VC) + η(VC) with some universal functions ψ(·) and η(·).
The relation f1(VC , VA, pA) = f2(VC , VB, pB) is then equivalent to φ1(VA, pA) = φ2(VB, pB).

That 0TMDL enforces dropping out of VC , or rather that the three relations Fi = 0 can
be reduced to the form (2), can be shown more formally as follows. From F3(VA, pA, VB, pB)
= 0 one can get pB = f3(VB, VA, pA) and write the equality (4) in the form

f1(VC , VA, pA) = f2(VC , VB, f3(VB, VA, pA)) ≡ pC ,

which clearly shows that the right hand side must be independent of the variable VB. So
one can fix it and forget it changing the notation to

f3(VB, VA, pA) ≡ gA(VA, pA) ,

f2(VC , VB, f3(VB, VA, pA)) ≡ f̃2(VC , gA(VA, pA)) ,

so that now the relation pC = f2(VC , VB, f3(VB, VA, pA)), from which VB, as argued, drops
out, can be written as

pC = f̃2(VC , gA(VA, pA)) .

Disentangling from it gA, one can write it in the form

gA(VA, pA) = gC(VC , pC) .

In the analogous manner one arrives at two similar relations

hB(VB, pB) = hA(VA, pA) , and tB(VB, pB) = tC(VC , pC) .

But we don’t know yet, whether e.g. the function tB(VB, pB) can be related to hB(VB, pB).
One still has to show that these three relations between the six functions can be reduced
to three relations involving only three functions each of which depends on only one pair
of the variables V , p.
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To show this one can extract pC = ψ(VC , VA, pA) from gA(VA, pA) = gC(VC , pC) and
put it into tB(VB, pB) = tC(VC , pC):

tB(VB, pB) = tC(VC , ψ(VC , VA, pA)) .

This shows that if VA, VB, VC and pA are taken for independent variables (in other words
we treat pB as determined by these four - we know from the previous considerations that if
the bodies A, B and C are to remain pairwise in equilibrium, only four variables out of six
can be varied independently), the right hand side of the relation tB = tC is independent
of VB, so differentiating both sides of this equality w.r.t. VB one obtains

∂tB
∂VB

+
∂tB
∂pB

∂pB
∂VB

= 0 .

In turn, differentiating w.r.t. VB the relation hB(VB, pB) = hA(VA, pA) (continuing to
treat VA, VB, VC i pA as independent variables; the right hand side of this relation is from
the outset independent of VB) one gets

∂hB
∂VB

+
∂hB
∂pB

∂pB
∂VB

= 0 .

Eliminating now from these two relations the derivative ∂pB/∂VB one finds that

∂tB
∂VB

∂hB
∂pB

− ∂tB
∂pB

∂hB
∂VB

≡ ∂(tB , hB)

∂(VB , pB)
= 0 .

Vanishing identically (i.e. for any values of the four independent variables) of this Ja-
cobian means in effect that the mapping (VB, pB) −→ (tB, hB) ∈ R

2 is degenerated (it
is of rank 1, instead of being of rank 2), or - saying it more accessibly to the audi-
ence - the image in R

2 of this mapping (defined on R
2) is a one-dimensional curve, and

not a two-dimensional domain. This in turn means that the functions hB(VB, pB) and
tB(VB, pB) are not independent: there must exist a relation r(tB, hB) = 0 which deter-
mines the mentioned curve and this relation can again be inverted to give hB = χ(tB)
that is, hB(VB, pB) = χ(tB(VB, pB)). This can now be exploited in the relation linking
the functions hA and hB: if we define a new function tA ≡ χ−1(hA), this relation takes
the form

tA(VA, pA) = tB(VB, pB) .

And this, combined with the equality tB(VB, pB) = tC(VC , pC) yields tA(VA, pA) =
tC(VC , pC). This means that the third equality, gA(VA, pA) = gC(VC , pC), must be equiv-
alent to this one, that is gA(VA, pA) = r(tA(VA, pA)) = r(tC(VC , pC)) = gC(VC , pC).

Scales of temperature
It is because of the freedom in labeling the isotherms of the test body (in the first rea-
soning presented above) or because one can always use t̃A = f(tA), t̃B = f(tB) and
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t̃C = f(tC) (in the mathematical reasoning) that the quantity t (a state function) is called
the empirical temperature. We will see that TMD itself provides a mean of defining the
absolute or thermodynamic temperature (it will be denoted T ) the only freedom in
its definition being that of scale. The practical question therefore is how to relate various
empirical temperatures defined by different thermometric bodies to the thermodynamic
temperature, i.e. how to calibrate thermometers used in practical measurements with
respect to that temperature.

Usually one chooses a thermometric body with suitable properties and labels its
isotherms by changing x - one of the parameters characterizing its equilibrium states,
while keeping the other parameters fixed. The empirical temperature t can be then taken
to be related to x by x = f(t) with f(·) an arbitrary monotonic function. A particularly
simple function is f(t) = at. There are then two ways of fixing the proportionality con-
stant a. Either one chooses two points and fixes the number of units of t between them
or one ascribes a concrete value of t to one particular point.

For instance, one takes the Mercury in glass at pressure p = 0, sets hHg = aHgtHg

(hHg being the height - above some conveniently chosen reference level - of the column
of Mercury in an evacuated glass tube at p = 0) and determines aHg by requiring that
there be 100 degrees between the melting point of ice and the boiling point of water,
both at normal pressure 1.013 × 105 Pa (the famous 1013 HPa ≡ 1 atm). However, if
one takes another thermometric substance, e.g. the ethyl alcohol and defines tAlc through
hAlc = aAlctAlc in the analogous way, both thermometers can be made (by the appropriate
choices of the reference levels of the heights hHg and hAlc) to yield tHg = tAlc at the two
chosen reference points but will in general differ (even if not too much in practice) at
all other points (tHg 6= tAlc). This is because tHg and tAlc are two different empirical
temperatures.

Another choice of the thermometric substance is gases at very low pressures. This
is a very convenient choice, because isotherms of gases under this condition are simple:
pV = const. This is the empirical Boyle-Marriotte law which is satisfied to a very good
accuracy by real gases at sufficiently low pressures. It is therefore natural to set pV = f(t),
where t is the empirical temperature and f an arbitrary function. It turns out that if the
empirical temperature scale tHg is fixed by a Mercury in glass thermometer, the function
f(·) such that pV = f(tHg) is nearly linear (f(tHg) = a tHg + b) over a wide range of
temperatures. Therefore one sets pV = nR tgas (n being the number of moles of the gas)
and keeping e.g. the pressure fixed determines the value of the factor R in one of the
two ways explained above. If the ice and the boiling water points at p = 1 atm are taken
to calibrate the perfect gas scale and correspond respectively to the gas volumes V1 and
V2 of a gas thermometer kept at the same (low) pressure, then tgas = V · 100/(V2 − V1).
It should be noticed that in this definition of tgas there is no freedom to fix a reference
value (as it is possible with the Mercury in glass thermometers by choosing the reference
height from which the height of the Mercury column is read). It then turns out that tgas
and t̃gas obtained in this way using different gases (at sufficiently low pressures) are nearly
the same not only at the chosen reference points but in a wide range of temperatures.
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This is of course because the temperature tgas defined in this way using the perfect gas (a
theoretical construct) is exactly proportional to the thermodynamic temperature T (the
one determined by TMD itself) and all gases at sufficiently low pressures behave as the
perfect gas.

Before 1954 one defined the temperature scale using the gas thermometry (at p→ 0)
as described above using the ice melting point and the water boiling point. Because in
the laboratory practice it is easier to reproduce the water triple point, the definition has
been changed and now the absolute temperature scale is fixed by ascribing to this point10

(which corresponds to p = 611.73 Pa) the absolute temperature T = 273.16 K (exact
value by definition). This has the effect (the value 273.16 has been chosen to get this!)
that between the water boiling point and the ice melting point at 1 atm the temperature
difference is (very nearly) 100 K and that these points correspond to 273.15 and 373.15
K, respectively (although only within some accuracy: more precise measurements may
reveal small departures from these numerical values).

It should be noted that because the perfect gas scale relates directly to the thermo-
dynamic temperature, the determination of temperature almost always is based on gas
thermometry. In general, calibrating thermometers with respect to the absolute tem-
perature scale is too long a story to be told here (it requires also developing the formal
apparatus of thermodynamics).

Once the thermodynamic temperature is established, the commonly used (in Europe;
in USA for example the Fahrenheit scale is in use) Celsius scale is defined as t = T−273.15.
On this scale the triple point corresponds to 0.01oC. This approximately (to a quite good
accuracy) coincides with the old Celsius temperature, which is now called the centigrade
scale, defined by the Mercury in glass thermometer using the relation hHg = aHgtHg + bHg

and by ascribing 0oC to the ice melting point (and therefore 100oC to the water boiling
point). The International Practical Temperature Scale is the set of accurately measured
reference points plus a set of thermometers which should be used to interpolate between
the reference points together with the interpolation procedures,

Gas thermometers are inconvenient and difficult to use when high accuracy is required,
so they are used only to measure absolute temperature T . Other kinds of thermometers
are used - the choice depends on the convenience and sensitivity required. To calibrate
these other thermometers w.r.t. the absolute temperature a number of reference points
have been measured very accurately. Among these are: the triple point of Hydrogen
(13.81 K), triple point of Oxygen (54.361 K), the melting point of Zinc at 1 atm (692.73
K) melting point of Gold (1337.58 K).

Of the thermometers used in the laboratory practice the ones based on expansion of
liquids (Mercury, Ethyl Alcohol, Pentane) cover the range of −hundred oC up to + a few
hundreds oC.

Resistance thermometers are based on the variation of electrical resistance of a metal

10The precise definition of this reference point includes the condition that the isotopic composition of
water must be that of the ocean water.
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with temperature. They cover an even larger range of temperatures. E.g. thermometers
using Platinum, which is easy to purify and has a rather high melting point (1770oC) are
highly accurate between 70 K and 1500 K.

Thermocouple thermometers use variation of the e.m.f. with the temperature. If
one junction is kept at a fixed temperature, the e.m.f depends on the temperature of
the other one. Using them requires measuring rather small voltages - this make this
kind of thermometers difficult to work with if high accuracy is needed - but they can be
miniaturized and respond quickly to changes of temperature.

Thermometers exploiting the conductivity of semiconductors. Current carriers must be
thermally excited and the semiconductor conductivity is proportional to the temperature
dependent factor exp(−ε/T ). They are good thermometers from well below 1 K up to
∼ 600 K. At low T such thermometers have sensitivity of order 10−5 K and of order 10−3

K at room temperatures.
Thermometers based on carbon resistors are seful below 20 K. Below 10 K also have

sensitivity of order 10−5 K. Below 5 K to somewhat below 1K liquid 4He is used and
between 1 K and 0.3 K - 3He. In both cases T is found by measuring the vapour pressure.
For yet lower temperatures one relies on paramagnetic salts. Their susceptibility goes like
a/T (Curie law).

On the other extreme, above the Gold melting point only measurements of radiation
emitted by hot bodies are used (radiation pyrometers).

Finally it should be stressed that the mere introduction of the notion of temperature
- as an indicator of whether two bodies will be in thermal equilibrium, if they are
brought to a contact through an diathermal wall - does not imply yet any correlation of
its values with the sensation (experienced by our bodily senses for example) of warmth
and coldness. Nothing as yet guarantees that higher (lower) t corresponds to what we
feel as hotter (colder). Of course, one can arrange the perfect gas scale to reflect the
degree of hotness but this cannot be demonstrated rigorously before defining the meaning
of the terms “hotter” and “colder” operationally that is, in a way which is not based on
our subjective physiological sensation. And this requires to investigate first what heat is.
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LECTURE II (TMD)

Relying on the fundamental fact that (almost) every system, when isolated (adiather-
mally by rigid walls against influences from without, on which no other kind of work is
performed by any means) sooner or later attains an equilibrium state in which no change
is perceptible macroscopically and on 0TMDL (stated in two equivalent ways), we have
inferred (by using a physical as well as a mathematical reasoning) the existence of a new
(in addition to the system’s all deformative parameters and to the single nondeforma-
tive one, like volume the V and pressure p in the case of simple fluids) state function
characterizing every thermodynamical system - the empirical temperature t.

If the empirical temperatures tA and tB of two isolated systems A and B are equal,
tA = tB, then no change in their states will be observed if they are brought into contact
with one another through a rigid (preventing their mechanical contact and transfer of
matter between them) diathermic wall. The two systems are then said to be in thermal
equilibrium with one another. (Notice however, that the condition tA = tB alone is
not sufficient to ensure that these two systems are in full thermodynamical equilib-
rium with one another: this requires that in addition their pressures as well as chemical
potentials - to be introduced in due course - be equal so that when the two systems are
contacted through a movable wall which also permits transfer of matter between them, no
change in their idividual states will observed). The empirical temperature plays therefore
the role of an indicator of a possible thermal equilibrium between different systems. There
is a huge arbitrariness in the definition of the empirical temperature t: a given t can be
always replaced by t̃ = f(t) where f(·) is an arbitrary monotonic function. But once this
arbitrariness in the definition of t has been fixed (by choosing a standard thermometric
body), it is a single-valued function of the deformative parameters X1, . . . , Xo−1 (like V ),
and the single nondeformative one y (like p):

t = t(X1, . . . , Xo−1, y) , (5)

(in general t depends also on the amount of matter in the system represented by the
number of moles n1, . . . , nr of its r chemical components - which are needed to fully char-
acterize the equilibrium state when the system is not treated as a black box). Such a
relation is called the equation of state of the system (of the body, of the substance).
Naturally, thermodynamics by itself does not predict its form and it has to be determined
experimentally (by measuring over some ranges of the relevant parameters various coeffi-
cients like kt = −(1/V )(∂V/∂p)t, αp = (1/V )(∂V/∂t)p, βV = (1/p)(∂p/∂t)V , in the case
of fluids and other substances) or else derived using the statistical physics approach.

We recall, however, that as yet no correlation between higher (lower) value of the
empirical temperature and the subjective sensations of hotness (coldness) has been estab-
lished. This requires defining precisely the notion of heat. We shall do it now, continuing
to consequently develop thermodynamics as a phenomenological theory (as opposed to
the Callenian thermodynamics which is - somewhat absurdly to my taste - constructed
as a deductive theoretical system).
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Figure 1: Two possible realizations of the historic Joule experiment.

Internal energy
We begin by introducing the notion of internal energy. Let us consider experiments
similar to the historic one performed by Joule which originally was intended to measure
the mechanical equivalent of heat. But for us the word “heat” has as yet no content, so
we will interpret these experiments somewhat differently.

One realization of this sort of experiment (see the left panel of Fig. 1) can be the
original Joule’s paddle-wheel immersed in an adiathermally isolated (as ideally as it is
possible) calorimeter containing a mass of a liquid (e.g. water or beer - recall who Jule
was!). A measurable mechanical work can be performed on this system by rotating the
wheel by an angle α applying to it a known couple D: W = αD. Alternatively one can
let a known mass m fall down the height h in the Earth’s gravitational field g propelling
the wheel: measuring its final speed w one gets the work W = mgh−mw2/2 (w neglect
the kinetic energy of the wheel) done on the system (the liquid) by the device. It is
observed that as a result of performing the work the state of the liquid has changed (its
temperature has changed, its pressure has changed).

Alternatively, a resistive wire can be inserted in the calorimeter and a known current
I passed through it during a period ∆τ (as in the right panel of Fig. 1). If the potential
difference across the wire is E , the (electrical) work done on the liquid equals W = E I∆τ .

Similar experiments, employing different kinds of directly measurable works can be
performed on the system (here the liquid). The important fact is that if the initial system’s
state is the same, always the same temperature change is obtained by the performance
of the same amount of work. Pippard (whom I follow here) stresses that none of such
experiments should be interpreted as transferring heat to the system: “So long as we take
account only of what is observed, the deduction to be drawn from the experiment is (...):”
If a state of an otherwise isolated system is changed by the performance of work, the
amount of work needed depends solely on the change accomplished, and not on the means
by which the work is performed, nor on the intermediate stages through which the system
passed between its initial and final states (in the context of thermodynamics I would add
here “equilibrium states” - see the footnote below).
This statement is 1TMDL as applied to adiathermally isolated systems.

This can be illustrated by a simple example. The state of a fluid (a gas or a liquid)
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Figure 2: Two possible adiathermal processes taking a gas from its equilibrium state A to
another equilibrium state B. The changes A → Y and X → B during which the system
may not be in equilibrium (and strictly speaking its state cannot be then characterized
by two parameters p and V ) are marked by the dashed lines.

which is adiathermally isolated (against any uncontrolled influences from without) changes
from A to B. Path 1 (Fig. 2): an amount of electric work is first performed isochorically
(i.e. keeping the gas volume constant) on it, until it reaches the state Y ; then the gas
is adiathermally (quasistatically - see below) expanded performing some measured work
and attains the state B; path 2: the gas is first adiathermally expanded reaching the state
X and doing on the way some measured work and then an amount of work is done on it
by, say, a paddle-wheel mechanism so that the gas attains the same final state B. Then
the statement is that

WA→Y→B = WA→X→B .

The processes considered here need not be reversible (a word not defined yet) and at
the intermediate stages the system may not be in equilibrium (parameters like pressure,
temperature of the system may not be defined at these stages). It is only required that
the system be adiathermally isolated, the works done on/by it measured, and the initial
and final states be equilibrium states.11

It should be stressed that experiments of this kind (checking carefully that indeed the
same work is needed to produce the same change) have never been really performed, most
probably because of the rapid universal acceptance of the just stated form of 1TMDL.
But “its manifold consequences are so well verified in practice that it should be considered
to be established beyond any reasonable doubt” (Pippard again).

Relying on 1TMDL applied to adiathermally isolated systems one can now introduce
the notion of internal energy U which by construction is a state function. If an adiather-
mally isolated system is brought from the state A to another state B by performing on it

11We require the states A and B to be equilibrium states because then they can be specified by giving
the values of a few parameters only and only then the example is useful for illustration of thermodynamical
considerations; the statement remains true also if one or both these states are not equilibrium states but
it would then be harder if not impossible to be sure that the same state B has been reached on both
paths.
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an amount W of work, its internal energy is said to have changed by

∆U ≡ UB − UA =W on adiathermal paths . (6)

1TMDL asserts that ∆U is determined by the states A and B only and not by the
(adiathermal) path connecting these two states. So fixing for every system some reference
state R and assigning to it (arbitrarily) an internal energy U0, the internal energy of any
other state A of this system is uniquely determined:

UA = U0 +WR→A on adiathermal paths . (7)

In reality it may prove difficult to measure WR→A directly but, again owing to 1TMDL,
it can always be measured indirectly: a suitable roundabout path can in principle always
be devised to get from a state R to another state A or the other way around, that
is from A to R. In all textbooks it is remarked at this point that as a consequence of
2TMDL (which will be introduced later) a given path connecting the states A and B
may not necessarily be traced in both directions (in given adiathermal conditions) but to
determine ∆U it is sufficient that it can be traced in one way only. Since I have always
had trouble to understand what this enigmatic statement is intended to mean, I advice
the reader to think again on the paddle-wheel device: call the state R the state of the
fluid when the mass m the fall of which propels the wheel is in the upper position and
A the state of the fluid when the mass m is in the lower one. The path R to A can be
realized (in fact in numerous ways). The path A to R evidently cannot and not only
with the help of the paddle-wheel device but by any other means, so long as the liquid
remains adiathermally isolated. It is clear that only transitions leading from a state of
lower energy to a state of higher energy can be realized in this way.

In fact, it is not dificult to devise a system for which even this is not true. Take two
identical amounts of the same fluid contained in two identical completely isolating vessels
of volume V and form out of them a single compound system (which, hwever, possesses
an internal adiathermal partition). If A is its state in which one fluid is at pressure p1 and
the other one at p2 > p1 and B is the state in which the first fluid has pressure p2 and the
other one p1, it is clear that neither the transition A → B nor the transision B → A is
possible (neither are all transitions to states in which the first system has p′1 > p1 and the
second one p′2 < p2). This shows that ascribing energies to states of a system possessing
an internal adiathermal partition is less direct - states of thermally homegeneous parts of
such a system must be individually ascribed energies according to the procedure described
above and energies of states of the formed compound system are then “more theoretical”
constructs being defined as sums of energies of its separate parts.12

Although in general one cannot exclude that a similar situation cannot occur in the
case of a system not possessing internal adiathermal partitions, one assumes (and this
should be treated as an ancillary law) that if A and B are two states of a standard (i.e.
with no internal partitions) system either a transition A → B or B → A is feasible

12This also shows that in formulating a phenomenological theory like thermodynamics one has to
be”reasonable”...
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adiathermally, at least as far as systems not possessing internal adiathermal partitions
are concerned.13

In any case, what is important is that differences of internal energies in various states
of a given system and, therefore, this quantity itself up to an additive constant can be
determined by measuring only mechanical or electrical works and that the internal
energy U is a function of state of that system, that is, it can be expressed (in the case
of equilibrium states) as a function of the parameters needed to specify the state of the
system: originally of the requisite deformative ones and of the single nondeformative one
and then as a function of a chosen set of (secondary) parameters uniquely specifying the
state. E.g.

U = U(V, p) , or U = U(t, p) = U(V (p, t), p) ,

or U = U(V, t) = U(V, p(V, t)) ,

in the case of a simple fluid, and U = U(X1, . . . , Xo−1, y) or

U = U(X1, . . . , Xo−1, t) = U(X1, . . . , Xo−1, y(t, X1, . . . , Xo−1)) ,

etc. in the general case. In this way on the manifold of equilibrium states of every system
(parametrized by some convenient set of state variables appropriate for that system) we
can superimpose the network of its internal energies. Of course, microscopically
this internal energy (by definition considered in the body’s rest frame) consists of the
kinetic and interaction energies of the system’s microscopic constituents.

It also follows, since works can be added, that internal energy U is an additive quantity:
if U1 and U2 are energies of two bodies taken separately, the internal energy U of these
two bodies combined to form a compound system equals U = U1 + U2.

Heat as the “work defect” and 1TMDL (general)
Once a value of the internal energy U of a system is unambiguously (when the reference
state R is chosen) assigned to every of its (equilibrium) states in the way sketched above,
one can consider changes during which the system is not necessarily adiathermally iso-
lated. It is then possible to accomplish a change of the system’s state from A to B in more
different ways and these new ways involve amounts of (measured) work which are different
than ∆U = UB−UA. For instance, in the considered example of a simple fluid taken from

13This can be formulated in a more economic way, which perhaps more clearly shows the essence of
the problem and will help to see its relation to 2TMDL: if states of a system not possessing internal
adiathermal partitions are characterized by o − 1 deformative variables X1, . . . , Xo−1, and a single non-
deformative one y, then it is sufficient to accept as the ancillary law the statement that of any two states
P = P (X1, . . . , Xo−1, y) and P ′ = P (X1, . . . , Xo−1, y

′) - these are the so-called isometric states, that
is ones differing only by the value of the nondeformative variable y - either P ′ is reachable from P in
adiathermal transitions, or the other way around (of course, in the course of the transition the variables
X1, . . . , Xo−1 may deviate from their initial and final values). The ancillary law adopted in the text then
follows as a simple corollary. Moreover, if the internal energy U is taken for y, one can further assert that
of the two, possible is this transition which leads to higher value of U . The connection with the example
given in the text is then clear.
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A to B the change from A to Y can be achieved by lightning a Bunsen burner under the
(diathermal) flask containing the fluid and this certainly does not involve performing a
work. So in this case ∆U = UB − UA 6= WA→Y→B. We then define the quantity Q by

Q = ∆U −WA→Y→B , (8)

and call it (somewhat misleadingly, but this should cause no harm - we are already far
from the discussions of the XIX-th century!) the heat taken by the system (the fluid in
this case) on its way from A to B. More properly one should call Q energy transferred
to the fluid in the form of heat. In other words - and this is my own great contribution
to teaching thermodynamics! - Heat is the “defect” of work in obvious analogy to the
binding energy of nuclei defined as the defect of mass in nuclear physics (nuclei weight
less than protons and neutrons out of which they are composed and this deficit, called
the “the mass defect”, multiplied by c2, is identified with their binding energy).

Heat defined in this way has all properties which are usually attributed to it (and
which in the past supported treating heat as a kind of indestructible fluid flowing from
one body to another): i) when absorbed or released by a body, it changes the state of this
body (obvious - existence of diathermal walls proves that changes of states are not always
due to work), ii) may be conveyed from one body to another by conduction, convection
and radiation (obvious - even vacuum does not entirely inhibit changes effected by means
other than mechanical or electric work - changes caused by radiation can be inhibited by
walls perfectly reflecting electromagnetic waves), iii) in calorimetric experiments (in which
one measures heat by the method of mixtures - this is what all problems in undergraduate
physics courses are about: one puts into a calorimeter bodies which then exchange heat,
or, saying it more properly, are in thermal contact with each other but are adiathermally
isolated from the rest of the world, and one is asked - given the heat capacities of these
bodies - to compute the final temperature or, given some other data, to compute the heat
capacities etc.) heat is conserved if the bodies involved are placed in an adiathermally
isolated vessel.

Only the property iii) requires a brief justification: consider a typical calorimetric
experiment in which two bodies, 1 and 2, at different (empirical) temperatures t1 6= t2
are brought into thermal contact in a calorimeter (in a Dewar vessel) the walls of which
are adiathermal and rigid (no work can be performed on the bodies in the calorimeter by
external agents). Therefore the total change ∆U of the system’s internal energy must be
zero

∆U = ∆U1 +∆U2 = 0 . (9)

But

∆U1 = W1 +Q1 , ∆U2 = W2 +Q2 , (10)

and since the only work that could have been performed on the bodies was the work they
performed on each other, so that W1 = −W2, one learns that

Q1 +Q2 = 0 . (11)
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So, in calorimetric experiments (but not in general!) heat is conserved.

We have thus finally arrived at the general 1TMDL in the form14

∆U =W +Q . (12)

In words: energy is conserved if heat Q is taken into account and recognized as a form
of energy transferred from one system to another. Callen (whose celebrated textbook
on thermodynamics will be exploited later on) describes the difference between energy
transferred through a mechanical work and in the form of heat as results of couplings of
external agents to different types of degrees of freedom of the system: mechanical work
is due to coupling to external agents of the few globally defined macroscopic degrees of
freedom (like the position of its center of mass, or volume) of the system, while a heat
transfer occurs through a coupling of the microscopic degrees of freedom of the system
and its surrounding.

The equivalence of heat and work can be illustrated by the example of a gas enclosed
in a cylinder with a piston. The system is here the gas and the cylinder and the whole
system is adiathermally isolated. If the gas expands doing some work W̄ on the piston
(not necessarily reversibly - we still do not know what this word means) and next the
whole work W̄ is converted into heat somehow (or just heat equivalent to this work is
used) and added back to the system, its internal energy will return to the initial value
(although its state will not in general be the initial one).

Notions “hotter”, “colder” and their correlation with the scale of the temperature
We can now consider the problem of correlating the introduced empirical temperature
with the properties of coldness and hotness. In calorimetric experiments like the one just
considered, one body gains heat which the other body is loosing (considering experiments
in which only two bodies take part). This is called heat transfer though this does not
imply existence of heat as a physical substance (a “caloric” or a “flogiston”) the movement
of which from one body to another could be followed.

In general if any two bodies are brought into thermal contact in the conditions that
no work is performed on either, a transfer of heat will occur (accompanied by the changes
of states of both bodies) unless their temperatures are equal in which case they are
in thermal equilibrium with one another. In the following reasoning important will be
the fact, following from experience, that the rate of the heat transfer may usually be
varied over a wide range, depending on the nature of the diathermal wall through which
the bodies exchange heat (the rate is a measure of thermal conductance of the wall
separating the bodies).

We adopt the definition (could one expect it to be different than this?!) that of the
two bodies that one, call it A, which loses heat (negative QA) is hotter and the other
body, call it B, which gains heat (positive QB) is by definition the colder one.

14Our convention is that Q and W will always stand for heat and work added to the system; heat and
work extracted from the system will be denoted Q̄ and W̄ , respectively. Of course, any one of these
quantities can be either positive or negative.
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Having introduced this definition we can now show that the hierarchy of hotness
(coldness) defined in this way can be consistently correlated with the scale of temperature
(the labeling of isotherms of bodies), that is, that the values of t = t(V, p, . . .), or t =
t(X1, . . . , Xo−1, y) in general, of the empirical temperature can be assigned to isotherms
in such a way, that all bodies at temperature t2 will be hotter (in the sense defined above)
than all bodies at temperature t1 if t2 > t1.

This is demonstrated by reductio ad absurdum. Let us assume this is not possible.
Therefore it should be possible to find three bodies, A, B and C having temperatures tA
and tB = tC (so B and C are in thermal equilibrium with one another) and yet such that
A is hotter than B while C is hotter than A. For convenience we can assume that no
work can be performed on these bodies and that they cannot perform work on each other
either.

It is then possible to break somewhat the thermal equilibrium between B and C,
varying slightly (almost infinitesimally) the temperature of B making it somewhat hotter
than C but still colder that A (this should be possible because tA 6= tB = tC ; notice that
we do not say whether tA is higher or lower than tB = tC). If the three bodies are then
brought into thermal contact, heat will flow (in agreement with the meaning of the words
“hotter” and “colder”) from A to B, from B to C and (because we have assumed C can
from the beginning be hotter that A) from C to A. By adjusting the diathermal walls
(their conduction rates) separating the bodies it would then be possible to establish a
(dynamical) equilibrium of these three bodies. But this would contradict the converse
of 0TMDL, for if any two of these bodies were separated from the third one, they would
not be in thermal equilibrium.

The conclusion must, therefore, be that by virtue of 0TMDL it is possible to define
the empirical temperature t so that if t2 > t1 than any body at t2 is hotter than any
body at t1 and the established correlation between hotness (coldness) and the (empirical)
temperature is generally valid for all (thermally homogeneous, i.e. having no internal
adiathermal partitions) bodies and substances.

Since in this reasoning it was assumed that no work is performed on any of the bodies,
it follows that the established correllation of hottness with the empirical temperature t
implies that

∂

∂t
U(X1, . . . , Xo−1, y(X1, . . . , Xo−1, t)) > 0 . (13)

This means that the heat capacity at constant deformative parameters X1, . . . , Xo−1,
defined as the ratio of the infinitesimal amount of heat needed to infinitesimally increase
the body’s (empirical) temperature t at fixed values of X1, . . . , Xo−1 to this temperature
increase, CX1,...,Xo−1 = δQ/δt = δU/δt, is positive.

In the above reasoning used to demonstrate the possibility of establishing (by defining
appropriately the scale of the empirical temperature t) the correlation between hotness and
the temperature we have assumed that no work is performed on either of the bodies which
exchange heat and this has led to (13). One can however relax somewhat these conditions
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admitting that the surrounding can do some work on each of them (but still assumiming
they cannot do work on one another), provided those parameters which together with
the temperature t are used to specify the states of each of these bodies remain constant
when the bodies are brought into thermal contact (e.g. p instead of V when the rigid
diathermal wall separating any of them from the surrounding is replaced by a movable
one) - the correlation of t with the hotness will still obtain. The consequence of this is
that absorption of heat by a body, the independent parameters of which other than its
temperature t remain constant, will always cause an increase of the body’s temperature
t. Therefore the so called principal heat capacities (like CV , Cp, CM) characterizing
a body are always positive (this will be important in establishing stability conditions of
thermodynamic systems) by virtue of the operational definition of the notions “hotter” and
“colder” and the (conventional) assignment of higher values of the (empirical) temperatures
to the hotter bodies.

Reversible and irreversible changes (processes)
We have divided the changes which systems can undergo into adiathermal ones in the
course of which the system is adiathermally isolated and ones in which the system is not
isolated in this way. In this other, more general, kind of changes ∆U = W +Q. We now
inquire, under what conditions in an infinitesimal change of the system’s state from one
equilibrium state to another one the 1TMDL

dU = w + q , (14)

in which dU is an infinitesimal change (which is an exact differential) of the system’s
internal energy and q and w are infinitesimal (elementary as one usually calls them in
thermodynamics) heat and work,15 can be written with w and q being forms (differen-
tial one-forms in thermodynamics called Pfaffian forms) on the space of the parameters
X1, . . . , Xo (of which at least one is nondeformative - as we now have t and U as our
disposal, they can be used to replace the original o−1 deformative and/or the single non-
deformative variable; hence there may by now more than one nondeformative variable)
characterizing equilibrium states of the considered system. Certainly, neither q nor w
which represent infinitesimal heat and work added to the system in a change in which
its internal energy changes by dU can be written as dfQ(X1, . . . , Xo) of dfW (X1, . . . , Xo),
that is, as an exact differential (or a closed form) because in finite changes heat taken by
the system and work done on it do depend on the path from the initial to the final state.
We will first argue that under some well defined circumstances w can be written as an
inexact form16

ω̂W ≡ d̄W , (15)

15We do not consider here the possibility that separately w and q are large but mutually cancel out
leaving only an infinitesimal sum w + q.

16Thermodynamical tradition requires the differential forms which are not exact differentials of state
functions be written with the slashed d, d̄ (Kubo uses d′W ), instead of ω̂ (which is the mathematical
notation). In our Department prof. Cichocki was famous for assigning zero points to student works
whenever he noticed the lack of the slash on d in the heat or work form...
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which implies that in these conditions also q can be written as

ω̂Q ≡ d̄Q , (16)

simply because then q = dU − d̄W . Thus, if the necessary conditions are met, one will
have the right to write

dU = d̄Q + d̄W . (17)

But, as we are going to discuss in the next Lecture, owing to 2TMDL the character of
the form d̄Q is different than that of d̄W and this has important physical consequences.

As usually, in order to understand the conditions which must be met it is convenient
to consider a simple system, e.g. a gas enclosed in a cylinder fitted with a movable piston
of cross section area A. In the equilibrium state the piston is at rest - the forces acting
on it must be balanced so that the net force is zero. The forces at play are: a) the force
which the gas exerts on the piston, equal pA, where p is the gas pressure, b) an external
force Fext applied to the piston from outside (can be provided by the pressure of the
surrounding or by other means), c) the static friction (it vanishes when the external force
exactly counterbalances the gas pressure but in the presence of a friction this need not
be so). When the piston starts to move, however slowly, dynamical frictional force enters
into the play replacing the static one. Now suppose the piston has moved by dx while
being acted upon by an external force Fext. The work done by this force on the entire
system (the gas, the cylinder and the piston) certainly is

Fext ·dx = −Fextdx = −Fext

A
d(Ax) ≡ −pextdV . (18)

The work done on the system, assuming the absence of friction, would be this minus the
kinetic energy acquired by the piston on the distance dx.

In general pext is not simply related to the pressure in the gas. Worse yet, if the
piston moves quickly (or accelerates) the gas will not remain in equilibrium and it will
not be possible to characterize its actual state by two parameters (p and V ) only: the
gas pressure will not be the same in the entire cylinder volume - it will be different from
point to point. Only if the piston moves very slowly, without acquiring any acceleration
(and only - if the walls of the cylinder are diathermal so that the gas is in thermal contact
with the surrounding - if the heat transfer is realized reversibly - see the remarks below)
can the gas inside the cylinder remain at any moment practically in equilibrium so that
one can ascribe to it a unique pressure p (almost the same in the whole volume). Such a
process will be called quasistatic. If in addition there is no friction, one can assume that
pext = p and write the work done by the external force on the distance dx in the form

d̄W = −p dV , or d̄W = −p(V, t) dV , or d̄W = −p(V, U) dV , (19)

depending on the choice of independent variables - (p, V ), or (t, V ) or (U, V ) - character-
izing the equilibrium states of the gas. In these conditions the work w becomes a well
defined differential form on the space of the equilibrium parameters of the gas.
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The equality pext = p ensures also that the piston does not accelerate; if so, then it,
strictly speaking cannot start to move - one is making here an idealization: the process
in which one is allowed to write d̄W = −p dV is the limiting case of a process which can
be practically realized.

Thus, there are two conditions allowing to identify w with d̄W (p, V ):

• the change must occur vanishingly slowly - the process must be quasistatic, mean-
ing that at each stage the system can be treated as if it were in full equilibrium17

(within itself and with its surrounding)

• there should be no friction - the process must be reversible which in practical
terms means that it occurs under an infinitesimal difference between p and pext;
infinitesimal change of this difference (which reverses its sign) suffices to change the
direction of the process

This can be further illustrated by the following considerations. If the piston is with-
drawn suddenly, a rarefaction in the gas will occur and the work done by the gas will be
smaller than if the pressure in the gas remained uniform. The extreme example is the
process in which the piston is replaced by a wall impermeable to the gas particles which
prevent the gas from diffusing into an additional volume of the cylinder. If this wall is
removed the gas will fill the whole cylinder.18 The removal of the wall can by done at no
work cost at all. The gas will then not perform any work at all. And the pressure will not
be defined for a while (the gas will be out of equilibrium). But if the additional volume
is quite small, just an infinitesimal dV , the departure from equilibrium may be negligible
and the pressure will remain well defined - the gas will practically stay in equilibrium - the
expansion will be quasistatic. Now, the product −p dV corresponding to such a change
will certainly be non-zero. Yet it will not represent the work done on or by the gas - the
work is exactly zero! One can also make in this way a finite change of the volume occupied
by the gas (see Fig. 3), just by opening to it successively and always quasistatically, ad-
ditional volumes dV until a finite change ∆V is accomplished. The work done by the gas
will still be zero irrespectively of the fact that

∑

(−p dV ) = −
∫

dV p 6= 0. The process,
while quasistatic, will not be reversible: one cannot change something infinitesimally to
reverse its direction. This shows that quasistaticity does not imply reversibility although,
as should be clear, any reversible process must be quasistatic.19

It is also instructive to consider the effects of the friction assuming that the piston is
removed or inserted with vanishing velocity, without any acceleration and the equilibrium
of the gas is maintained at each stage. When the gas is being compressed (the volume

17The practical realization of this postulate depends on the system; in the case of gases it is not very
stringent - a uniform pressure establishes rather quickly in the entire volume occupied by the gas even if
the piston moves at a nonnegligible speed.

18This process is called Joule process and will be discussed in more details in classes.
19As always, there is a lot of confusion in terminology here. Many authors put the equality sign

between reversible and quasistatic processes, calling a process which is quasistatic in my sense but not
reversible, a pseudostatic process. Somehow I cannot digest this semantic hair-splitting and maintain
that linguistically it is much more natural to simply distinguish quasistaticity and reversibility.
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gas −→ gas −→ gas

Figure 3: Successive openings to the gas additional infinitesimal volumes dV . The ele-
mentary works w = 0 despite that p dV 6= 0.

V decreases), pext must be greater than the pressure p of the gas, because the external
force must overcome in addition the friction. When the piston is removed, pext must be
smaller than p, because now it is the gas pressure which must overcome the friction. As
a result of the complete cycle consisting of a compression followed by the decompression,
the total work done by the external force will be positive (see Figure 4)

W = −
∮

dV pext > 0 . (20)

If the gas temperature at the end of this process is the same as in the initial state (because
e.g. the whole cylinder is in thermal contact with a heat bath - a very large system having
a fixed teperature; we assume that the volume after the cycle returns to its initial value),
this means that the energy W given by (20) had to be somehow taken away from the
system formed by the gas and the cylinder. If the final temperature is higher (assuming
the cylinder does not absorb heat and does not conduct it) W is just the difference of the
gas final and initial energies which agrees with our definition of internal energy U although
in both situations we have to do with what conventionally - but incorrectly - is called
conversion of work into heat (through the effect of the frictional force). But irrespectively
of this, the whole process is in this case irreversible, for changing the direction of the
piston requires a finite change (and not an infinitesimal one) of the applied external force.
And certainly, even if the expansion-compression process was quasistatic, the work done
on the system is not given by

−
∮

dV p , (21)

where p is the gas pressure, so w - the work done on the gas cannot be written as −pdV .

It should be also remarked at this place that heat can be transferred reversibly
from one body to another one only if their temperatures differ infinitesimally, so that an
infinitesimal change of the temperature of one of these bodies would reverse the direction of
the heat flow. This is always the case when isothermic changes of a system are considered
(provided other elements of such processes are carried out reversibly, there is no friction,
etc.): one assumes that the heat which the system absorbs or rejects while undergoing
such a change is exchanged with a reservoir (called also a heat bath) at the temperature
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Figure 4: Compression and decompression of a gas in a cylinder fitted with a piston in
presence of friction. Solid line represents internal pressure of the gas.

tres equal to the system’s temperature; owing to its very large size (infinite in the limit),
the temperature of the reservoir stays unchanged (and its equilibrium in itself is not
perturbed), now matter how big finite amount of heat it loses or absorbs.

Processes in which the system’s temperature changes while they are exchanging heat
(e.g. isobaric, that is occurring at constant pressure, expansion of a gas) can be treated
as reversible provided one imagines them as split into small subprocesses in the course of
which the system’s temperature can be treated as approximately constant and the system
is successively contacted with a sequence of reservoirs having temperatures adjusted to
the actual system’s temperature.

On the other hand, while every heat transfer occurring between two bodies at temper-
atures differing by a finite amount can always be imagined to occur quasistatically, so
that the bodies involved can be treated as remaining practically in equilibrium at every
stage (it is sufficient to imagine that the heat transfer is realized through a diatermal
wall of nonvanishing, but arbitrarily low thermal conductivity, or it is realized in small
portions just by temporarily breaking the thermal contact between bodies - this is similar
to the already discussed gas expansion into the vacuum which, despite being irreversible,
can be realized quasistatically) - such a process is always irreversible

Thus when the fluid undergoes a reversible change, one can write

dU = q − p dV . (22)

This means that in such a change also q can be written as d̄Q, that is, as a differential
form on the space of the systems’ parameters, although at the moment we do not know
how to do it in the way other than dU + p dV . Changing this situation requires 2TMDL.

Other types of reversible works
As said in the introductory part of these lectures, thermodynamics can be applied to very
different physical systems on which different kinds of works can be done. Here we list
some of them to prepare the ground for problems which will be assigned as class, home
and colloquia works.

• Work required to enlarge the soap film spanned on a frame (picture).

d̄W = γ dA , (23)
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where A is the area of the film and γ its surface tension. The relation γ = γ(t,A)
plays here the role of the equation of state. Usually γ depends on temperature
only. Again, the change of the area must be made slowly to maintain equilibrium;
friction is almost absent here, so a quasistatic change of A is almost automatically
reversible.

• Work needed to deform a rubber band (many nice problems with this systems can
be formulated) is

d̄W = KdL . (24)

L is here the rubber length and K its strain. The relationK = K(t, L) plays the role
of the equation of state. Reversibility requires that the deformation of the rubber
band be fully elastic that is the rubber should not exhibit hysteresis.

• Work needed to stretch a thin wire.

d̄W = KdL , (25)

where L is the wire length and L its tension. This can be reversible if the deformation
is fully elastic (and not plastic; again no hysteresis is allowed). The relation K =
K(t, L) plays the role of the equation of state of the wire. If the deformation is
small it takes the form of the Hooke’s law K = k(T )(L−L0), where L0 is the length
of the unstretched wire.

• The preceding example can be generalized to elastic deformations of a solid. In this
case one considers the local displacement vector u(x) = x′(x)− x. The changes of
of distances in the body after the deformation are encoded in the tensor

uij =
1

2

(

∂ui

∂xj
+
∂uj

∂xi
+
∑

l

∂ul

∂xi

∂ul

∂xj

)

≈ 1

2

(

∂ui

∂xj
+
∂uj

∂xi

)

, (26)

in terms of which dℓ′2 = dℓ2 + 2uijdxidxj. The eigenvalues λ(1)(x), λ(2)(x), λ(3)(x)
of the the tensor uij(x) determine local changes of the volume:

dV ′ = dV (1 + tr(uij)) = dV
(

1 + λ(1)(x) + λ(2)(x) + λ(3)(x)
)

. (27)

The elementary work done on the solid when it is elastically (not plastically!) de-
formed reversibly is given by

d̄W =

∫

V

d3xσijduij , (28)

where σij is the stress tensor. The Hooke’s law (the equation of state) takes in this
case the form

uij =
1

9K
δijσll +

1

2µ

(

σij − 1

3
σijσll

)

(29)
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or

σij = Kull δij + 2µ

(

uij − 1

3
ull δij

)

. (30)

where K is the compressibility modulus and µ is the shear modulus. Knowing their
temperature dependence is equivalent to knowing the equation of state. In the case
of a fluid under a hydrostatic pressure p the stress tensor takes the form σij = −pδij

and the work reduces to −p dV . (See L&L, vol. 7, Elastomechanics.)

• Work needed for magnetization. Magnetic materials (paramagnetic or diamagnetic)
put in an external magnetic field of strength H0 (the subscript 0 indicates this
is the magnetic field produced by the currents, in a coil, for example) acquire a
local magnetization M(x) and the work (which a battery must provide) needed to
magnetize a given magnetic body is (using the illegal Gauss system of units and
assuming a magnetic field strength homogeneous in space)

d̄W = H0 ·dM , (31)

where M =
∫

d3x M is the total magnetization of the body. The relation M =
α(t, p,H0)H0 plays here the role of the equation of state. In special cases one can
replace M by VM and write equation of state as M = χ(t)H0 with χ(t) being
the magnetic susceptibility of the material. Typically (if the temperature is not too
low) χ(t) = a/t, a = const. (Curie law).

• Work needed for polarization. A dielectric material placed in a uniform external
electric field of strength E acquires a local polarization P and the work needed to
polarize a piece of a dielectric material is

d̄W = E ·dP , (32)

where P =
∫

d3xP . Again the (temperature-dependent) relation between P and E

plays the role of the equation of state.

In general we will write the infinitesimal works performed reversibly on a thermodynamic
system (simple or non-simple) as

d̄W =

o−1
∑

i=1

yi(X1, . . . , Xo−1, y) dXi , (33)

denoting by yi the generalized “forces” (y1 = −y = −p in the case of a simple fluid).

A word concerning the mentioned hysteresis is perhaps in order here. It happens when
the system under the same external conditions traces different paths when these external
conditions are (slowly) changed. A good example is provided by isothermally magnetizing
a specimen of iron by switching on an external magnetic field H0 = H0e. If the field is
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turned on slowly, the specimen passes through states which can be marked as equilibrium
states on the indicator diagram (on the (M, H0) plane). Yet when the field is switched off
the specimen of iron does not return to its initial state - a nonzero magnetization remains.
In fact, at fixed temperature t and a given value of H0 there is a unique magnetization
of the specimen corresponding to its full equilibrium but when the field is switched on
for the first time, the process of reaching the equilibrium is very slow and the specimen
is rather in a metastable state from which it would reach the true equilibrium only after
a very long time. So the process of magnetizing a ferromagnetic material is not really
quasistatic in the sense that the system does not necessarily passes through a sequence of
true equilibrium states.

A digression
Before we move further on, it is useful to make a short summary. We have started
by characterizing equilibrium states of any thermodynamic system by the deformative
parameters of the (generalized) geometric nature - directly related to works which can
be performed reversibly on the system and a single nondeformative parameter. In the
case of a fluid these are V and/or M and/or P if systems with nontrivial electromagnetic
properties are considered and pressure p. These parameters are said to be state functions.
This means that (equilibrium) states of the system can be viewed (and this is, according
to my experience, the most convenient view to adopt in thermodynamics, although one
can develop more sophisticated mathematically points of view) as forming an abstract
manifold (in the mathematical sense of this term) on which the functions like volume,
pressure, etc. are defined. Next we have introduced some additional quantities: the
empirical temperature t and the internal energy U (there will be also others). These too
should be treated as functions defined on the manifold of system’s states. A manifold,
to be explored, requires introducing on it a system of coordinates which, mathematically
speaking, map its points onto a space R

o (or Ro+r, if the system is not treated as a black
box and the numbers n1, . . . , nr of moles of its material constituents are relevant). A
coordinate system is therefore a set of o independent functions (their number o equals to,
or rather defines, the dimension of the manifold) defined on the manifold. Thus p, V , or
p, t, etc. should be treated as coordinates on the manifold of the system states. Once
the system of coordinates has been chosen, other functions like U , t or S (entropy - to
be introduced later) become functions of the coordinates used to identify points on the
manifold. It should, however, be clear that the division into coordinated and functions
is not fixed once for ever: in some applications what formerly was treated as a function
can now be treated as one of the coordinates. It is known from the theory of manifolds
that some systems of coordinates may be ill defined in some regions of the manifold20

- the same can happen - si puo dare (compressed to “podarsi” in modern italian) as
nostri fratelli Italiani would say - in some cases in thermodynamics: apparent paradoxes,
contradicting e.g. 2TMDL, are mostly problems related to the wrong choice of coordinates
on the manifold of states and not real paradoxes. Furthermore, differential forms d̄W , d̄Q

20Recall in this connection that the familiar spherical coordinates (θ, ϕ) on the sphere are ill defined
at the poles (when θ = 0 or π, the value of ϕ is arbitrary).
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discussed here, which in fact are, like vectors or tensors, geometric objects, should also be
viewed as forms defined over the manifold of the system’s states and as such can always
be expressed in the chosen coordinate system.

Other state functions
Already here one can introduce other state functions although the roles they play in
thermodynamics cannot be appreciated at this stage (here these functions are introduced
purely formally). In the case of a simple fluid one frequently uses enthalpy H = U +pV ,
Helmholtz free energy F = U − TS or Gibbs function G = U − TS + p V called
also free enthalpy, where both:21 the entropy S and the absolute thermodynamical
temperature T - a function of the empirical temperature - will be introduced in Lecture
IV as the consequences of 2TMDL. The introduced functions are called thermodynamic
potentials (also U and entropy S are called thermodynamic potentials) for in specific
situations they indeed play roles analogous to the role the potentials V (q1, . . . , qs) play in
Mechanics - they determine equilibrium states of thermodynamical systems. Of course,
more such potentials (their names are not rigorously codified) can be formed in the case
of nonsimple systems characterized by more than two parameters. As state functions, all
of them can be expressed in terms of any set of independent state parameters.22

Let us briefly demonstrate the usefulness of enthalpy in chemistry. Most of chemical
reactions occur at constant (atmospheric) pressure. During such a reaction the system,
consisting of reacting substances (different at the end and initially) which change their
volume in the course of the reaction, does work on the surrounding atmosphere (against
its pressure pext. If the initial and final states of the system are in equilibrium within
themselves and with the surrounding atmosphere (p = pext, t = text), 1TMDL can be
written as Ufin = Uin +W +Q, with W the work done by the atmosphere on the system
and Q the heat absorbed by the system. Since the work done by the surrounding on the
system is −pext(Vfin − Vin), and in the initial and final states p = pext, one can write

Ufin = Uin − p (Vfin − Vin) +Q , (34)

or

(Uin + p Vin)− (Ufin + p Vfin) ≡ Hin −Hfin = Q̄ . (35)

Thus the heat Q̄ released in a chemical reaction occurring at constant pressure is given
by the difference of enthalpies of the initial and final substances. Notice that it is not
required that the thermodynamic equilibrium be maintained during the reaction; only the
initial and final states must be equilibrium states. (Examples in classes.)

Enthalpy, as will be discussed in classes, is conserved in the so-called Joule-Kelvin
process in which a gas passes irreversibly from a state in which its temperature and

21Since both: U and the product pV have the physical dimension of energy, also the product TS must
have the same dimension; the individual dimensions of T and S can only be fixed by adopting some
convention.

22Later we will see, however, that each of these thermodynamic potentials has a preferred, or “natural”
(in the sense that will be elucidated) set of its variables.
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pressure equal t1 and p1, respectively, to another state in which its pressure p2 is lower
and temperature equals t2.

Finally, enthalpy is conserved also in various flow processes (that is when one has to
do with a steady state rather than with an equilibrium state of the considered system) -
its conservation generalizes to compressible fluids the Bernoulli law (which applies only
to incompressible fluids).
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LECTURE III (TMD)

We have already introduced and discussed two of the four laws of thermodynamics. In the
preceding Lecture it was argued that in infinitesimal reversible changes it is possible to
represent the elementary work w in the generally valid form dU = q + w of 1TMDL as a
differential form d̄W (or d̄w, if changes du of the molar internal energies are considered)
defined on the space of parameters characterizing equilibrium states of the considered
system. In such changes, since dU and d̄W are well defined differential forms, also q must
be a differential form d̄Q. However, on the basis of what has been done, there is no way
to write this differential form differently than d̄Q = dU − d̄W , for example, considering a
simple fluid, we can only write

d̄Q = dU(p, V ) + p dV, (36)

if the variables V and p are taken for independent ones (V as the deformative one). The
heat Q taken by the system in a finite process (a finite change) in which it reversibly
passes from the equilibrium state A to another equilibrium state B is then given by

Q =

∫ B

A

d̄Q =

∫ B

A

(dU(p, V ) + p dV ) , (37)

the integral being taken along the curve representing the process on the (V, p) plane.
Adiabatic changes of the system, that is, its reversible adiathermal changes (in

my terminology), are changes in which the form d̄Q vanishes. More mathematically, d̄Q
projected onto paths representing such processes in the space of parameters is zero - it
gives zero on all vectors tangent to such paths. Adiabats of a simple fluid are therefore
curves in the (V, p) or (V, t) or (t, p) spaces determined by the solutions of the differential
equation

dU + p dV = 0 , (38)

written in the set of variables, (V, p) or (V, t) or (t, p), which has been chosen (on the basis
of convenience) to work with, and an initial point (initial state). In the general case of
a system (treated as a black box) the equilibrium states of which are determined by the
parameters X1, . . . , Xo−1, y and for which, as in (33), yi are the generalized forces with
which the system can oppose itself to the external actions on it, adiabats are all curves
(paths) onto which projections of the one-form23

d̄Q = dU(X1, . . . , Xo−1, y)−
o−1
∑

i=1

yi(X1, . . . , Xo−1, y) dXi , (39)

23Recall, that the number o of independent parameters equals 1 plus the number of works which can be
reversibly done on the system, or 1 plus the number of the deformative variables needed to characterize
the system.
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vanish. Of course, if o > 2, i.e. if the system is not simple, the initial point does not
determine the path uniquely: the condition d̄Q = 0 provides only one constraint on o
increments (o − 1 increments dXi and one dy) and therefore from the initial point (and
all subsequent ones) one can “adiabatically walk” in many different directions.

Unfortunately in practice one usually does not know a priori U as a function of the
system’s parameters like V and p, or X1, . . . , Xo−1, y in the general case - the assignment
of the internal energies to different states of the system is an example of the typical “paper
and pencil” theoretical construction! - and therefore one cannot go too far in this way
with solving various thermodynamical problems.24

At this point it is amusing to tell the reader that the system called “perfect or ideal gas”
(and the “perfect magnetic material”) has been invented partly in order to have a system
on which to torment students. Indeed, including as part of its definition the information
that the perfect gas internal energy U (treated as a function of V and t) is independent
of its volume25 V , the main obstacle for playing with this system is removed, because
passing to V and t as the independent variables, the heat form (36) of the perfect gas can
be explicitly written as

d̄Q =

(

∂U

∂t

)

V

dt+

[(

∂U

∂V

)

t

+ p(t, V )

]

dV = C
(t)
V dt+ p(t, V ) dV. (40)

C
(t)
V is here the heat capacity of the system i.e. the heat absorbed by it when its empir-

ical temperature t changes by one unit at constant volume V , but since usually in the
definition one includes also the constancy of C

(t)
V and, moreover, since the empirical tem-

perature defined by the perfect gas equation of state happens to be (proportional to) the
absolute temperature T (to be introduced in this Lecture), the fact that one (consciously
or unconsciously) replaces t by T has no consequences.

The adopted definition of the perfect gas allows to solve problems of the sort “what
heat the gas absorbs when it isothermally and reversibly expands from the pressure p1 to
p2 < p1”: since the internal energy of the perfect gas depends on the temperature only, it
stays constant during the isothermal expansion and, by 1TMDL, Q = −W = W̄ , where

W̄ = −
∫

Γ

d̄W =

∫

Γ

p dV (T, p) = −nRT
∫ p2

p1

dp

p
= nRT ln(p1/p2) ,

upon using the equation of state in the form V (T, p) = nRT/p. The same integral
gives also the answer directly because as can be seen from (40), on isotherms, owing

24However, some of the thermodynamical relations can be obtained with this limited knowledge which
is encoded in 0&1TMDLs - see the home and colloquia problems to this course.

25This is usually backed by the physical argument that molecules of the perfect gas are mutually
noninteracting and therefore the internal energy of the gas is just the sum of kinetic energies of individual
molecules; the volume V occupied by the gas determines only the relative positions of the molecules but
since there is no contribution to U of the interaction energies (which would depend on the relative
distances of the gas molecules), changes of the volume do not have in this idealized case any impact on
U . Of course such argumentation goes beyond the framework of the strict classical thermodynamics.
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to the assumption that (∂U/∂V )t = 0, the heat form of the perfect gas takes the form
d̄Q = p dV . Such a simple reasoning would not be true if the gas satisfied e.g. the Van
der Waals (VdW in short) equation of state, because, as it will be possible to show by
appealing to 2TMDL, the internal energy U of this system does depend on its volume V .

As a matter of facts, as a consequence of 2TMDL (i.e. of the special character of the
form d̄Q), the dependence of the system’s internal energy U on the volume V is directly
determined by this system’s equation of state and it could happen that the assumption of
independence of the internal energy U on the volume V is (mathematically) inconsistent
with the perfect gas equation of state p V ∝ t ∝ T (fortunately, it is consistent, as you
will be able to check).

Furthermore, in reality, the usually assumed independence of the heat capacity CV of
the temperature (2TMDL does not constrain the dependence of CV on the temperature)
is (approximately) true only if the perfect gas - let us stick to this idealization - is a
monoatomic one and structurless26 - CV = ncv in this case equals 3

2
nR, where n is the

number of moles. Gases, the molecules of which are composed of more than one atom
(the majority of real gases) have heat capacities only (to a good degree of accuracy)
piecewise constant: at almost all temperatures at which gases exist as gases (and not as
liquids into which they eventually change when the temperature is lowered) the three-
dimensional motion of gas molecules as a whole (of their centers of mass) is quasiclassical
(can be represented as in classical mechanics) and contributes 3

2
R to CV /n; however

owing to the principles of quantum mechanics which must be employed to properly treat
the internal motions (rotations and vibrations) of compound molecules, the molar heat
capacities CV /n of multiatomic gases rise starting from some temperatures to 3R (5

2
R

if the gas molecules are composed of two atoms only) and then to even higher values
depending on the number of the vibrational degrees of freedom of the molecule (+1R per
each vibrational degree of freedom; the number of vibrational degrees of freedom of a
molecule equals −3 − 3 + 3×the number of atoms, or −3 − 2 + 3 × 2 = 1 in case of two
atoms). All this, as we will see, can be predicted within the statistical physics approach (in
phenomenological thermodynamics molar heat capacities together with their dependence
on temperature must be taken directly from measurements or else can be related to other
quantities taken from experiment) - the gas of mutually noninteracting molecules is one
of a few completely solvable problems (see Lecture XII). Within the statistical physics
approach it will also become clear that the temperatures T at which the rise of the molar
heat capacity occurs can be estimated from the simple rule

T ∼ Eexc/kB , (41)

where Eexc are typical energies of the rotational and vibrational excitations of the gas
molecule and kB is the Boltzmann constant,27 kB = 8.617× 10−5 eV/K. Typical energies
of rotational excitations of molecules lie in the 3×10−5÷5×10−3 eV range while those of

26Even the heat capacity of monoatomic gases can exhibit local peaks if their electronic lowest energy
states are split due to the spin-orbit or hyperfine interactions.

27These are the right units in which the Boltzmann constant should be remembered; giving it in J/K
is as useless as measuring the Warsaw-New York distance in microns or atomic sizes in parsecs...
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vibrational excitations in the range 0.1 ÷ 1 eV (energies of the rotational excitations are
lower than energies of the vibrational ones - a simple physical intuition says that it is easier
to rotate something than to make it vibrate), so typical temperatures at which CV rises,
are in the region of a few to hundreds Kelvins (excitations of rotations) and then in the
range of tens to hundreds thousands Kelvins; in the intermediate temperatures there can
also be some transient departures (also predictable within the statistical approach; these
are the “anomalies” mentioned in the introductory part of Lecture I) from the constancy
of specific heats due to e.g. a fine structure of the atomic ground state (the corresponding
energies are of order 10−2 eV). Thus, at least some quantum effects manifest themselves in
the specific heats of gases only at rather high (compared to the room ones) temperatures
(not only, as one naively could think, at very low temperatures)!

2TMDL
Only some of all changes of thermodynamical systems permitted by 1TMDL, that is, by
the conservation of energy, are observed to occur in the real world. All changes have a
clear tendency to occur preferentially in one direction (not in both); to take the simplest
phenomena: if the mechanical energy is lost as a result of friction or viscosity it cannot be
recovered (without other changes), chemical reactions occur evidently irreversibly, mixing
of different gases is also irreversible, etc. The preferred direction of the change is perhaps
most clearly manifested in the distinction between a hot and a cold body: although
1TMDL does not forbid the opposite (so long as the total energy is conserved), heat flows
between two bodies which initially are not in thermal equilibrium in such a direction as to
eventually bring them into equilibrium (equalize their temperatures). This allowed us in
Lecture II to define operationally which of the two bodies is hotter and which one is colder.
In fact, the basic assumption underlying the whole phenomenological thermodynamics
(but also the equilibrium statistical physics) is that systems left to themselves eventually
attain an equilibrium state; reversion to the original state is never observed (if it happened,
the notion of equilibrium would loose any sense).28

Although in the preceding Lecture we found it useful to single out reversible changes
which can occur in both directions - only in such processes the form d̄W can be used as
representing the work done on the system - they are only theoretically useful idealizations
- they require stringent conditions, impossible to fulfill in practice (like p = pext, t = text,
quasistaticity etc.). Normal and prevailing type of behaviour of real systems are their

28It is perhaps fair to say already in this place that looking at the system from the microscopic point of
view it may seem that returns of (macroscopic) systems to states macroscopically indistinguishable from
the initial ones are not forbidden by the fundamental laws (of classical or quantum mechanics) but are
only very improbable. So it may seem that from the microscopic perspective the discussed tendency of
changes to occur in only one direction is only a statistical effect. Of course, probabilities of such returns
are so fantastically tiny (one talks here of numbers as small as 10−10n−teen

) that they never happen in
practice and are never observed and, therefore, phenomenological thermodynamics which is based on what
is really (and not what hypothetically could be) observed can safely rest on the discussed assumption.
More importantly, however, this is rather the question of the definition within the statistical approach
of the macroscopic equilibrium state of a thermodynamic system - as will be discussed, the proper one
allows for such fluctuations and takes them into account.
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irreversible changes.

These obvious (so obvious from the everyday experience that it took longer to accept
1TMDL - accepting that the mechanical energy is not lost but gets converted into the
internal energy required complicated quantitative measurements - than to accept 2TMDL)
observations underlie 2TMDL which generalizes them and promotes to the universal law
of Physics. There are various formulations of this law and in view of the fundamental role
it plays in physics, we will discuss all of them (although not all in equal depth).

2TMDL (R. Clausius, 1850, in Pippard’s words):
It is impossible to devise an engine which, working in a cycle, shall produce no effect other
than the transfer of heat from a colder body to a hotter body.

Of course, we have defined the notions of “colder” and “hotter” on the basis of the
direction the heat flows, so this statement of 2TMDL may appear somewhat tautological,
but defining these notions we had in mind only a direct contact of two bodies through a
diathermal wall; the Clausius’ principle says that reversing this direction is impossible at
all, by any means and by using any roundabout physical process.

The crucial clause in this (and in the Kelvin’s one given below) formulation is “working
in a cycle”: It is possible, for example, to expand a gas isothermally in contact with a cold
body, so that it absorbs some heat Q, then to compress it adiathermally making it hotter,
and then to bring it into contact with a hotter body (reservoir) and, compressing it further
isothermally transfer heat to the hotter body (making the two necessary compressions at
the cost of the work gained at the first stage). Such a process does not violate 2TMDL as
formulated above for it is not a cycle - at the end the gas will be in a different state than
initially. Only if it were possible to bring the gas back to its original state without undoing
the heat transfer (and without introducing changes in the surrounding), could violation
of the Clausius’ 2TMDL be claimed. Only cyclicity can guarantee that the process would
be repeatable and could serve to transfer an arbitrary amount of heat from a colder body
to a hotter one.

2TMDL (Kelvin, 1851, again in Pippard’s words):
It is impossible to devise an engine which, working in a cycle, would produce no effect other
than the extraction of heat from a reservoir and performance of an equivalent amount of
mechanical work.29

In contrast to the Clausius’ formulation, which as all German philosophy of that time
(Hegel, Kant & Schelling!) concentrates on rather abstract notions, the one of Kelvin
clearly bears an imprint of an utterly pragmatic approach, characteristic of the times
of the British industrial revolution: in simple words it communicated to engineers and
inventors of machines what they should not hope to achieve. Its alternative formulation
can read:

29It is perhaps worth stressing that the words “reservoir” here and “body” in the Clausius’ formulation
of 2TMDL should be understood as meaning a thermodynamic system which, even if compound, is
thermally homogeneous.
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It is impossible to absorb heat from a reservoir and to convert it all into mechanical work
without introducing any other changes in the system and its surrounding.

Again, by expanding isothermally a gas remaining in thermal contact with a reservoir
of heat (the reservoir’s internal energy) it is possible to perform some work using up the
extracted heat but such a process is not cyclical and therefore, it does not contradict the
Kelvin’s 2TMDL.

The formulations of 2TMDL by Clausius and Kelvin are easily proven to be equivalent.
This is a sort of a scholastic exercise, which I recall quickly here.

1. Clausius−→Kelvin. We argue that if the Kelvin’s principle were violated, one could
violate also the Clausius one (proof by reductio ad absurdum - a.a.). Suppose there are
two reservoirs (bodies), a colder one at t1 and a hotter one at t2 > t1. Suppose Kelvin is
wrong, and a heat Q̄ can be taken from the colder reservoir and all converted into work
W̄ . Then this work can be used up to run a reversible Carnot engine30 which takes heat
Q̄1 from the reservoir at t1 and transfers the positive amount Q2 = Q̄1 + W̄ of heat to
the reservoir at t2.

2. Kelvin−→Clausius. We argue that if the Clausius’ principle were violated, one could
violate also the Kelvin’s one (again a.a.). If Clausius were wrong, one could transfer a
heat Q̄1 from the reservoir at t1 to another one at t2 > t1 and then run a Carnot engine
between the two reservoirs; it could be arranged so as to take the heat Q̄2 > Q̄1 from
the reservoir at t2, give back the heat Q̄1 to the reservoir at t1 producing the net work
W̄ = Q̄2 − Q̄1, in effect entirely at the cost of heat taken entirely from the reservoir at t2.

There is one more formulation of 2TMDL, due to Carathéodory, which, compared to
the physically (and operationally) clear formulations of Clausius and Kelvin, sounds rather
abstract and is immediately recognized as the product of a mathematically formed mind.
Indeed, Carathéodory was a mathematician well educated in the theory of differential
forms and his formulation is clearly rooted in properties of these mathematical objects.
Literally it reads:

2TMDL (C. Carathéodory, around 1909, again in Pippard’s words):
In the neighbourhood of any equilibrium state of any thermodynamical system there are
states inaccessible by any adiathermal process.

The Carathéodory’s formulation is obvious in some simple cases like e.g. the adiather-
mally isolated liquid in which the Joule’s paddle-wheel is immersed - adiathermally work
can only be added to the system but evidently not extracted from it keeping the vol-
ume unchanged and, therefore, states of lower internal energies and the same volume
are inaccessible so long as the system remains adiathermally isolated; here however, the
Carathéodory’s principle is assumed to apply universally to any thermodynamical system,
no matter how complicated.

30It is assumed here that everybody knows what the Carnot cycle or engine is. (Carnot cycles will
appears here in Lecture IV). We cannot say that by means of a mechanical device, like the Joule’s paddle-
wheel one, the work W̄ can all be transferred as heat to the reservoir at t2, for we insisted (in Lecture
II) that using paddle-wheel-like devices should be classified as performance of work!

44



It is fairly straightforward to show that the Carathéodory’s principle follows from the
Kelvin’s principle. The proof is again by reductio ad absurdum. Take a thermodynamical
system which does not obey the Carathéodory’s principle at least in some domain of the
manifold of its states. Consider a state A of the system in this domain and let this system
make an isothermal change as a result of which it reaches a state B in this domain,
absorbing on the way a positive heat Q from a reservoir.31 The assumption that the
Carathéodory’s principle is violated in the considered domain means, that all its points
are accessible from B on adiathermal paths. So A must be accessible too. If the system
is returned to A by an adiathermal path, the total change of its internal energy in the
considered transition A→ (isothermal) → B → (adiathermal) → A is zero and therefore,
by 1TMDL, the positive heat Q which it absorbed from the reservoir in the isothermal
transition from A to B must have been all converted into a positive work W̄ = Q in
the adiathermal transition. But this contradicts the Kelvin’s principle. (For the sake of
complete clarity one should admit that it might happen that in some domain the heat
form d̄Q of a system is identically zero. Then any two states within this domain can be
connected by an adiathermal path, but vanishing of d̄Q means that the system is entirely
mechanical and not thermodynamical, so in this domain 1TMDL reduces ∆U = W . Such
systems indeed do not satisfy the Carathéodory’s principle but this does not invalidate,
of course, 2TMDL, which applies to thermodynamical systems.)

For completeness one should mention here the Callen’s approach to thermodynamics
in which 2TMDL takes the form of an axiom in which the existence of entropy as a
state function possessing certain properties is postulated and then consequences of this
axiom are derived and compared with experimental facts. We will come to discuss this
formulation a bit later.

The mathematical consequences of 2TMDL are the following

• The differential one-form of heat, d̄Q, of any thermally homogeneous system (that is
not possessing internal adiathermal partitions), no matter how complicated,32 which
represents the heat absorbed by the system in a reversible change, is integrable
(i.e. has an integrating factor).

• Among many (mathematically) possible integrating factors of d̄Q there is one, 1/T ,
which is given by a universal (i.e. independent of the system) function T (t) of the
empirical temperature t, i.e. depending on the system’s parameters X1, . . . , Xo−1, y
only through the empirical temperature t(X1, . . . , Xo−1, y).

• The exact differential dS = d̄Q(X1, . . . , Xo−1, y)/T (t(X1, . . . , Xo−1, y)) defines, up
to a constant, a new state function of the system - its entropy S(X1, . . . , Xo−1, y).

31If in the isothermal transition from A to B the system loses a positive heat Q̄, we can repeat the
reasoning exchanging the roles of the states A and B, because isothermal processes can always be made
reversible, as I tried to explain in the preceding Lecture.

32As explained below, this statement is trivial in the case of simple systems the equilibrium states of
which are characterized by two parameters only. But this is not true of the next statement.
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• In all adiathermal processes (reversible or irreversible) the entropy does not decrease:
Sfin ≥ Sin.

• The function T (t) is, up to a scaling factor (setting in fact the units in which it is
measured), the absolute temperature as defined by the Carnot cycle.

These consequences can be derived from any of the three formulations of 2TMDL
given above. The only difference is the degree of complication of the reasonings involved.
Derivation of all these consequences from the Clausius’ or Kelvin’s formulations of 2TMDL
requires, as we will see below, considering “gedanked experiments” invoking cyclic pro-
cesses (Carnot cycles). The Carathéodory’s formulation of 2TMLD seems to be rather
abstract but it allows to derive its mathematical consequences without appealing to cyclic
processes the use of which (outside the theory of machines producing work or refrigerators)
is rather artificial and for this reason it is said to be more economical. However, since in
the XXI century we are - or at least we should be! - familiar with rudiments of the theory
of forms (I deliberately planned classes so that you get acquainted with them), we can
now say that it simply goes in the direction of putting thermodynamics on a postulatory
basis, as a purely deductive theoretical system (this tendency, as we will discuss, eventu-
ally culminates in the Callen’s formulation, celebrated by many, including my respected
older colleagues from the 5th floor) for the Carathéodory’s principle directly postulates
(through the second Carathéodory’s theorem) the existence of adiabatic surfaces, that is,
it directly states that the heat forms d̄Q of physical systems do have integrating factor
and are therefore integrable, with values of some quantity σ, called empirical entropy,
labeling families of the corresponding solutions of the equation d̄Q = 0. But, at least to
me, the whole essence of thermodynamics as a phenomenological theory is to demonstrate
how these properties of the heat form and the existence of entropy necessarily follow from
the formulations of Clausius and Kelvin - the formulations which generalize our direct
experience!

As we will be discussing in these lectures, on the practical side 2TMDL

• By the rule Stot
fin ≥ Stot

in determines the direction of real processes occurring in
adiathermally isolated (compound) systems.

• Expresses in a precise way and quantifies the degree of irreversibility of physical
processes,

• Determines the equilibrium states of thermodynamic systems under various condi-
tions (we will elaborate on this Callenian point of view in due course).

• Puts upper limits on efficiencies of thermodynamic machines or, more generally,
limits the efficiency with which heat can be converted into work.

• Limits possible use of huge amount of internal energy of bodies around us (e.g. the
energy of oceans).
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• Is important for thermodynamics of chemical reactions and in biology and in many
other areas (including even economy!).

To quote J.R. Emden:33 “In the huge manufactory of natural processes the principle of
entropy occupies the position of manager, for it dictates the manner and method of the
whole business, whilst the principle of energy merely does the bookkeeping, balancing
credits and debits.”

33Jacob Robert Emden (1862 - 1940) a Swiss astrophysicist and metheorologist.
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LECTURE IV (TMD)

We now set ourselves to infer the integrability of the heat form d̄Q of any thermally
homogeneous system and, in consequence, the existence of the entropy as a state function,
as well as the crucial property of the heat form’s integrating factor first from the Kelvin’s
formulation of 2TMDL. (Since we have shown that this formulation is equivalent to the
Clausius’ one and vice versa, we may claim, if we wish, that we start from the Clausius’
formulation, as well). After this is done, we will discuss how these properties follow from
the Carathéodory’s principle.

At the beginning we will consider adiathermal and reversible (i.e. adiabatic) changes,
in which d̄Q = dU − d̄W = 0, which form a (rather special) subclass of all adiathermal
changes. In the case of simple systems, e.g. fluids characterized by the variables p and V ,
the equation

d̄Q =

[

(

∂U

∂V

)

p

+ p

]

dV +

(

∂U

∂p

)

V

dp = 0 , (42)

or, choosing V and t = t(V, p) as independent variables, the equation

d̄Q =

(

∂U

∂t

)

V

dt+

[(

∂U

∂V

)

t

+ p

]

dV = 0 , (43)

determines uniquely in the parameter space a family of nonintersecting curves34 labeled
by the initial point which therefore makes the heat form d̄Q trivially integrable in such
cases. If the system is the perfect gas, the equation (43) reduces to

C
(t)
V dt+ p(t, V ) dV = 0 , (44)

and, if in addition the constancy of C
(t)
V is assumed, yields immediately, upon using

the equation of state p(t, V ) = nRt/V , the adiabatic curves t V nR/C
(t)
V = const., or

p V 1+(nR/C
(t)
V

) = p V C
(t)
p /C

(t)
V = const. (The relation C

(t)
p = C

(t)
V + nR satisfied by the

principal heat capacities of the perfect gas follows from 1TMDL under the same physical,
but as yet mathematically not justified, assumption which allow to write the equation
(44).) The heat form d̄Q is made integrable by just dividing it by t (or const.×t), that is,
as advertised, its integrating factor is indeed a function (in this case a linear one) of the
empirical temperature t (defined by the perfect gas thermometer).

The example given above is to some extent trivial because in two dimensions every
one-form is integrable. (What is less trivial is the fact that the integrating factor is
proportional to the empirical temperature.) However in classes you have seen (at least
those who attended...) an example (taken from the Pippard’s book) of a one-form in three

34It should be known from the standard Math II course (at least to those trained in math classes by
me) that the equations of the type P (x, y)dx+Q(x, y)dy = 0 sometimes do have singular points through
which more than one integral curve (solution) passes; such cases are here excluded.
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Figure 5: Carnot cycle realized with a nonsimple system (a working body) characterized
by three parameters X1, X2 and X3 ≡ y. The lines marked “ad” represent adiathermal
reversible (adiabatic) changes; the lines AB and CD lie entirely in the two-dimensional
surfaces of constant temperature (t1 and t2, respectively).

dimensions which is not integrable. Thus not every one-form in more than two dimensions
is integrable.

To establish in the general case the integrability of the heat form d̄Q = dU − d̄W
which can also be written as (Xi′ stands for all variables other than Xi and for simplicity
we have renamed the single nondeformative variable y to Xo)

d̄Q =
o
∑

i=1

(

∂U

∂Xi

)

Xi′

dXi −
o−1
∑

i=1

yi(X1, . . . , Xo) dXi , (45)

we will (as in the case of proving the existence of the empirical temperature as a function of
state) first present a reasoning which is more physical (and uses virtually no mathematics)
and then a more mathematical one.

To show in a physical way, using the Carnot cycles, that the Kelvin’s 2TMDL implies
integrability of the heat form d̄Q of a thermally homogeneous system, we start by taking
two isothermal hyper-surfaces t(X1, . . . , Xo) = t1 and t(X1, . . . , Xo) = t2 with t1 6= t2 (if
the system has three independent parameters these are ordinary two-dimensional surfaces
in the three-dimensional parameter space - see Figure 5) of this system. From 0TMDL
we know such hyper-surfaces always exist and are not intersecting with one another (the
empirical temperature is a unique state function - it does not have “branches”). We
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Figure 6: Two different Carnot engines working between the same two heat reservoir’s at
temperatures t1 and t2.

consider on the surface t = t1 a curve connecting two points A and B (B 6= A) belonging
to this surface. Then we consider two curves which are two solutions of the equation
d̄Q = 0 passing through the points A and B and intersecting the surface t = t2 at the
points D and C, respectively (Figure 5). (The equation d̄Q = 0 can always be integrated
step by step starting from the points A and B and continuing until the resulting two curves
cross the hypersurface t = t2, although these curves may not be uniquely determined by
the equation d̄Q = 0 and the starting point). In this way one constructs a reversible
cycle - the Carnot cycle, called also the Carnot engine - the segments AB and CD of
which correspond to isothermal changes of the considered system while the segments BC
and DA correspond to its adiathermal reversible changes. Beginning from the state A,
the system takes in the isothermal change A → B a heat Q1 (which can be positive or
negative) from a reservoir at the temperature t1 and in the isothermal change C → D - a
heat Q2 from another reservoir at the temperature t2 and remains adiathermally isolated
when going from B to C and from D to A. As the system returns to the state A, its final
internal energy is the same as the initial one and, by 1TMDL, the work W̄ done by the
system must be equal

W̄ = Q1 +Q2 . (46)

Using the Kelvin’s statement of 2TMDL it will be now argued that the ratio −Q1/Q2 is
universal, that is, it has the same value irrespectively of the nature of the system perform-
ing such a cycle, so long as the two isotherms remain at the (empirical) temperatures t1
and t2. The negative sign of the ratio Q1/Q2 (that is, the positive sign of −Q1/Q2) is also
a direct consequence of Kelvin’s 2TMDL: if it were positive (Q1 and Q2 of the same sign),
it would be possible to accomplish the cycle (which has been constructed as reversible)
in the sense that both Q1 and Q2 were positive; of the positive work W̄ = Q1 + Q2 its
amount Q1 could be put back irreversibly (by a Joule’s paddle-wheel device, for instance)
into the reservoir at t1 and the net result of the process would be only the extraction of
a positive heat Q2 from the reservoir at t2 and performance of a positive work W̄ = Q2.
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This is not possible according to Kelvin. To show that the ratio −Q1/Q2 is universal, one
considers two such reversible Carnot engines which may be constructed using two differ-
ent thermodynamical systems working between the same two empirical temperatures t1
and t2, of which the first engine absorbs the heats Q1 and Q2 and the other one Q′

1 and
Q′

2 (Figure 6). It is then possible to chose two integers k and k′ so that to the desired
accuracy k|Q1| = k′|Q′

1|. This is always possible because any real number |Q1|/|Q2| can
be approximated by a rational number k′/k (recall the construction of the real number
as classes of Cauchy sequences!). One can then treat the two Carnot engines as a single
(compound) system and consider its cycle consisting of k runs of the first cycle and k′

of the second one accomplished in such senses that the heats Q1 and Q′
1 are of opposite

signs. In the complete cycle of the compound system the total heat k Q1 + k′Q′
1 taken

from the reservoir at t1 is then zero, while the total heat taken from the reservoir at t2
equals k Q2 + k′Q′

2 and by 1TMDL must be equal to the work done by the compound
system. By Kelvin’s 2TMDL this cannot be positive, so

k Q2 + k′Q′
2 ≤ 0 . (47)

But because the individual cycles, and therefore the cycle of the compound system, are
reversible, also

−(k Q2 + k′Q′
2) ≤ 0 , (48)

which follows from the possibility of accomplishing the cycle of the compound system in
the opposite sense. Thus, k Q2 + k′Q′

2 = 0 too, and from the two equalities

k Q1 = −k′Q′
1 ,

k Q2 = −k′Q′
2 ,

it readily follows that Q′
1/Q

′
2 = Q1/Q2. Therefore, as proposed, the ratio of heats can

only depend on the temperatures t1 and t2:

−Q1/Q2 = f(t1, t2) , (49)

and the function f(t1, t2) must be universal (independent of the system accomplishing
the Carnot cycle between the temperatures t1 and t2).

In the next step one shows that the universal function f(t1, t2) necessarily factorizes:
f(t1, t2) = φ(t1)/φ(t2). To this end one considers a compound Carnot cycle constructed
out of one Carnot cycle C12 working between t1 and t2, consisting as previously of the
changes A → B → C → D → A (Figure 5), and another one, C23, working between t2
and t3 and consisting of the changes35 D → C → F → G → D. Viewing the compound
cycle composed of the cycle C12 followed by the cycle C23 (cf. Figure 7) as a single

35It is not necessary that these two cycles be performed by the same system; it is enough that the heats

Q
(12)
2 and Q

(23)
2 taken at t2 by the systems performing cycles C12 and C23 were of equal absolute values

and of the opposite signs and taken from the same reservoir.
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Figure 7: Compound Carnot cycle operating between reservoirs at temperatures t1 and
t3 composed of two cycles so that the heats taken from the intermediate reservoir at t2 is
zero: Q

(12)
2 +Q

(23)
1 = 0.

cycle executed between the temperatures t1 and t3, on one hand one has −Q1/Q3 ≡
−Q(12)

1 /Q
(23)
3 = f(t1, t3) while on the other hand

−Q1/Q3 = f(t1, t3) =

(

−Q
(12)
1

Q
(12)
2

)(

−Q
(23)
2

Q
(23)
3

)

= f(t1, t2) f(t2, t3) , (50)

because Q
(12)
2 = −Q(23)

2 . This is possible only if the function f(t1, t2) factorizes as pro-
posed: f(t1, t2) = φ(t1)/φ(t2). Thus, in any Carnot cycle working between temperatures
t1 and t2, independently of the nature and degree of complication of the system used to
construct it,

−Q1/Q2 = φ(t1)/φ(t2) ≡ T1/T2 . (51)

Obviously T ∝ φ(t) can always be taken for an empirical temperature, but in view of the
fact that the ratio of heats taken by any system in the reversible Carnot cycle executed
between any two reservoirs is universally given by the ratio of their temperatures T1 and
T2 defined in this way, T is called the absolute or thermodynamic temperature.
Thus36

T = const.× φ(t) , (52)

and operationally the temperature T is determined, assuming that t2 > t1 and that the
cycle is performed so that W̄ is positve, by the efficiency

η ≡ W̄

Q2
=
Q1 +Q2

Q2
= 1− T1

T2
, (53)

of any Carnot cycle working between any two the reservoirs having temperatures t1 and
t2. This means that any empirical temperature t defined using a thermometric body can

36As discussed in Lecture I, the proportionality constant in (52) is, since 1954, fixed by assigning to the
triple point of water the absolute temperature equal exactly 273.16 K. Before 1954 the constant factor
was fixed by the requirement that at 1 atm there be 100 units between the ice melting point and water
boiling point; this led to the temperature 271.15 K of the ice melting point (at 1 atm).
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Figure 8: A realization of the fragment Γi of the cycle executed by the body σ. The cycle
itself, although marked by a continuous line, as if it consisted of a sequence of equlibrium
states, need not be such: it need not be reversible and on its stages the system σ may not
be in eqiuilibrium.

in principle be calibrated with respect to the absolute temperature, that is the form of the
function φ(t) established, by performing a Carnot cycle using this body as the working
substance under conditions as nearly ideal, as possible. In practice, since the perfect gas
temperature scale turns out (by taking it as the working substance in the Carnot cycle)
to be proportional to the absolute one, it is easier (if the physical conditions allow for
this) to relate a given empirical temperature to the perfect gas temperature.

Above we have shown that if a system performs a Carnot cycle between absolute
temperatures T1 and T2 (T1 < T2), then

Q1

T1
+
Q2

T2
= 0 . (54)

We now generalize this result, still relying on the Kelvin’s formulation of 2TMDL. The
generaliztion is necessery to arrive at the notion of entropy.

Consider a system σ executing a cyclical process of any degree of complexity which
we mentally can split into a large number (infinite in the limit) of small (infinitesimal)
segments (subprocesses) Γi, i = 1, . . . ,M (M → ∞). At the i-th subprocess Γi of the
cycle a work is done on or by the system σ and some heat is transferred to or abstracted
from this system. In the gedanken experiment this transfer of the amount qi (positive
or negative) of heat to the system can be accomplished with the help of an infinitesimal
Carnot cycle Ci working between a single reservoir R0 of temperature T0 and another
auxiliary reservoir Ri at a temperature T ext

i (see Figure 8). One can imagine that the
Carnot cycle Ci delivers the amount qi (positive or negative) of heat from the reservoir
at T0 to Ri and then the same amount of heat qi is transferred from the reservoir Ri at
Ti to the system σ. The last step - the transfer of qi to σ may be irreversible; we do not
assume that the system σ is in equilibrium with Ri nor even in equilibrium in itself, so its
temperature (as a single parameter characterizing it) may well not be definable at some
or all stages of the cycle.
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Since each Carnot cycle Ci is perfectly reversible, it takes, as follows from (54), from
R0 the heat

qi
T0
T ext
i

. (55)

Moreover, since all Carnot engines Ci return to their initial states, and the same is assumed
about the system σ, the total amount W̄ of work obtained from the whole compound
cycle equals the total heat taken by all cycles Ci from the reservoir at T0. By the Kelvin’s
principle, the work W̄ cannot be positive (for this would simply mean taking an amount
of heat from R0 and converting it all into work by means of the cycle executed by the
system σ and the auxiliary Carnot cycles). Thus

W̄ =
∑

i

qi
T0
T ext
i

≤ 0 . (56)

Taking the limit M → ∞ and omitting T0 which is positive, one obtains in this way the
inequality

∮

q

T ext
≤ 0 , (57)

known as the Clausius inequality37 (despite the fact that we derived it by relying on
the Kelvin’s principle).38 The temperature under the integral bears the subscript “ext” to
stress (strongly!) the fact that in general this is not the temperature of the system σ (this
may not be definable) but the temperatures of the (changed in the process) reservoirs
from which the heat q is supplied to the system σ and which all are in equilibrium within
themselves (they can be assumed to be sufficiently large).

Only if the cycle executed by the system σ is reversible (which requires that at every
stage σ is in equilibrium within itself, and in thermal equilibrium with the reservoir Ri

with which it exchanges heat at this stage) can one identify the temperatures T ext with
the actual (on a given stage of the system’s σ cycle) temperature of the system σ (recall
- Lecture II - that the heat transfer between two bodies can be realized reversibly only if
their temperatures are nearly equal). Moreover, if the cycle executed by σ is reversible,
it can be executed in the opposite sense, leading to the inequality

−
∮

q

T ext
= −

∮

d̄Q

T
≤ 0 . (58)

In this case, because the changes of the system σ composing the cycle it executes are
reversible, the elementary heat q can be interpreted as the differential form d̄Q on the
space of the system’s σ equilibrium parameters (and, as said, Text identified with the

37This inequality is frequently written erroneously with the sign ≥, because students usually remember
that changes of entropy are nonnegative and the factor under the integral q/Text is confused with dS =
d̄Q/T ...

38In classes you will prove it relying directly on the Clausius’s own principle.
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actual system’s temperature T ). Hence, if the cycle is reversible, the Clausius inequality
becomes the equality and one is allowed to write it in the form

∮

d̄Q

T
= 0 , (59)

which generalizes the equality Q1/T1 +Q2/T2 = 0 holding for Carnot cycles.39

The last equality allows to define entropy S as a state function, because it shows that
the integral of d̄Q/T taken between the equilibrium states A and B of any thermodynam-
ical system does not depend on the reversible path (which can be traced in the space of
the parameters characterizing equilibrium states of the system) between these states: If
Γ1
A→B and Γ2

A→B are two such paths, then

0 =

∮

d̄Q

T
=

∫

Γ1
A→B

d̄Q

T
+

∫

Γ2
B→A

d̄Q

T
, (60)

hence
∫

Γ1
A→B

d̄Q

T
=

∫

Γ2
A→B

d̄Q

T
. (61)

The difference of entropies of the two equilibrium states A and B of a system can be then
defined as

SB − SA =

∫ B

A

d̄Q

T
,

with the integral being taken over any reversible path connecting A with B, and if
for every system a reference state R is chosen and ascribed (arbitrarily) the value S0 of
entropy,40 then the entropy of any other state A can be defined as

SA = S0 +

∫ B

R

d̄Q

T
,

much in the same way as the internal energy U of every state has been defined with respect
to the energy U0 of a reference state by linking the states by adiathermal changes of the
system.41 It is of course reasonable to take the same reference state R of a given system
for defining its values of U and S.

39If in a textbook you see the Clausius inequality written as

∮

d̄Q

T
≤ 0 ,

you can be sure that the author does not understand it properly.
403TMDL, to be discussed, allows to fix entropy of any thermodynamic system in absolute terms (up

to a common scale factor).
41Notice, however, that to define U the adiathermal paths connecting the equilibrium states R and A

need not be reversible.
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The existence of entropy as a function of state means that the heat form d̄Q of any
thermodynamical system (with the exception of systems possessing internal adiathermal
partitions) is integrable - the surfaces which are solutions of the equation (recall the
material of classes!) d̄Q = 0 are simply the surfaces S = const. and its integrating
factor, which is singled out by its dependence on the system’s parameters X1, . . . , Xo

only through the empirical temperature t(X1, . . . , Xo) is just the absolute temperature
T = φ(t(X1, . . . , Xo)) defined by the Carnot cycle. In reversible adiathermal changes of
any system its entropy S stays constant. This also means that in a reversible processes
the heat form d̄Q can be written as

d̄Q = TdS , (62)

(and not only as dU − d̄W ) and this will have, as will be seen, important practical con-
sequences. Using this relation, which must hold for reversible changes of every system
(thermally homogeneous system in the case of a compound one), it is straightforward to
show that, granted that the integration factor of the form d̄Q is restricted to depend only
on t (as follows from the presented reasoning), the only its nonuniqueness and nonunique-
ness of entropy reduces to

T̃ = aT , S̃ =
1

a
S + b . (63)

Indeed, if alternative temperature T̃ and entropy S̃ are introduced so that d̄Q can be
written in two ways as

d̄Q = T dS = T̃ (T ) dS̃(X1, · · · , Xo) ,

(T and T̃ must be functions of t only and this implies that T̃ = T̃ (T )), one can pass to
the new set of variables (coordinates on the manifold of equilibrium states) with S being
one of them, Xo = S, and X1, . . . , Xo−1 the remaining ones. In these new variables the
above equality can be written as

dS =
T̃ (T )

T





(

∂S̃

∂S

)

X1,...,Xo−1

dS +

o−1
∑

i=1

(

∂S̃

∂Xi

)

S,Xi′

dXi



 .

From this, by comparing the coefficients of the differentials on both sides, it readily follows
that (∂S̃/∂Xi)S,Xi′

= 0 (where Xi′ denotes all parameters other than Xi) which implies

that S̃ = S̃(S) and, moreover, that

T̃ (T )

T

dS̃(S)

dS
= 1 ,

or that

dS̃(S)

dS
=

T

T̃ (T )
.
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Since the two sides of the above equality depend on different variables (S and T , re-
spectively) the equality can hold only if T/T̃ (T ) = 1/a = dS̃/dS. This gives the result
(63).

We can now present another way of arriving at the same consequences of 2TMDL
(still relying on the Kelvin’s principle) without using Carnot cycles and appealing more
to mathematics (but understood physically, without mathematical hieroglyphs). We will
illustrate it by considering a three parameter system, so that (45) takes the generic form
d̄Q = y1 dX1 + y2 dX2 + y3 dX3. We begin by drawing in the system’s parameter space
an adiabat, i.e. a line corresponding to an adiathermal reversible change of the system,
Γ (constructed by making steps correlated always by the condition d̄Q = 0) crossing two
“successive” (i.e. infinitesimally close to one another - they are distributed continuously)
isothermal surfaces. Since the system has three parameters, it is possible to draw adia-
batic lines beginning at the adiabat Γ and lying entirely within the respective isothermal
surfaces. We can therefore consider two points P and P ′ lying on two such lines on two dif-
ferent but infinitesimally close isothermal surfaces (corresponding to infinitesimally close
temperatures t and t′) and removed arbitrarily far from the points in which these lines
start from the adiabat Γ. The integral

∫ P ′

P

d̄Q ,

taken along the constructed adiabatic lines (the two ones lying on the “successive” isother-
mal surfaces and the fragment of the adiabat Γ itself) is zero. Then from the Kelvin’s
principle it follows that if P and P ′ are infinitesimally close to one another (one can ar-
range them so, because the two isotherms on which they are situated are infinitesimally
close to one another), then the segment PP ′ must also give d̄Q = 0 (more precisely, the
one-form d̄Q must give zero on the infinitesimal vector PP ′ joining these two points) for
otherwise one would have constructed in this way a reversible cycle in which the system
takes the heat d̄Q on the segment PP ′ and zero on its remaining parts. Since the cycle
would be reversible, this would violate the Kelvin’s principle. In this way we can construct
a two-dimensional adiabatic surface. Moreover, since we now know that on the vector PP ′

tangent to this surface the form d̄Q gives zero, this heat form cannot give zero on a vector
PP ′′ joining P with a neighbouring point P ′′ not lying in the constructed surface, so PP ′′

is not an adiabatic line and, therefore, P ′′ cannot be connected to P by any adiabatic
path, however roundabout (if it could, then this path closed with PP ′′ would represent a
reversible cycle wchich could be executed in such a sense that the heat taken by the sys-
tem on PP ′′ would be positive; since by 1TMDL this heat would have to be all converted
into work, this would violate the Kelvin’s principle). So the constructed surface is en-
tirely surrounded by points inaccessible on reversible adiathermal paths. Other adiabatic
surfaces can be constructed similarly starting from any other curve along which d̄Q = 0.
The reasoning can be generalized to more complicated systems requiring more than three
parameters (one constructs in such cases adiabatic hypersurfaces of dimension o − 1).
The constructed adiabatic (hyper)surfaces can be then labeled by values of a parameter
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σ much in the same way as the isothermal (hyper)surfaces were labeled by the values of
an empirical temperature t. It is natural to do it in such a way that the resulting function
σ = σ(X1, . . . , Xo) is a continuous and differentiable function of the system’s parameters.

The existence of adiathermal surfaces can be also demonstrated taking as the starting
point the Carathéodory’s formulation of 2TMDL, instead of the Kelvin’s one. One possible
(more mathematical) construction is given in the material prepared for classes. Here we
will briefly show the same in a more intuitive way. The Carathéodory’s principle states
that in the neighbourhood of any state of any thermodynamical system there are other
states which are inaccessible in adiathermal changes. From this it follows that there must
be even more points inaccessible in reversible adiathermal changes which form a more
narrow class than all possible adiathermal changes. It is straightforward to see that if
all states of the system are on equal footing, the nearest points inaccessible in reversible
adiathermal changes from a given point P must be already infinitesimally close to it (and
not at a finite distance from it). For if Q, the nearest inaccessible point on such paths
were at a finite distance from P , on the line connecting P with Q, there would have to
exist a point P ′, arbitrarily close to Q, accessible on reversible adiathermal paths from P
but not from Q (recall we consider here reversible changes, so any reversible adiathermal
change can occur in both directions). Then the nearest to Q point inaccessible from it
adiabatically would be infnitesimally close to it (the point P ′) but not infintesimally close
to P - some points would be then distinguished. Hence, the Carathéodory’s principle
requires that points inaccessible on adiabatic (reversible adiathermal) paths are in fact
always infinitesimally close to any equilibrium state of any thermodynamical system.

To show that this implies the integrability of the form d̄Q of any thermodynamical
system not possessing adiathermal internal partitions we first show that if P1 and P2 are
two equilibrium states of a (thermally homogeneous) system, then either P2 is accessible
from P1 on adiathermal paths (not necessarily reversible) or it is P1 which is accessible
from P2 in this way, or both these points are mutually accessible in this way. In other
words, we would like to show that the situation that the two points are mutually not
accessible adiathermally is physically impossible.42 To this end let us identify equilib-
rium points of the system by its internal energy U and o − 1 deformative parameters
X1, . . . , Xo−1 related to the works that can be reversibly done on it.43 Take the system

in the state P1 = (X
(1)
1 , . . . , X

(1)
o−1, U

(1)) and perform on it reversibly and adiathermally
works (that is, so that d̄Q = 0) until the parameters Xi take the same values as in the

state P2 = (X
(2)
1 , . . . , X

(2)
o−1, U

(2)). The state P ′ = (X
(2)
1 , . . . , X

(2)
o−1, U

′) reached in this
way is the same as P2 only if U ′ = U (2). In this case P1 and P2 are obviously mutually
accessible on adiathermal (in this case also reversible) paths. If instead U (2) > U ′, then
- as the experience shows - one can always perform on the adiathermally isolated system

42This can be treated as the proof of the property of such thermodynamic systems which was used
(Lecture II) in ascribing to every system’s equilibrium state a value of the internal energy U only if we from
the beginning assume (what seems reasonable) that internal energy is a property existing independently
of the procedure of ascribing its concrete (relative) values to all system’s equilibrium states.

43Notice that if the system were purely mechanical, the variable U treated here as its o-th coordinate
would be redundant being entirely dependent on the remaining o− 1 coordinates.
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Figure 9: Left: The adiathermal path by which the equilibrium state P2 is accessible from
the equilibrium state P1. Right: if there were two different (equilibrium) states: P ′ and
P ′′ with U ′′ > U ′ accessible from P1 on reversible adiathermal paths, every equilibrium
state Q′′ in the vicinity of P ′′ would be accessible from P ′′ on adiathermal paths (in
contradiction with the Carathéodory’s principle).

an irreversible work (with the help of an analog of the Joule paddle-wheel device or of a
current passed through the system) as a result of which its energy increases and reaches
the value U (2), while the parameters Xi remain unchanged. In this case P2 is accessible
from P1 on adiathermal paths (see the left Figure 9). If U (2) < U ′ one can start from the
state P2, do first on the adiathermally isolated system an irreversible work which increases
its energy up to the value U ′ without affecting the values of the parameters Xi, and then
the point P1 can be reached adiathermally by performing on the system reversible works
so that the parameters Xi take the values X

(1)
i .

Next we show that the point P ′ reached from P1 on adiathermal reversible paths (by
changing the parameters Xi as a result of works done reversibly on the system) is unique
for otherwise the Carathéodory’s principle would be violated.44 Indeed, suppose that
from the state P1 two points P ′ = (X

(2)
1 , . . . , X

(2)
o−1, U

′) and P ′′ = (X
(2)
1 , . . . , X

(2)
o−1, U

′′)
with U ′′ 6= U ′ can be reached by doing reversible works on the adiathermally isolated
system. Then if U ′′ > U ′, all points in the neighbourhood of P ′′ could be reached from
it on adiathermal paths (contrary to what the Carathéodory’s principle says): to reach a

point Q′′ = (X
(2)
1 + δX1, . . . , X

(2)
o−1 + δXo−1, U

′′ + δU) in the vicinity of P ′′ one could first
reach the state P ′ from P ′′ adiathermally and reversibly (passing through P1); in the same

way one could further change the parameters Xi so that they take the values X
(2)
i + δXi

(the same as the ones defining the point Q′′); since the last operation is an infinitesimal
change - the increments δXi being arbitrarily small - the energy of the state reached in
this way should be still smaller than U ′′+ δU and the state Q′′ could be therefore reached
by performing on the adiathermally isolated system an irreversible work not affecting the
values of the parameters Xi (see the right Figure 9). If U ′′ < U ′, then, of course, all states
Q′ in the small neighbourhood of the state P ′ could be reached on adiathermal paths.

Considering now a pair of equilibrium states P1 and P2 of a thermally homogeneous
system one can ascribe to them values σ1 and σ2 of a new parameter σ according to the

44This follows, of course, already from 1TMDL applied to adiathermally isolated systems which served
to define internal energy U (here we consider a more restricted class of works - the reversible ones), but
it is instructive to see that the same follows also from the Carathéodory’s principle.
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rule that σ2 < σ1 if P2 is adiathermally inaccessible from P1, σ1 < σ2 if P1 is adiather-
mally inaccessible from P2 and σ1 = σ2 if they are mutually accessible in this way. The
procedure is clearly consistent, for if we consider a state P3 and ascribe to it a value
σ3 by comparing it with the state P1 (i.e. σ3 < σ1 if P3 is not accessible from P1 on
adiathermal paths, etc.) then if e.g. σ1 > σ2 but σ3 > σ1, obviously also σ3 > σ2 in
agreement with the fact P2 cannot be adiathermally accessible from P1 through P3. Fur-
thermore, it is possible to ascribe the values of σ to the equilibrium states of the system
in such a way that σ is a single valued, continuous function of the system’s parameters
X1, . . . , Xo−1, U (and therefore of any other set X1, . . . , Xo of state parameters uniquely
identifying the states of the system). To prove this, it is sufficient to indicate one partic-
ular way of ascribing σ satisfying this requirement. This can be done as follows: chose
a reference state P0 = (X

(0)
i , . . . , X

(0)
o−1, U

(0)) and ascribe to it a value σ0. To give the
value of σ to another point P1, one can pass from it reversibly (and adiathermally) to a

point P ′ = (X
(0)
i , . . . , X

(0)
o−1, U

′), which, as has been shown above, is unique. This allows
to unambigously ascribe to P1 the value σ1 = σ0 + const.× (U ′ − U0), where const.> 0 is
arbitrary (the physical dimension of σ can be in this way different than that of internal
energy).45 The continuity of σ as a function of the state parameters is then a consequence
of the continuity of internal energy U . Furthermore, as follows from the foregoing discus-
sion, if U ′ < U0, then σ1 < σ0 in agreement with the inaccessibility of P1 on adiathermal
paths from P0. The adiabatic (hyper)surfaces which are solutions of the condition d̄Q = 0
are then defined by the condition σ(X1, . . . , Xo) = const.

As the adiabatic (hyper)surfaces can be constructed (the approaches based on Kelvin’s
and Carathéodory’s principles merge at this point), one can now proceed to showing that
in a reversible change of a system its heat form d̄Q can be written as TdS with T being
a function of the empirical temperature t only. One starts by labeling the constructed
adiabatic (hyper)surfaces of dimension o− 1 by a parameter σ (a concrete way of ascrib-
ing values of σ, if one starts from the Carathéodory’s principle has been given above)
constructing thereby a function σ(X1, . . . , Xo), much in the same way as the function
t(X1, . . . , Xo) has been introduced by labeling different isothermal surfaces (and in di-
rect analogy with t(X1, . . . , Xo) the function σ(X1, . . . , Xo) can be called the empirical
entropy).

As the adiabatic surfaces (solutions to d̄Q = 0) exist, from the first Carathéodory’s
theorem46 it follows that the form d̄Q(X1, . . . , Xo) has an integration factor. The same
can be also shown here directly by using the method of Lagrange multipliers. Since on
surfaces which are solutions to d̄Q = 0, the function σ(X1, . . . , Xo) is constant, in any

45This way of ascribing the value of σ to a state does not imply that σ is independent of the deformative
parameters X1, . . . , Xo−1 that characterize that state: if σ is expressed in terms of the internal energy
of that state (and not in terms of U ′ which is energy of another state reached from it adiathermally and
reversibly), it will, in general, depend also on the state deformative parameters.

46Hopefully discussed in classes.
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adiabatic (reversible adiathermal) change of the considered system

dσ ≡
o
∑

i=1

∂σ

∂Xi

dXi = 0 , (64)

similarly as47

d̄Q =
o
∑

i=1

yi dXi = 0 . (65)

Therefore,

d̄Q− λdσ ≡
o
∑

i=1

(

yi − λ
∂σ

∂Xi

)

dXi = 0 , (66)

where λ(X1, . . . , Xo) can be an arbitrary state function (on the space of states of the
system). In this relation only o− 1 differentials dXi are independent (can be changed at
will), because they are (at every point) correlated by (64) or (65). If one regards, dX1

as determined by the remaining differentials, one can adjust the arbitrary state function
λ(X1, . . . , Xo) so as to make the coefficient of dX1 in (66) vanish:48

y1(X1, . . . , Xo) = λ(X1, . . . , Xo)
∂σ

∂X1

. (67)

Then, since (66) must hold for any adiathermal reversible change in which dX2, . . . , dXo

can be chosen arbitrarily, one concludes that

yi(X1, . . . , Xo) = λ(X1, . . . , Xo)
∂σ

∂Xi
, (68)

now for all i = 1, . . . , o. Hence

d̄Q =

o
∑

i=1

yi(X1, . . . , Xo) dXi =

o
∑

i=1

λ(X1, . . . , Xo)
∂σ

∂Xi
dXi = λdσ . (69)

1/λ is therefore an integrating factor of d̄Q. One has, however, to show (and this does
not follow directly from the Carathéodory’s first theorem) that λ cannot be an arbitrary
function of the parameters X1, . . . , Xo but necessarily takes a form of a product of two
functions: one which depends on X1, . . . , Xo through the empirical temperature, and
another one which depends on these parameter through the function σ itself.

To this end one considers two systems, 1 and 2, the first one characterized by the
variables X1, . . . , Xo and the second one by Y1, . . . , Yr, each of which has its own heat

47Here yi are not necessarily the generalized forces because we included in them also the terms following
from dU(X1, . . . , Xo).

48And this is the essence of the trick with the Lagrange multipliers.
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form (d̄Q1 and d̄Q2), its own system of labeling adiathermal (hyper)surfaces (functions
σ1(X1, . . . , Xo) and σ2(Y1, . . . , Yr)) and an integration factor of its heat form (functions
λ1(X1, . . . , Xo) and λ2(Y1, . . . , Yr)). We now imagine these two system brought into ther-
mal contact through a diathermal wall and in equilibrium, so that their temperatures are
equal

t1(X1, . . . , Xo) = t = t2(Y1, . . . , Yr) . (70)

The resulting compound system, being thermally homogeneous, is therefore characterized
by o+ r − 1 variables for which one can take the common temperature t and X2, . . . , Xo

and Y2, . . . , Yr. As any thermally homogeneous thermodynamical system, it too must have
its empirical entropy function Σ(t, X2, . . . , Xo, Y2, . . . , Yr) and its heat form d̄Q must have
an integrating factor Λ(t, X2, . . . , Xo, Y2, . . . , Yr). Since d̄Q = d̄Q1 + d̄Q2, the following
relation must, therefore, hold

Λ(t, X2, . . . , Xo, Y2, . . . , Yr) dΣ(t, X2, . . . , Xo, Y2, . . . , Yr)

= λ1(t, X2, . . . , Xo) dσ1(t, X2, . . . , Xo)

+λ2(t, Y2, . . . , Yr) dσ2(t, Y2, . . . , Yr) .

Dividing both sides by Λ and going over to the variables t, σ1, σ2, X3, . . . , Y3, . . . one has

dΣ(t, σ1, σ2, X3, . . . , Y3, . . .) =
λ1
Λ
dσ1 +

λ2
Λ
dσ2 . (71)

It is now clear that Σ is a function of σ1 and σ2 only (because only differentials of these
two variables appear on the right hand side), so any dependence on X3, . . . , Y3, . . . and t
on the right hand side must drop out. But since λ1 does not depend on Y3, . . . , Yr, neither
can Λ, and in the same way, since λ2 does not depend on X3, . . . , Xo, the factor Λ cannot
depend on these variables either. It then follows, that

λ1 = λ1(t, σ1) , λ2 = λ2(t, σ2) , Λ = Λ(t, σ1, σ2) ,

and, moreover, the dependence on the empirical temperature t must also drop out from
the ratios λ1/Λ and λ2/Λ:

∂

∂t

(

λ1
Λ

)

=
∂

∂t

(

λ2
Λ

)

= 0 ,

and from this it follows that

∂

∂t
lnλ1(t, σ1) =

∂

∂t
lnλ2(t, σ2) =

∂

∂t
ln Λ(t, σ1, σ2) . (72)

All these three derivatives must be therefore equal to the same function of the empirical
temperature (the only variable which is common in these derivatives), say g(t), which
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must be a universal function (the same for all thermodynamical systems). Integrating the
first two equalities

∂

∂t
lnλ1(t, σ1) = g(t) ,

∂

∂t
lnλ2(t, σ2) = g(t) ,

one gets that

λi(t, σi) = wi(σi) exp

(
∫

dt g(t)

)

,

(The functions w1(σ1) and w2(σ2) are the “integration constants”.) In this way

d̄Qi = λi dσi =

[

a exp

(
∫

dt g(t)

)]

1

a
wi(σi) dσi , (73)

with a a constant, which should be positive (to secure that the absolute temperature - to
be identified below - is the increasing function of t) but is otherwise arbitrary.

It remains to show that the integrating factor Λ of the compound system also has
this structure, with the same universal function of the empirical temperature (the square
bracket in (73)) and the function W which depends on σ1 and σ2 only through Σ. From
(72), in the same way as above, it follows that

Λ(t, σ1, σ2) = W (σ1, σ2) exp

(
∫

dt g(t)

)

.

Since the factor exp
(∫

dt g(t)
)

drops out from the equality d̄Q = d̄Q1+ d̄Q2, one can write
(independence of Σ of t follows from (71))

W (σ1, σ2) dΣ(σ1, σ2) = w1(σ1) dσ(σ1) + w2(σ2) dσ(σ2) ,

from which it is clear that

W (σ1, σ2)
∂Σ

∂σ1
= w1(σ1) , W (σ1, σ2)

∂Σ

∂σ2
= w2(σ2) .

It is now sufficient to differentiate the first of these two equalities with respect to σ2 and
the second one with respect to σ1 to arrive at the relation

∂W

∂σ1

∂Σ

∂σ2
− ∂W

∂σ2

∂Σ

∂σ1
≡ ∂(W,Σ)

∂(σ1, σ2)
= 0 ,

which means that the mapping of (σ1, σ2) into (W,Σ) is of rank one, that is, its image is
a curve, so that W (σ1, σ2) = W (Σ(σ1, σ2)). Hence,

W (σ1, σ2) dΣ = W (Σ(σ1, σ2)) dΣ ,
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which is just what we wanted to prove. Thus the heat form d̄Q = d̄Q1 + d̄Q2 of the
thermally homogeneous compound thermodynamical system can be also written as

d̄Q = Λ dΣ =

[

a exp

(
∫

dt g(t)

)]

1

a
W (Σ) dΣ ≡ T (t) dS ,

with T being a universal function of the empirical temperature t and

S =
1

a

∫ S

dΣW (Σ) ,

a function which is constant in reversible adiathermal changes. Analogous formulae define
the true entropies S1 = S1(σ1) and S2 = S2(σ2) of its subsystems treated as separate sys-
tems. The formulae also clearly show that the freedom in defining entropies of individual
(sub)systems and the absolute temperature is that specified in (63). Moreover, as fol-
lows from the reasoning, the entropy of a compound thermally homogeneous system (not
possessing internal adiathermal partitions) is the sum of the entropies of its subsystems:

d̄Q = d̄Q1 + d̄Q2 = TdS1 + TdS2 = Td(S1 + S2) = TdS . (74)

If a compound system possesses internal adiathermal partitions, or in other words,
is composed of subsystems having different temperatures but which are not in thermal
contact with one another (are separated by adiathermal walls), no inconsistency arises if
its entropy is defined as the sum S = S1+S2+. . . of entropies of its thermally homogeneous
parts. It is clear that defined in this way, entropy of a thermally inhomogeneous compound
system stays constant in reversible transitions in which the compound system as a whole
is thermally isolated.

In the mathematical arguments used above only reversible adiathermal changes have
been exploited. They are sufficient to infer the existence of entropy and proving that the
integrating factor of the heat forms of different systems is universal. The Carathéodory’s
principle itelf makes, however, a statement concerning all possible adiathermal transitions,
not only about the reversible ones. In connection with this it should be remarked that
it does not specify which points in the vicinity of a given point are not accessible. In
particular, it does not tell whether these are poins of smaller or greater entropy than
that of a given point. The empirical entropy has been introduced here so that that these
are states having (empirical) entropy smaller than the given state and, in the case of
changes in which the parameters Xi, i = 1, . . . , o − 1 stay fixed, those corresponding
to smaller energy U . In fact, it must be said that the Carathéodory’s principle must
be supplemented with the ancillary law already adopted in assigning energies to states
of thermodynamic systems (Lecture II) which asserts that of two states P and P ′ of a
system not possessing internal adiathermal partitions either P ′ is accessible from P in
adiathermal changes or the other way around or both these states are mutually accessible
in such changes. Then direct experience (e.g. the Joule experiment) shows that in the
case of adiathermal transitions in which deformative parameters of the system stay fixed,
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accessible are only states of higher energy and we have liberally used this information
in defining the empirical entropy. One could proceed somewhat more formally and infer
purely mathematically the existence of the empirical entropy from the Carathéodory’s
principle applied to reversible changes only and then define the true entropy S (along the
lines presented above, i.e. exploiting only reversible processes). Then one would have
to argue that if the entropies of points P ′ adiathermally (but not reversibly) accessible
from a state P form some range, the entropy S of the point P must be either the lower
or the upper limit of this range49 (in other words, there cannot be points with both,
lower and higher entropy, accessible from a given point) for otherwise all points in the
neighbourhood of P would be accessible on adiathermal paths from P , contrary to what
the Carathéodory’s principle states.50 Further, one would argue that the situation that
all states accessible from P1 have entropy greater than S1 - the entropy of P1 - while all
states accessible from P2 have entropy lower than S2 of P2 is also impossible.51 This then
would reduce the question whether accessible adiathermally are points of higher or lower
entropy to the freedom in chosing the constant a in (63) and (73) thus correlating this
question with that about the sign of the absolute temperature T . This will be done below.

Summarizing, the heat form of any thermally homogeneous thermodynamic system is
integrable and in reversible changes 1TMDL pertaining to such a system can be written
as

dU = TdS +
o−1
∑

i=1

yi dXi . (75)

This differential relation can be now extended to all differential changes, reversible and
also irreversible ones, because it is simply the relation between the state functions U ,
S and Xi at infinitesimally close points (representing equilibrium states of the system).
However one should remember, that only in reversible changes do the differentials TdS
and yidXi have the meaning of the heat absorbed by the system and of the work(s) done
on it. In other words, it is only in reversible changes that one can make the identifications

q = d̄Q = TdS , w = d̄W =

o−1
∑

i=1

yi dXi . (76)

To recall the already used example: consider once again a gas expanding into an additional
volume of the container when the gas (the whole container) is adiathermally isolated. As

49One has to reasonably assume that this range is connected.
50Taking X1, . . . , Xo−1, S as state parameters one could accomplish a transition from P changing the

value of S in either direction reaching the entropy of a chosen point P ′ in the neighbourhood of P and
then adjust reversibly and adiathermally (so not affecting entropy) all the remaining parameters to the
values they have in P ′.

51If S2 > S1 then one could reach P1 adiathermally from P2 and then in the same way any point in
the vicinity of P2; If S2 < S1 there would have to exist a state P having entropy between S2 and S1

which would be accessible adiathermally neither from P1 nor from P2 but then, in agreement with the
ancillary law adopted, both these points would be accessible from P , that is P would be a state from
which states of greater and lower entropy could be reached adiathermally, which has already been shown
to be impossible.
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discussed, this change can be accomplished quasistatically, successively opening additional
volumes dV (see Figure 3), but is always irreversible. (This can now be quantified by
simply comparing entropies of the initial and final states - see Lecture V). In the expansion
of the gas into the additional available volume dV certainly −p dV 6= 0 and, as is clear
from 1TMDL also TdS 6= 0 because dU = 0 (no work is done on the gas and, as the
container is assumed to be adiathermally isolated, no heat is absorbed by the system)
and the two terms must compensate each other: p dV = TdS.

The extension we have made here is the basis of the frequently used way of computing
the change of a state function (be it the system’s energy U or any other its characteristics)
in a process A → B in which the system passes from an equilibrium state A to another
equilibrium state B (the process itself may not be reversible) by saying that one can
integrate the appropriate forms along any reversible path which connects the states A
and B. One does not need to really point this reversible path because all one is doing is
just comparing the differential changes of the state functions.

This can be now used to fix the sign of a in (63) and (73). Consider a system adiather-
mally isolated and perform on it a positive infinitesimal irreversible work not changing its
deformative parameters X1, . . . , Xo−1, thereby increasing its energy by dU > 0. In view
of the relation (13) following from the established (in Lecture II) correlation between the
hierarchy of empirical temperatures and hotness, the empirical temperature of the system
must have increased by dt > 0. The resulting entropy change can be obtained using
the trick just stated: one can imagine the same system reaching the new state reversibly
through a thermal contact52 (i.e. now the system is not adiathermally isolated but still
the parameters X1, . . . , Xo−1 are kept fixed) with a sequence (infinite in principle) of reser-
voirs of appropriately adjusted temperatures. Since now no work has been performed on
the system, 1TMDL leads to dU = d̄Q and 2TMDL to dS = dU/T . If, therefore, the
convention is adopted that adiathermally accessible states are those of entropy not lower
that that of the actual state, i.e. that by convention dS > 0, one is led to the conclusion
that T > 0 and, therefore, that a in (63) and (73) must be such that dT/dt > 0.

Having introduced entropy as a state function we can derive all consequences the
phenomenological approach can lead to (see next Lecture). In particular, we can use it to
express the heat capacities of systems in reversible processes in a convenient way. Recall
first (Lecture II) that any change (process) in which a heat transfer (even an irreversible
one due to the fact that the bodies exchanging heat are not at the same temperatures)
to or from a system occurs, can be realized quasistatically, i.e. so that the system passes
(if other features of the change, like the motion of pistons in the case of fluids, etc., are
realized quasistatically so that the work done on the system can be treated as a form on
the space of its parameters) through a sequence of consecutive equilibrium states. It is
sufficient to imagine that the thermal conductance of the wall through which the system
is in thermal contact with the reservoir of heat is very low. This is then equivalent to the

52This may not always be possible: the example is the system - to be considered in classes - of N
isolated spins. Real spins are usually nuclear spins and they are part of a larger system - they can be
brought into thermal contact with reservoirs only as part of such a larger system; therefore, if they are
treated as isolated, their temperatures can be negative.
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trick discussed above being not different from the situation in which heat is transformed
reversibly from a sequence of adjusted reservoirs. The system’s heat capacity C in such
a change can be therefore defined by projecting the system’s heat form written as

d̄Q = dU(X1, . . .Xo)−
o−1
∑

i=1

yi(X1, . . .Xo) dXi ,

onto the curve (parametrized by the absolute temperature T ) in the space of states rep-
resenting this change:

d̄Q|projected = C(X1(T ), . . . , Xo(T )) dT . (77)

But if the change is reversible (or is realized as indicated above) one can replace d̄Q by
TdS and write

C(X1(T ), . . . , Xo(T )) = T
d

dT
S(X1(T ), . . . , Xo(T )) . (78)

In most cases the process (change) is specified by constancy of certain parameters, e.g. V
or p in the case of simple fluids, and their (principal) heat capacities are computed as

CV = T

(

∂S

∂T

)

V

, Cp = T

(

∂S

∂T

)

p

. (79)

If the considered system is not simple, more constrains have to be specified to define
its heat capacities. For instance, if changes of the volume and the magnetization of a
magnetic body are both taken into account, one has to define its heat capacities as, say,
CM,V or CM,p etc.
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LECTURE V (TMD)

Accepting 2TMDL as a generally valid law of Physics which applies to any macro-
scopic thermodynamical system, we have shown by a variety of means that the heat
form d̄Q of any (thermally homogeneous) system can, in reversible processes, be writ-
ten as TdS, where T = T (t(X1, . . . , Xo)) is the absolute temperature (so, the indicator
telling us whether two system brought into a thermal contact will be in equilibrium) and
S(X1, . . . , Xo) the new state function - the entropy. In infinitesimal reversible processes
1TMDL, dU = q + w, can therefore be written as the sum

dU = TdS +

o−1
∑

i=1

yi dXi , (80)

of two (inexact) differential forms on the space of the system’s equilibrium states, of which
the first one represents the heat absorbed by the system in such a process, and the second
one is the sum of works done on it. We have in this way obtained a convenient represen-
tation of heat capacities characterizing the system in reversible processes as derivatives
of its entropy

CX = T

(

∂S

∂T

)

X

. (81)

We have also stressed that the formula (80) remains valid in any infinitesimal change, as
relating changes of the state parameters except that if the change is not reversible, the
interpretation in terms of heat and works of its individual terms is lost.

Restricting now the attention to the paradigmatic example of a fluid (as a simple
system) one immediately notices that the fundamental relation (80), which in this case
takes the form

dU = TdS − p dV , (82)

implies various, a priori not obvious, relations. For instance, since U is a state function
which can be treated as a function of the variables S and V , one obtains from (82) that

T =

(

∂U

∂S

)

V

, p = −
(

∂U

∂V

)

S

. (83)

Furthermore, its mixed second derivatives must be equal, which gives the relation
(

∂T

∂V

)

S

= −
(

∂p

∂S

)

V

. (84)

This is a relation (not obvious a priori) between two measurable coefficients: the one on
the right hand side can be obtained experimentally by keeping the volume of the fluid fixed
and transferring to it reversibly a heat which is measured; in this way the change ∆S of
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the fluid’s entropy can be determined as ∆S = ∆Q/T ; if this is divided by the measured
resulting change ∆p of the fluid’s pressure, the right hand side is (although not so easily,
as is always the case with calorimetric measurements) determined. The coefficient on
the left hand side is much easier to measure: one simply measures the change ∆T of the
fluid’s temperature resulting from a change ∆V of the fluid’s volume in the adiathermal
(strictly speaking adiabatic) conditions.

The relation (84) and numerous other relations of this sort which can be derived treat-
ing U or S (or other state functions mentioned at the end of Lecture II) as a function
of different pairs of variables, constitute ones of the most important predictions of phe-
nomenological thermodynamics. From the mathematical point of view all of them follow
rather trivially from the existence of entropy as a state function, that is, from the inte-
grability of the heat form d̄Q; from the physical point of view they are highly nontrivial
consequences of 2TMDL, the validity of which is not (as we will show on an illustrative
example below) a mathematical necessity: 2TMDL is the macroscopic reflection of the
intrinsic working of the Nature.

One more, less trivial, example of such relations: consider a nonsimple system, a
fluid or a solid under the hydrostatic pressure, which exhibits dielectric properties. To
characterize its equilibrium states three parameters, e.g. p, V and P are needed and the
relation (80) expressing 1TMDL as applied to such a system reads (P =

∫

V
d3xP ≈ VP

is the system’s total polarization vector and E is the electric field in which the system is
placed)

dU = TdS − p dV + E ·dP . (85)

Instead of considering the internal energy U of this system, one can form another ther-
modynamic potential (a state function), call it Φ, defined as53 Φ = U −ST + pV −E ·P.
It is straightforward to see that

dΦ = −SdT + V dp−P·dE . (86)

In this way Φ is treated as the state function of the independent variables T , p and E ,
which are all easy to control experimentally. It also follows that

(

∂Φ

∂T

)

p,E

= −S ,
(

∂Φ

∂p

)

T,E

= V ,

(

∂Φ

∂E

)

T,p

= −P . (87)

Equality of the second mixed derivatives of the potential Φ now implies (among others)
the relation

(

∂P

∂p

)

T,E

= −
(

∂V

∂E

)

T,p

. (88)

This shows that there must be a nontrivial relation between two seemingly unrelated
phenomena: piezoelectricity - polarization of a material as a result of squeezing it - and

53Φ is the Legendre transform of U . We will tell more about this transformation later.
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Figure 10: Two identical balls in the Earth’s gravitational field. On the right: alternative
view on the ball B as placed in the gravitational field pointing upwards.

electrostriction - which is the change of the material’s volume when the electric field in
which it is placed changes. The two are somehow intimately related by 2TMDL, that is,
by the inner working of the Nature.

To illustrate better the deeply physical character of 2TMDL, let us consider the
following example.54 Two identical homogeneous balls A and B of mass M made of,
say, iron or another material of nonnegligible thermal expansivity, have the same initial
temperatures. One of them, A rests on a horizontal plane (in the Earth’s gravitational
field g), say, on a table, and the other one, B, is suspended on a thread (see the left
Figure 10). The same quantities δQ of heat are supplied to both balls. The question one
may ask is: which one of the two will then have higher temperature? This problem was
once assigned at the International Physics Olympiad and then appeared in many sources.
A possible line of reasoning is as follows: the heat supplied to the ball A causes two
effects: one is the raising of the ball’s center of mass in the gravitational field as a result
of the ball’s thermal expansion and the other effect is the increase of the ball’s internal
energy resulting in raising its temperature; so in this case part of the heat δQ is used up for
performing a mechanical work. In the case of the ball B instead, thermal expansion lowers
the position of its center mass, so in addition to the heat supplied, also the change of its
potential energy contributes to increasing its internal energy. The (expected) conclusion,
therefore, was that it is the ball B which will have at the end higher temperature. Putting
all this in equations: let αlin = (1/R)(dR/dT ) be the linear expansion coefficient of the
ball and C0 its heat capacity (which we can take to be independent of the temperature; for
simplicity we can assume that all the experiment is carried out at zero external pressure)
in the absence of the gravitational field. Then

ball A : δQ = (C0 +MgRαlin) δTA ,

ball B : δQ = (C0 −MgRαlin) δTB ,

from which it readily follows, since αlin is clearly positive, that δTB > δTA. In the following
it will be convenient to treat the ball B as glued to the same horizontal plane as the ball
A but in the gravitational field pointing upwards (see the right Figure 10): in this way the
two situations A and B are distinguished by the sign of g and one can consider g as varying
continuously between positive (g directed downwards) and negative (g upwards) values.

54G. De Palma, M.C. Sormani, Am. J. Phys. 83, 723 (2015).
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T1 T2 = T1 + δT

T1 = T2 − δT
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Figure 11: A heat engine exploiting the thermal expansion of the ball.

Using this convention one can introduce the ball’s heat capacity at constant gravitational
field Cg(g) ≡ C0 +MgRαlin as the ball’s heat capacity in the gravitational field. Then

(

∂Cg(g)

∂g

)

T

=MRαlin . (89)

Yet this reasonably looking solution has been found (by the authors of the cited paper)
to be in conflict with 2TMDL! To see this one can consider the following cycle shown
schematically in Figure 11. Start with the ball on the table at a temperature T1. Then
bring it (not changing its position in the gravitational field) into thermal contact with
a heat bath of temperature T2 = T1 + δT > T1. According to the presented reasoning,
the ball will absorb heat δQabs = (C0 +MgRαlin)δT and its center of mass will raise by
δR = RαlinδT . Now a thread fixed to the ceiling can be attached to it without changing
the ball’s new position in the gravitational field. Then the ball can be connected to a
heat bath at the temperature T1. According to the “solution” presented above, the ball
will loose the heat δQlost = (C0−MgRαlin)δT and its center of mass will raise by another
δR = RαlinδT so that part of the heat absorbed from the reservoir at T2 > T1 will go into
increasing the balls potential energy by 2Mg δR. This potential energy can be converted
into a mechanical work δW̄ bringing at the same time the ball to its initial position
and completing thereby the cycle (operating between the reservoirs at the temperatures
T2 = T1 + δT > T1 and T1 with the ball as the working body). One can now ask what is
the efficiency η of such a cycle? This is easily computed as the ratio of the work done to
the heat absorbed:

η =
δW̄

δQabs
=

2MgRαlinδT

(C0 +MgRαlin)δT
=

2MgRαlin

C0 +MgRαlin
.

It is clearly independent of the temperature difference δT of the two reservoirs! But
according to 2TMDL the efficiency of any cycle operating between temperatures T1 and
T2 = T1 + δT cannot exceed that of the reversible Carnot cycle

ηCarnot = 1− T1
T2

= 1− T1
T1 + δT

=
δT

T1 + δT
,

which decreases to zero as δT goes to zero. Choosing δT sufficiently small, on could, if
the presented “solution” were right, beat the efficiency of the Carnot cycle!
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What was then wrong? We have assumed that the ball in the gravitational field does
not get deformed - that its shape is perfectly spherical independently of whether it rests
on the table or is suspended on a thread. This is acceptable as a mathematical assumption
but not as a physical one. In reality the ball which rests on the table will be somewhat
squashed while the one suspended will be stretched. These deformations do not disappear
as δT → 0 and ultimately will save 2TMDL. Putting things the other way around: it is
2TMDL which tells us that the deformations cannot be neglected. Microscopically, a solid
out of which balls are made is composed of molecules which interact each with the other
ones (or at least with the nearest ones). This can be modeled by small masses connected
with springs (the simplest model of a solid). The internal energy of the ball is the sum of
kinetic energies of the molecules forming it and of potential energies of the springs. In the
gravitational fields these springs get either compressed or stretched and this necessarily
has some impact on the ball’s internal energy independently of the change of the height of
its center of mass and the change of the related potential energy which is not included in
the ball’s internal energy. While a detailed microscopic analysis of all the effects involved
would be very complicated, thermodynamics allows to take these effects into account
phenomenologically without the need of delving into the microscopic constitution of the
ball.

Applying thermodynamics to the ball we must only assume that the ball’s internal
energy depends on its temperature and on the gravitational field g (here the picture of
the ball glued to the table and allowing for the variable sign of g allows to make the
analysis simple): U = U(T, g) and that the relevant for the problem parameters T , Y -
the ball’s center of mass vertical position and g are related by an equation playing the
role of the equation of state

f(T, Y, g) = 0 .

Applied to the ball 1TMDL takes the form

δQ = δU +Mg δY ,

or, if reversible changes are considered, the familiar form

dU = TdS −Mg dY .

(The sign of the second term is the same as in 1TMDL dU = TdS−pdV applied to a fluid
because in increasing Y the ball must do - if g > 0 - a positive work against gravity just
in the same way as the fluid must do a work against an external pressure.) The rest is the
matter of rudimentary thermodynamical computations: to reduce the necessary steps to
the necessary minimum, it is convenient (as always when one controls - here mentally only
- a certain parameter like g) to form the analog of enthalpy, defined as H = U +MgY ,
the differential of which is

dH = TdS +MY dg = T

(

∂S

∂T

)

g

dT +

[

T

(

∂S

∂g

)

T

+MY

]

dg

≡
(

∂H

∂T

)

g

dT +

(

∂H

∂g

)

T

dg .
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Its second form shows that H is treated here as a function of T and g (that is, of the
controlled parameters). Since H is a function of state, its second mixed derivatives must
be equal:

(

∂

∂g

[

T

(

∂S

∂T

)

g

])

T

=

(

∂

∂T

[

T

(

∂S

∂g

)

T

+MY

])

g

.

This leads to the relation (one of the Maxwell identities)

(

∂S

∂g

)

T

= −M
(

∂Y

∂T

)

g

.

Furthermore, since T (∂S/∂T )g, as we already know, is just the system’s (here ball’s) heat
capacity at fixed g, the differential dH can be written, using the derived relation, in the
form

dH = Cg dT +M

[

Y − T

(

∂Y

∂T

)

g

]

dg ≡
(

∂H

∂T

)

g

dT +

(

∂H

∂g

)

T

dg .

Applying to this form once again the equality of the mixed second derivatives of H we
find that

(

∂Cg

∂g

)

T

= −MT

(

∂2Y

∂T 2

)

g

≡ −MTY

[

α2
lin +

(

∂αlin

∂T

)

g

]

, (90)

This is markedly different than the naive formula (89)! In particular, the sign of the
derivative is opposite if, as usually happens with real materials, (∂αlin/∂T )g > 0 (or
at least if this derivative is not too large negative to outweigh the positive α2

lin term).
Therefore, the heat capacity C of the ball is larger if g is negative (g directed upwards, or
when the ball is suspended on a thread) than when g is positive. As a result the correct
answer to the problem is δTA > δTB.

This example is nice because it clearly illustrates the status of 2TMDL as the physical
law. Mathematically one could imagine a world in which the ball is infinitely rigid and its
shape does not get deformed when it is placed in the gravitational field. Yet, 2TMDL tells
us that in the real physical world this is impossible. 2TMDL, as said, generalizes results of
many experiments and by this implicitly takes into account how the real matter behaves
and what are the macroscopical consequences of its microscopic (molecular) constitution.
The example also illustrates the working of thermodynamics as a phenomenological the-
ory: the internal energy of the ball must somehow be modified by the presence of the
gravitational field and although this is (to some extent, at least qualitatively) possible,
we do not need to investigate this in detail; we only know that this must be reflected in
an equation of state of the form f(T, Y, g) = 0 which, through 2TMDL, dictates how U
and C depend on g; we need, therefore, to find the equation of state and part of the infor-
mation needed for this is contained in the thermal expansion coefficient αlin; measuring
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Figure 12: Example of a cycle executed by the perfect gas. The process A −→ C −→ B
is reversible. The isochoric process A −→ B can be irreversible or reversible.

this coefficient turns out to be in this case sufficient to tell what will be the answer to the
assigned question.

We now return to the Clausius inequality which in Pippard’s words holds the clue to
the difference between reversible and irreversible processes (changes). It allows to decide
whether a given process (occuring in an isolated system) is possible.

Let the two equilibrium states A and B of a system be connected by two paths (pro-
cesses), Γ1

A→B and Γ2
A→B, of which the first path is irreversible, while the second one is

reversible. The Clausius inequality (57) applied to the cycle A → (1) → B → (2) → A
can be written in the form

∫

Γ1
A→B

q

Text
+

∫

Γ2
B→A

q

Text
< 0 .

But in the reversible change q can be written as the heat form d̄Q over the space of the
system’s parameters and Text may be identified with the system’s temperature T , so

−
∫

Γ2
B→A

q

Text
=

∫

Γ2
A→B

d̄Q

T
= SB − SA ,

because 2TMDL tells us that d̄Q/T = dS. Thus in the irreversible change A→ (1) → B

∫

Γ1
A→B

q

Text
< ∆S ≡ SB − SA . (91)

that is, the increase of the system’s entropy in any transition (reversible or irreversible)
between the states A and B is never smaller than the amount of the “quantity” q/Text
absorbed by the system in this transition. In infinitesimal changes (when the points A
and B are infinitesimally close to one another in the space of states)

q

Text
≤ dS . (92)

The Clausius inequality (91) can be simply illustrated by a process in which the
perfect gas (for simplicity of constant heat capacity CV ) passes at constant volume VA
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(not necessarily reversibly) from the pressure pA to the pressure pB > pA (see Figure 12).
The same final state can be reached reversibly by first expanding the gas isothermally to
the volume VC > VA and pressure pC and then compressing it adiabatically (adiathermally
and reversibly). Since (as will be obtained in classes) the difference of entropies of the
final and initial equilibrium states is SB−SA = CV ln(TB/TA), the inequality (91) applied
to the transition A→ B takes the form

∫ B

A

q

Text
≤ CV ln

TB
TA

. (93)

One can now contemplate different isochoric processes A → B and the corresponding
values of the integral on the left hand side of (93). If the internal energy of the gas is
increased by doing on it work using the Joule paddle-wheel device, q ≡ 0 and the above
inequality is trivially satisfied. The same can be achieved by heating the gas irreversibly
by bringing it into thermal contact with a reservoir of heat of constant temperature Text;
the heat will flow from the reservoir to the gas provided Text ≥ max(TA, TB) = TB, so

∫ B

A

q

Text
=

1

Text

∫ B

A

q =
QA→B

Text
=
CV (TB − TA)

Text
≤ CV (TB − TA)

TB
.

(In the next to last step we have taken into account that QA→B ≡ UB − UA is also equal
to WC→B = CV (TB − TC) = CV (TB − TA), as can easily be computed using the perfect
gas adiabat equation p V Cp/CV = const., and the relation Cp − CV = nR, because in
the isothermal transition A → C the energy of the perfect gas does not change). The
inequality (93) is then equivalent to the inequality 1 − x ≤ − ln x which is true because
0 < x ≡ TA/TB < 1. Finally one can consider a reversible isochoric heating of the gas
by connecting it with a sequence of reservoirs of appropriately increasing temperatures;
then (using the fact that in the isochoric process d̄Q = dU and dU = CV dT in the case
of perfect gas)

∫ B

A

q

Text
=

∫ B

A

d̄Q

T
=

∫ TB

TA

dU(T )

T
= CV

∫ TB

TA

dT

T
,

in which case the inequality (93) is satisfied as equality.

Returning to the general considerations, the very important case arises when the
system is adiathermally isolated during the change A→ B, which means that q = 0. The
inequality (91) takes then the form

∆S ≥ 0 . (94)

In the particular case of a (completely) isolated system this is the celebrated entropy
increase law or just

The entropy law:
The entropy of an (adiathermally) isolated system can never diminish.
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Clausius expressed it in the characteristic categorical German (Prussian) way: Energie
der Welt ist konstant. Entropie der Welt strebt einem Maximum zu.55

The entropy law gives a thermodynamical criterion allowing to decide which processes
of those which could occur in adiathermally isolated systems (are allowed by 1TMDL)
can actually occur. Following Pippard we are now going to briefly discuss its operation
on three simple examples.

Consider first two bodies at different temperatures T1 and T2, say T2 > T1, which
together form an isolated system (that is a system with an internal adiathermal partition).
If the bodies are brought momentarily into thermal contact, a portion of heat q > 0 will
flow from the hotter one (that at T2) to the colder one. As a result the entropy of the
hotter one will decrease by56 ∆S2 = −q/T2 and that of the colder one will increase by
∆S1 = +q/T1. The total change of entropy of the entire isolated system is positive:

∆S = ∆S2 +∆S1 = q

(

− 1

T2
+

1

T1

)

> 0 .

The reverse flow of heat, though consistent with 1TMDL, is forbidden by the entropy
law.57

As the second example, consider a quantity of a gas in one part of an adiathermally iso-
lated cylinder separated from the second empty part of the cylinder. If the wall separating
the two parts is removed, or just a hole is pierced in it, the gas will expand (adiathermally
and) irreversibly and its entropy will increase (as you will calculate discussing in classes
this so-called Joule process in more detail).

In these two simple examples the changes the discussed systems were undergoing the
transitions from one equilibrium state to another equilibrium state as a result of altering
(weakening) the constraints to which the considered systems were subjected (in the
first case the constraint could be represented by an adiathermal wall which then got
replaced by an diathermal one, while in the second case the constraint was the wall
impermeable to the gas molecules which got removed). In these two cases the operation
of the entropy law is clear.

The third example is a moving body which comes to rest due to the presence of
friction. In this case the decrease of the body’s kinetic energy is accompanied by a

55This should not be taken too literally: it is disputable whether the (expanding) Universe can be
taken as a thermodynamic system and moreover the notion of energy becomes more complicated in
general relativity, so we should rather avoid applying thermodynamics to the Universe as a whole.

56Stated quickly in this way this may seem to be at odds with the inequality (92). But since the body
at T2 (T1) which looses (absorbs) a small amount q of heat makes a transision between two infinitesimally
close equilibrium states, the change dU of its internal energy must be related by dU = TdS − p dV to
the changes of its volume and entropy; therefore, if it is assumed that the volume of the body is not
changed (or it is so small, that |p dV | ≪ |TdS|), it follows from 1TMDL that |q| = |dU | = T |dS| and the
statement is justified.

572TMDL gives in fact the proof of the possibility to consistently correlate the scale of temperature
with the direction of the heat flow (which served to define operationally the notions of “hotter” and
“colder”). Logically, this requires formulating 2TMDL without reference to hotter and colder, that is not
to base it on the Clausius formulation.
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(slight) increase of its and of the surrounding’s temperatures. The entropy of the entire
system (body and the surrounding) has in this way increased. In this example the initial
state is not, strictly speaking, an equilibrium state, but here entropy of the moving body
which is in equilibrium within itself in its own rest frame can without any inconsistency
be defined as the entropy of the body in its rest system (in relativistic treatment of the
body, when v <

∼ c, this could be problematic). In general, however, with the exception of
trivial situations like that in the third example, the entropy law is (directly) applicable
to transitions between equilibrium states only.

Thus, promoting to a valid principle the observation that for a given set of constraints
to which it is subjected, an isolated thermodynamic system has only one true equilibrium
state, the entropy law can be formulated as the statement (Pippard again)

Entropy law:
It is not possible to vary the (internal) constraints of an isolated system in such a way as
to decrease the entropy.

This formulation stresses the role of constraints and will be the basis of the Callen’s
formulation of thermodynamics which we will discuss shortly. Before that, we will use it
(applying it to the second example quoted above) to consider briefly the role of fluctua-
tions. When the gas fills the whole cylinder and is in equilibrium, its local density ρ seems
to be uniform. It is however subjected to continuous minute fluctuations most of which
are practically undetectable by macroscopic measuring instruments. In reality there is a
continuous spectrum of fluctuations ranging with decreasing probability from very small
to very large ones. So, very rarely a large fluctuation can occur, e.g. such that - tak-
ing things to the extreme - the entire gas spontaneously concentrates in the smaller but
macroscopic volume58 (which it originally left as a result of removing the separating wall
or piercing a hole in it). The question may be then asked: what happens to the entropy
of the gas during such a large-scale fluctuation? The correct (though perhaps somewhat
surprising) answer is: nothing! The thermodynamical entropy which we are considering
here59 stays unchanged. Fluctuations, the spectrum of which is almost continuous - from
the minute to the largest possible ones - are part of the thermodynamic equilibrium state
and do not represent departures from the equilibrium. The entropy S which is ascribed
to an equilibrium state of the system is not ascribed to one (most probable) of its mi-
croscopic configurations but to the complete set of microscopic configurations the system

58Of course the probability of such a fluctuation in a gas consisting of ∼ 1023 molecules is so fantastically
small that there is practically no chance to observe such a fluctuation observind a real system, even waiting
as long as the universe’s lifetime.

59In the kinetic theory of gases one deals with a quantity called H - introduced by Boltzmann - which
is usually identified with entropy or, more precisely, with −S/kB, but in contrast to the thermodynamic
entropy its time evolution can be followed. The famous Boltzmann H-theorem states that H always
(although this “always” also requires some qualifications) decreases with time, so −kBH exhibits a prop-
erty which makes it similar to the thermodynamical entropy. It should be stressed, however, that −kBH
should be more properly called the kinetic entropy and it is only in the infinite time limit (and in the
thermodynamical limit) that it can legitimately be identified with the thermodynamic entropy (the time
evolution of which cannot even be discussed in view of the fact that it is well defined on equilibrium
states only).
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can be in. This will become clear in the statistical approach which we will discuss later.
The important lesson which should be drawn from these considerations is that entropy
S (and other state functions) must be regarded as a property of the system and of
its constraints - in the considered example of the gas and of the cylinder. Only in this
way can one understand the statement that S is a function of the gas internal energy U
and its volume V (the volume of the cylinder in effect, and not of the volume occupied
by the gas at a particular instant). Therefore if the gas is in a smaller volume because
of the wall (it is subjected to a stronger constraint) its entropy has one value and it has
another value, when it is in the larger volume (weaker constraint) and it is the very act
of removing the wall (or piercing the hole in it) which increases the thermodynamical
entropy, that is, the act of changing the constraints. It follows that in thermodynamics
one never talks about a process of “coming to equilibrium” during which entropy gradually
increases. Once the wall preventing the gas to expand into the larger volume has been
removed, the entropy increases60 and the microscopic configuration of the gas (which for
a short while still occupies mostly only the initial smaller volume) is now treated as a
huge (very improbable to occur spontaneously, as we have said, but here fabricated by
an external agent) fluctuation which however is part of the set of all microscopic configu-
rations the gas can assume being subjected to the weakened constraints (i.e. confined in
the larger volume).

Similarly in the first example considered, it is the act of replacing the adiathermal
wall separating the two bodies by a diathermal one which increases the system’s entropy,
and not the subsequent flow of heat. Once the diathermal wall is introduced, the system
is treated as finding itself in a huge (very improbable to occur spontaneously) fluctuation
of the distribution of the kinetic (and potential) energy between all its molecules, but a
fluctuation which is part of the new equilibrium state.

Thus any thermodynamic change (a process) should be viewed as a change of the
constraints and (one of) the central problem(s) of thermodynamics is, as Callen defines
it, to determine the equilibrium state corresponding to the given set of new constraints.
It is therefore the second way of formulating the entropy law which is the most adequate
one, because it stresses the essential role of constraints to which the system is subjected.

It is interesting to follow here further the discussion of these matters presented by
Pippard for it is instructive and sheds light on how thermodynamics as a phenomenological
theory lives out of reasonable idealizations. If, says Pippard, one follows this point of view
on entropy to its ultimate logical consequences, one should come to the conclusion that
the entropy of the Universe is fixed once for ever because no real walls are absolutely
impermeable to matter nor no walls are perfectly adiathermal. The state of the Universe
we are contemplating should be then viewed only a as huge fluctuation of a more or
less uniform density and temperature, that is as a huge fluctuation which is part of an
equilibrium state. But, says Pippard, leaving aside the question whether the expanding
universe can be treated as an isolated system, such a point of view is not useful and
does not allow to make any predictions. A more pragmatic attitude is to make reasonable

60One is tempted to add “instantaneously” but it is better to avoid notions referring to a time duration.
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compromises, that is, to relay on reasonable idealizations: although no walls are absolutely
impermeable to matter, on time scales relevant to observed processes one can treat some
portions of the Universe as isolated. This is similar to the state of a metastable equilibrium
as that of a mixture of oxygen and hydrogen which can for most purposes be treated
as a true equilibrium state because the chemical reaction between the two gases, if not
artificially stimulated, proceeds at a negligible rate. One is then able to define entropies of
physical systems of interest, apply to them the entropy law and make valuable predictions.

It should be, however, noted that the point of view that entropy and other state func-
tions of the system are determined by the constraints, which is natural in that fluctuations
find their place in the scheme of thermodynamics, entails a some somewhat strange con-
sequence that the entropy law may seem not to be universally valid: suppose the two
bodies at different temperatures are separated by an adiathermal wall. The total entropy
of the system is S1 + S2. Let them contact through an diathermal wall. Then, accord-
ing to the view adopted above, the entropy of the system instantaneously increases and
becomes larger than S1 + S2, most likely by a significant amount. But if the thermal
contact of the bodies is broken before their temperatures equalize, their entropy decreases
to nearly the initial one. However, one should firstly remark that in the above reasoning
one talks about time which is nonexistent in thermodynamics. Furthermore, one should
notice that in the complete experiment the total entropy, nevertheless, does not decrease
and the difference of the temperatures of the bodies cannot increase - no useful decrease
of entropy can be obtained in this way. Such “paradoxes” can be, therefore, tolerated.

The origin of such “paradoxes”, which may cast some doubts on the deduction of
the entropy law from 2TMDL, is some inconsistency in viewing large scale fluctuations.
Developing the laws of thermodynamics we have adopted the view that no fluctuation can
lead to any observable temperature difference of the two bodies in thermal equilibrium
- this enabled us to ascribe to them the same temperature. But now we are saying
that entropy is determined by the constraints, so the state of two bodies in thermal
contact but not yet at the same temperature is treated as a huge fluctuation (which has
no chance to be observed if it were to occur spontaneously) which is part of the new
equilibrium state. To be consistent one would have to distinguish the temperature of the
new equilibrium state (also a function of the constraints) from the imperfectly defined
instantaneous temperatures of the individual bodies.

This discussion, says Pippard, leads us into rather deep waters and it is not very useful
to continue it within the framework of classical thermodynamics - the proper framework
for it being the statistical thermodynamics (in the large meaning of this term - see Lecture
I), or even the kinetic theory. But the difficulties just discussed should not be taken as
disqualifying the view that entropy is determined by the constraints. The entropy law,
although it seems to be violated in the useless way in experiments of the sort mentioned
before, is always valid in practice and correctly determines what changes are permitted
by 2TMDL.

The entropy law has in fact larger range of validity than could be supposed from the
foregoing discussion which might be taken to suggest that fluctuations are not accounted
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by it and that they can in some circumstances lead to its violation. There are in fact
strong indications that fluctuations cannot be used to violate the entropy law or 2TMDL
in general. It is Maxwell himself who hypothesized a “demon” (called the Maxwell demon
ever since) which could control a trapdoor connecting two vessels filled with a gas having
the same temperature in both. The demon was supposed to allow to pass from, say, the
left vessel to the right one only those molecules which have velocity above the average and
in the opposite direction only the molecules of velocity lower than the average. In this way
the demon was supposed to be able to rise the temperature of the gas in the right vessel
and to lower the temperature of the gas in the left vessel decreasing thereby the total
entropy. This is nothing else but an attempt to systematically exploit fluctuations (here
fluctuations of the energy of the gas in the region near the trapdoor) to violate 2TMDL.
But this way of presenting things assumes that the entropy of the demon itself does not
enter the problem nor that it does generate any entropy by its action. Brillouin has
analyzed this problem and found this way of reasoning to be unjustified. To distinguish
the position and velocity of a molecule (to decide whether to let it pass the trapdoor or
not) the demon must be provided with a small flash-lamp (in a gas at uniform temperature
T the thermal radiation of the molecules is also uniform and does not allow to distinguish
molecules) and the flash-lamp by the radiation it emits operates irreversibly and increases
entropy. Brillouin has shown that the decrease of entropy which can be achieved in this
way owing to the segregation of the molecules is always overcompensated by the entropy
generated by the demon’s operation. (This gedanken experiment should be treated at
the same footing as the famous Heisenberg gedanken experiment with the microscope,
which showed that the quantum mechanical uncertainty principle ∆p∆q ≥ ~ cannot be
circumvented and other similar gedanken experiments invented by N. Bohr in the course
of his famous discussions with A. Einstein). It is therefore not true, says Pippard, that
2TMDL is only statistically true, being repeatedly violated microscopically (but never
seriously, on macroscopically perceptible scales). If entropy is understood as proposed
here, as a function of constraints (which as said, allows to incorporate fluctuations into
the scheme of phenomenological thermodynamics), 2TMDL is universally valid.
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LECTURE VI (TMD)

The view discussed in the preceding Lecture, that it is the constraints, to which a
thermodynamic system is subjected, which determine the system’s entropy is the basis
of the Callenian formulation61 of thermodynamics which we will discuss now. To some,
giving a fourth (after the ones of Clausius, Kelvin and Carathéodory) formulation of
2TMDL may seem superfluous, but this law is the heart of thermodynamics and deserves
to be understood from different points of view. The Callenian approach will also serve
us to introduce into the play the dependence of thermodynamical state functions on
the amount of matter involved, quantified by the number (or numbers, in the case of
multicomponent systems) of moles that is to go beyond viewing thermodynamic systems
as “black boxes”. Moreover, by reducing the complete thermodynamical information about
a given system to the knowledge of a single thermodynamical potential (as a function of its
natural variables) it puts the necessary order into its characterization. Last but not least,
the Callen’s formulation of thermodynamics, being directly inspired by the equilibrium
statistical physics approach to thermodynamical problems which provides methods of
calculating the mentioned thermodynamical potentials, constitutes a direct link between
the two parts of this Course.

The Callen’s formulation of thermodynamics is based as all previous ones on the
postulate that there exist equilibrium states, on 0TMDL which allows to introduce an
empirical temperature, and on 1TMDL which now will be written in the form ∆U =
Q +W + Z (or dU = q + w + z if infinitesimal changes are considered) into which also
the work Z (or z) related to a change of the amount of matter in the considered system
has been included. In reversible processes it will be, of course, possible to write as in the
conventional approach w = d̄W and q = d̄Q. If the matter transfer is done reversibly
(the necessary conditions for this will become clear in due course) it will be possible to
write z = d̄Z =

∑r
i=1 µi dni, where µi is the chemical potential associated with the i-th

material component of the system.

2TMDL in this approach takes the form of the following postulates

• There exists entropy S which is defined on all equilibrium states of any thermo-
dynamic system which is a function of the system’s internal energy U and other
globally defined deformative parameters like its volume V , magnetization M, and
the like (denoted below collectively X1, . . . , Xo−1) and, if the system is composed of
matter and possesses the property of extensiveness, of the amount of matter con-
tained in the system and represented by the number n (numbers nj , j = 1, . . . , r in
the case of multicomponents systems) of moles of its constituents. If the system is
homogeneous and possesses the property of extensiveness, entropy is a homogeneous
function of order one62 of its global arguments.

61In fact the approach we call Callenian comes directly from Gibbs and was subsequently developed
by Tisza; it has been written up by Callen in his textbook on thermodynamics.

62A function f = f(X1, . . . , Xn, y1, . . . , yk) is said to be homogeneous of order p in its first n arguments
if f(λX1, . . . , λXn, y1, . . . , yk) = λp f(X1, . . . , Xn, y1, . . . , yk).
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• S is a (differentiable, at least twice) monotonic function of the internal energy U

(

∂S

∂U

)

Xi,nj

> 0 ,

• Entropy of a system consisting of several subsystems is additive

• Entropy of a system the global parametres U , X1, . . . , Xo−1, n1, . . . , nr, of which
are fixed takes on the maximal value with respect to all possible equilibrium states
which could be realized with the help of constraints stronger (or not weaker) than
the ones the system is actually subjected to.

We will now explain these postulates.

In most cases we deal with systems which are homogeneous or consist of several subsys-
tems which are homogeneous and posses the property of extensiveness which means that
their global parameters X1, . . . , Xo−1 (those which characterize the system as a whole, e.g.
its volume, internal energy, total polarization, etc., in contrast to those which although
uniform throughout the whole system when it is in equilibrium, could in principle locally
take different values) and the amount of matter contained in them (quantified by the
number(s) of moles n1, . . . , nr) scale, when the system is isolated, proportionally to their
internal energy U : if U → λU , then Xi → λXi and ni → λni. This amounts to the
assumption that if such a system is mentally divided into two or more parts (which are
then treated as separate thermodynamical (sub)systems), its internal energy U is the sum
U = U1 + U2 of the internal energies U1 and U2 of these two (or more) parts taken sepa-
rately (separated by a wall) which in turn means that the energy U12 of the interaction
of these two parts is negligible compared to U1 and U2 and also that in the total internal
energy surface effects are negligibly small. This of course requires that the intermolecular
forces be (effectively) short range.63 In many cases (e.g. fluids) scaling of the dimensions
of the system corresponding to scaling its energy can be reasonably arbitrary, and can
change the system’s shape. This is not so in the case e.g. of magnetic (or dielectric)
systems placed in an external magnetic (electric) field, because the precise form of the
magnetic (electric) field inside a magnetic (dielectric) specimen depends on its shape and
so does the total magnetization (polarization); however owing to the scale (in fact even
conformal) invariance of (free) classical electrodynamics, magnetic and dielectric systems
can be treated as extensive with respect to scalings of their size which do not change their
shapes. Global parameters U , Xi, nj of such systems are called extensive parameters.
One should also remark that thermodynamics can be applied to systems which are not
characterized by the numbers of moles, yet are extensive. The most prominent example of
such a system is the electromagnetic field in equilibrium with the walls of a cavity which
is characterized only by the internal energy U and the volume V of the cavity. Other

63Although electromagnetic forces are long-range, they always get screened in electrically neutral ma-
terial systems. The gravitational interactions cannot be screened in this way and therefore systems in
which they play important role are not extensive (see the black hole example below).
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systems of this kind (of which the electromagnetic field is the simplest example) are rela-
tivistic quantum fields which, although in popular accounts identified with different sorts
of elementary particles (the misleading and infamous “field-particle duality” which should
be definitely banished64 forever from serious treatments of the quantum field theory!) are
nevertheless systems of fields and the numbers of different kinds of particles contained
in such a system are from the point of view of thermodynamics and equilibrium statis-
tical physics ill defined quantities. For this reason chemical potential cannot be directly
associated with them.65

As far as systems possessing the extensiveness property are concerned, it is in many
situations convenient to work not with extensive quantities U , X1, . . . , Xo−1, like V or M,
etc., and n1, . . . , nr, but with molar quantities u, v, m, etc., and the molar fractions xi
defined as

u = U/n , v = V/n , xi = ni/n , n ≡
r
∑

i=1

ni .

Internal energy (and any of the state functions, like the already introduced enthalpy
H , Helmholtz free energy F or Gibbs function G) of an extensive system which all are
necessarily extensive quantities, when written as functions of extensive and intensive
parameters like pressure p, can be written in the form

U(p, V, n1, . . . , nr) = nu(p, v, x1, . . . , xr) ,

etc. This works also the other way around: if a state function of an extensive system is
given for one mole of it, say the molar Helmholtz function f = f(T, v, x1, . . . , xr), its full
dependence on the number n of moles can always be restored by writing

F (T, V, n1, . . . , nr) = nf(T, V/n, n1/n, . . . , nr/n) .

Internal energy and Helmholtz free energy of the electromagnetic field must in turn take
the forms U(T, V ) = V u(T ) and F (T, V ) = V f(T ), respectively.

Entropy of a (sub)system which possesses the property of extensiveness is (and this
is part of the postulate) a homogeneous function of first degree of the extensive (global)
parameters:

S(λU, λXj , λni) = λS(U,Xj, ni) . (95)

which means that it too can be written as

S(U, V, . . . , ni) = nS(U/n, V/n, . . . , ni/n) = n s(u, v, . . . , xi) . (96)

64If there is any meaning to be attached to this notion, it has rather to do with the astonishing fact
that quantum states of most systems of relativistic fields at all exhibit features normally associated with
particles; however the simplistic identification of particles with a concrete type of field is fundamentally
wrong.

65Laws governing the dynamics of system of relativistic fields frequently give rise to conserved charges
- like the electric charge in quantum electrodynamics - and it is with these charges that in the statistical
physics approach chemical potentials must be associated.
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One should be aware, however, that not all systems to which thermodynamics applies are
extensive. One important example of a nonextensive system is the black hole to which we
will devote below a digression. Of course, extensiveness (or its lack) plays no role when
thermodynamic systems are treated as “black boxes” without inquiring into their internal
material constitution.

The maximum entropy postulate, central to the whole Callenian approach, can be
best elucidated on a simple system of a gas enclosed in a container. The total volume
V of the container is fixed, similarly as the total gas energy U and the number of its
moles n. By introducing different kinds of auxiliary walls internal with respect to the
system: movable or nonmovable, adiathermal or diathermal, permeable or impermeable
to molecules, it is possible to divide the container into an arbitrary number of cells of
different (macroscopic) sizes Vi in which different numbers of moles ni and portions Ui of
energy are blocked in equilibrium states, the only constraints being

∑

i

ni = n ,
∑

i

Ui = U ,
∑

i

Vi = V .

One can imagine in principle infinitely many ways66 of blocking in this way various equi-
librium states of the system (which becomes in this way composed of several subsystems).
In agreement with the first postulate of the Callenian approach, each such equilibrium
state is ascribed a certain entropy S which depends on U , V and n and on the distribu-
tions Ui, Vi, ni of these quantities between the subsystems into which the system has been
divided by the auxiliary walls. It is given by the sum of entropies of the subsystems into
which the system has been split. The equilibrium state of the gas in the absence of auxil-
iary internal walls is that state among all equilibrium states which can be “fabricated” by
introducing these walls in different ways, that has the greatest entropy. This Callenian
principle of maximum entropy determines in particular the equilibrium states of isolated
systems the global parameters of which U , X1, . . . , Xo−1, n1, . . . , nr by definition have
fixed values. It will be later generalized to apply also to nonisolated systems which are in
different specific contacts (thermal, mechanical, material) with their surroundings.

One should note a similarity of this principle to the known principle of least action
in Mechanics - the trajectory qi(t) which the system goes from its position qi(t1) at t1
to its position qi(t2) at t2 is that trajectory which gives the smallest value of the action
functional I[q(t)]. Operationally, one can consider different trajectories qi(t) with fixed
ends, compute the value of the action on each of them and compare these values: the
true trajectory is the one giving the smallest value of I. Because of this similarity, the
Callenian formulation of 2TMDL is sometimes called variational. Actually, in mechanics
the true trajectory may not be the one corresponding to the smallest value of I: it must
only be the stationary one.67 This is not so in thermodynamics: the true equilibrium

66Of course, one should not consider divisions of the system into subsystems so small, that surface
effects could become important.

67The reason for this, as well as the justification of the variational principle on which mechanics can
be based is, of course, quantum mechanical.
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state of the system maximizes its entropy on the set of all virtual equilibrium states
which can be fabricated by imposing on it arbitrary auxiliary constraints stronger (not
weaker) than the ones the system is actually subjected to. One should also notice that
in contrast to mechanics, in which the action I has in each case a form known from
the beginning, in the variational formulation of 2TMDL the formula for entropy is not
given. Only its existence is postulated.68 Another remark is that it is now clear that with
respect to isolated systems, the entropy S plays the role of the thermodynamical analog
of the potential (hence, it is one of thermodynamical potentials) as its maximum (over
all possible virtual equilibrium states) determines the equilibrium state of any isolated
system

It will be noted that the entropy law, to which one arrives only through a combina-
tion of arguments, if the Clausius/Kelvin’s or Carathéodory’s formulations of 2TMDL
are adopted, in the Callenian formulation is built in it from the outset: if the internal
constrains to which an isolated system is subjected are weakened, the entropy of the new
equilibrium state can only be greater than in the old equilibrium state (or at most equal
to it) because a larger set of virtual equilibrium states becomes possible.69 In an isolated
system reversible can only be processes (changes of constraints) which happen not to
increase the entropy.

The explicit form of the expression

S = S(U,X1, . . . , Xo−1, n1, . . . , nr) , (97)

(S = S(U, V, n) in the case of a one-component fluid) for entropy of a system character-
ized by the displayed parameters is called the fundamental relation in the entropy
representation. As will become clear, if it is known as a function of these global (ex-
tensive) variables, our thermodynamical information about the system is complete (this
is the meaning of the word “fundamental”). The derivatives of the entropy (of a simple,
possibly multicomponent fluid for definiteness) are

(

∂S

∂U

)

V,ni

≡ 1

T
,

(

∂S

∂V

)

U,ni

≡ p

T
,

(

∂S

∂ni

)

U,V,n′

i

≡ −µi

T
. (98)

Although this is suggestive (and obvious for those who already know 2TMDL), in the
Callenian approach one has yet to demonstrate that the quantities T , p and µi (and

68The question of uniquness of entropy then arises. Some claim that to eliminate the nonuniqueness
of the form S′ = S +Const.× U yet one more postulate (the Guggenheim postulate) that entropy stays
constant in reversible adiathermal changes must be adopted. Within phenomenological thermodynamics
this problem does not makes its appearence in practice for the form of S must anyway be reconstructed
from the empirical data according to the standard procedures. In turn statistical mechanics gives the con-
crete, unambiguous prescription how to obtain entropy of a system, if its microscopic dynamics (classical
or quantum) is known and in this way leaves no room for such an ambiguity.

69It is clear that if the domain of the arguments over which one seeks the maximum (minimum) of a
function (functional) is enlarged, the maximum (minimum) can only increase (decrease).
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possibly others, if the system is more complicated) defined in this way do indeed have
the meanings of the ordinary (absolute) temperature,70 pressure and chemical potentials.

To show that the parameter T defined by the derivative of entropy with respect to
the internal energy has indeed the meaning of the possible thermal equilibrium indicator,
we consider a system the energy U and the number of moles of which are fixed, say a
fluid in a cylinder of fixed volume V . Introducing an adiathermal nonmovable wall which
divides the cylinder into two parts of fixed volumes V1 and V2 containing n1 and n2 moles
(one can assume that V1/n1 = V2/n2 so that the gas densities in the two parts are equal;
of course V1 + V2 = V and n1 + n2 = n) we can fabricate different virtual equilibrium
states corresponding to different distributions U1 and U2 of the total energy U between
the two subsystems into which the original single system has been split. Alternatively,
one can consider a system which is from the beginning composed of two subsystems, two
(possibly different) gases in two containers, of volumes V1 and V2 and numbers n1 and
n2 moles or a gas and a solid or even two solids, which are in thermal contact through a
diathermall wall; the virtual equilibrium states blocked by replacing the diathermal wall
by an adiathermal one correspond to different distributions of the total energy U between
the two gases. According to the Callenian entropy maximum principle, the equilibrium
state in the complete absence of the wall in the first case or when the wall is diathermal
in the second case, is that one of the virtual equilibrium states that has the greatest
entropy. Now, entropies of the virtual equilibrium states when the system consists of two
subsystems are given (relying on the postulated additivity of entropy) by the formula

S = S1(U
eq
1 + δU, V1, n1) + S2(U

eq
2 − δU, V2, n2) ,

in which the departures of the virtual state energies U1 and U2 from the (unknown yet)
equilibrium distribution U eq

1 , U eq
2 (U eq

1 + U eq
2 = U) have been parametrized with δU

(automatically taking into account the condition U1 +U2 = U). Actually, in the example
of a gas in a single container, since this system is extensive, the two functions S1 and S2

are simply the same function S(·, ·, ·). The extremum condition δS = 0 which, in view of
the simplified way of seeking the maximum71 could simply be reduced to dS/d(δU) = 0,

70Note that the requirement (which is one of the postulates) that (∂S/∂U)X > 0 ensures positivity
of the absolute temperature defined here. In the statistical physics part of this course we will consider
a system (which in reality must be a subsystem of a larger system) not satisfying this requirement and
therefore capable of assuming negative temperatures; we will also briefly discuss how 2TMDL should be
generalized to apply to such systems.

71This reasoning in which one considers only a certain rather narrow class of all possible virtual equi-
librium states which could be fabricated should be confronted with the “practical” approach to the deter-
mination of the trajectory qi(t) of a classical particle: assuming we do not know the variational calculus
(which reduces the problem to solving the Euler-Lagrange differential equations) we invent a trial trajec-
tory which connects the initial and final system’s positions in the time interval t2 − t1 and depends on
one (or a few) free parameter(s) λ (λi). The action computed on this trial trajectory depends therefore
on this (these) parameter(s) and can be minimized with respect to it (them). Of course, finding the true
trajectory in this way is possible only if it is one of the trial trajectories taken into account (which form
only a very narrow class of all possible virtual trajectories).
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gives the equality

δS =

(

∂S1

∂U1

)

V1,n1

∣

∣

∣

∣

∣

U1=Ueq
1

δU +

(

∂S2

∂U2

)

V2,n2

∣

∣

∣

∣

∣

U2=Ueq
2

(−δU) = 0 .

which implies that in equilibrium the parameters 1/Ti = (∂Si/∂Ui)Vi,ni
|Ui=Ueq

i
, i = 1, 2,

must be equal.72 Thus the derivative of S with respect to U plays the role of the thermal
equilibrium indicator i.e. of an empirical temperature. Defining it to be 1/T and not T
leads to the assignment of higher temperatures to hotter bodies. Indeed, consider one of
the virtual equilibrium states with δU 6= 0 but infinitesimal |δU | ≪ U as a real state of
two bodies and assume that, say,

(

∂S1

∂U1

)

V1,n1

∣

∣

∣

∣

∣

U1=Ueq
1 +δU

<

(

∂S2

∂U2

)

V2,n2

∣

∣

∣

∣

∣

U2=Ueq
2 −δU

,

that is, as follows from (98), that T1 > T2. Then, when the adiathermal wall is replaced
by an diathermal one, the system will reach the new equilibrium state and in reaching it
the two bodies will exchange energy (in the form of heat) in such a way that the entropy
will increase:

∆S = ∆S1 +∆S2 = −δU
T1

+
δU

T2
=

(

1

T2
− 1

T1

)

δU > 0 .

This means that δU must be positive, i.e. that the body which had higher temperature
looses energy and that of lower temperature gains it.

Similarly, to show that the parameter p defined by the second one of the derivatives
(98) is the ordinary pressure, we consider virtual equilibrium states of the system (again,
for concreteness let it be a gas in the cylinder) which can be realized with the help of the
rigid adiathermal wall but now without correlating the mole numbers ni with the volumes
Vi (that is, allowing for different densities of the gas in the two parts) and allowing for
different distributions of the internal energies U1 and U2 and of the volumes V1 and V2.
Again one can alternatively consider two (possibly different) gases, n1 and n2 moles of
each, in two parts of a cylinder separated by an unmovable adiathermal wall. The values
U eq
i and V eq

i which will be realized in the equilibrium state which the system assumes in
the absence of the wall in the first case and if the wall is movable and diathermal in the
second case, are the same as in that virtual state obtained in the presence of the wall,
which maximizes the total entropy

S = S1(U
eq
1 + δU, V eq

1 + δV, n1) + S2(U
eq
2 − δU, V eq

2 − δV, n2) ,

72The assumption - which is part of the Callenian postulates - that entropy is a monotonic function of
the internal energy automatically means that at Ui = U eq

i the first derivative dS/d(δU) changes sign, so
this point is the extremum.
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that is such that

δS =

(

∂S1

∂U1

)

V1,n1

∣

∣

∣

∣

∣

U1=Ueq
1 ,V1=V eq

1

δU +

(

∂S2

∂U2

)

V2,n2

∣

∣

∣

∣

∣

U2=Ueq
2 ,V2=V eq

2

(−δU)

+

(

∂S1

∂V1

)

U1,n1

∣

∣

∣

∣

∣

U1=Ueq
1 ,V1=V eq

1

δV +

(

∂S2

∂V2

)

U2,n2

∣

∣

∣

∣

∣

U2=Ueq
2 ,V2=V eq

2

(−δV ) = 0 . (99)

Since the departures δU and δV can be varied independently (in fabricating different
virtual equilibrium states), this implies equality (in the equilibrium state realized in the
absence of the wall) of the two temperatures 1/Ti = (∂Si/∂Ui)Vi,ni

|Ui=Ueq
i ,Vi=V eq

i
and of

the two pressures pi = Ti(∂Si/∂Vi)Ui,ni
|Ui=Ueq

i ,Vi=V eq
i

. The reason, why the derivative of S
with respect to V is identified with p/T and not with p, can be seeked in the “shocking”
relation

(

∂S

∂V

)

U,n

= −
(

∂S

∂U

)

V,n

(

∂U

∂V

)

S,n

= − 1

T

(

∂U

∂V

)

S,n

.

To corroborate the interpretation of the derivative of S with respect to V as the
ratio of the system’s pressure to temperature, one can also consider n moles of a gas
in an adiathermally isolated cylinder fitted with the piston (of cross section area A) on
a spring satisfying the Hooke’s law (see Figure 13). The total energy E of the entire
system (the gas, the piston and the spring) is fixed. Blocking the piston in different
positions (characterized by the variable x) one can fabricate different virtual equilibrium
states of the system. The equilibrium state assumed by the system when the piston is
not blocked, is that one of the virtual states which has the maximal entropy (the entropy
of the mechanical elements of the system - the spring - is assumed to be zero; V0 is the
volume of the cylinder when the spring has its free length)

S = Sgas(E − 1

2
kx2, V0 + Ax, n) .

Equating to zero the derivative of S with respect to x one gets the condition (the symbol
xeq stands for U = E − 1

2
kx2eq and V = V0 + Axeq)

−kx
(

∂S

∂U

)

V,n

∣

∣

∣

∣

∣

xeq

+ A

(

∂S

∂V

)

U,n

∣

∣

∣

∣

∣

xeq

= 0 .

Since kx/A is the mechanical pressure pext exerted on the gas by the piston, one learns
that in equilibrium state Teq(∂S/∂V )U,n|xeq = pext.

It is appropriate to comment in this place (also because this sheds some light on
the preceding example) on the so-called problem of the adiabatic piston by which one
means the problem of establishing the conditions which should determine the equilibrium
state of the system consisting of two (possibly different) gases, n1 and n2 moles of each,
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V0
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Figure 13: Left: A gas in the adiathermally isolated cylinder closed with the movable
piston on the spring. Right: Two parts of the cylinder (isolated as a whole) containing
two gases are separated by the adiathermal movable piston.

enclosed in two adjacent parts of a cylinder (isolated as a whole) separated by a movable
but adiathermal piston73 (Figure 13, right). As in the examples considered above, one
can imagine that in equilibrium the piston stays in some fixed position and the two gases
occupy the volumes V eq

1 and V eq
2 (V eq

1 + V eq
2 = V ) having some well defined internal

energies U eq
1 and U eq

2 (with U eq
1 + U eq

2 = U). As in the preceding example one considers
then virtual equilibrium states of the system which can be obtained by blocking the
(adiathermal) piston in different positions. One has also to admit different energies U1

and U2 (of course, respecting U1 + U2 = U) of these virtual equilibrium states because,
although the adiathermal piston inhibits heat transfer between the two gases, they can do
work on each other through the pressure they exert on one another through the movable
piston. Thus as previously one can write as previous the condition (99)

δS =

(

1

T eq
1

− 1

T eq
2

)

δU +

(

peq1
T eq
1

− peq2
T eq
2

)

δV . (100)

However in this case here the variations δV and δU cannot be treated as independent.
The point is that we now consider only those virtual equilibrium states which can be
realized by blocking the piston in the real system in which any transfer of energy between
the two parts must be due to the mechanical work done by the piston in the adiathermal
conditions. In these conditions δU = −peq2 δV (the work done on the gas number 1 equals
the change δV of its volume times the external pressure which is provided by the pressure
of the gas number 2). Using this relation converts the condition (100) into

δS =
peq1 − peq2
T eq
1

δV = 0 .

This shows that the equilibrium position of the piston must be such as to make the
pressures of both gases equal (which is anyway obvious on purely mechanical grounds), but
does not impose any condition on the equilibrium temperatures T eq

1 and T eq
2 . Therefore

the equilibrium state of the system is not determined by the maximum entropy principle.
If a real system of this sort is prepared in a state in which the pressures of the two

gases are equal it superficially seems that the temperatures T1 and T2 could indeed be

73A strange feature of a similar system has been demonstrated in classes.
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arbitrary, but this neglects the role played by fluctuations.74 If the initial pressures of the
two gases were not equal, the piston would oscillate eternally, if there were no frictional
and viscous forces. In real systems frictional and viscous forces are always present and
will ultimately damp the oscillations of the piston. This first process, which lies entirely
outside the domain of thermodynamics, will lead to equalization of the pressures. At
the second stage, it will be the fluctuations which will lead to the equalization of the
temperatures: if the temperatures of the gases are unequal, the fluctuations in two parts of
the cylinder will be different and the piston itself will act as a Brownian particle receiving
unequal kicks from both sides; this will result in energy transfer leading eventually to
equal temperatures.

Finally we discuss the chemical equilibrium, that is, equilibrium with respect to possi-
ble matter transfer. Let n moles of a gas fill two parts (of volumes V1 and V2) of a cylinder
separated by an unmovable wall permeable to the gas molecules. Since microscopically
the heat transfer occurs through collisions of particles, such a wall is necessarily diather-
mal. We now seek the equilibrium distribution of the numbers neq

1 and neq
2 of moles of the

gas and of the energies U eq
1 and U eq

2 between the two parts of the cylinder applying the
maximum entropy principle. To this end we consider virtual equilibrium states realized
by an adiathermal and nonpermeable wall (replacing the original one) and departures δn
of the number of moles of the gas contained in the volume V1 and δU of its energy from
the equilibrium values. Since the equilibrium state maximizes entropy, the first order
variation of the total entropy of the system in equilibrium

δS =

(

∂S1

∂U1

)

V1,n1

∣

∣

∣

∣

∣

U1=Ueq
1 ,n1=neq

1

δU +

(

∂S2

∂U2

)

V2,n2

∣

∣

∣

∣

∣

U2=Ueq
2 ,n2=neq

2

(−δU)

+

(

∂S1

∂n1

)

U1,V1

∣

∣

∣

∣

∣

U1=Ueq
1 ,n1=neq

1

δn+

(

∂S2

∂n2

)

U2,V2

∣

∣

∣

∣

∣

U2=Ueq
2 ,n2=neq

2

(−δn) , (101)

must vanish. As the departures δU and δn are independent, this entails the equality of the
temperatures of the gases in the two subvolumes and the equality of their chemical poten-
tials: µeq

1 = µeq
2 . Thus the chemical potential of a given material component (molecules of

a given sort) plays the role of the indicator whether two systems will be in the chemical
equilibrium with respect to the flow of this material component, when they are separated
by a wall permeable to this component75 much in the same way as the temperature T
plays the role of the indicator of the possible thermal equilibrium. It follows also that the

74I quote here the explanation given by K. Rejmer in his book Ciepło−→Zimno, Sorus Poznań 2013,
cz"eść pierwsza: Zasady. It may be questioned - the problem of the “adiabatic piston” is a subject of an
eternal discussion among thermodynamics experts and each of them has his own (very strong) opinion
on its solution - but I feel it is better to outline at least one possible way of analyzing the problem than
to leave it with the comment “this is a hard problem”.

75Of course if a solid, made, say, of iron is in contact with the air, the chemical potential µFe of the air
(treated as one subsystem) is (nearly) zero, similarly as is (nearly) zero the chemical potential µAir of the
solid. Yet no transfer of matter occurs because the iron surface should be treated as a wall impermeable
to both the air and the iron.
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matter transfer (of a particular matter component) can occur reversibly only between the
systems having the same value of the chemical potentials (of this component) again much
the same way as heat can be transferred reversibly only between bodies of (nearly) equal
temperatures. Finally, in the same way as in the case of heat flow, it can be shown that in
maximizing entropy matter flows from the system having the higher value of the chemical
potential to the system having the lower value. If the matter transfer is reversible, the
difference od the chemical potentials causing it must be infinitesimal and an infinitesimal
change of either (or both) potentials is sufficient to reverse the direction of the flow of
matter.

Since by assumption entropy of a system is a monotonic function of the internal energy
U , the fundamental relation in the entropy representation (97) can be inverted to give

U = U(S,X1, . . . , Xo−1, n1, . . . , nr) . (102)

This is called the fundamental relation in the internal energy representation. If known as
a function of the system’s global (extensive, in the case of extensive systems) parameters
it too, similarly to the relation (97), contains the complete information on the system’s
thermodynamic properties. Owing to the standard mathematical relation between partial
derivatives of a function and of its inverse, the coefficients of the total differential (if the
system is a multicomponent fluid) of U

dU = TdS − p dV +
r
∑

i=1

µi dni , (103)

are, as we now know, the temperature, (minus) pressure and the chemical potentials. It
then follows that in reversible changes of the system, in which −p dV can be treated as
a differential form d̄W of the work (in the case of (103) the mechanical volume work)
performed on the system and the terms µi dni can be interpreted as differential forms of
works related to the changes of the amount of the i-th component in the system, the term
TdS represent the heat taken by the system. Therefore integrability of the heat form d̄Q
is in this approach to 2TMDL obtained almost for free!

Let us now demonstrate the fundamental role of the fundamental relation (97) which
makes it really fundamental (the fundamental form of this sentence is a joke, of course).
Suppose the fundamental relation of a hypothetical simple, one-component system is
God-given (or given by the statistical mechanics) in the form

S(U, V, n) = 3a (U V n)1/3 . (104)

The system is clearly extensive, for S(λU, λV, λn) = λ S(U, V, n). Computing explicitly
the derivatives (98) one finds the relations

1

T
= a

(V n)1/3

U2/3
,

p

T
= a

(U n)1/3

V 2/3
, − µ

T
= a

(U V )1/3

n2/3
.
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Upon elimination of U , the first two of these relations yield the equation of state

p2V = na3T 3 ,

and, moreover, the first relation alone directly yields the internal energy as a function of
temperature, volume and the number of moles:

U(T, V, n) = a3/2T 3/2n1/2V 1/2 = na3/2T 3/2

(

V

n

)1/2

.

Entropy can be now easily obtained either as a function of T , V and n, or as a function
of T , p and n:

S(T, V, n) = 3a3/2T 1/2n1/2V 1/2 = 3na3/2T 1/2

(

V

n

)1/2

, S(T, p, n) = 3na3
T 2

p
.

From these two forms of the entropy the two principal heat capacities CV and Cp can
readily be obtained

CV = T

(

∂S

∂T

)

V

=
3

2
na3/2T 1/2

(

V

n

)1/2

=
3

2
na3

T 2

p
,

Cp = T

(

∂S

∂T

)

p

= 6na3
T 2

p
= 6na3/2T 1/2

(

V

n

)1/2

.

Of course, they satisfy the (hopefully) well-known relation (which follows from 2TMDL)

Cp = CV + T

(

∂p

∂T

)

V

(

∂V

∂T

)

p

= CV − T

[
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∂V

∂T

)

p

]2
[(

∂V

∂p

)

T

]−1

,
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−T
[

(

∂V

∂T

)

p

]2
[(

∂V

∂p

)

T

]−1

= −T
(

9
n2a6T 4

p4

)(

− p3

2na3T 3

)

=
9

2
na3

T 2

p
.

Finally, the last of the derivatives (98) gives the chemical potential which, upon eliminat-
ing U from it, can be written either as a function of T and V (in fact v = V/n) or T and
p:

µ(T, v) = −a3/2T 3/2

(

V

n

)1/2

= −a
3T 3

p
= µ(T, p) .

It is left for the students to check that the same results can be derived from the funda-
mental relation (102) in the energy representation which in this case reads

U(S, V, n) =
S3

27a3nV
.

92



It should be also clear that if entropy S were known as a function of T , V and n (or,
analogously, internal energy U as a function of these variables), one could compute the
heat capacity CV , but there would be no way to find the equation of state or the heat
capacity Cp. This illustrates the statement that S = S(U, V, n) contains the complete
thermodynamic information about the system while S = S(T, V, n) does not.

The system considered in the example above (not a realistic one) was clearly extensive
(all quantities like U , CV , Cp when expressed in terms of v = V/n were proportional to
n). To stress that although the majority of realistic systems can be treated as extensive,
there are nevertheless important nonextensive systems, we conclude this lecture with a
brief discussion of the thermodynamics of black holes.

A digression. Black hole entropy (example of a nonextensive system).76

The first black hole solution of the Einstein’s equations of General Relativity was obtained
by K. Schwarzschild in 1916. Just before the World War II J.R. Oppenheimer and H.
Snyder showed that a collapsing sufficiently massive star ends up as a black hole. At
present many astrophysical objects have been identified by astronomers as black holes
(and recently even gravitational waves emitted by merging two black holes have been
registered by the LIGO Collaboration). In addition to the Schwarzschild solution which
represents the simplest possible such object characterized entirely by its total mass M ,
there also solutions representing rotating and/or electrically charged black holes (known as
the Kerr, Reisner-Nordström and Kerr-Newman solutions, respectively) which in addition
to the mass are characterized by their total charge Q and/or angular momentum L. It is
known that M , Q and L are the only possible quantities which can characterize a black
hole (famous saying that “black holes have no hairs”).

Initially a black hole was viewed as an entirely passive object which cannot emit
anything - it can only absorb. If this were true, black holes would lie outside the range of
applicability of thermodynamics because, as was noted by J.A. Wheeler, 2TMDL would
not apply to systems including black holes: if a portion of matter of nonzero entropy were
dropped into a black hole, the external observer could not be sure that the total entropy of
the system had not decreased, because the only characteristics of the black hole available
to him, M , Q and L, cannot tell how much entropy the black hole has swallowed. This
has led J.D. Bekenstein,77 a Wheeler’s student, to formulate in 1972 the conjecture that
the black hole has in fact a nonzero entropy which is proportional to the area A of its
horizon surface (a surface separating from the rest of the space the region from which light
or any other object cannot escape), which in turn is a function of M , Q and L. This was
prompted by a theorem of S. Hawking which says that according to the laws of classical
General Relativity, the total area A of horizons of black holes cannot decrease and it
increases in dynamical processes like e.g. merging of two black holes. Another hint was
the observation made by D. Christodoulou (another student of Wheeler): investigating
the efficiency of the so called Penrose process by which energy related to the rotation can

76Based on the article by J.D. Bekenstein Physics Today, 33, 24 (1980); another standard introductory
reference is: B.R. Parker and R. McLeod Am.J.Phys. 48 1066 (1980); this second article is however not
very useful - its authors evidently had problems with clear formulation of their thoughts.

77Just a year, or so, I saw his obituary in the CERN Courier.
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be extracted from a rotating black hole he found that it is the greatest if the process is
realized reversibly and that in this case the area A of the black hole horizon does not
increase - this indicated that some sort of thermodynamics might be at play...

The general formula proposed by Bekenstein (the coefficient 1/4 has been fixed later
by Hawking) which gives the black hole entropy reads:

S =
1

4
kB

A

ℓ2Pl
. (105)

kB is the Boltzmann constant and ℓPl ≡
√

~G/c3 is the Planck length (G = 6.67× 10−11

m3 kg−1sec−2 is the gravitational constant; ℓPl = 1.6×10−35m). It is to be noted that this
formula relates a purely thermodynamical quantity S to a purely gravitational one (the
horizon area) and involves the Planck constant signaling existence of a deep connection
between thermodynamics, gravitation and quantum phenomena. The formula for the
horizon area A of the Schwarzschild black hole (Q = 0, L = 0) is very simple:

ASch = 4πR2
g = 16π

G2

c4
M2 = 16π

~G

c3
M2

M2
Pl

= 16πℓ2pl
M2

M2
Pl

. (106)

hereMPl =
√

~c/G = 2.2×10−8kg= 1.22×1019 GeV/c2 is the Planck mass. Rg = 2GM/c2

is just the radius which can be obtained using the Newtonian dynamics: it is the radius of
a planet of mass M for which the second cosmic speed vII (determined by the condition
1
2
mv2II −GMm/r = 0) needed to reach infinity starting from its surface is equal c - since

this is the highest possible speed, Rg is just the radius of the horizon (bodies closer to the
center than Rg cannot escape). Thermodynamics of the Schwarzschild black hole is very
simple:

S = 4πkB
M2

M2
Pl

,

U =Mc2 . (107)

This is in fact the simplest of all thermodynamical systems since its equilibrium state is
characterized by only one parameter M : no extraction of energy from it by a reversible
work is possible (the number o− 1 of its deformative parameters is zero). The equation

S(M) = 4πkB
U2

M2
Plc

4
, (108)

plays the role of the fundamental relation (97) of the Schwarschild black hole thermody-
namics. It is to be noted that in this case S is not a homogeneous first order function
of its only global argument U . The simple scaling is violated by the presence of the fun-
damental mass (or length scale) MPl (or ℓPl). Applying to (108) the standard formula
dS = dU/T one gets

1

T
=
dS

dU
=

8πkB
M2

Plc
4
U , (109)
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or

U =
M2

Plc
4

8πkBT
, (110)

The resulting formula for the Schwarzschild black hole temperature can also be written
in the form

T =
~

2πkBc

M2
plc

3

4~M
=

~

2πkBc

(

c4

4GM

)

≡ ~

2πkBc
κ , (111)

in terms of the so-called surface gravity κ which is the “g” (that is g = GM/R2
Z known

from ordinary mechanics at the Earth surface) of a planet of mass M and radius Rg. It
follows that the greater is the mass (the internal energy U) of the black hole, the lower is
its temperature! This of course results in the negative its heat capacity

C = T
dS(U(T ))

dT
=
dU

dT
= −kB

8π

(

MPlc
2

kBT

)2

. (112)

If a black hole has nonzero angular momentum L and/or electric charge Q, extraction
of energy from it by a reversible mechanical or electrical process is possible (we have
already mentioned the mechanical Penrose process) by coupling to L or to Q appropriate
external agents. Such reversible works can be continued until L = 0, Q = 0. The
formula for the area of the Kerr-Newman black hole horizon surface is best expressed in
terms of the parameters (which both have dimension of mass squared; we use the normal
Gauss system of units so that Q2/~c is dimensionless - e2/~c = αEM as every high energy
physicist knows)

Q̃2 ≡ Q2

G
=
Q2

~c

~c

G
=
Q2

~c
M2

Pl ,
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c2

G2

L2
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~2
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)2
1
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,

and reads

A = 4π
G2

c4

[

(

M +

√

M2 − Q̃2 − a2

)2

+ a2

]

. (113)

This formula together with (105) and the identification U =Mc2, gives the fundamental
Callenian relation of the most general black hole thermodynamics:

S = S(U,L, Q) . (114)

It is again clear that the black hole is not an extensive system. All thermodynamical
information can be obtained from it in the standard way. In particular

dS =
1

T
dU − φ

T
dQ− 1

T
Ω·dL , (115)
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which leads to the form

dU = TdS + φ dQ+Ω·dL , (116)

of 1TMDL as applied to all differential changes of the black hole.78 φ is here the electro-
static potential and Ω the black hole’s angular velocity. The second and the third term
on the right hand side represent infinitesimal reversible works that can be done on or
by the black hole. The rest is a matter of ordinary thermodynamical fiku-miku, which
although can be somewhat complicated because of the complicated form of the relation
(113), should not be more complicated from the point of view of principles, than any
other thermodynamical problem. A curious student may try to compute for instance the
heat capacity Cφ of the Reisner-Nordström (L = 0) black hole or CΩ of the Kerr (Q = 0)
one.

If the black hole parameter T is to be regarded as the true temperature (and not
merely as an analog of it), the black hole should, as every body at a nonzero temperature
T , radiate.79 Classically a black hole cannot radiate, because nothing, including light, can
escape from it. But the presence of the Planck constant ~ in the Bekenstein formula (105)
strongly suggests, as has already been stressed, that the connection between gravity and
thermodynamics is not based on classical physics. It was Hawking who by considering
quantum processes occurring near the horizon of a forming Schwarzschild black hole80

discovered (in 1974) that it radiates just as does a body at temperature T given by
(111). In this process the black hole horizon decreases (which classically is impossible),
the black hole “evaporates” and its entropy decreases. This decrease of entropy is however
overcompensated (if the evaporation occurs in the surrounding of lower temperature) by
the entropy of the emitted thermal radiation (which consist of all kinds of elementary
particles). In this way the entropy law and thermodynamics as such are applicable also
to black holes.

78But of course, it is only in reversible changes that φdQ and Ω·dL have respectively the interpretations
of the works done on the black hole electrically and mechanically.

79This is a point usually left aside in discussing equilibrium states of thermodynamical systems: to
be truly isolated adiathermally, a system must be placed in a shield which not only isolates it from all
influences from without including any incoming radiation, but must also ideally reflect back the thermal
radiation emitted by the system itself, when its temperature is not zero.

80It is these considerations which allowed Hawking to fix the coefficient in the Bekenstein formula (105).
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LECTURE VII (TMD)

We now proceed to exploiting the entropy law and other properties of this quantity. We
will first consider the problem of maximal useful work which can be extracted from a
given system in given conditions (i.e. from a system with given constraints). These con-
siderations will lead us to the formulation of the general principle which determines the
equilibrium states of systems open to (i.e. in contact with) their surroundings, that is
systems in conditions in which directly controlled are not necessarily (all) their defor-
mative parameters X1, . . . , Xo−1 and energy U but rather some of the generalized forces
y1, . . . , yo−1 and/or the temperature T . This principle will generalize the Callenian max-
imum entropy principle which applies to systems which are not in contact with their
surroundings. They will also allow to formulate the general conditions of stability of
thermodynamic systems.

We begin by showing that entropy of an extensive system is a concave (concave up-
wards) function of any of its extensive arguments. Indeed, consider two systems A and B
both isolated and in each equilibrium within itself. Let us write their entropies as

SA = SA(λAUA, ξAVA, . . .) , SB = SB(λBUB, ξBVB, . . .) , (117)

that is, the actual values of the extensive parameters of the two systems have been written
as other values of these parameters scaled up by the respective arbitrary factors λ, ξ,
etc. We now imagine that the two systems (treated as a compound isolated system)
have been brought into thermal contact and a new equilibrium state of the compound
system has been reached. By the entropy law, the entropy of this new equilibrium state,
SA+B(λAUA + λBUB, ξAVA + ξBVB, . . .) cannot be smaller than the sum of the entropies
SA and SB:

SA+B(λAUA + λBUB, ξAVA + ξBVB, . . .) ≥ SA(λAUA, ξAVA, . . .) + SB(λBUB, ξBVB, . . .) ,

irrespectively of the (positive) values of the factors λ, ξ, etc. and irrespectively of the
values of their energies, volumes, etc. If the two systems are of the same kind (e.g. two
pieces of the same solid), the functions SA and SB are given by the same function S(·, ·, . . .)
but evaluated at different values of its arguments. If in addition one sets λA = ξA = λ,
λB = ξB = 1− λ, etc. and considers VA = VB = V , etc., one obtains the inequality

S(λUA + (1− λ)UB , V, . . .) ≥ λS(UA, V, . . .) + (1− λ)S(UB, V, . . .) ,

which just means concavity upwards of the entropy S(·, ·, . . .) of the extensive system as a
function of its first (energy) argument (Figure 14). In the same way one can demonstrate
its concavity as a function of its volume argument and all other extensive deformative
parameters.

Concavity upwards of the entropy as a function of the internal energy is necessary for
stability of the system: indeed, if the entropy were not concave upwards it could assume
greater values in an inhomogeneous state than in the homogeneous one, as an example
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UA UB

S

U

Figure 14: Entropy of an extensive system is a concave upwards function of its internal
energy. The dashed line shows the function λS(UA) + (1 − λ)S(UB) as a function of the
variable λUA+(1−λ)UB. Everywhere between UA and UB the value of S(λUA+(1−λ)UB)
is above this line.

presented in Callen’s textbook shows. Global concavity implies the local one which means
that

(

∂2S

∂U2

)

V,...

< 0 . (118)

Because of the first of the equalities (98) this amounts to

(

∂

∂U

1

T

)

V,...

= − 1

T 2

(

∂U

∂T

)−1

V,...

≡ − 1

T 2CV
< 0 , (119)

which in turn, in view of the positivity of the factor T 2, means that CV > 0. We have seen
that the black hole analog of CV is negative because the black hole is not an extensive
system.

S and U as thermodynamical potentials
We will now show that the postulate that the equilibrium state of an isolated system
maximizes the system’s entropy on the set of all virtual equilibrium states (which can
be fabricated with the help of constraints stronger than the ones the system is actually
subjected to) at a fixed value of its internal energy U (and fixed values of other global
parameters characterizing the system as a whole) - the maximum entropy principle -
is equivalent to the statement that the equilibrium state of an isolated system minimizes
the internal energy on the set of all virtual states at the fixed value of the system’s entropy
S (and fixed values of other global parameters) - this will be called the minimum energy
principle. This second statement sounds a little bit more abstract - it is easier to imagine
keeping the system’s internal energy fixed (and distributing it among its subsystems)
than to imagine a fixed value of the system’s entropy and varying the internal energy.
Nevertheless, the two formulations are equivalent. We will as usually give two proofs: one
physical and general (but requiring some imagination) and another one mathematical,
more concrete, but necessarily restricted to a specific case.

To prove that the maximum entropy principle implies the minimum energy principle,
we make the reductio ad absurdum and assume that the equilibrium state (corresponding
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to given constraints) in which the entropy of the system is S0 and its energy is U0 does
not minimize energy; there should therefore exist another equilibrium state (which can
be blocked with the help of stronger constraints) in which the system’s entropy is still
equal S0 but its energy U is lower than U0. Therefore it would be possible to take the
system adiathermally and reversibly (adiabatically) to this state of lower energy (because
the two states have the same entropy S0, it logically should be possible to achieve this
by e.g. suitable Carnot cycles run between different parts of the system playing the
roles of heat reservoirs) extracting from it the work W̄ = U0 − U . The energy gained
in this way in the form of a mechanical work could be then put back irreversibly into
the system (temporarily breaking its isolation from the surrounding and then restoring it
back) bringing it into an equilibrium state of energy U0 but of entropy higher than S0.
In effect, the equilibrium state would not maximize entropy at fixed value of the energy
because there would be a state (possibly with stronger constraints) of the same energy
and higher entropy.

The proof of the converse assertion (that the minimum energy principle implies the
maximum entropy principle) goes similarly: we assume that the system’s equilibrium
state (corresponding to given constraints) of entropy S0 and energy U0 does not maximize
entropy (on the set of virtual states with stronger constraints but the same energy U0), so
there should exist a state of higher entropy S > S0 and the same energy U0 (realized when
the system is subjected to stronger constraints); the system in this higher entropy state
could be then brought into thermal contact (breaking its isolation and then restoring it
back) with a reservoir (a heat bath) transferring to it some heat; entropy of the system
would be thereby lowered to S0 (things could be arranged so) and, by 1TMDL, also the
energy of the system would be lowered. One would therefore end up with the system
in equilibrium with the entropy S0 and energy lower than U0 (and stronger constraints).
The assumed equilibrium state of entropy S0 and energy U0 would not, therefore, be the
state of lowest possible energy (at fixed value S0 of entropy).

The mathematical reasoning requires specifying a parameter, let’s call it x, (or a
couple of parameters) which represents (represent) changes of the constraints imposed on
the system; one can assume that x = 0 corresponds to the actual constraints to which the
system is subjected and x 6= 0 corresponds to stronger constraints. The entropy maximum
principle means then that

(

∂S

∂x

)

U,...

∣

∣

∣

∣

∣

x=0

= 0 ,

(

∂2S
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∣
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< 0 . (120)

Using the “shocking” relation one can write
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∣

x=0

= 0 . (121)

This shows that (except at T = 0) the derivative (∂U/∂x)S vanishes in the same state
(corresponding to x = 0) in which (∂S/∂x)U vanishes. The second derivative of U consists
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of two terms

(

∂2U

∂x2

)

S,...

= −
(

∂S

∂x

)

U,...

(

∂2U

∂S ∂x

)

−
(

∂U

∂S

)

x,...

[

∂

∂x

(

∂S

∂x

)

U,...

]

S,...

.

The first term vanishes at x = 0; in the second term the derivative D ≡ (∂S/∂x)U,... which
is a function of the variables x and U should be now treated as D(U(x, S), x) so that

(

∂D

∂x

)

S,...

=

(

∂D

∂x

)

U,...

+

(

∂D

∂U

)

x,...

(

∂U

∂x

)

S,...

.

Again, the second term vanishes at x = 0 (because (∂U/∂x)S,... = 0 there) and one ends
up with

(

∂2U

∂x2

)

S,...

= −T
(

∂2S

∂x2

)

U,...

,

which shows that if S(U, x, . . .) has a maximum at x = 0, then U(S, x, . . .) has there a
minimum. With a little bit mor labour the proof can be extended to more parameters
representing constraints, but its weakness is that one considers the same constraints for
fabricating virtual states at constant energy and at constant entropy.

Either way, the conclusion is that with respect to isolated systems entropy and internal
energy play the roles of thermodynamical potentials which (in the sense discussed in this
and in the preceding Lectures) determine the system’s equilibrium states.

Maximal and Minimal work
One of the main applications of the entropy law is putting an upper limit on useful work
which can be extracted from a given thermodynamical system by changing appropriately
(weakening) the constrains to which the system is subjected, thereby allowing it to reach
another equilibrium state. The converse problem is putting a lower limit on the work
necessary to bring a given system from one equilibrium state to another one (with stronger
constraints).

The simplest situations in which the problem of the maximal (minimal) work can be
posed and analyzed is when a given system consisting of several subsystems can only
exchange mechanical work with an external “mechanical work source”. In particular, it is
as a whole adiathermally isolated and the total amount of matter in it is not changing.
The internal constraints of the system (which keep its different parts in equilibrium within
themselves) can be weakened and on the way to the equilibrium state corresponding to
the new constraints the system can yield some work; since the system is not completely
isolated81 (it can exchange work with the surrounding), the final equilibrium state and the
work extracted from the system depend on the process by which the new equilibrium state

81Recall that if the system were completely isolated, its final state would be uniquely determined by
the new constrains. In all reasonings which follow it is important to keep in mind the distinction between
a concrete (equilibrium) final state (compatible with the given final constraints) and a set of possible
final states specified only by prescribing the final constraints.
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is reached. The questions is, which process will result in the maximal extracted work.
In analyzing this we will assume that the final and initial total volume of all subsystems
comprising the system is the same.82 Of course, it can vary during the process. In
addition, some subsystems of the considered system may play only a subsidiary roles in
the sense that their initial and final states are the same.

Since the system is supposed not to exchange heat with the surrounding, by 1TMDL,
the work W̄ extracted from it is just

W̄ = Uin − Ufin . (122)

The energy Uin is fixed but the final state and, therefore, Ufin depends on the process.
It is, however, a function of the final state entropy. Since from the Callenian postulates
U is a growing function of entropy (recall the assumption (∂S/∂U)X > 0 which implies
(∂U/∂S)X > 0), the greatest maximal work is obtained if entropy of the system does not
increase that is, if the process by which the system reaches the final equilibrium state
corresponding to the new weakened constraints is reversible.

The standard illustration of this sort of situations is the system consisting of two
bodies of unequal temperatures, say T1 and T2 > T1, separated by an adiathermal wall.
The final constraint is a diathermal wall through which the two bodies are in thermal
contact and have, hence, the same final temperature. If the two bodies are brought into
thermal contact directly (one possible process of attaining the final equilibrium state), the
entropy of the whole system will increase (we talked about this in Lectures V and VI) and
no useful work at all will be extracted from the system. The final common temperature
Tfin of the bodies will be determined by 1TMDL which, assuming for simplicity83 that the
heat capacities C at constant volume84 of the two bodies are equal and (to make things
simple) independent of the temperature, takes the form:

Uin = (U0 + CT1) + (U0 + CT2) = (U0 + CTfin) + (U0 + CTfin) = Ufin , (123)

that is, Tfin = 1
2
(T1 + T2). The entropy change in such a process will be

∆S = 2C ln
Tfin
T0

− C ln
T1
T0

− C ln
T2
T0

= C ln
T 2
fin

T1T2
= C ln

(T1 + T2)
2

4T1T2
> 0 . (124)

If, however, the process by which the two bodies attain thermal equilibrium with one an-
other is reversible, entropy will not change and it is the condition ∆S = C ln(T 2

fin/T1T2) =

82In this way we exclude the trivial work the system could do changing its volume - we are interested
only in the work which can be obtained by changing the internal constraints of the system: allowing it
to change its total volume would mean changing its external constraints. In fact, the condition of equal
initial and final total volumes can be weakened by assuming that the pressure p0 of the surrounding is
negligible (or zero) so that changing its total volume the system does not do any work. This will be taken
into account when the general case is considered.

83The most general case is treated in one of the homework Problems.
84As said, one could also consider the heat capacities at constant internal pressure if the external

pressure is zero.
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0 which will determine the final temperature Tfin =
√
T1T2. By 1TMDL the work extracted

from the system in this case will be

W̄ = Uin − Ufin = 2U0 + C(T1 + T2)− 2
(

U0 + C
√

T1T2

)

= C
(

T1 + T2 − 2
√

T1T2

)

= C
(

√

T2 −
√

T1

)2

. (125)

One can of course ask how to realize “practically” such a reversible process? In this
case (but not necessarily always) the answer is simple: it suffices to run a Carnot engine
treating the body at T2 as the hotter (higher temperature) heat reservoir and the body
at T1 as the colder one. In the calculation one has of course to take into account that
the exchange of heat between the bodies and the engine lowers the temperature of the
hotter reservoir and raises the one of the colder one, so that finally they will equalize. If
the actual (during the working of the engine) temperature of the hotter reservoir is T+
(Tfin ≤ T+ ≤ T2) and that of the colder one is T− (T1 ≤ T− ≤ Tfin) then (upon using
the actual efficiency η(T−, T+) = 1 − T−/T+ of the Carnot cycle working between the
temperatures T− and T+)

d̄W̄ = η(T−, T+) d̄Q2 =

(

1− T−
T+

)

(−C dT+) ,

and the necessary correlation of T− with T+ is provided by the condition

d̄Q2

T+
+
d̄Q1

T−
= −C

(

dT+
T+

+
dT−
T−

)

= 0 ,

of constancy of the entropy (d̄Q2 = −CdT+ > 0 and d̄Q1 = −CdT− < 0 are the heats
taken by the engine from the two bodies) which upon integration with the obvious initial
conditions yields T− = T1T2/T+ (and, of course, T 2

fin = T1T2). Integrating then d̄W from
T2 to Tfin gives the same result (125).

The converse situation to the one analyzed above is when the system is supposed to
attain, as a result of the change, another equilibrium state of higher energy corresponding
to stronger constraints. The analogous reasoning then shows that the minimal work W
which must be done on the system corresponds to an isentropic change.

A more general situations is when a system, which can be composed of several sub-
systems, can exchange with the surrounding not only work (with the mechanical work
source, MWS) but also heat and perhaps also matter; one can also admit that the total
volume of (all parts of) the system can be different in the final state than in the initial
state. To analyze such situations in general terms one can model the system’s surround-
ing as consisting of a reversible85 heat source (RHS) - a reservoir so large that it always
remains in equilibrium at temperature T0, no matter how big finite amount of heat is

85“Reversible” in the names of the source is to mean that the they remain in equilibrium in themselves;
it is not meant to imply that the exchanges batween them and the system are reversible in the usual
sense.

102



RHS

T0
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p0

RMS
µ0
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W̄system

Figure 15: The system and the set of reservoirs representing its surrounding. The param-
eters T0, p0, µ0 of the sources modeling the system’s surrounding are constant.

extracted from or added to it, a reversible volume source (RVS) - a very large system
in equilibrium (the entropy of which stays always constant and need not be taken into
account) at invariable pressure p0 and, finally, a source of matter86 (RMS) in equilibrium
(the entropy of which also stays always constant and need not be taken into account -
recall that the chemical potential is defined by (98) as the change of energy of the body,
here the RMS, resulting from changing the amount of matter in it at constant entropy) at
invariable chemical potential µ0 (this general setting is schematically illustrated in Figure
15). Owing to the constraints - the internal ones and also the external ones, separating
it from its surrounding - the system, which may consist of several subsystems, is initially
in equilibrium (its individual subsystems can have arbitrary different temperatures, pres-
sures, chemical potentials). If the constraints are changed (are weakened or strengthened),
the final equilibrium state compatible with the new constraints can depend on the process
by which the system attains it. In the process of reaching this new equilibrium state the
system may (if the external constraints are weakened appropriately) exchange heat with
the RHS. We also assume that any change of the total volume of the system (the sum
of volumes of its subsystems) is compensated by the opposite change of the volume of
the RVS which is due to a mechanical contact between the parts of the system and the
RVS. Similarly, any change in the total matter content of the system is compensated by
the opposite change of matter content of the RMS due to a direct flow of matter between
parts of the system and the RMS.87

86If there is more than one matter component which can be exchanged with the surrounding, one can
introduce one such source per component.

87It may seem that if there were more matter constituents in the system (and correspondingly more
matter sources representing the surrounding) and chemical reactions were allowed to occur in the system
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By 1TMDL, the work extracted (by MWS) from the entire supersystem: the system
itself and its surrounding represented by RHS, RVS and RMS, is

W̄ = −(∆U +∆URHS +∆URVS +∆URMS) , (126)

where −∆U = U in − Ufin etc. But since the reservoirs stay in equilibrium, ∆URHS =
T0∆SRHS, ∆URVS = −p0∆VRVS and ∆URMS = µ0∆nRMS. Furthermore, by assumption
∆VRVS = −∆V and ∆nRMS = −∆n (the total volume and the total amount of matter in
the system and its surrounding remain constant)

W̄ = − (∆U + T0∆SRHS + p0∆V − µ0∆n) .

As far as the exchange of heat (which need not be reversible) between the system and the
RHS is concerned, it follows from the entropy law (applied to the isolated supersystem
consisting of the system itself and the sources) that ∆SRHS +∆S ≥ 0, or that

−T0∆SRHS ≤ T0∆S . (127)

Therefore the work W̄ which can be extracted from the system accomplishing a con-
crete change (specified by the total changes ∆U , ∆V , ∆n of all its parts) in the given
surrounding (characterized by T0, p0 and µ0) is limited from above:88

W̄ ≤ −∆(U − T0S + p0V − µ0n) = −∆A . (128)

The quantity A ≡ U−T0S+p0V −µ0n is called the availability of the system. Contrary
to this name, it is the property of the system and its surrounding. Recall also once more

(as a result of weakening its internal constraint) and to change its matter composition, one would have to
distinguish the changes of the number of moles of each of the constituents occurring due to chemical reac-
tions (∆nch

i ) and occurring due to the exchanges with the matter sources in the surrounding (∆ninflow
i ).

This is not so, for reactions inside the system (as will be seen in the following Lectures) occur so that the
differential (in which dnch

i are the resulting from reactions changes of the numbers of moles of different
chemical constituents of the system between two infinitesimally close equilibrium states)

r
∑

i=1

µi dn
ch
i ,

vanishes. This is consistent with the possibility of treating the system as a “black box” and controlling
(by controling e.g. the total mass of the system) only the matter which enters into it. Thus ∆n or dn
(∆ni or dni) in the formulae below represent only changes of the amount of matter due to the contact of
the system with RMS. Of course, if the system does not exchange matter with the surrounding and the
term ∆URMS in (126) is absent one can set µ0 = 0 in all further formulae.

88The following point of view on the conducted reasoning may be helpful: through ∆VRVS = −∆V and
∆nRMS = −∆n one assumes that the changes of energies of the volume and matter sources (RVS and
RMS) are controlled by measuring the changes (∆V and ∆n) of the system itself; in contrast, changes
of the energy of the heat reservoir (RHS) are not fully controlled in this way: they can only be bounded
by (127). Therefore, even if one considers a concrete final state of the system itself, the final state of the
“supersystem” consisting of the system and its surrounding is not fully specified and for this reason (128)
is only an inequality. Of course, still different final states of the system itself (i.e. different values of ∆U ,
∆S, ∆V and ∆n) can be compatible with a given set of new constraints.
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that in general the quantities U , V and S pertaining in (128) to the system are the sums
of energies, volumes and entropies of its different parts (subsystems).

If the change of the system from an equilibrium state to another one is infinitesimal,
replacing ∆U by dU = TdS − p dV + µdn one gets89

w̄ ≤ −(T − T0)dS + (p− p0)dV − (µ− µ0)dn . (129)

This formula can be better understood by noting that if the change is reversible, −TdS
is the heat d̄Q lost by the system; its conversion into work absorbed by the MWS in
the surrounding at temperature T0 (e.g. by running a suitable Carnot engine) yields the
useful work equal η(T0, T )d̄Q = −(T − T0)dS. Similarly, if the system expands reversibly
changing its volume by dV , the additional pressure p−p0 must be applied externally (that
is, p − p0 is the lacking pressure necessary to make the expansion reversible in order to
fully profit from it - recall the discussion in Lecture II) by external forces provided by the
MWS and the work done on the MSW by the system in its expansion is just (p− p0)dV .
Finally, to make the change of matter content of the system by −dn reversibly requires
the additional chemical potential µ − µ0 be provided by the MWS90 and the work done
by the system on MWS due to the matter flow is −(µ− µ0)dn.

Conversely, the minimal work W needed to accomplish a given change of the system
(strengthening the constraints it is subjected to) characterized by the total changes ∆U ,
∆V and ∆n of all its parts) in the given surrounding is bounded from below

W ≥ ∆(U − T0S + p0V − µ0n) = ∆A . (130)

The minimal work Wmin = ∆A needed to accomplish the change is given an interpreta-
tion in Figure 16 which sketches the dependence of the total entropy of the supersystem
consisting of the system itself and of its surrounding (RHS, RVS and RMS) on its total
energy with weaker (solid line) and stronger (dashed line) constraints imposed on the sys-
tem; the horizontal dotted line shows the change of the total energy needed to strengthen
the constraints at fixed entropy (it is thus equal Wmin); the vertical dotted line shows the

89We restrict ourselves here to a system consisting of a single homogeneous body or to a situation in
which all parts of the system have the same temperature T pressure p and chemical potential µ; in the
general case of a system consisting of several homogeneous bodies each of which could have (owing to
internal constraints) different temperatures, pressures and chemical potentials the formula (129) would
take the form

w̄ ≤ −
∑

a

[(Ta − T0)dSa + (pa − p0)dVa − (µa − µ0)dna] ,

where the sum is taken over different parts of the system.
90Here we extend a bit the meaning of the “work source”, allowing it to change its energy also in the

form of a matter flow. If one keeps the original definition of MWS, a reversible change of matter content
of the system requires its chemical potential µ to be equal to µ0 and the last term in (129) vanishes; if
the matter flow between the system and RMS is not reversible, TdS does not represent the heat transfer
to/from the system and (p− p0)dV does not represent the work done by it (recall the discussion at the
end of Lecture IV) and (129) is valid only as the inequality.
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Wmin

∆Stot

Stot

Utot

Figure 16: Interpretation of the minimal work in terms of the entropy. The solid line
represents the total entropy of the system and its surrounding as a function of the total
energy with the initial (weaker) constraints while the long-dashed line represents the total
entropy as a function of the total energy with the final (stronger) constraints.

increase ∆Stot > 0 of the supersystem’s total entropy if the stronger constraints are re-
placed by the weaker ones and the system and its surrounding attain equilibrium without
any intervention from without (i.e. from MWS). If the system is very small compared to
the surrounding (treated here as a real system and not as an infinitely large one), then
Wmin ≪ Utot and the increase of the total entropy (occurring in the spontaneous reaching
by the system the equilibrium after weakening the constraints) can be written as (here
Utot and Stot stand for the total energy and entropy of the system and of the surrounding
with the weaker constraints)

∆Stot ≈
(

∂Stot

∂Utot

)

Vtot,ntot

Wmin =
1

T0
(∆U − T0∆S + p0∆V − µ0∆n) . (131)

This formula quantifies by how much the total entropy Stot of the system and its sur-
rounding (treated together as an isolated supersystem) with given (stronger) constraints
differs from the maximal entropy obtained when the system is in equilibrium with its
surrounding (without walls blocking the direct contact between them).

The formula (128) is very general and applies to most of the situations in which the
system exchanges heat, work and possibly matter with the surrounding. A few special
cases deserve to be discussed separately:

• The formula (128) has been derived assuming that the system can exchange heat
with its surrounding (RHS). If the system as a whole is thermally isolated (which of
course does not mean that in the process of reaching the final state a heat exchange
cannot occur between its different subsystems) and the final state of the system
is prescribed, the inequality (128) becomes the equality: the work done on the
MWS in the process in which the system reaches a given final state equals simply
the total change of the energy of the system, of the volume source (RVS) and of
the matter source (RMS). If however, as in the previously discussed situation, one
is interested in a system’s change specified only by the final constraints (and not
by a concrete final state), the work W̄ = −∆(U + p0V − µ0n) done on MWS is

106



maximal when the entropy of the system91 does not increase; this generalizes the
previous considerations by allowing for a change of the system’s total volume and
matter content due to their exchange with the surrounding (RVS and RMS). If the
matter content of the system changes only as a result of chemical reactions (there
is no exchange of matter with the surrounding) the work done on MWS is just
W̄ = −∆(U + p0V ) and again it is maximal for that final state which corresponds
to the least entropy increase - chemical reactions are nonequilibrium processes and
as such always increase entropy. Finally, if the initial and final pressures of all parts
of the system are the same and equal to the pressure p0 of the surrounding (e.g. the
chemical reactions in the system occur under the pressure of the surrounding), then
the work W̄ is given by the change of enthalpy of the system92

W̄ = −∆(U + p V ) = −∆H . (132)

• If the system exchanges with the surrounding only heat (chemical reactions within
the system are allowed to occur within the system), and the final total volume of all
its parts is identical with the initial one,93 then W̄ ≤ −∆(U − T0S). If in addition
the initial and final temperatures of all parts of the system are the same and equal to
the temperature of RHS (of the heat reservoir with which the system may exchange
heat in the process), then, identifying T0 with T , W̄ ≤ −∆(U − TS) and

W̄max = −∆(U − TS) = −∆F . (133)

In this case the maximal work is given by the change of the Helmholtz free energy
of the system.

• If the system exchanges heat and its volume changes but there is no matter exchange
with RMS, (chemical reactions within the system are, of course, again allowed to
occur within the system), W̄ ≤ −∆(U − T0S + p0V ). If in addition in the initial
and final states all parts of the system are in thermal and mechanical equilibrium
with the surrounding (T = T0 and p = p0) then W̄ ≤ −∆(U − TS + pV ) and

W̄max = −∆(U − TS + pV ) = −∆G . (134)

It is the change of the Gibbs function of the system which in this situation determines
the maximal work.

91More precisely of the supersystem consisting of the system itself, RVS and RMS, but since the
entropies of the RVS and RMS are assumed to be invariable, the stated condition pertains only to the
system.

92Recall that in Lecture II we have argued that −∆H is the heat released in the chemical reactions
occurring at constant pressure; here - because of the general setting we consider - this heat is assumed to
be converted into work within the considered system. (After all, W̄ was defined as a change of the total
energy of the system and its surrounding).

93This can be relaxed if the pressure p0 of the surrounding vanishes; the change of the total volume of
the system can be then assumed to be associated with the work done on the RWS.
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To illustrate these results let us consider one simple example. Suppose n moles of a
perfect gas at temperature T enclosed in the volume V are given. What maximal work
can be obtained by cooling it down to the temperature T0 < T of the surrounding not
changing the gas volume V ? As the final volume of the gas is to be the same as the initial
one (during the process of cooling down it may vary), the answer to the question is given
by

W̄max = −∆(U − T0S) .

Using the formulae (which by now should already be well-known!)

U(T, V ) = CV T + const., S(T, V ) = CV lnT + nR ln(V/n) + const.,

(for simplicity constant heat capacity of the gas has been assumed) we readily get the
answer

W̄max = CV (T − T0)− T0CV ln
T

T0
.

The process allowing to extract this work can of course be realized with the help of an
infinitesimal Carnot engine.94 One can also ask the question what maximal work can
be obtained by cooling the gas to the temperature T0 of the surrounding keeping it at
constant pressure p0 (or, more generally, ensuring that the initial and final gas pressures
are equal p0), if it initially had the temperature T . The answer is in this case given by the
formula W̄max = −∆(U − T0S + p0V ); one now has to consider also the volume changes
and compute the entropy change with temperature at constant pressure

∆V =
nR

p0
(T0 − T ) , ∆S = Cp ln

T0
T
,

and

W̄max = CV (T − T0)− T0Cp ln
T

T0
− nR (T0 − T ) = Cp(T − T0)− T0Cp ln

T

T0
.

Equilibrium state of a system open to its surrounding and the thermodynamical stability
conditions
The results obtained above can be used to formulate the condition determining equilib-
rium states of systems open to their surrounding (represented by RHS, RVS and RMS),
that is when their parameters other than energy and the deformative ones might be di-
rectly controlled, generalizing thereby the Callenian maximum entropy principle (which
applies when fixed, i.e. directly controlled, values have the deformative parameters char-
acterizing the system as well as its total energy) and to discuss stability conditions which
thermodynamical systems should satisfy in typical situations. Some exceptions will be
also mentioned.

94The reader is invited to check it by applying the reasoning similar to the one used on p. 102.
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Consider a thermodynamical system which owing to the internal constraints is in
equilibrium within itself (various parts of the system are kept in equilibrium by suitable
walls). The external constraints separate it from the surrounding represented by a heat
reservoir at the temperature T0, a volume source at p0 and a reservoir of matter at
µ0. Without the external constraints the system might not be in equilibrium with the
surrounding. If it is possible to change the constraints (external and/or internal; in
particular, by removing the walls separating it from RHS, RVS and RMS), to which the
system is subjected, so that its availability A = U−T0S+p0V −µ0n decreases, a useful (i.e.
positive) work could in principle be extracted from the system through an appropriate
process (the formula (128) gives only an upper bound on the work which can be obtained;
the system may well attain the new equilibrium state spontaneously without delivering
any useful work). If this is not possible, one may say that the system’s state is stable: any
change of constraints requires supplying to it a positive work from outside (the minimal
such work needed is of course equal Wmin = +∆A > 0); the constraints separating the
system from its surrounding (the RHS, RVS and RMS) can be therefore removed. It
follows that in a given surrounding represented by T0, p0 and µ0, it is the minimum of
A (over the set all possible virtual equilibrium states that can be fabricated by applying
to the system constraints stronger than the ones it is actually subjected to, when it is
in equilibrium with its surrounding) which determines the stable equilibrium state of
the system. This is the announced generalization to systems open to their surrounding
of the Callenian maximum entropy principle (pertaining to systems the energy and the
deformative parameters of which are controlled; in particular pertaining to completely
isolated systems).

To see what conditions in most typical situations must be satisfied if the system is to
be in equilibrium with its surrounding (at T0 and p0), we assume (although this needs
not always be so - see the example of the equilibrium of a liquid droplet with its vapour
discussed in classes and by Pippard) that in equilibrium all parts of the considered system
have the same temperature T and the same pressure p and compute (restricting ourselves
for a moment to systems which cannot exchange matter with the surrounding and taking
the total entropy and the total volume of the system for the parameters which are varied
independently) the change of the availability corresponding to arbitrary departures ∆S
and ∆V of the system’s entropy and volume from the (supposed) equilibrium state95 (the
derivatives are taken at equilibrium values of S and V ):

A = Aeq +

[

(

∂U

∂S

)

V,...

− T0

]

∆S +

[

(

∂U

∂V

)

S,...

+ p0

]

∆V

+
1

2

∂2U

∂S2
(∆S)2 +

1

2

∂2U

∂V 2
(∆V )2 +

∂2U

∂V ∂S
∆V ∆S + . . . (135)

95The changes ∆S and ∆V need not encompass all possible departures from the system’s equilibrium
state - there may be also departures corresponding, say, to changes of the numbers n1, . . . , nr of moles of
matter constituents if chemical reactions can be allowed by changes of system’s internal constraints; A
has to be minimized with respect to these other departures in the next step.
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It follows that the minimum of A (i.e. ∆A > 0 for any departures ∆S and ∆V ) is
realized by the state in which the temperature T and pressure p (assumed here to be
uniform throughout the system) are equal to the temperature T0 and pressure p0 of the
surrounding, that is, when T = T0 and p = p0. If the considered system is homogeneous
this is clear: if T = T0 and p = p0, no useful (positive) work can be extracted from
it. However, assuming by the availability A the minimal value requires also that the
quadratic form of the second derivatives of A (which translated into the quadratic form
of the second derivatives of the internal energy) be (strictly) positive definite. Applying
the method of minors (who attended my Math II classes should know what this is) the
following conditions are obtained:

(

∂2U

∂S2

)

V,...

=

(

∂T
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)

V,...

=
T

CV
> 0 ,

(

∂2U

∂V 2

)

S,...

= −
(

∂p

∂V

)

S,...

=
1

V kS
> 0 ,

and (writing (∂2U/∂S∂V ) in one corner of the matrix of the second derivatives as−(∂p/∂S)V
and as (∂T/∂V )S in the other corner)

−
(

∂p

∂V

)

S

(

∂T

∂S

)

V

+

(

∂p

∂S

)

V

(

∂T

∂V

)

S

≡ ∂(p, T )

∂(S, V )
=
∂(p, T )

∂(V, T )

∂(V, T )

∂(S, V )
=

T

V CV kT
> 0 .

Thus the stability of the system requires (in the considered case - all parts of the system
having the same pressure and temperature) strict positivity of its heat capacity CV at
constant volume and of its adiathermal, kS, as well as isothermal, kT , compressibilities.96

Positivity (or at least nonnegativity of) of kT is obviously required by the mechanical
stability of the system (were it negative, the system would spontaneously compress itself
at constant temperature); for similar reason positive should also be the coefficient kS.
Thus under normal circumstances the availability takes its extremal value at T = T0
and p = p0, as expected, and stability (that the extremum is a minimum) is ensured by
positive (and not infinite) values of CV , kS and kT . The positivity of these coefficients,
necessary for stability, implies, in turn, concavity (downwards or upwards) of various

96The conditions formulated here can be also given another interpretation: one can consider a small part
of an isolated homogeneous system which is in thermal and mechanical equilibrium at the temperature
T0 and pressure p0; with respect to the small part considered the rest of the system plays precisely the
role of the surrounding at T0 and p0. This interpretation (encountered in many sources) is, however,
only a special case of the much more general situation considered here: we do not assume that the
system is homogeneous - it may consist of several parts (subsystems) - but only that in equilibrium all
its parts have the same temperature T and the same pressure p (also this can be relaxed - one has then
to apply the stability condition in its most general form ∆A > 0); furthermore, as has already been
mentioned, departures from the equilibrium may also be due to departures of other variables (other that
the system’s total entropy S and total volume V ) from their equilibrium values - these departures depend
on the nature of the system and must, therefore, be considered separately in each particular case (see the
examples below).
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thermodynamic functions (potentials) characterizing the system. For instance, since

CV = T

(

∂S

∂T

)

V

= −T
(

∂2F

∂T 2

)

V

,
1

kTV
= −

(

∂p

∂V

)

T

=

(

∂2F

∂V 2

)

T

,

stability implies the concavity upwards of the Helmholz free energy as a function of the
temperature T and its concavity downwards as a function of the volume V . Similarly
concave upwards, both as a function of the temperature T and pressure p must be the
Gibbs function G(T, p). Similar stability conditions can be derived for other simple ther-
modynamic systems like wires or rubber bands subjected to stretching (in these cases
they amount to the inequalities - see Lecture II for definitions of the variables - CL > 0,
(∂K/∂L)S > 0 and (∂K/∂L)T > 0). These also imply definite concavity properties of the
corresponding thermodynamic functions of these systems.

There are however well known situations in which some of the derived inequalities
become equalities. One such situation is when kT is infinite, while CV and kS are finite.97

There is then a direction in the (∆S,∆V ) space in which the second order term in the
expansion of A around Aeq does not grow. This occurs e.g. at the critical point of the
liquid-vapour system; one then shows that (∂2p/∂V 2)T must vanish while (∂3p/∂V 3)T
must be negative in order that A has a minimum at T = T0 and p = p0 (equal to the
critical values). Indeed, vanishing of k−1

T , i.e. of the determinant of the matrix of the
second derivatives, means that (at T = T0, p = p0) the expansion (135) of A can be
written in the form

A = Aeq +
1

2

(

∂S

∂T

)

V

[(

∂T

∂S

)

V

∆S +

(

∂T

∂V

)

S

∆V

]2

+ . . . ≡ Aeq +
CV

2T
(∆T )2 + . . . ,

which shows that the direction in question in the (∆S,∆V ) space corresponds to ∆T =
0. Since A treated now as a function of T and V is at constant T = T0 equal to
F (T, V ) + p0V , the stability (i.e. the minimum of A at Aeq at p = p0) requires, when
(∂2F/∂V 2)T = −(∂p/∂V )T = 0, vanishing of (∂3F/∂V 3)T = −(∂2p/∂V 2)T and strict
positivity of (∂4F/∂V 4)T = −(∂3p/∂V 3)T .

Another possibility would be that all inequalities become equalities (all the three, CV ,
kS and kT are infinite). As usually with the conditions for a minimum, the third order
terms in the expansion of A would then have to vanish and the fourth order terms, the
tetra-form98 of the departures ∆S and ∆V would have to be positive definite. Detailed
analysis of this case (Pippard refers here to the Landau and Lifshitz statistical physics
textbook) shows that there would be then more conditions than could simultaneously be
satisfied, so the conclusion is that CV , kS and kS can never become simultaneously infinite

97Recall the home Problems in which one shows that Cp = CV + TV α2
p/kT and kT = (Cp/CV )kS .

From these relations it follows that Cp ≥ CV (the equality requires either αp ≡ (1/V )(∂V/∂T )p0 or
infinite kT ) and, consequently, kT ≥ kS .

98Tetra-form like tetradrachm - a Greek coin, an artefact from antiquity - or tetrarchy - a system (in
effect not successful, as the subsequent history has shown) of governing the Roman empire established
by Diokletianus.
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if A can be expanded in powers of the departures ∆S and ∆V around the equilibrium
state.

It may also happen that A cannot be expanded in the power series. The typical
situation is a (nonhomogeneous) system consisting of two phases α and β in equilibrium
with the surrounding at T0 ad p0 which are such that both phases may coexist with an
arbitrary proportion nα/nβ (nα + nβ = n) of the matter in each of the two phases. In
such a case kT = ∞ because changing the volume does not change the pressure - only the
proportion nα/nβ is thereby altered. So A has a valley of equal minima along a direction in
the (S, V ) plane and begins to raise only at the opposite ends of this valley corresponding
to the volumes in which one of the two phases completely disappears. As long as both
phases are present, the system’s equilibrium is neutral (see the discussion in Lecture I).
It is amusing to show that considering this valley allows to derive the Clapeyron-Clausius
equation for the temperature dependence of the pressure along the coexistence curve.99

The valley must be in the null direction of the quadratic form of the second derivatives
in (135):

(

(∂T/∂S)V (∂T/∂V )S
(∂T/∂V )S −(∂p/∂V )S

)(

∆S
∆V

)

=

(

0
0

)

. (136)

From the first line of this equality (the second line give a linearly dependent equation -
this is ensured by vanishing of the determinant of the above matrix, that is, by the infinite
value of kT ) one gets that the valley direction is such that

∆S

∆V
= −(∂T/∂V )S

(∂T/∂S)V
=

(

∂S

∂V

)

T

=

(

∂p

∂T

)

V

, (137)

(on the right hand side first the “shocking” relation has been used and then the well-
known Maxwell identity). Along the valley however, the entropy and the volume changes
are given by

∆S = sα∆nα + sβ∆nβ , ∆V = vα∆nα + vβ∆nβ ,

but since nα + nβ = n is fixed, ∆nα = −∆nβ and therefore (137) takes the form100

dp

dT
=
sα − sβ
vα − vβ

, (138)

which is just the Clapeyron-Clausius equation (to which we will return in the last Lecture
devoted to thermodynamics). In most cases neither the numerator (i.e. ∆S) nor the
denominator (i.e. ∆V ) on the right hand side of (138) vanishes, which means that neither
(∂2U/∂S2)V nor (∂2U/∂V 2)S vanish, that is, CV and kS are both finite (though kT , Cp

99This equation will be rederived with the help of a more conventional and more general reasoning in
Lecture IX.

100Since along the valley the pressure does not depend on the volume, the derivative (∂p/∂T )V acquires
the meaning of the derivative dp/dT along the coexistence curve.

112



and αp are infinite). On the melting curve of 2He3 (the lighter isotope of Helium) there
is, however, a point at which dp/dT = 0 which means that the valley lies in the (0,∆V )
direction; this in turn implies (since the matrix in (136) must vanish on this vector) that
(∂2U/∂V 2)S = 0, that is, that kS = ∞. Similarly a point at which dT/dp = 0 would
probably exist on the melting curve of ice were it not for the transformation of ordinary
ice into its another phase (H2O has many different phases), which in the analogous way
would mean vanishing of (∂2U/∂S2)V = 0, that is CV = ∞. This shows that the finitness
of CV and kS are not absolute thermodynamic requirements (but exceptions are rare).

Special cases of the general stability criterion ∆A > 0 (determining in the variational
way the equilibrium states of thermodynamic systems in different conditions) formulated
above deserve consideration.

• If the system is isolated thermally and with respect to the matter transfer (no
contact with RHS and RMS; chemical reactions inside it can occur), U + p0V stays
constant101 and the condition of minimal value of the availability A = U+p0V −T0S
is equivalent to the condition of maximum entropy discussed before.

• If the volume of the system in contact with RHS at T0 is fixed (there is no contact
with RVM), then p − p0 in the expansion (135) is indeterminate (the equilibrium
pressure in the system is unrelated to that of the surrounding). The minimum of
A is at T = T0 and the other parameters specifying the state of the system are
determined by minimizing the free Helmholtz energy F (T, V ) over the set of all
virtual states realizable with the help of stronger constraints keeping constant V
and constant T = T0.

• If the system is in thermal and mechanical contact with its surrounding (i.e. with
RHS and TVS) at T0 and p0, and if all its parts have in equilibrium the same
temperature T and the same pressure p, then T = T0 and p = p0 and the values
of the remaining parameters specifying its states are determined by minimizing the
Gibbs function G = U − TS + p V at fixed T = T0 and p = p0 over the set of all
virtual states realizable with the help of stronger constraints compatible with the
fixed temperature and presure (equal T0 and p0) of all parts of the system.

As an example of applications of the stability conditions discussed above, we can
consider the equilibrium of the system consisting of n moles of a liquid and its vapour,
under different conditions. For simplicity we can assume that there is only one matter
component. Let first the vessel containing the system be open to a constant external
pressure p0 and held at a temperature T0 by its thermal contact with the surrounding
(playing the role of the heat-bath). The availability of the system corresponding to virtual
states in which the transfer of matter between the liquid and the vapour is blocked by a

101I.e. one considers only such virtual states; if the system is isolated both thermally and mechanically,
U and V are separately conserved; if it is only thermally isolated but in mechanical contact with RVS,
the combination U + p0V is conserved, because U + URVS is.
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suitable wall is

A = nl(ul − T0sl + p0vl) + nv(uv − T0sv + p0vv) , (139)

where nl (nv) is the number of moles of the liquid (vapour) in the vessel. Obviously,
nl + nv = n and all quantities ul,v etc., are computed at T0 and p0 (they are therefore
fixed) because we expect that in equilibrium both subsystems (the liquid and the vapour)
should have the same temperatures and pressures102 and from the previous considerations
we know that these must be equal to T0 and p0, respectively. The equilibrium values neq

l

and neq
v (also satisfying the relation neq

l + neq
v = n) should minimize A (or equivalently,

the Gibbs function, G(T0, p0, nl, nv) at constant T0 and p0). That is, if both phases are
present, δA should vanish at nl = neq

l . From this we find the equilibrium condition

ul(T0, p0)− T0sl(T0, p0) + p0vl(T0, p0) = uv(T0, p0)− T0sv(T0, p0) + p0vv(T0, p0) ,

that is, equilibrium is possible only if T0 and p0 are such that gl(T0, p0) = gv(T0, p0)
or, as we will see shortly, µl(T0, p0) = µv(T0, p0). One should also notice that in this
case the second and all higher derivatives of A with respect to nl vanish identically -
the equilibrium is of the neutral nature (the value of nl is not fixed by the equilibrium
condition); this has already been discussed in this Lecture. If T0 and p0 are not such that
gl(T0, p0) = gv(T0, p0), only one phase - the one of lower value of the molar Gibbs function
- is present.

As the second situation we consider the same mixture of n moles of a liquid and its
vapour but now as an isolated system of fixed total energy U = nlul + nvuv and fixed
volume V = nlvl + nvvv. Minimization of the system’s availability (139) reduces now
to maximizing its total entropy S = nlsl + nvsv, because U and V (and n) are fixed.
The external pressure p0 and the temperature T0 do not play any role here (the system
is isolated from the external pressure and from the heat bath). However to seek the
extremum of S respecting the constraints one usually uses the standard method103 and
equates to zero the variation of the the auxiliary function

δ(U − TS + p V ) = 0 ,

in which the parameters T and p are the Lagrange multipliers,104 treating the variables
nl and, say, ul, vl, uv, vv as independent. The virtual equilibrium states which should be

102The pressures of the two phases may be nonequal if the presence of the surface separating them is
taken into account.

103Of course, were we given the explicit forms of sl(ul, vl) and sv(uv, vv), we could write down the total
entropy S = nlsl(ul, vl) + nvsv(uv, vv) as an explicit function S = S(U, V, n, ul, vl, nl), say, and maximize
it directly treating 0 ≤ ul ≤ U/n, 0 ≤ vl ≤ V/n and 0 ≤ nl ≤ n as three independent variables. If both
phases are present in equilibrium (that is, if the derivatives of S(U, V, n, ul, vl, nl) with respect to ul, vl
and nl vanish within the specified ranges), they both should have the same T and p and, therefore, all
the molar quantities ul, vl, sl and uv, vv, sv can be parametrized by the temperature T and pressure p
obtainable as ∂sl/∂ul = 1/T = ∂sv/∂uv and ∂sl/∂vl = p/T = ∂sv/∂vv; the equilibrium values ul, vl, uv,
vv can be thus eventually traded for the variables T and p.

104In this simple case there is no need to introduce the Lagrange multiplier associated with the condition
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considered in this situation may correspond to different partitions of the total internal
energy U , the total volume V and numbers of moles (and, hence, to different entropies)
between the two phases. Therefore the above variation can be written as

nl[δul − Tδsl(ul, vl) + p δvl] + nv[δuv − Tδsv(uv, vv) + p δvv]

+ δnl[ul − Tsl(ul, vl) + p vl] + δnv[uv − Tsv(uv, vv) + p vv] = 0 .

We know however, that the two Lagrange multipliers T and p can be chosen in such a
way as to kill the coefficients of nl and nv. This is possible, because δul, δvl and δsl
are changes of the parameters between two equilibrium states (the real one and a virtual
one) of one mole of the isolated liquid and, as has been stated at the end of Lecture V,
these changes are always correlated in this way with T and p being the temperature and
pressure of the system; the same applies also to the changes δuv, δvv and δsv. Thus in this
way, the Lagrange multipliers acquire the proper meaning of the system’s temperature
and pressure and the equilibrium condition is

δnl(ul − Tsl + pvl)|T,p + δnv(uv − Tsv + pvv)|T,p = 0 ,

that is, because δnl = −δnv,

gl(T, p) = gv(T, p) , (140)

which of course must be solved together with the conditions

nlul(T, p) + nvuv(T, p) = U , nlvl(T, p) + nvvv(T, p) = V , (141)

to yield the equlibrium parameters T , p, nl and nv = n− nl. The condition (140) is the
same as µl(T, p) = µv(T, p) (because there is only a single component). Of course, now the
matrix of the second derivatives is not identically zero - and and if the conditions (140)
and (141) can be met simultaneously, it is negative definite (at least on the departures of
the variables respecting the constraints). If they cannot be met, there is only one phase
- the one that has lower g, that is, in this case, that of higher entropy.

Finally on can also consider the equilibrium of the liquid with its vapour in the vessel
of fixed volume but held at constant temperature T0 by a thermal contact with the
surrounding. In this case minimizing A reduces, because V is fixed, to minimizing U −
nl+nv = n because it can be easily taken into account directly. In more complicated cases (several phases,
more matter components) one would have to introduce one additional Lagrange multipliers (which would
acquire the meaning of its chemical potential - see Lecture IX) per each component. Maximizing S it
would be more appropriate to write δ(S − λ1U − λ2V ) = 0, as in similar Math II problems, with the
Lagrange multipliers λ1 and λ2 which (because of the resulting conditions ∂sl/∂ul = λ1 = ∂sv/∂uv and
∂sl/∂vl = λ2 = ∂sv/∂vv would then acquire the interpretation of 1/T and p/T , respectively, but this is
clearly equivalent to writing δ(U −TS+ pV ) = 0. It should be also noted that the written condition can
be also interpreted as seeking the minimum of U at constant S (and V ) - this illustrates the equivalence
of the maximum entropy and minimum internal energy rules which both can be used to determine the
equilibrium state of an isolated system.
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T0S, or because the external temperature T0 is also the temperature of the system, to
minimizing105

F (T0, V, vl, vv, nl) = nlfl(T0, vl) + (n− nl)fv(T0, vv) ,

with the condition of fixed V = nlvl + nvvv which is taken into account by introducing
the Lagrange multiplier p, which then acquires the meaning of the internal pressure of
the system. Similar reasoning as above then leads to the conditions

gl(T0, p) = gv(T0, p) , nlvl(T0, p) + nvvv(T0, p) = V ,

which together determine the equilibrium pressure p and the numbers nl and nv of moles
in the two phases. Also in this case if all the conditions can be met, the extremum of the
function F (T0, V, vl, vv, nl) is its true minimum (with respect to departures δvl, δvv and
δnl respecting the constraints).

That in all the three cases the condition of stability (determining the equilibrium
state) ultimately boils down to the requirement of equality of the molar Gibbs functions
of the two phases should not be surprising: if the equilibrium has been reached in the
isolated system and corresponds to a common temperature T and a common pressure p
of both phases, then it will not be destroyed by placing the system in contact with the
surrounding at that temperature and that pressure.

105Again, if the explicit forms of fl(T0, vl) and fv(T0, vv) were known, one could directly minimize
F (T0, V, n, vl, nl) ≡ nlfl(T0, vl) + nvfv(T0, vv) with respect to the variables vl and nl after eliminating nv

and vv using the conditions n = nl + nv and V = nlvl + nvvv. The equilibrium pressure could be then
determined as, say, −∂fl/∂vl (computed at the extremum) because in equilibrium the pressure must be
the same for both phases.
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LECTURE VIII (TMD)

Fundamental relations in the representations of the F , G and H functions
The considerations carried out in the preceding Lecture showed that in specific condi-
tions, when the system is open to its surrounding (is held at constant temperature and/or
pressure through the contact with suitable reservoirs representing the surrounding), its
equilibrium states are determined by minima (over the set of all possible virtual equilib-
rium states compatible with the external conditions) of the Helmholz free energy F (if T
and V are fixed), or the enthalpy H (if S and p are fixed) or the Gibbs function G (if T
and p are fixed). The principles of minimum of F , H or G in these situations replace the
Callenian principle of maximal entropy. In this sense all these functions also play the roles
of thermodynamic potentials. We have also argued that if the entropy S of an isolated
system is known as a function of its global (extensive, if the system has this property)
parameters U , V , . . . and n (or n1, . . . , nr), the thermodynamical information about the
system is complete. We now want to argue that if the termodynamic potentials are known
as functions of their natural variables: F as a function of T , V and n (or n1, . . . , nr),
H as a function of S, p and n or of G as a function of T , p and n, the thermodnamical
information about the system is also complete. The distinguished role of the particular
thermodynamical potential in given external conditions stems precisely from the fact that
its natural variables are just those which in the given situation are directly controlled (by
the environment).

From the mathematical point of view the operations which one does passing from the
internal energy U known as a function of S, V and n to the other potentials in their natural
variables is called Legendre transformation. This transformation in its simplest form
is precisely the way of going over from a given function f(x) to another function g(p),
the argument p of which is the derivative of f , without loosing the information about the
form of f (only coding it differently). Since the Legendre transformation is used in many
places in physics, it is appropriate to discuss it here in the general way.

Let f represent a physical quantity which is theoretically given as a convex106 function
(upwards or downwards) function f(x) of some variable x. Suppose, however, that directly
controlled experimentally is not the variable x itself but the derivative p of f with respect
to x. One could then try to invert the relation

p(x) = df/dx ,

to get x = x(p) and to switch to the function

f̃(p) ≡ f(x(p)) . (142)

which would represent the same physical quantity (because of this a physicist would
just write f(p)). This is precisely what one does expressing U in terms of T instead of

106The generalization of the Legendre transform to nonconvex functions is called the Fenchel transform
and is defined as g(p) = supx(f(x)− px) and plays the important role in the theory of phase transitions.
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x

y

Figure 17: A family of functions y = fa(x) which all yield the same function f̃(x(p)),
where p = p(x) is the slope of the tangent to fa(x) at x.

expressing it in terms of S. But switching to f̃(p) one looses some information about the
form of f(x): the functions f(x) and fa(x) ≡ f(x− a) with an arbitrary shift constant a
lead to the same f̃(p) (see Figure 17).

However the set of lines tangent at every point to a given convex curve on the plane
(x, y) determines this curve uniquely: geometrically the plot of y = f(x) is just the
envelope of the set these tangent lines. In turn, every tangent line is uniquely determined
by its slope p (the variable we want to play with) and the value g of the intersection of the
tangent with the y-axis. It suffices therefore to give g as a function of the slope (defining
in this way the family of the tangent lines) to retain the complete information about the
form of the original function f(x). To this end we consider a point x0 and write down the
equation of the tangent to f(x) at this point (see Figure 18):

y = p x+ f(x0)− p x0 .

The value g of the intersection of this tangent with the y-axis is therefore equal (renaming
now x0 to x)

g = f(x)− p x .

If now x is written as x = x(p) inverting the relation (142) we will get the function

g(p) = f(x(p))− p x(p) ,

which encodes in it the same information about the dependence of the quantity f on the
variable x as does the original function f(x), but is expressed through the variable which
is easily controlled experimentally. That the combination f(x)− px is indeed naturally a
function of the variable p can be also seen by considering its differential

dg ≡ d(f(x)− p x) = df − d(p x) =
df

dx
dx− p dx− xdp = −x(p) dp .

Thus, the change of g depends only on the change dp of the argument p and not on dx;
the function g(p) can be therefore reconstructed from its differential dg by the step by
step integration given its value g(p0) at some point p0.
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Figure 18: Geometrical construction of the Legendre transform g value g(p) corresponding
to the value f(x0) of a convex function f .

Of course a function of several variables, f = f(x1, . . . , xn) can be Legendre trans-
formed in an arbitrary number of its variables to obtain, say,

g(p1, . . . , pk, xk+1, . . . , xn) = f(x1, . . . , xn)−
k
∑

j=1

pjxj , (143)

where the variables x1, . . . , xk should be expressed in terms of the variables p1, . . . , pk (and
xk+1, . . . , xn) by inverting with respect to them the k relations

pi =
∂f

∂xi
. (144)

Students associate the Legendre transform primarily with classical mechanics in which
it is used to pass from the Lagrange to Hamilton’s formulations of the equations of motion
(on this other formulation of mechanics is based the transition - traditionally called quan-
tization - to the quantum theory; it is also fundamental to the formulation of classical
statistical mechanics, which we will discuss in due course), i.e. to replace the general-
ized variables ql and the generalized velocities q̇l, l = 1, . . . , n by the variables ql and
the canonical momenta pl = ∂L/∂ql. (Because of this, students have the tendency to
think that the Legendre107 transform has something to do with the fact that in mechanics
variables come in pairs qi and q̇l. The derivation above clearly shows this is not so.) The
Hamiltonian H(p1, . . . , pn, q

1, . . . , qn) is just the (minus, in order that it has - in most
cases - the interpretation of mechanical energy) Legendre transform of the Lagrangian
function L = L(q1, . . . , qn, q̇1, . . . , q̇n) in n its last variables

H(p1, . . . , pn, q
1, . . . , qn) =

n
∑

j=1

pj q̇
j − L(q1, . . . , qn, q̇1, . . . , q̇n) .

It is also instructive to illustrate the working of the Legendre transform on another
simple physical example taken from electrostatics. Let us determine the force by which

107Legendre, Lagrange, Laplace, Lavoisier, Lebesque - who can distinguish all these French L-masters?
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the two plates of a capacitor attract one another. We remember that the voltage ϕ
between the plates is related to the charge Q (on one of the plates) and the capacity
C by Q = Cϕ. If the capacitor is being charged by successively bringing onto its plate
infinitesimal portions dQ of charge (e.g. in the flat capacitor by transporting successively
and reversibly - in the sense that an external force only counterbalances the electric forces
acting on the transported charge - portions dQ from one plate to the other one) the work
d̄W done on the capacitor by external forces is equal d̄W = ϕdQ. Charging the capacitor
with the charge Q in this way requires doing on this system the work

∫ Q

0

d̄W =

∫ Q

0

ϕdQ =

∫ Q

0

Q
C
dQ =

Q2

2C
≡ U ,

which is therefore equal to the energy of the charged capacitor (its internal energy, if we
wish to treat the capacitor in the thermodynamic way).

If the capacity C of the capacitor is altered as a result of the action of an external force
F (when the application of the external force changes the distance between the plates -
in the language of thermodynamics - reversibly), the work done by this external force is
just the change of the internal energy U of the capacitor, provided the capacitor is an
isolated system, that is, has a fixed charge Q (we do not consider here the heat capacity
of the plates). This allows to find the force by which the plates attract each other. (This
in Feynman’s Lectures on Physics is called the principle of virtual works but in fact
this is precisely the same as applying 1TMDL to isolated systems - in thermodynamics
adiathermally isolated systems; here we neglect possible thermal effects but the capacitor
could be not isolated also because of being connected to a battery, so we need to exclude
this possibility and this is just the condition of the constancy of Q.) Let us write this
statement in the thermodynamical way

dU(Q,C ) =

(

∂U

∂Q

)

C

dQ+

(

∂U

∂C

)

Q

dC ≡ ϕdQ+ F dC ,

By F we have denoted here the generalized force related to the change of the capacity at
fixed charge Q of the capacitor. Expressing the capacity C through the spatial (geomet-
rical) characteristics of the capacitor (the area of its plates, the distance between them)
allows to give the generalized force F the ordinary mechanical meaning. For example if
C changes due to changing the distance z between the plates

dU(Q,C )|Q = const. = F dC = F
dC

dz
dz ≡ Fz dz .

In this way we find that the external force which precisely balances the force Fz by which
the plates of the flat capacitor of area A and separated by the distance z between the
plates (the capacity of such a capacitor is in the SI system equal C = ε0(A/z)) attract
each other is given by

Fz =

(

∂U

∂C

)

Q

dC

dz
=

(

∂U

∂z

)

Q

=
Q2

2ε0A
.
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The force Fz found in this way cannot depend, of course, on whether the capacitor has
a fixed charge Q, or whether it is connected to a battery which keeps it at the voltage ϕ
of such a magnitude that the charge on the plates is equal Q. If we write, however, the
energy U as a function U(ϕ,C ), expressing simply the charge through the voltage and the
capacity and try to define the generalized force F acting between the capacitor plates at
constant voltage ϕ by the relation

dU(ϕ,C )|ϕ = const. =

(

∂U

∂C

)

ϕ

dC ≡ F dC (incorrect),

we will get the force Fz with the wrong sign. To obtain the right sign one has to perform
the Legendre transform, that is, to pass to the function

Ũ(ϕ,C ) = U(Q(ϕ,C ), C )− ϕQ(ϕ,C ) ,

the “free energy”, the differential of which is

dŨ(ϕ,C ) = ϕdQ(ϕ,C ) + F dC − d(ϕQ)

=

(

∂Ũ

∂ϕ

)

C

dϕ+

(

∂Ũ

∂C

)

ϕ

dC ≡ −Q dϕ+ F dC ,

As we can now fully control the voltage, we can compute the force Fz as the coefficient
in dŨ of the dz differential at fixed voltage ϕ

dŨ(ϕ,C )
∣

∣

∣

ϕ=const.
=

(

∂

∂C

[

1

2
Cϕ2 − ϕQ(ϕ,C )

])

dC

=

(

∂

∂C

[

−1

2
Cϕ2

])

dC = −1

2
ϕ2 dC

dz
dz ≡ Fz dz .

In this way one gets the right force Fz (with the right sign) but expressed through different
variables.

The physical reason for the necessity to pass to the function Ũ is, of course, that the
capacitor connected to the battery is not an isolated system and changing its capacity
C by moving its plates entails doing on it some work also by the battery, which has to
supply to the capacitor an additional charge (to maintain the voltage unchanged). The
energy balance in this case therefore reads

Fz dz + d̄Wbat = dU(ϕ,C ) ≡ 1

2
ϕ2 dC .

The work done by the battery goes into supplying the additional charge ϕdC to the
capacitor at the voltage ϕ; therefore this work equals d̄Wbat = ϕ2dC . Putting this work
on the other side of the above equality yields the right force Fz. In the “thermodynamic”
approach consisting of applying the principle of virtual works to the function Ũ instead of
U , the work done by the battery is already automatically taken into account by controlling
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the voltage ϕ. One should notice here the analogy to using the Helmholtz free energy F
instead of the internal energy U in computing the volume work done by a system which
is kept in equilibrium witha heat bath at fixed temperature T

In thermodynamics with the help of the Legendre transform two families of potentials
can be constructed. The first one (more commonly used) is obtained by starting from the
fundamental relation (102) in the internal energy representation U = U(S, V, . . . , n1, . . . , nr).
The three basic potentials of a simple system (a fluid) are the already introduced enthalpy
(to simplify the notation n stands for n1, . . . , nr and µdn for

∑r
j=1 µjdnj)

H(S, p, n) = U + p V , (145)

dH = T (S, p, n) dS + V (S, p, n) dp+ µ(S, p, n) dn , (146)

the Helmholtz free energy

F (T, V, n) = U − TS , (147)

dF = −S(T, V, n) dT − p(T, V, n) dV + µ(T, V, n) dn , (148)

and the Gibbs function (called also the free enthalphy)

G(T, p, n) = U − TS + p V , (149)

dG = −S(T, p, n) dT + V (T, p, n) dp+ µ(T, p, n) dn . (150)

One also defines the Grand potential

Ω(T, V, µ) = U − TS − µn , (151)

dΩ = −S(T, V, µ) dT − p(T, V, µ) dV − n(T, V, µ) dµ . (152)

In the similar way one defines the functions H , F and G characterizing other simple
systems like wires and rubber bands (−p → K, V → L), to films (−p → γ, V → A)
or to magnetic materials (−p → H0 in the normal Gauss system or −p → µ0H0 in the
SI system - but if µ is used to denote the chemical potential, the SI system becomes
clearly inconvenient - and V → M). If the system is not simple and has more variables,
for example a paramagnetic gas the internal energy of which depends, in addition to the
number of moles, on S, V and M , more Legendre transforms can be formed and their
names are not codified. One of such potentials has already been used in discussing the
connection between piezoelectricity and electrostriction in Lecture V.

As follows from the construction of the Legendre transform, all these potentials, if
known as functions of their natural variables (those which are explicitly indicated in the
formulae above), contain the complete thermodynamical information about systems to
which they pertain. Therefore the relations H = H(S, p, n), F = F (T, V, n) or G =
G(T, p, n) can be called fundamental relations in the representations of enthalpy, free
energy and Gibbs, respectively. To show this directly it is sufficient to realize that from
each of them U = U(S, V, . . . , n) can be obtained by the repeated Legendre transform
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(the Legendre transform applied twice to a convex function is the identity operation). For
instance, knowing F = F (T, V, n) one can write

U(T, V, n) = F + TS = F − T

(

∂F

∂T

)

V,n

≡ −T 2

(

∂

∂T

F

T

)

V,n

, (153)

and inverting the relation S = −(∂F/∂T )V,n to get T = T (S, V, n) one can obtain U =
(S, V, n). Moreover the potentials allow (as has been demonstrated in classes) to obtain
Maxwell identities more straightforwardly than does U = U(S, V, n). For instance the
identity (∂S/∂V )T,n = (∂p/∂T )V,n is an immediate consequence of the fact that F is
a state function and therefore its mixed second derivatives must be equal. As another
illustration of the usefulness of F we can obtain the dependence of the heat capacity CV

on the volume:
(

∂CV

∂V

)

T

=

(

∂

∂V

[

T

(

∂S

∂T

)

V

])

T

= −T ∂3F

∂V ∂T 2
= −T ∂2

∂T 2

(

∂F

∂V

)

T

= −T
(

∂2p

∂T 2

)

V

.

The distinguished role of the potentials F (T, V, . . . , n), Ω(T, V, . . . , µ) and, primarily,
S(U, V, . . . , n) stems from the fact that the formalism of the equilibrium statistical physics
gives direct prescriptions to determine them on the basis of the microscopic dynamics
(classical or quantum) of the considered system when the latter is subjected to specific
constraints: the entropy S, if the energy, the amount of matter and all deformative
parameters of the system are directly controlled (e.g. if the system is thermally isolated),
the free Helmholtz energy F (T, V, n), if directly controlled is the system’s temperature, the
amount of matter in it as well as the relevant deformative variables (e.g. if a closed system
is isolated from the external pressure but remains in thermal contact with a heat bath at
temperature T ) and the potential Ω(T, V, µ) when directly controlled are its temperature
T , the relevant deformation parameters and the chemical potential, e.g. when system
can exchange matter with a reservoir at the chemical potential µ. (Although the Gibbs
potential G(T, p, n), relevant when controlled are temperature, pressure and the amount of
matter, can also be obtained directly by considering the appropriate statistical ensemble
- the notion to be defined yet, it is less frequently used.)

The other family of thermodynamic potentials (used practically only by a very narrow
family of thermodynamics specialists) is constructed taking as the starting point the
fundamental relation in the entropy representation (97) the differential of which

dS =
1

T
dU +

p

T
dV − µ

T
dn ≡ θ dU + η dV − ν dn , (154)

defines the variables θ, η and ν and performing the Legendre transforms to one or more
of these variables. One obtains in this way the so-called Massieu-Planck functions (po-
tentials). However, since with perhaps slightly more labour, the same results can always
be arrived at with the help of the potentials H , F and G, we will not discuss the Massieu-
Planck functions here any more.
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Returning to the usual potentials it is good to notice that although the quantities
like p or µ in the differentials dU and dF are denoted by the same letter (in agreement
with the usual habit of physicists to use the same symbol for the same physical quantity),
they are in principle different functions of different variables (of the natural ones for the
respective potentials) and their experimental determination (as mathematical functions
of these variables) requires specifying the thermodynamical conditions. As an example
consider a wire stretched by the force K and satisfying the Hooke’s law. If its internal
energy U = U(S, L) is given, the tension K defined by the derivative of this function
with respect to L is measured as the force needed to reversibly stretch the wire under
adiathermal conditions, that is at constant entropy of the wire: dU |S=const = KdL. It can
be determined by performing a series of measurements at different values of the entropy
S of the wire. The commonly used coefficient k in the Hooke’s law, which in mechanics
enters the formula for the wire potential energy Epot =

1
2
k(L − L0)

2, is however usually
determined by measuring the force needed to stretch the wire at constant temperature T
(equal to that of the surrounding). In such conditions the (minimal) work which must be
done by a work source to stretch the wire from its equilibrium state with the length L0

(the work which in mechanics is identified with the change of the wire’s potential energy)
is, as discussed in the preceding Lecture, given by ∆F at fixed T . In this way measured
is the coefficient k(T ) in the differential (written using the Hooke’s law)

dF = −SdT + k(T )(L− L0)dL ≡ −SdT +K(T, L)dL .

Integrating this one-form (along the path (T0, L0) → (T, L0) → (T, L)) one gets

F (T, L) = F (T, L0) +
1

2
k(T )(L− L0)

2 .

Since S = −(∂F/∂T )L, one obtains

S(T, L) = −dF (T, L0)

dT
− 1

2

dk(T )

dT
(L− L0)

2 ≡ S(T, L0)−
1

2

dk(T )

dT
(L− L0)

2 .

Applying now the formula (153) one obtains

U(T, L) = F (T, L0) + TS(T, L0) +
1

2

(

k(T )− T
dK(T )

dT

)

(L− L0)
2

= U(T, L0) +
1

2

(

k(T )− T
dk(T )

dT

)

(L− L0)
2 .

Therefore the factor k defined as the coefficient of 1
2
(L−L0)

2 in the internal energy of the
wire U = U(T, L) (which one would naturally split into the thermal energy of the wire
and its mechanical energy) is not what is measured in typical mechanical experiments
conducted at constant temperature.

Consequences of extensiveness: the Gibbs-Duhem relation and chemical potentials
Reconstructing the fundamental relation of a given system that is, obtaining the full ther-
modynamical information about it, requires exploiting various experimental data. In the
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case of a simple body consisting of a fixed amount of matter one principal heat capacity at
one fixed value of the body’s volume or pressure must be measured as a function of temper-
ature and the equation of state must be known (its form can be determined by measuring
various differential coefficients like kT , αp, etc.). Together they provide sufficient infor-
mation about the coefficients of the differentials in the forms dU = CV dT +(∂U/∂V )TdV
(or dU = (∂U/∂T )pdT + (∂U/∂p)T dp) and dS = (CV /T )dT + (∂S/∂V )TdV (or dS =
(∂S/∂T )pdT + (∂S/∂p)T dp) to allow to integrate them up and to obtain U = U(T, V )
and S = S(T, V ) (or U = U(T, p) and S = S(T, p)) which is equivalent (in the case
when U = U(T, p) and S = S(T, p) are obtained, because the equation of state has been
assumed to be known) to knowing the relations S = S(U, V ) or U = U(S, V ). Recon-
structing the dependence of entropy and of internal energy on each additional parameter
in the case of nonsimple systems, e.g. on the magnetization M , if the work of magne-
tization d̄W = H0dM can be (reversibly) done on the system in addition to the usual
volume work −pdV , would require determining from data one more function.108 Similarly,
reconstructing the dependence on the number(s) of moles109 n (ni, i = 1, . . . , r) would in
principle require supplementary data to determine the coefficient(s) of the differential(s)
dn (dni) in dU and/or dS. The extensiveness property of U and S (if the system can be
treated as extensive) imposes, however, very stringent constraints which uniquely deter-
mine the dependence of any state function on the total amount of matter represented by
the total number of moles n =

∑r
i=1 ni. Thus, if an extensive system is made up of only

one sort of molecules no additional data is needed beyond those related to the reversible
performance of works and the reversible heat transfers. We now show this by deriving the
relations which follow from extensivness of thermodynamical systems.

One of the Callenian postulates (Lecture VI) is that entropy of an extensive system is
a homogeneous function of order one of its extensive arguments:

S(λU, λV, . . . , λn1, . . . , λnr) = λS(U, V, . . . , n1, . . . , nr) . (155)

The same relation applies of course to U = U(S, V, . . . , n1, . . . , nr). One of the conse-
quences, already discussed in Lecture VI, is that

S = n s(u, v, . . . , x1, . . . , xr) , U = nu(s, v, . . . , x1, . . . , xr) ,

where u, s, etc., are molar quantities (pertaining to one mole of the substance) and
xi = ni/n, where n =

∑r
i=1 ni, are the molar fractions. It follows that the intensive

parameters T , p, µi which are defined as derivatives of U with respect to the extensive

108All such functions are called equations of state. Similarly as e.g. CV , the dependence on the volume
of which in the case of simple systems is entirely determined by the equations of state, they must
satisfy definite consistency conditions (following from the fact that dU and dS must be closed forms, U
and S being the state functions) which, however, do not determine them completely, leaving room for
experimental input. Conversly, if these functions are determined by measuring properties of real systems
obeying the laws of thermodynamics, it is assumed that the obtained information is consistent, that is,
the forms dU and dS reconstructed on this basis are closed.

109Recall that some systems not characterized by this (these) variables.
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parameters must be homogeneous functions of order zero:

T = T (λS, λV, . . . , λn1, . . .) = T (S, V, . . . , n1, . . .) = T (s, v . . . , x1, . . .) ,

p = p(λS, λV, . . . , λn1, . . .) = p(S, V, . . . , n1, . . . , nr) = p(s, v . . . , x1, . . .) , (156)

µi = µi(λS, λV, . . . , λn1, . . .) = µi(S, V, . . . , n1, . . . , nr) = µi(s, v . . . , x1, . . .) .

If the number of works which can be reversibly done on the system is o− 1, the middle
equation is replaced by o−1 analogous equations expressing the order zero homogeneity of
the corresponding generalized forces yi. In all there are then 1+(o−1)+r equalities (156).
Since x1+ . . .+xr = 1, the 1+ (o−1)+ r intensive parameters T , yj , µi (j = 1, . . . , o−1,
i = 1, . . . , r) depend on only 1+ (o− 1)+ r− 1 = (o− 1)+ r variables, which implies that
there must be one relation linking the intensive variables T , y1, . . . , yo−1, . . . , µ1, . . . , µr.
If there is only one material component (r = 1), this relation uniquely determines the
single chemical potential µ as a function of the 1+ (o− 1) intensive parameters T , p, . . ..

Furthermore, differentiating the relation (155) and the analogous relation written for
U with respect to λ and setting then λ = 1, one obtains that

U(S, V, n1, . . .) = ST (S, V, n1, . . .)− V p(S, V, n1, . . .) +

r
∑

j=1

njµj(S, V, n1, . . .) , (157)

S(U, V, n1, . . .) = Uθ(U, V, n1, . . .) + V η(U, V, n1, . . .)−
r
∑

j=1

njνj(U, V, n1, . . .) ,

(recall that θ ≡ 1/T , η ≡ p/T and νj ≡ µj/T ). Writing now the differential of U in its
natural variables first using U = U(S, V, n1, . . .) and then using the form (157) of U we
get

dU = TdS − p dV +
r
∑

j=1

µjdnj ,

dU = TdS + SdT − p dV − V dp+

r
∑

j=1

µjdnj +

r
∑

j=1

njdµj .

Subtracting now these two expressions side by side leads to the formula

SdT − V dp+

r
∑

j=1

njdµj = 0 , (158)

known as the Gibbs-Duhem relation. Analogous operations done on the entropy writ-
ten in two different ways give

Ud

(

1

T

)

+ V d
( p

T

)

−
r
∑

j=1

njd
(µj

T

)

= 0 . (159)
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Dividing (158) by the total number n of moles gives the correlation of the differentials of
the intensive parameters which depends only on molar quantities:

s dT − v dp+

r
∑

j=1

xjdµj = 0 . (160)

This expresses the already noted fact that of 1+ (o− 1) + r intensive parameters charac-
terizing an extensive system, only (o−1)+ r are independent (therefore their differentials
must be linearly dependent). If there is only one component, so that x1 = 1, and the
molar entropy s and molar volume v are known as functions of the temperature T and
pressure p, the relation (160) written in the form

dµ = −s(T, p) dT + v(T, p) dp , (161)

can be, if the functions s(T, p) and v(T, p) are given explicitly, integrated to give the
chemical potentials µ(T, p) up to a constant (the chemical potential at some reference
values T0, p0).

From the form (157) of the internal energy and the definitions (145)-(151) it immedi-
ately follows that

H(S, p, n1, . . .) = ST (S, p, n1, . . .) +
r
∑

j=1

njµj(S, p, n1, . . .) ,

F (T, V, n1, . . .) = −V p(T, V, n1, . . .) +

r
∑

j=1

njµj(T, V, n1, . . .) ,

G(T, p, n1, . . .) =
r
∑

j=1

njµj(T, p, n1, . . .) , (162)

Ω(T, V, µ1, . . .) = −V p(T, V, µ1, . . .) ,

The same relations follow, of course, from the scaling properties of these functions: e.g.
differentiating with respect to λ the relation

F (T, λV, λn1, . . .) = λF (T, V, n1, . . .) ,

and setting λ = 1 the second relation (162) is obtained. If there is only one component
in the system, the third of these relations, after division by n gives

µ(T, p) = g(T, p) ≡ 1

n
G(T, p, n) = u− T s+ p v . (163)

As advertised in the preceding Lecture, in this case the chemical potential is just the
molar Gibbs function. The formula (163) gives another method of calculating the chemical
potential of a system composed of one component only.

Two important facts concerning systems composed of more than one material com-
ponent (r > 1) deserve to be clearly stated here. If such a system is closed (does not
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exchange matter with its surrounding), its composition, that is the numbers n1, . . . , nr of
moles of its material constituents (chemical compounds), can change only due to chemical
reactions occuring in it when the other parameters (U , V, . . . when the system is only in
mechanical contact with its surrounding, or T , V, . . ., when it is in thermal contact with a
heat bath at the temperature T , etc.) are varied. The constitutive variables n1, . . . , nr are
in such a situation not entirely independent variables: once they are fixed at some values
of the remaining parameters (in one equilibrium state), their values at different equilib-
rium states are completely determined by the values of the other parameters. Therefore,
although the changes of the thermodynamic potentials between two infinitesimally close
equilibrium states can formally be written in the form (taking U as an example)

dU = TdS − pdV +
r
∑

j=1

µjdnj ,

this must be equivalent to dU = TdS − p dV , because as far as its interactions with the
rest of the world are concerned, a closed system can be treated as a black box. It follows
that changes of the constitutive variables n1, . . . , nr due to chemical reactions between
any two infinitesimally close equilibrium states must be such that

r
∑

j=1

µjdnj = 0 . (164)

Of course, if the system is allowed to exchange matter with its surrounding when passing
from one equilibrium state to another one, then dni = dnchem

i + dninflow
i and only the

differentials dnchem
i satisfy (164).

Furthermore, differentiating the form (162) of the Gibbs function with respect to the
variable nj one obtains (nj′ stands for all the remainig constitutive variables)

(

∂G

∂nj

)

T,p,nj′

= µj +

r
∑

i=1

ni

(

∂µi

∂nj

)

T,p,nj′

.

Since on the other hand (∂G/∂nj)T,p,nj′
= µj, it follows that110

r
∑

i=1

ni

(

∂µi

∂nj

)

T,p,nj′

= 0 . (165)

Finally, dividing the Gibbs function G of such a system written as in (162) as the sum
of chemical potentials weighted by the respective mole numbers by the total number of
moles n =

∑r
j=1 nj one obtains

g(T, p, x1, . . . , xr) =

r
∑

j=1

xjµj(T, p, x1, . . . , xr) . (166)

110This expresses mathematically the fact that the chemical potentials µi depend on only r − 1 molar
fractions x1, . . . , xr−1, because xr = 1− x1 − . . .− xr−1.
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Of course, determination of the individual chemical potentials insuch a case requires more
experimental input.

Mixture of perfect gases and the entropy of mixing
The simplest multicomponent system which can be analyzed is the mixture of r different
perfect gases. Its thermodynamical functions can be explicitly written down by appealing
to the so called Gibbs postulate (which replaces the experimental input) which says that
the internal energy U and entropy S of such a mixture in equilibrium is, when expressed
through the temperature and the volume in which it is enclosed, simply the sum
of internal energies and entropies of the individual gases treated as independent (on ac-
count of the fact that they are mutually noninteracting) and enclosed in the same volume
(we remember, however, that the internal energy of a perfect gas depends only on its
temperature, and not on the volume it occupies):

U(T, n1, . . . , nr) =

r
∑

i=1

Ui(T, ni) =

r
∑

i=1

niui(T ) = n

r
∑

i=1

xiui(T ) ,

S(T, V, n1, . . . , nr) =

r
∑

i=1

Si(T, V, ni) =

r
∑

i=1

nisi(T, vi) = n

r
∑

i=1

xisi(T, vi) , (167)

where n = n1 + . . .+ nr, xi = ni/n and vi = V/ni.
The Gibbs postulate is consistent with the fact that in general the formulae for

U(T, V, n1, . . . , nr) and S(T, V, n1, . . . , nr) must (the Callenian approach!) follow from
the fundamental relation (97): since the Gibbs postulate applies to perfect gases only, it
is in principle possible to invert the formula

U =
∑

i

niui(T0) +
∑

i

ni

∫ T

T0

dT ′ c(i)v (T ′) ,

with respect to T and to obtain in this way S = S(U, V, n1, . . . , nr). Moreover, the general
relation dS(U, V ) = (dU + p dV )/T is also satisfied:

dS =
∑

i

∂Si

∂Ui

dUi +
∑

i

∂Si

∂V
dV =

∑

i

1

Ti
dUi +

∑

i

pi
Ti
dV

=
1

T
d

(

∑

i

Ui

)

+
1

T

(

∑

i

pi

)

dV =
1

T
dU +

p

T
dV . (168)

The immediate consequences of the postulate are the formulae for the molar heat capacity
of the mixture is the weighted sum:

cmix
v ≡ 1

n

(

∂U

∂T

)

V

=
1

n

r
∑

i=1

(

∂Ui

∂T

)

V

=
1

n

r
∑

i=1

ni

(

∂ui
∂T

)

V

=
r
∑

i=1

xi c
(i)
v ,

and its pressure (we remember the formula for S(T, V, n) of the perfect gas!) is given by

pmix

T
≡
(

∂S

∂V

)

U,ni

=
r
∑

i=1

(

∂Si

∂V

)

U,ni

=
r
∑

i=1

ni
R

V
=

1

T

r
∑

i=1

pi ,
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Figure 19: Comparison of the total and partial pressures of a mixture of three gases using
the van ’t Hoff box. Dotted lines represents membranes permeable to molecules of only
one gas each.

because the derivative at constant internal energy U is here (that is for perfect gases!)
the same as the derivative at constant temperature T . As a consequence of the Gibbs
postulate, the pressure of a mixture of perfect gases is therefore, consistently with (168)
and in agreement with the known Dalton law, the sum of the so-called partial pressures,
that is the pressures which each of the gases would individually exert on the walls of the
container in the absence of the other constituent gases (we drop from now the subscript
“mix”):

p =
r
∑

i=1

pi =
r
∑

i=1

ni
RT

V
≡ n

RT

V
.

Both these consequences of the Gibbs postulate can be directly verified: the first
one by trivial measurement of the molar heat capacities of individual gases and of their
mixture and the second one by the device called the van ’t Hoff box shown in Figure 19
- which in principle allows to measure and compare the total and partial pressures. The
Gibbs postulate finds its justification in statistical mechanics - the case of a mixture of
perfect gases, made of molecules the mutual interactions of which are negligibly weak111

is solvable within the so called canonical ensemble approach which gives the Helmholtz
function F (T, V, n1, . . . , nr) of the system (which, as we already know, contains complete
information about its termodynamical characteristics): in the case of nointeracting gases
it automatically gives F of the form

F (T, V, n1, . . . , nr) =
r
∑

i=1

Fi(T, V, ni) ,

from which the Gibbs postulate readily follows.

111But some interactions must be present because otherwise the mixture of gases could never come to
equilibrium and different gases in the mixture could have different temperatures as it happens in the
present day Universe in which perfect and mutually noninteracting gases of photons and of neutrinos do
indeed have different temperatures.
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One more consequence of the Gibbsa postulate is the entropy of mixing, which is
easily identified when the formula (167):

S(T, V, n1, . . . , nr) =
r
∑

i=1

ni

(

si(T0, v0) +

∫ T

T0

dT ′

T ′
c(i)v (T ′) +R ln

vi
v0

)

,

for the entropy of the mixture (as follows from the perfect gas equation of state, molar
volumes v0 of all perfect gases taken at the same reference temperature and pressure are
equal) is explicitly expressed (using the relations vi = V/ni) through the total volume V
occupied by the mixture and the total mole number n:

S(T, V, n, x1 . . . , xr) = n smix(T0, v0) + n

∫ T

T0

dT ′

T ′
cmix
v (T ′) + nR ln

V

nv0

+n
r
∑

i=1

(−Rxi ln xi) . (169)

(We have introduced here smix(T0, v0) =
∑

i xisi(T0, v0).) The last term is the mixing
entropy which we will also call the Cinderella’s (Kopciuszkowa) entropy.112 It is posi-
tive because xi ≤ 1. That this term is related to the mixing of different gases in one
container follows clearly from the comparison of (169) with the entropy of n moles of a
one-component perfect gas which (accidentally) would have the same molar heat capacity
and the same molar entropy s0 as the mixture:

S(T, V, n) = ns(T0, v0) + n

∫ T

T0

dT ′

T ′
cv(T

′) + nR ln
V

nv0
.

The mixing entropy can be seen in many ways (hopefully they will be discussed in classes).
The one which offers an insight into its origin is as follows. Prepare n1 and n2 moles of two
different (perfect) gases in two initially isolated containers at the same pressure and the
same temperature. If the two containers are joined together, each of the gases expands
freely into the additional volume (undergoing essentially the Joule process). The resulting
entropy change is just the mixing entropy. It should be however noticed, that if the two
gases were identical, one would say that being at the same temperature and pressure
they are in equilibrium and when the two containers are joined, nothing happens - the
total entropy does not increase. This shows that the mixing entropy results from different
treatment of same and different gases and this procedure finds its justification only in
statistical physics and in fact in the quantum mechanical indistinguishability of identical
particles.

Since the Gibbs postulate allows to explicitly construct all thermodynamical functions
of the mixture of perfect gases, also the chemical potentials can be obtained. It is a matter
of a simple calculation to find that

µi(T, p, x1, . . . , xr) = µ(T, xip) ≡ µ(T, pi) = µ(T, p) +RT ln xi , (170)

112Everyone knows that the task assigned to Cinderella by her bad step mother was to separate poppy
from pea, that is precisely to reduce the mixing enetropy.
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where µ(T, p) is the chemical potential of a one-component perfect gas at temperature T
and pressure p.

Another situation in which some approximate formulae for the chemical potentials of
two material components of the system can be obtained without additional experimental
(or statistical physics) input is one in which the number of moles of one of the two
components is much smaller than that of the other one. Let x = n2/(n1+n2) ≪ n1/(n1+
n2) = 1 − x. The molar internal energy and the molar volume of such a weak solution,
which can be treated as functions od T , p and x, can be then expanded in the Taylor
series in x≪ 1:

u(T, p, x) = u0(T, p) + x∆u(T, p) + . . . ,

v(T, p, x) = v0(T, p) + x∆v(T, p) + . . . ,

in which u0 and v0 are the molar internal energy and volume of the pure solvent (the other
component is called the solute). The differential of the molar entropy (taken at constant
x) can be then organized as follows

ds(T, p, x) =

{

1

T
du0(T, p) +

p

T
dv0(T, p)

}

+ x

{

1

T
d∆u(T, p) +

p

T
d∆v0(T, p)

}

.

As a whole, the right hand side must be an exact differential (as the differential of the
molar entropy of the complete solution) in the variables T and p. Moreover, the first
bracket must also be an exact differential of the molar entropy of the pure solvent. It
follows, that the second bracket must too have this property and the one-form ds can be
integrated up in the variables T and p yielding

s(T, p, x) = s0(T, p) + x∆s(T, p) + f(x) ,

where f(x) is an integration constant (which must, therefore, be independent of T and p).
One then invokes the Planck argument that at sufficiently high temperatures all substances
turn into gases, and ultimately (at low pressures) behave as perfect gases. This means
that the integration constant f(x) must be (as the only term which is independent of T
and p) the mixing entropy of the mixture of two perfect gases:

f(x) = −R(1− x) ln(1− x)− Rx ln x .

This allows to construct the molar Gibbs function of the solution:

g(T, p, x) = u− Ts+ p v = g0(T, p) + x∆g(T, p) +RT {(1− x) ln(1− x) + x ln x} ,

in which g0 = u0−Ts0+pv0 and ∆g0 = ∆u0−T∆s0+p∆v0. The extensive Gibbs function
of n = n1 + n2 moles of the solution is now constructed using the standard prescription
(nx = n2, n(1− x) = n1)

G(T, p, n1, n2) = (n1 + n2) g(T, p, x)

= (n1 + n2) g0(T, p) + n2∆g(T, p) +RTn1 ln
n1

n1 + n2

+RTn2 ln
n2

n1 + n2

.
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The chemical potentials can be then obtained as the derivatives

µ1 =

(

∂G

∂n1

)

T,p,n2

= g0(T, p) +RT ln(1− x) ≈ g0(T, p)−RT x ,

µ2 =

(

∂G

∂n2

)

T,p,n1

= g0(T, p) + ∆g(T, p) +RT ln x ≡ ψ(T, p) +RT ln x . (171)

While the temperature dependence of µ2 (the chemical potential of the solute) is usu-
ally unknown (the one of µ1 is the same as of the pure solvent), its dependence on the
concentration x≪ 1 is obtained explicitly.
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LECTURE IX (TMD)

Equilibrium of phases
By phases of a substance one understands different (spatially distinguished) forms in which
it may exist. Different phases of the same substance have different physical properties.
(It will become clear that the first part of this tentative definition not always applies
and it is rather the second part which is more appropriate.) In some range of intensive
parameters characterizing a given substance a given its phase is stable in another this
phase may become metastable and in yet some other ranges it simply cannot exist. If in
certain conditions usually characterized by the values of temperature and pressure (and of
other intensive parameters, if the substance is not simple) more than one phase may exist
as stable, one speaks of the coexistence of phases. The system is then inhomogeneous -
the phases exist as spatially separated forms. (Again, this, as it will become clear, applies
only to one class of phase transitions.) They are then treated as different parts of a
compound system separated by (fictitious) walls allowing for a transfer of matter, energy
and volume between the parts.113 It is in these conditions that phase transitions normally
occur.114

Phases of a given substance should not be confused with its physical states (solid, liquid
and gaseous). The solid state of a given substance can have different phases: for example,
silicon (Si) has 3 different phases (called allotropic modifications) in which atoms are
differently ordered in the crystalline lattice cells; tin (Sn) can exist in two phases (white
tetraghonal - a crystalline one - and grey which is amorphous) both of which can be treated
as a solid state; H2O has at least 12 different crystalline modifications each of which is a
separate ice phase! There are also known different mixtures of liquids (different phases
of the mixture): one phase rich in one component and another phase rich in another
component.

The conditions in which two different phases of a simple one-component substance can
coexist were already discussed at the end of Lecture VII: independently of whether the
system was isolated or open (interacting in this or another way with its surrounding), the
coexistence of two phases α and β of such a substance always required the equality of
the temperatures (thermal equilibrium with respect to the exchange of heat), pressures
(mechanical equilibrium with respect to the exchange of volume) and the equality of the
chemical potentials (of the single matter component) of the coexisting phases.115 The

113The boundary separating the phases, although neglected in the further discussion here, has in fact
some thickness; it can be treated as consisting of some quantity (negligible, from the thermodnamic point
of view, compared to the amount of matter in the phases themselves) of matter, and ascribed entropy,
energy and other thermodynamic functions. In this way it can be included into the analysis as yet
another part of the system. Its properties (e.g. the surface tension) can also lead to modifications of the
equilibrium condition; these can also be modified in presence of external fields like the gravitational one.

114A phase which in a given range of the parameters is metastable may exist for a very long time but
eventually turns out into the stable (in this range) phase. This means that the change of one phase into
another one can also occur in conditions in which only a single phase is stable.

115However, the character of the equilibrium - absolutely stable or neutral - does depend on whether
the system is isolated or is under prescribed pressure and temperature.
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considerations of Lecture VII can be easily generalized, assuming for convenience that
the system is isolated, to f phases labeled by the index α = 1, . . . , f and r material
components (labeled by the index i). If a closed system composed of several phases is
isolated from its surrounding, it is the maximum entropy principle which determines its
equilibrium state. Therefore, the variation

δS =

f
∑

α=1

δS(α)(U (α), V (α), n
(α)
1 , . . . , n(α)

r )

=

f
∑

α=1

{

∂S(α)

∂U (α)
δU (α) +

∂S(α)

∂V (α)
δV (α) +

r
∑

i=1

∂S(α)

∂n
(α)
i

δn
(α)
i

}

,

representing departures of the system’s entropy (in virtual equilibrium states which can
be realized with the help of suitable walls, i.e. of stronger internal constraints, blocking
the matter, energy and volume transfers between the phases) from its true equilibrium
value, subjected to the restrictions (we assume for the moment that chemical reactions
are not allowed to occur)

f
∑

α=1

δU (α) = 0 ,

f
∑

α=1

δV (α) = 0 ,

f
∑

α=1

δn
(α)
i = 0 , i = 1, . . . , r , (172)

must vanish. Introducing as previously the Lagrange multipliers written as 1/T , p/T and
−µi/T allows (see Lecture IV, p. 61 for explanation) to treat in the condition

f
∑

α=1

{

[

∂S(α)

∂U (α)
− 1

T

]

δU (α) +

[

∂S(α)

∂V (α)
− p

T

]

δV (α) −
r
∑

i=1

[

−∂S
(α)

∂n
(α)
i

− µi

T

]

δn
(α)
i

}

= 0 ,

all variations δU (α), δV (α) and δn
(α)
i as effectively independent. This leads to the condi-

tions116

∂S(α)

∂U (α)
=

1

T
,

∂S(α)

∂V (α)
=
p

T
, − ∂S(α)

∂n
(α)
i

=
µi

T
, i = 1, . . . , r , (173)

which must be satisfied by all the f phases. Since in effect the multipliers 1/T , p/T

and −µi/T correlate the departures δS(α), δU (α), δV (α) and δn
(α)
i of entropies, energies,

volumes and numbers of moles (from the values of these parameters in the true equilibrium
state) of possible virtual equilibrium states of the phases so that

δS(α) =
1

T
δU (α) +

p

T
δV (α) −

r
∑

i=1

µi

T
δn

(α)
i , (174)

116Of course, to arrive at the equilibrium conditions (173) one could use as well the principle of minimum
internal energy (at constant entropy).
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they acquire the interpretations of the equilibrium inverse temperature, pressure and
chemical potentials (divided by the temperature) which must be common for all the
phases. In all, there are, therefore, (2+ r)f relations (173) which together with 2+ r con-
stancy conditions (172) provide the equations allowing to completely determine (2 + r)f

equilibrium values of the variables U (α), V (α), n
(α)
1 , . . . , n

(α)
r , α = 1, . . . , f and 2 + r

Lagrange multipliers. In principle the first two sets of the equations (173) allow to
parametrize the internal energies U (α) and volumes V (α) of the phases in terms of the
common temperature and pressure T , p and the numbers of moles n

(α)
1 , . . . , n

(α)
r in these

phases; the last set of conditions (173), the equalities between the phases of the corre-

sponding chemical potentials, should be then solved for T , p and n
(α)
1 , . . . , n

(α)
r respecting

the constancy of the total energy U , volume V and the total numbers ni of the matter
components in the entire isolated system.117 We have assumed here that all coexisting
phases may exist with arbitrary concentrations of their r matter components and that all
these matter components may flow from one phase to another one. If this is not the case,
(for instant some matter components cannot be present in some phases) the conditions
must be rederived taking the restrictions into account.

Treating U (α) and V (α) as functions of the (common) temperature and pressure one
can also relax the conditions of constancy of U and V and operate with T and p as
the fundamental variables. This is equivalent to considering a closed system which is
not isolated but remains in thermal and mechanical contact with the surrounding at
temperature T and pressure p; in this case one could also appeal to the general stability
requirement (minimum of the system’s availability A discussed in Lecture VII) which
dictates that in equilibrium the system’s temperature (common to all phases) and pressure
(also common to all phases) must be equal to those of the surrounding and then, at fixed
T and p, seek the minimum of the system’s Gibbs function

G(T, p, n
(1)
1 , . . . , n(f)

r ) =

f
∑

α=1

G(α)(T, p, n
(α)
1 , . . . , n(α)

r ) (175)

≡
f
∑

α=1

r
∑

i=1

n
(α)
i µ

(α)
i (T, p, x

(α)
1 , . . . , x(α)r ) ,

with respect to the variations δn
(α)
i subjected to r constancy conditions. Introducing

again r Lagrange multpliers which acquire the interpretation of the common for all
phases r chemical potentials µi, i = 1, . . . , r, one readily finds (using the relation (165)
which must be satisfied for each of the phases) the equilibrium conditions in the form

µ
(α)
i (T, p, x

(α)
1 , . . . , x

(α)
r ) = µi, which at given T and p must be solved together with the

r conditions of constancy of the total numbers of moles ni = n
(1)
i + . . . + n

(f)
i of r con-

stituents. The difference with the case of the completely isolated system is that now the
total system’s volume V and its total energy U are not fixed and the equilibrium condi-
tions may not determine the distribution of all the r numbers of moles ni between the

117Obviously, carrying out this programme in practice requires that the fundamental relations of all the
f phases, i.e. the functional dependence of the entropies S(α) on their natural arguments be known.
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coexisting phases (and the volumes occupied by these phases) - the equilibrium may be
of the neutral character.

It is worth to generalize the above considerations by allowing chemical reactions to
occur in a system closed as a whole and composed of f phases and r material components
(different chemical compounds Ai, i = 1, . . . , r). Again to establish the necessary condi-
tions for the equilibrium we will treat the system as isolated. Of course, if one restricts
to a single phase (f = 1), the conditions obtained below will apply to chemical reactions
taking place in a single homogeneous system. A given allowed reaction written in the
form (here we assume that Ai include all possible chemical compounds: those which are
present in the initial state and those which form the final state)

r
∑

i=1

νiAi −→
r
∑

j=1

ν ′jAj , (176)

where νi and ν ′j are the (in this notation positive) stoichiometric coefficients (numbers of
moles of the compounds involved in a single act of the reaction) will be now written in
the more convenient form

r
∑

j=1

νjAj = 0 , (177)

in which the stoichiometric coefficients of the products are (by convention) counted as
positive and those of the reagents as negative. With this convention a single act of the
reaction changes the number ni of moles of the i-th chemical compound in the system
by νi. It follows that the changes δni of the total number of moles (in all phases - since
all the chemical compounds are allowed here to flow from one phases to another one, the
phase in which the reactions actually take place has no significance) of the i-th chemical
compound is given by δni = νi δζ , where δζ , is the factor correlating the possible changes
of the number of moles of different compounds.

If more independent chemical reactions

r
∑

i=1

ν
(a)
i Ai = 0 , a = 1, . . . , R , (178)

(with ν
(a)
i the stoichiometric coefficients of the a-th reaction - some of them can be zero)

between the compounds of the cosidered system are possible,118 the changes δni of the
total numbers of moles are given by

δni ≡
∑

α

δn(α) =

R
∑

a=1

νai δζ
a . (179)

118The reactions are independent if the R equations (178) treated as linear homogeneous equations for
the Ai’s are linearly independent. This means that their number R cannot exceed the number r of the
chemical compounds involved (otherwise the rank of the matrix formed by the stoichiometric coeffcients
would certainly be less than R).
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Allowing for chemical reactions in seeking the equilibrium state of an isolated closed
system which may exist in f phases amounts, therefore, to replacing the r conditions
∑

α δn
(α)
i = 0 by the r conditions

∑

α

δn
(α)
i −

R
∑

a=1

ν
(a)
i δζ (a) = 0 , i = 1, . . . , r . (180)

Adding them together with the conditions of constancy of U and V with the Lagrange
multipliers −µi/T , 1/T and p/T to the variation of the entropy gives as the equilibrium
condition the equality

f
∑

α=1

{[

∂S(α)

∂U (α)
− 1

T

]

δU (α) +

[

∂S(α)

∂V (α)
− p

T

]

δV (α)

}

−
r
∑

i=1

f
∑

α=1

(

−∂S
(α)

∂n
(α)
i

δn
(α)
i

)

+

r
∑

i=1

µi

T

(

f
∑

α=1

δn
(α)
i −

R
∑

a=1

ν
(a)
i δζ (a)

)

= 0 .

This upon a rearrangement and taking into account that owing to the Lagrange multipliers
all variations δU (α), δV (α), δn

(α)
i and δζa can effectively be treated as independent, leads

as previously to the equality of the temperatures and pressures of all the phases, to the
equality of the chemical potentials of each of the matter components in all the phases:
µ
(1)
i = . . . = µ

(f)
i ≡ µi(T, p) - all the functions µ

(α)
i (T, p, x

(α)
1 , . . . , x

(α)
r ) = (∂S(α)/∂n

(α)
i ),

α = 1, . . . , f assume a common value119 µi(T, p) - and to the R additional conditions120

r
∑

i=1

ν
(a)
i µi(T, p) = 0 , a = 1, . . . , R, (181)

correlating the values µi(T, p) of the chemical components taking part in the allowed
reactions. In all, there are in this case (2 + r)f relations (173) which together with 2 + r
conditions

∑

α δU
(α) = 0,

∑

α δV
(α) = 0 and (180) as well as R conditions (181) provide

just the right number of equations alowing to completely determine (2 + r)f equilibrium

values of the variables U (α), V (α), n
(α)
1 , . . . , n

(α)
r , α = 1, . . . , f and 2 + r + R Lagrange

multipliers T , p, µi and ζa.

119Again, since T , p and µi correlate as in (174) the infinitesimal differences δU (α), δV (α) and δn
(α)
i of the

parameters of the phase α between its real and virtual equilibrium states, they acquire the interpretation
of the values of the system’s common temperature, pressure and chemical potentials.

120It is precisely the relation (181), which in equilibrium must be satisfied by the chemical potentials of

every phase, combined with the relations dni =
∑

a ν
(a)
i dζ(a) which implies that when a phase, treated

now as a separate system, is in equilibrium in itself and then passes to another neighbouring equilibrium
state as a result of an infinitesimal change of the conditions (e.g. a change of the external pressure and
temperature, if it is treated as being in thermal and mechanical contact with its surrounding), the changes
dni of its material constituents induced by possible chemical reactions are such that

∑

i µidni = 0 - there
is no change of the system’s Gibbs function due to the reaction. This, as already explained in Lecture
VIII, is consistent with the possibility, fundamental for classical thermodynamics, of treating the system
as a black box, i.e. of treating its thermodynamic potentials as functions of external variables only.
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An analogous reasoning can be also carried out (with the same conclusion as to the
equilibrium conditions, though perhaps not as far as the type of stability of the equi-
librium state is concerned) treating the closed system consisting of f phases as being in
thermal and mechanical contact with its surrounding at the temperature T and pressure
p and minimizing the system’s Gibbs function (175) with respect to n

(α)
i respecting the

conditions (180).

Gibbs phase rule
If no chemical reactions are allowed, the equilibrium condition found in Lecture VII
extends straightforwardly to multicomponent and multiphase systems, the only change
being that in such cases the chemical potentials characterizing the same component in
any of the phases must be equal:

µ
(α)
i (T, p, x

(α)
1 , . . . , x

(α)
r−1) = µ

(β)
i (T, p, x

(β)
1 , . . . , x

(β)
r−1) , i = 1, . . . , r. (182)

The question (left out in the foregoing considerations) how many phases of a given
substance can simultaneously be in equilibrium, that is when the derived conditions can be
satisfied and if they can, how much freedom there is in satisfying them, finds the answer in
the Gibbs phase rule which we derive now. If each phase is treated as a separate closed
(sub)system, it is characterized by 2+ r extensive parameters: its energy U (α), its volume

V (α) and the numbers of moles n
(α)
1 , . . . , n

(α)
r of the components. The first two variables

can be traded for the temperature T (α) and pressure p(α) of each phase. In all, f isolated
phases are characterized therefore by (2+ r)·f independent parameters. If the phases are
to be in equilibrium, their intensive parameters must satisfy a number of conditions. As
has been established above, they must, firstly, have all the same temperatures (thermal
equilibrium)

T (1) = T (2) = . . . = T (f) ≡ T ,

which gives f − 1 conditions. Another f − 1 conditions follow from the equality of their
pressures (mechanical equilibrium):

p(1) = p(2) = . . . = p(f) ≡ p .

Equalities of the chemical potentials (chemical equilibrium with respect to matter ex-
change)

µ
(1)
1 = µ

(2)
1 = . . . = µ

(f)
1 ≡ µ1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

µ(1)
r = µ(2)

r = . . . = µ(f)
r ≡ µr ,

give together (f − 1)·r further conditions. Finally, there are f conditions

r
∑

i=1

x
(1)
i = 1 , . . . ,

r
∑

i=1

x
(f)
i = 1 ,
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following from the fact that the equilibrium of phases depends only on the values of the
intensive parameters which in turn do not depend on all extensive parameters but only
on their ratios (see Lecture VIII). This is taken into account by expressing them in terms
of the molar fractions xi which in each phase sum up to unity. Therefore there remains
the freedom of varying

k = (2 + r)·f − [(2 + r)·(f − 1) + f ] = 2 + r − f , (183)

independent parameters.121 Of course, the coexistence of phases is possible only if

k ≡ 2 + r − f ≥ 0 .

Thus two phases (f = 2) of a single component (r = 1) substance (like pure H2O) can
coexist along a curve because k = 2 + 1 − 2 = 1 which means that one parameter can
be varied freely, while three phases (f = 3) of a single-component substance can coexist
only at an isolated point (isolated points). If there are more components, more phases
can coexist at one point, more along a curve etc. Finally, if chemical reactions are allowed
to occur between the components of the system, each possible reaction imposes one more
condition (181) on the chemical potentials that is, on the molar fractions on which they
depend, and the number of degrees of freedom decreases by one per each reaction.122

Chemical reactions in a single phase.
The general conditions of equilibrium of arbitrary multiphase systems composed of many
different constituents (chemical compounds) Ai, i = 1, . . . , r between which R independent
chemical reactions (178) can occur, established in this lecture can be straightforwardly
adapted to the case of a closed single phase system and read:

r
∑

i=1

ν
(a)
i µi = 0 , a = 1, . . . , R . (184)

121It should be noticed that in this reasoning we allow for a freedom of adjusting the system’s (composed
of f phases) total energy and volume (or equivalently - if it is treated as being in thermal and mechanical
contact with its surrounding - T and p) as well as the total numbers ni of its constituents. We are now
not asking wheter in given conditions (set by given values of U , V and ni in the case of an isolated
system, or by T , p and ni in the case of a closed system in thermal and mechanical equilibrium with
its surrounding) the equilibrium of phases will occur, but rather what is the freedom in adjusting these
global (external) parameters to obtain the equilibrium. Another way of arriving at the result (183) is as
follows: the intensive parameters which are at play are: T and p which must be common to all phases

and f ·(r − 1) independent molar fractions x
(α)
i in all f phases; the equalities of the chemical potentials

constitute r·(f −1) conditions which must be satisfied if f phases coexist in equilibrium. This again gives
2 + r − f free parameters.

122Once again it should be stressed that the problem here is how much freedom in satisfying the re-
quirements of equilibrium there is in general; for this reason arbitrary (equilibrium) concentrations of
components in different phases are admited here and the fact that in a (multiphase) system closed as a
whole changes of the total numbers of moles of the constituents due to the chemical reactions are con-
strained by the conditions (180) is not relevant. The question what are the final (equilibrium) numbers

n
(α)
i of moles of different constituents in different phases if one starts with fixed initial total numbers ninit

i

of moles of the constituents in certain definite conditions (fixed U and V or fixed T and p) and let them
to react is a different one. (These different questions seems to be confused in the presentation of Werle).
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These conditions must be satisfied irrespectively of the conditions (absolutely isolated
system - with its total energy U and total volume V fixed, a closed system in thermal
contact with its surrounding - fixed T and V , or in thermal and mechanical contact in
which case fixed are its temperature T and pressure p) in which the given system finds
itself. The chemical potentials µi of the individual components can always be written as
functions of the temperature T and pressure p of the system (into which other prescribed
system’s parameters can always be translated, at least in principle) and the concentra-
tions xi = ni/

∑

j nj of its constituents, that is in terms of intensive characteristics only.
It is, however, important to keep in mind that in contrast to the reasoning which led to
the Gibbs phase rule pertaining to the case in which reactions in the multiphase system
can occur, in typical applications of the equilibrium conditions to concrete chemical reac-
tions one starts with definite numbers nin

i of moles of the different constituents (chemical
compounds) and then let the reaction(s) occur; the role of the equilibrium conditions -
the Callenian concept of virtual states of the system blocked by appropriate constraints
(reactions inhibitors) which can froze each of the allowed reactions at an arbitrary stage
of its developement and allow thereby to ascribe the thermodynamical potentials to the
states of the system with different numbers (allowed by the constraints imposed by the
character of the reactions) of moles of the constituents is an important element of the
reasoning - in this case being to fix the relations between the final (equilibrium) numbers
ni = neq

i of moles of the constituents. By the reactions which can take place in the system
these final mole numbers are constrained (related to the initial ones) by the relations

ni = nin
i +

R
∑

a=1

ν
(a)
i ζ (a) , (185)

in which ζ (a), is called the advancement of the a-th reaction. Together, the equilibrium
conditions (184) and the relations (185), perhaps with the conditions of constancy of the
total system’s energy and of its volume, if the equilibrium is to be reached in an isolated
system, should determine the final mole numbers of the chemical compounds involved
that is determine all the factors ζ (a).

With the equilibrium conditions which determine the final state of the system in
which chemical reactions occur stated in terms of the chemical potentials one can return
to the (already discussed) problem of the (joint) heat effect of a chemical reaction (several
reactions occuring simultaneously), that is to the problem of how much heat is absorbed
or produced in a transition of a given chemically active system to its final equilibrium
state. It has been already established (Lecture II) that if a reaction (or reactions) occur
at the fixed temperature T and pressure p, the heat effect is given by the difference of the
enthalpies

Q̄ = −∆H ≡ H in −Hfin .

Since G = H − TS, the requisite difference of the enthalpies can be easily related to the
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difference of the Gibbs function of the system:

H = G− T

(

∂G

∂T

)

p

≡ −T 2

(

∂

∂T

G

T

)

p

.

Thus

Q̄ = T 2

(

∂

∂T

∆G

T

)

p

.

In turn, since (Lecture VIII)

G =
r
∑

i=1

ni µi ,

the infinitesimal change dG of the Gibbs function G due to the infinitesimal advancements
dζ (a) of the simultaneous R reactions which occur in the system is

dG =
r
∑

j=1

dnj
∂

∂nj

r
∑

i=1

ni µi =
r
∑

j=1

µj dnj =
r
∑

j=1

µj

R
∑

a=1

ν
(a)
j dζ (a) .

(Exploited here has been the fact that
∑

i ni(∂µi/∂nj) = 0 forming the basis of the
possibility of treating the system in which chemical reactions can hold as a “black box”
and the relation (179)). Since the chemical potentials µi of the constituents are in general
functions of the concentrations xi, that is of the actual values of the mole numbers ni

(which in turn are functions of the actual values of the parameters ζ (a) - see (185)), to
obtain the finite change ∆G, the above exact (by the very nature of the Gibbs function
G) one-form has to be integrated from the initial values ζ (a) = 0 of the advancements to
their final, determined by the equilibrium conditions (184) and the relations (185), values

ζ
(a)
eq (the exactness of the one-form ensures that the integration path is irrelevant). This

task simplifies, however, if one considers reactions in perfect gases.

Chemical reactions in mixtures of (perfect) gases. The mass action law

The equilibrium conditions written above in most cases remain only formal, since the
explicit forms of the chemical potentials of the constituents, which are necessary to derive
concrete quantitative predictions, are unknown. The simplest case in which at least the
pressure and concentration dependence of the chemical potentials can be given explicitly
are reactions occuring in perfect gases. In this case (as follows from the Gibbs Ansatz)

ui(T, vi) = u
(0)
i +

∫ T

T0

dT ′ c(i)v (T ′) ,

si(T, vi) = s
(0)
i +

∫ T

T0

dT ′ c
(i)
v (T ′)

T ′
+R ln

vi

v
(0)
i

,
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Therefore the chemical potentials can be written as

µi(T, p, x1, . . . , xr) = χi(T ) +RT ln pi ≡ χi(T ) +RT ln p+RT ln xi , (186)

where pi are the partial pressures of the individual components (perfect gases) constituting
the mixture. The exact form of the functions

χi(T ) = u
(i)
0 − Ts

(i)
0 +RT0 +

∫ T

T0

dT ′ c(i)p − T

∫ T

T0

dT ′ c
(i)
p

T ′
+RT ln p0

≡ u
(i)
0 − Ts

(i)
0 + γ(i)(T ) ,

can be computed using statistical physics methods even taking into account possible in-
ternal excitations of the individual molecules of the chemical compounds involved, so
long the molecules can be treated as mutually noninteracting (Lecture XII). Within pure
thermodynamics one is forced to determine these functions with the help of calorimetric
measurements. The same is even more true in the case of reactions between substances
which cannot be treated as perfect gases - the relevant chemical potentials must be then
necessarily determined experimentally; since any calorimetric measurement done between
finite temperatures always leaves undetermined constants in χi(T ), the complete determi-
nation of these functions (necessary to made definite predictions concerning the outcome
of reactions) must use an extrapolation to zero temperature where the 3TMDL can be
invoked to fix the constants.

We consider first only a single reaction occuring in a mixture of perfect gases. In this
case the equlibrium condition

∑

i

νi χi(T ) +RT
∑

i

νi ln pi = 0 ,

is usually rewritten in one of the possible alternative forms: either as

r
∏

i=1

pνii = exp

(

− 1

RT

r
∑

i=1

νi χi(T )

)

≡ Kp(T ) , (187)

with the right hand side a function of the temperature only, or as

r
∏

i=1

xνii = p−
∑

i νi Kp(T ) ≡ Kx(T, p) , (188)

or, using the fact that pi = (ni/V )RT , as the relation between the molar concentrations
ni/V

r
∏

i=1

(ni

V

)νi
= (RT )−

∑
i νiKp(T ) ≡ Kn(T ) . (189)

The first form is called the mass action law. It has been established by Guldberg and
Waage in 1867. Because in their formulation the temperature dependence of the factor
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Kp has been missed, Kp(T ) is ever since called the chemical equilibrium constant (of
the given reaction). Either form of the equilibrium condition can be used to determine
the advancement ζeq of the reaction obtained after the chemically active system of gases
has reached its equilibrium state for given initial conditions (the initial mole numbers of
the reacting constituents).

In this particular case the problem of the determination of the heat effect of the
reaction, which in general requires integration, simplifies. Indeed, the change dG of the
Gibbs function due to the infinitesimal advancement dζ of the reaction given by

dG =

r
∑

i=1

µi dni =

r
∑

i=1

µiνi dζ =

(

RT

r
∑

i=1

νi ln pi +

r
∑

i=1

νi χi(T )

)

dζ .

takes, after writing the second sum as −RT lnKp(T ), the form

dG = RT

(

r
∑

i=1

νi ln(p xi)− lnKp(T )

)

dζ .

After dividing by T , the term depending on the concentrations xi = xi(ζ) (varying in the
course of reaching the final state) drops out when the resulting expression gets differenti-
ated with respect to T and the coefficient of the one-form

dH = −T 2

(

∂

∂T

dG

T

)

= RT 2

(

d lnKp(T )

dT

)

dζ ,

is independent of ζ . The form can be therefore immediately integrated from ζ = 0 to ζeq
determined by the eqilibrium conditions and the heat effect of the reaction is then given
by the so called van’t Hoff123 formula

Q̄ = −RT 2 d lnKp(T )

dT
ζeq . (190)

Moreover, since Kx(T, p) given by (188) can be written as

Kx(T, p) = exp

(

− 1

RT

r
∑

i=1

νi µi(T, p)

)

,

and (∂µi(T, p)/∂p)T = vi, the change ∆V =
∑

i vi∆ni of the volume occupied by the
mixture of gases in which the reaction took place is given by

∆V = −ζeqRT
(

∂ lnKx(T, p)

∂p

)

T

. (191)

123Do not confuse him with G. ’t Hooft - the Nobel Prize winner (together with M. Veltman) for
the development of computational techniques for non-Abelian gauge theories and the proof of their
renormalizability (whathever the latter notion could mean).
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These considerations extend straightforwardly to the case of R reactions occuring
simultaneously in the mixture of (perfect) gases. One then has R functions K

(a)
p (T )

defined by the formulae analogous to (187) and R conditions

r
∏

i=1

p
ν
(a)
i

i = exp

(

− 1

RT

r
∑

i=1

ν
(a)
i χi(T )

)

≡ K(a)
p (T ) , a = 1, . . . , R ,

which determine the R factors ζ (a) and the final numbers of moles of the constituents.
The differential change of the Gibbs function is given by

dG = RT
R
∑

a=1

(

r
∑

i=1

ν
(a)
i ln(p xi)− lnK(a)

p (T )

)

dζ (a) ,

and the finite heat effect is given by

Q̄ = −RT 2
R
∑

a=1

d lnK
(a)
p (T )

dT
ζ (a)eq .

Phase transitions. Their classification
From the theoretical point of view phase transitions belong to most fascinating phenomena
which can be studied with the help of methods of thermodynamics and, primarily, of sta-
tistical physics. The subject is vast and gave rise to the developement of important ideas of
scaling and methods (which found applications also in high energy physics!) known under
the name of the renormalization group. Here we give an introduction to the thermody-
namic treatement of phase transitions restricting the discussion to only phase transitions
occuring in one-component simple substances. Suppose a quantity (n moles) of such a
substance is in a state (characterized by its internal temperature T and pressure p) in
which only one of its phases is stable. If this state is changed (by compressing/expanding
heating/cooling the system) so that its temperature T and pressure p assume the values
at which two (or three) phases can exist, the proportion of the substance in the phases
will change - the phase transition will occur.

Two phases can coexist only if their chemical potentials are equal. Thus the chemical
potentials are continuos along the coexistence lines. P. Ehrenfest classified phase transi-
tions according to the continuity of derivatives of chemical potentials: in the first order
transitions continuous are chemical potentials but their first derivatives (at least one of
them) - the molar entropies s and/or molar volumes v, in the case of one component sub-
stances - are discontinuous. In the second order phase transitions the chemical potentials
and their first derivatives are continuos but at least one of the chemical potentials second
derivatives - i.e. one of the derivatives of s or v, that is, cp, αp or kT in the case of one
component substances - is discontinuous, and so on.

Of the transitions which fit into this classification only the first order ones are common.
Second order transitions are very rare - the main example being the transition conductor-
superconductor in zero external magnetic field H discussed at the end of this Lecture.
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Figure 20: a) Schematic view of a typical phase diagram of a simple one-component
substance which in the shown ranges of the temperature and pressure can exist in three
phases. b) Schematic view of a slightly less typical phase diagram (H2O, Bi).

There are, however, many transitions which do not fit the Ehrenfest classification because
derivatives of the chemical potentials are divergent at the transition: for instance many
first-order phase transitions end up at the critical point at which derivatives become
divergent (so it is hard to decide whether they are continuous or not). For this reason
Landau simplified the classification: one now distinguishes only the first-order transitions,
while all others are called continuous (on account of the continuity of the first derivatives
of the chemical potentials).

First-order phase transitions.
We shall now discuss in general terms a typical124 phase diagram of a simple, single compo-
nent substance which when conditions are varied, undergoes first-order phase transitions
(perhaps excluding from the discussion a few isolated points). The phase diagram of
such a substance shows on the (T, p) plane regions in which particular phases are stable.
Phase diagrams of multicomponent substances can be considerably more complicated:
apart from T and p also molar fractions x

(α)
i enter the game and one can only display

projections of the stability regions onto various two-dimensional planes.
We consider a simple one-component substance which in the considered ranges of the

variables T and p can exist in three modifications (phases): solid, liquid and vapour. Each
of the modifications is characterized by its molar Gibbs function g(T, p), that is, its chem-
ical potential µ(T, p) which can be imagined to exist over the whole (T, p) plane. Thus
there are three g-surfaces corresponding to the three phases which pairwise intersect along
some lines (along which the two phases can coexist in equilibrium) and there is usually
(but not always) one point, called the triple point, at which these three intersections meet
- at this point (cf. the Gibbs phase rule) all the three phases can coexist. The projections
of these curves onto the (T, p) plane give the phase diagram of the type shown in Figures
20 a and b.

As follows from the discussion carried out at the end of Lecture VII, in a given region of
the (T, p) plane stable is that phase which has the lowest value of the molar Gibbs function

124Atypical phase diagrams will be discusses later.
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(because all the substance put in that phase gives the lowest value of the availability A).
To determine the regions of stability of different phases one can consider the variations of
these functions with T and p which readily follow from the formulae

dg ≡ dµ = −s dT + v dp ,

(

∂g

∂T

)

p

= −s ,
(

∂g

∂p

)

T

= v .

Thus in the direction of increasing pressure the g-surfaces (µ-surfaces) always slope up-
wards (v > 0): the g-surfaces corresponding to the solid and liquid phases comparatively
slowly (small v), at nearly constant rate (small isothermal compressibility) and that of
the vapour phase fast (much larger v) with the slope becoming steeper (considerably
larger compressibility) in the direction of decreasing pressure. If the arbitrary constant
factor in the molar entropy of the substance is fixed so that s(T, p) ≥ 0, the g-surfaces
slope downwards (negative slope) at increasing rate (cp > 0) in the direction of increasing
temperature.

From the analysis of the slopes of the g-surfaces in the pressure direction it follows
that in the region of low pressures (just above the T -axis) stable is the vapour phase (its
Gibbs function falls most steeply as the pressure goes down), but as far as the region
near the p axis is concerned, one has to rely on experimental observations to identify
the stable phase correctly (3He is an example that the liquid phase can be - in some
range of the pressure - closer to the p axis than the solid phase). In the phase diagram
shown in Figure 20a crossing the line tr-S vertically upwards one moves from the region
in which liquid is the stable phase to the region in which stable is the solid phase; this
means that v(solid) < v(liquid): the substance expands on melting. Figure 20b shows the
opposite situation in which v(solid) > v(liquid): here the substance (water is here the most
obvious example) expands on solidifying. When a coexistence line in Figure 20a or 20b is
crossed horizontally (at constant pressure) the phase which is stable on the right hand side
must have larger entropy, which means that in Figure 20 in the transitions solid→liquid,
solid→vapour or liquid→vapour heat is absorbed. Finite difference of entropies of adjacent
phases means that if the system is in the lower entropy phase and heat is supplied to it at
a constant rate (at constant pressure, say), its temperature rises until the coexistence line
is reached; then there is a halting of the temperature rise: the new phase appears and the
amount of substance in it grows. Only when the phase transition is accomplished - there is
only the new phase - does the temperature begin to rise again (the same is observed when
the heat is supplied and the volume of the system is simultaneously changed in such a way
that the coexistence line is crossed not exactly in the horizontal direction). The halting
of the temperature grow is the distinguishing feature of first order phase transitions. The
heat absorbed by the system in the transition is called the latent heat.

Even if in each of the regions (with the exception of the coexistence curves) only one
phase is stable, it makes sense to view the g-surfaces as extending beyond the regions
of stability of the corresponding phases because from the experience it is known that
the phases (particularly if the substances are highly purified) can exist as metastable
states in the regions in which they should have already turned into another phase. Super-
cooled vapours can stay uncondensed at pressures significantly higher than the equilibrium
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vapour pressure (by which term one understands the pressure at the vapour-liquid coex-
istence curve at a given temperature) - the historic device of particle physics, the Wilson
cloud chamber, owed its operation to this phenomenon), purified liquids can be super-
cooled without solidifying - droplets of water in a cloud may be cooled down to −40oC.
And conversely, liquids can be superheated - another historic device of particle physics,
the bubble chamber, exploited this possibility. Finally it should be mentioned that also
the coexistence lines can be prolonged into the regions in which none of the two coexist-
ing along it phases is stable as indicated by the dashed lines in Figure 20 - coexistence of
supercooled liquid with its vapour is well known to meteorology (though it seems a solid-
liquid coexistence in the vapour region has never been observed). It should be however
kept in mind that the analogous continuation of the g-surfaces is not necessarily justified
in the case of higher order transitions.

The Clapeyron-Clausius equation
The coexistence curve of two phases of a simple single-component substance is determined
by the equality of the two molar Gibbs functions (chemical potentials) and if these were
known precisely, the form of the coexistence curve would be also known. But since the
chemical potentials as functions of T and p are usually not given, the Clapeyron-Clausius
equation allows to reconstruct the coexistence curve on the basis of the more directly
accessible experimental data. It is derived straightforwardly by taking the total derivative
with respect to T of the equality

µ(α)(T, p(T )) = µ(β)(T, p(T )) .

Another way of deriving this equation (better adapted to higher order transitions) consists
of expanding in the Taylor series both sides of the equality

µ(α)(T +∆T, p+∆p) = µ(β)(T +∆T, p+∆p) .

Either way, if at least one of the two derivatives of the chemical potential is discontinuous
one obtains

dp

dT
=
s(β) − s(α)

v(β) − v(α)
=

qα→β

T (v(β) − v(α))
, (192)

where T (s(β) − s(α)) has been identified with the latent heat qα→β of the transition. If
all quantities on the right-hand side of this equation are given as functions of T and p,
the equation can be integrated. One usually makes some crude approximations: eg. in
considering the solid-vapour transition the solid molar volume is neglected, the vapour
is treated as a perfect gas, qα→β is assumed to be constant etc. (This will be done in
classes.)

The Clapeyron-Clausius (or, more familiarly, Clapaucius) equation clearly shows the
discussed already correlation of the sign of the slope of the melting curve with the differ-
ence of the molar volumes (or densities ρ = mmol/v) of the solid and liquid phases. Water
molar volume is smaller than that of ice (which has also lower entropy - the latent heat
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Figure 21: The (impossible) “ice-water” engine violating 2TMDL.

qα→β is defined to be positive, so α = ice, β =water) which results in the negative slope
(negative right hand side of the equation (192)) of the ice melting curve (which is of the
type shown in Figure 20b). That the slope of the ice melting curve cannot be infinite (the
curve cannot be vertical, that is, the melting temperature of ice cannot be independent of
pressure, given that ice has larger molar volume than water) at least in the range of pres-
sures in which the ice molar volume is greater than that of the water, was understood by
the second Thomson, the lord Kelvin’s brother, around the middle of the XIX century to
be required by 2TMDL. If the melting curve were vertical, one could devise an “ice-engine”,
shown in figure 21, which would violate the Kelvin’s 2TMDL: starting with a quantity
of water at 0oC one could place a weight m on the piston enclosing the vessel with the
water from above (the water compressibility is small and can be neglected here). Then a
quantity Q̄ of heat could be extracted from the water to a reservoir at 0oC, as a result of
which the water would solidify increasing its volume (maintaining its initial temperature,
the heat extracted from it being the latent heat) and raising thereby the weight to some
height h > 0; the weight could be then moved to the side and brought down to its initial
height delivering some mechanical work (at the cost of its gained potential energy), while
an appropriate quantity Q of heat could be supplied (again from the reservoir at 0oC) to
the ice causing it all to melt; in this way the working substance - the water - would be
in its initial state and the work W̄ = mgh would be done at the cost of the heat Q− Q̄
taken entirely from the single reservoir at 0oC. This is something the Kelvin’s 2TMDL
forbids. The resolution is of course that in the proposed cycle the processes of solidifying
water and of ice melting occur at different pressures - solidifying occurs at p = p0+mg/A,
while melting at p = p0, where p0 is the pressure of the surrounding and A is the section
area of the piston - and 2TMDL is saved if the melting/solidifying temperature varies ap-
propriately with the pressure. The comparison of the measured pressure variation of the
ice melting point with that predicted by the Clapaucius equation was one of the first suc-
cessful applications of thermodynamics to physical problems and significantly enhanced
the confidence in this developing branch of theoretical physics.

Critical point
The line of the coexistence of the liquid and vapour phases (the line tr-cr on the diagrams
20a,b) does not continue indefinitely: as the line is followed to the right, the quantitative
characteristics (densities, heat capacities, compressibilities, etc.) of the two phases: the
vapour and the liquid ones, become more and more similar and all differences between
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them eventually disappear at the critical point marked “cr” (and characterized by Tcr,
pcr and, through the equation of state, also by vcr) at which the liquid and vapour become
indistinguishable.125 To discuss the nature of the critical point it is convenient to plot
several isotherms of the vapour-liquid system on the (v, p) indicator diagram.

If, by decreasing its volume, the vapour at T < Tcr is compressed isothermally (one
moves vertically upwards on the phase diagrams 20a,b) the isothermal compressibility
kT = −(∂ ln v/∂p)T first (far below the coexistence line) decreases and then rises to become
infinite at the coexistence line, when the liquid begins to form; the system becomes there
inhomogeneous breaking up into two separate phases; subsequent decreasing its volume
does not increase the pressure (kT stays infinite), it only increases the quantity of the
liquid as compared to the quantity of the vapour (on the diagram 20 one is staying all
this time on the coexistence curve); when the vapour has disappeared completely, the
pressure begins to rise rather steeply (kT falls abruptly to a small value) and one moves
on the diagram 20 upwards already above the coexistence line.

When the analogous compression of the vapour is effected exactly at the critical tem-
perature Tcr, the compressibility kT first decreases as the volume is reduced (and pressure
rises) then rises to become momentarily infinite at pcr and then again steadily goes down.
At no point in this case is a separation of the system into two phases observed. Above Tcr
as the volume is reduced, the compressibility decreases monotonically: at low values of
the pressure (large volume) it is large so the substance resembles more the vapour, while
at high pressures (smaller volumes) it is small, so the system behaves more as a liquid.

It follows that it is possible by traveling around the point “cr” on the diagram 20
to make the system to pass from the vapour phase to the liquid phase, without any
discontinuous changes in its properties.126 This means that the two g-surfaces: the gl(T, p)
one and the gv(T, p) one which we compared in establishing which of the phases is stable
in the given domain of the (T, p) plane, are in fact two parts of one and the same g-surface
which for T < Tcr simply intersects itself along a line the projection of which onto the
(T, p) plane is the curve tr-cr, but not for T > Tcr.

One way of visualizing the form of such a self-intersecting g-surfaces is to use the Van
der Waals equation of state

(

p+
a

v2

)

(v − b) = RT , (193)

125The existence of critical points has been first noticed some 150 years ago in connection with the
problem of liquefaction of gases: some gases seemed impossible to liquify by applying even the highest
available pressures. It is now clear that this was because one attempted to liquify them at temperatures
higher than their critical temperatures. These can be very low indeed: the critical temperature of He
is only 5.2 K. It should be also recalled that polish physicists Z.F. Wróblewski and K.S. Olszewski
succeeded in 1883 to liquify for the first time O2, then N2, Air and CO by cooling them down to 113
K; later Olszewski liqified also Ar by achieving T = 48 K but this was still not low enough to allow for
liquefaction of H2.

126It is appropriate to make a comment on the terminology: in the older literature the system at
temperatures T < Tcr is called either liquid (at higher pressures) or vapour (at lower pressures) while the
system above Tcr is called gas. More adequate seems to call the system above Tcr supercritical fluid and
the one below Tcr liquid and vapour or, exchangeably, gas.
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which qualitatively (though not very well quantitatively) models the equation of state of
real vapour-liquid systems. High T isotherms given by this equation are perfectly mono-
tonic and the relation of the pressure p to the molar volume is one-to-one, just as happens
with the T > Tcr isotherms of a real vapour-liquid system. Below some temperature,
which should therefore be identified with Tcr, to a given pressure p there correspond three
different values (of which the smallest one and the largest one we, introducing thereby
their interpretation, denote vl and vv, respectively) of the molar volume. It can be also
seen that the inverse compressibility k−1

T , which can be calculated, given the equation of
state,

k−1
T = −v

(

∂p

∂v

)

T

=
RTv

(v − b)2
− 2a

v2
,

is always positive, if T > Tcr, but for T < Tcr it becomes negative somewhere between
vl and vv (therefore the compressibility kT is there negative too). This means that the
intrinsic stability condition (discussed in Lecture VII) is violated there and one is forced
to admit that these parts of subcritical VdW isotherms do not represent system’s states
(are unphysical). In agreement with what happens in real systems, some parts of the
subcritical VdW isotherms should be therefore replaced by flat horizontal lines, because
one knows that as the coexistence curve is reached on the diagram 20 from below (or from
above), the system breaks up into two phases and its number of moles n and the molar
volume v are given by

n = xlnl + xvnv , v = xlvl + xvvv xl + xv = 1 ,

with xv beginning at 1 (at 0) and decreasing to 0 (increasing to 1) as the total volume is
reduced (increased).

The possible interpretation of the subcritical VdW isotherms is therefore as follows
(Figure to be done - the position of the horizontal line will be discussed below):

• the segment at large v going through the point A up to the point B correspond to
the vapour (gas);

• point B is where the phase separation should begin (it corresponds to the reaching
the line tr-cr on the diagram 20 from below);

• the segment B-C can be interpreted as representing the supercooled vapour (a
metastable state) - on Figure 20 the corresponding points lie above the tr-cr line;

• the segment C-D-E is unphysical (kT < 0);

• the segment E-F can be interpreted as representing the superheated liquid (a metastable
state) - on Figure 20 the corresponding points lie below the tr-cr line;

• the flat segment B-D-F represents the mixture of phases in neutral equilibrium
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• the segment from the point F through G and further to the left represents the system
in the single liquid phase

Having the VdW equation one can consider integrating up the one-form

dg = −s(T, p) dT + v(T, p) dp ,

along the shown isotherm T < Tcr from the point, say A, on:127

g(T, p) = g(T, pA) +

∫ p

pA

dp′ v(T, p′) . (194)

As we integrate, the area under the curve v = v(p) (at fixed T ) grows until the point C is
reached, so the plot of the function g(T, p) raises. Then from C to E, as p decreases, the
area must be counted as negative; therefore the plot of g(T, p) goes backwards and falls
down. Finally, from the point E on p again increases and the area under the curve v = v(p)
must be counted as positive, so the plot of g(T, p) again goes forward and raises. The
resulting self crossing curve g(T, p) (a T = const section of the self-crossing g-surface) is
shown in Figure. Its part A-C is the constant T section of what formerly was supposed to
be the vapour g-surface, while its part E-G is the section of the liquid g-surface; up to the
point at which they cross the vapour g-surface is lower and it is vapour which is the stable
phase, while from this point on stable is the liquid phase. As the temperature increases,
the unphysical segment C-E becomes shorter and shorter and disappears completely at
Tcr; making plots of several such self crossing g-curves one obtains the picture of the self
crossing g-surface of the liquid vapour system.

There remains only the question where to place the points B and F on a given isotherm?
The prescription given by Maxwell (and called the Maxwell construction ever since) states
that these points should be drawn in such a way that the areas B-C-D-B and D-E-F-D be
equal. In this way the value of the molar Gibbs function at the point B will be the same
as the value of the molar Gibbs function at the point F (that is, equal will be the values
of the chemical potentials of the vapour and of its liquid at the temperature T labeling
this isotherm). Indeed, the Maxwell rule requires that (geometrically)

(area under B− C)− (area under C− D) = (area under D− E)− (area under E− F)

But this precisely ensures that (recall how the integration (194) has been done)

g(T, pF )− g(T, pB) =

∫ pF

pB

dp v(T, p) (195)

= (area under B− C)− (area under C− D)

− (area under D− E) + (area under E− F) = 0 .

127Of course the parametrization of the isotherm by the pressure is only piecewise well defined and has
to be changed on the way - in the discussion below this is taken into account in the “school way”, by
counting the areas under the curve as positive or negative.
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The construction is however of doubtful validity for it clearly exploits the unphysical
part of the isotherm (its segment C-E). The correct procedure would be to start from
the point A and move on along the isotherm computing at every point the chemical
potential just using the standard thermodynamic data including the equation of state -
the VdW one in the discussed case - and at the same time to start form the point G
and move back along the same isotherm, again computing at every point the chemical
potential. In this way one could in principle find the two points, one on the left part of
the isotherm and the other one on its right part, at which the two chemical potentials
(molar Gibbs functions) have the same value at the same pressure. (This procedure does
not exploit the unphysical part of the isotherm). It would be these points, therefore,
which should be connected by the flat segment. It may be argued that this shows that
the Maxwell construction cannot be correct because if the isotherm between the points
B and F is distorted, an operation which would not alter the equality of the chemical
potentials at B and F found in the way proposed here, the two areas compared in the
Maxwell construction would be modified and it would predict incorrectly the position of
the flat part of the isotherm. This argument can be, however, dismissed by appealing to
the analyticity property of thermodynamical potentials (everywhere with the exception
of the critical point which is a bifurcation point): the “stiffness” of analytic functions does
not allow for distorting the unphysical parts of the isotherm in a way uncorrelated with
the changes of the chemical potentials found by the “move and control” method.

Critical exponents
Besides the isothermal compressibility kT in the vicinity of the critical point also other
quantities exhibit anomalies. This can be illustrated by modeling again the liquid-vapour
system by the VdW equation of state. The molar specific heat cv (at constant molar
volume v) is predicted by this equation to be independent of v and, therefore one can
tentatively128 take it to be constant in the vicinity of the critical point. The relation

cp = cv + T

(

∂p

∂T

)

v

(

∂v

∂T

)

p

= cv + Tv kT

(

∂p

∂T

)2

v

, (196)

then implies that the molar heat capacity at constant pressure should diverge at the critical
point because the isothermal compressibility kT does, as has been already discussed. To
capture the character of this divergence it is convenient to rewrite the VdW equation
in terms of the reduced variables π ≡ p/pcr, ω ≡ v/vcr and t ≡ T/Tcr (the values
vcr = 3b, pcr = a/27b2, RTcr = 8a/27b are the solutions of the conditions (∂p/∂v)T = 0,
(∂2p/∂v2)T = 0).

(

π +
3

ω2

)

(3ω − 1) = 8t ,

and then to go over to the variables x = ω − 1, y = π − 1 and τ = t − 1 which directly
measure the departures from the critical point. Expanded up to the terms of order x3 the

128cv of real fluids can in fact exhibit anomalous behaviour.

153



VdW equation takes then the simple form

3x3 + (2 + 3x)y − 8τ = 0 . (197)

The derivatives appearing in the relation (196) can be then straightforwardly computed
to yield

(

∂p

∂T

)

v

∝
(

∂y

∂τ

)

x

=
8

2 + 3x
,

(

∂v

∂T

)

p

∝
(

∂x

∂τ

)

y

=
8

3(3x2 + y)
,

and one finds that (including all numerical factors)

cp = cv +
8Rt

(2 + 3x)(3x2 + y)
.

It then follows that if p = pcr, i.e. when y = 0, cp ∼ const./x2, as x → 0. Since from
(197) τ ∝ x3 when y = 0, it follows that

cp ∼
const.

|T − Tcr|2/3
, (198)

as T → Tcr at p = pcr, whereas if x = 0, cp ∼ const./y, that is (because τ ∝ y at x = 0)

cp ∼
const.

T − Tcr
, (199)

as T → T+
cr at v = vcr (this can be computed only for T > Tcr, for at v = vcr and T < Tcr

one is precisely in the region of parameters in which the VdW equation leads to unphysical
results and one should rather ask about the behaviour of cliqp and cvapp as one approches
the critical point along the coexistence line). Using the relation kS = (cv/cp)kT it can be
also shown that the adiathermal compressibility kS remains finite: since (again using the
VdW equation in the form (197)) near the critical point

kT ≡ −1

v

(

∂v

∂p

)

T

= − 1

pcr(1 + x)

(

∂x

∂y

)

τ

=
1

pcr(1 + x)

2 + 3x

3(3x2 + y)
,

one gets that kT/cp ∝ (2 + 3x)2(1 + x)−1.

In general, singularities129 at the critical point of various quantities characterizing
different physical system turn out to be power-like and are conveniently quantified by the
so called critical exponents which can be defined as follows. Suppose one approaches the
critical point along a well defined path which does not coincide with the critical isotherm.
Parametrizing this path with τ ≡ (T − Tcr)/Tcr one defines the exponent λ characterizig
a quantity X by

λ = − lim
τ→0

d lnX(τ)

d ln τ
. (200)

129By “singularity” of a quantitity one understands either its vanishing or diverging.
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One then has130

X(τ) =

{

Aτ−λ T > Tcr,
A′ (−τ)−λ′

T < Tcr,
(201)

In the similar way one can introduce exponents characterizing approaching the critical
point along paths parametrized by variables other than τ . Of course, critical exponents
characterize only the leading behaviour of X(τ) near the critical point: in most cases
it is more fully captured by the formula X(τ) = A τ−λ(1 + B τκ + . . .) with κ > 0.
Interestingly, in most cases the critical exponents on both sides (if both can be defined)
are equal: λ = λ′, but A 6= A′. A fluid near its critical point:

vl − vv = const.× (−τ)β ,

kT =

{

Aτγ T > Tcr, v = vcr
A′ (−τ)γ′

T < Tcr, v = vv or v = vl
(202)

p− pcr = const.× |v − vcr|δsgn(v − vcr) .

The VdW equation gives (classes) δ = 3 and β = 1/2 but this is not what is measured. The
precise computation of the critical exponents requires introducing (within the statistical
physics) essentially new ideas and methods known under the name of the renormalization
group methods.
The conductor-superconductor phase transition
We will briefly consider here the conductor-superconductor phase transition with the aim
of showing that in the zero external magnetic field it is of the second order according to
the Ehrenfest classification.

Many metals (which do not exhibit ferromagnetic properties) like tin (Sn), iridium
(Ir), niobium (Nb), become superconducting at low temperatures (in zero magnetic field
at 3.73 K, 0.14 K and 9 K, in the case of tin, iridium and niobium, respectively - we will not
consider high temperature superconductors here), that is exhibit zero electric resistance.
This is accompanied, and one can show that vanishing of the resistance is a consequence
of this effect, by their perfect diamagnetism: if they are placed in an external magnetic
field, the magnetic field induction is expelled from their interior altogether (i.e. B = 0

inside the specimen; this is called the Meissner-Ochsenfeld effect) unless the external field
is too strong: if it exceeds some critical value Hc (which depends on the temperature, and
to a much smaller extent, on the pressure), the material becomes “normal”: the resistivity
reappears and the magnetic field induction B in the material is related to the strength H

inside the specimen by a magnetic sussceptibility χ: B = H + 4πM where M = χH.
Below we will assume that the normal phase sussceptibility χ is negligibly small, so that
in the normal state simply B = H inside the material (just as outside it).

Suppose a tin specimen of a long cylindrical shape is placed in a weak external mag-
netic field131 H at a temperature lower than the critical one, Tc (so that the specimen
is in the superconducting phase). The magnetic field induction inside the specimen is

130λ = 0 corresponds to a logarithmic singularity.
131Since we consider the magnetic field aligned always in the same direction, we can play with the scalar
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then zero. If H is slowly increased so that it exceeds some critical value Hc, the metal
undergoes a first order (as will be seen) phase transition to the normal state in which
B = H inside it. If the external field is reduced back below the critical value Hc, the
material reverts to the perfectly diamagnetic state. The transition is therefore reversible
in the thermodynamic sense and can be analyzed with standard methods. The experi-
mentally measured dependence of the critical field strength Hc on the temperature (at
fixed pressure) is conveniently modeled by the empirical formula

Hc(T ) = H0

[

1−
(

T

Tc

)2
]

, (203)

which correctly captures the two essential features of the real dependence: its flatness at
T = 0 (required by 3TMDL - of which we had no time to talk) and the finite slope at
T = Tc (which is crucial for further considerations). The dependence on the pressure is
rather weak: Tc of tin changes from 3.73 K at p = 1 atm to 3.63 K at p = 1700 atm.

It is convenient to consider the molar magnetic Gibbs function of the metal which
exhibits superconductivity

g′(T, p,H) = u′ − Ts+ p v −HMv , (204)

(we assume that the the magnetic field strength H and the magnetization M are constant
in the material) the differential dg′ = −s dT + v dp− vM dH of which implies that

(

∂g′

∂T

)

p,H

= −s ,
(

∂g′

∂p

)

T,H

= v ,

(

∂g′

∂H

)

T,p

= −vM , (205)

and which, being a function of intensive parameters only, plays the role of the chemical
potential.

Since the system is characterized by three intensive parameters, its two phases, the
normal one denoted n and the superconducting one denoted s, in the three dimensional
space can, as follows from the Gibbs phase rule, coexist along a two dimensional surface
at which their molar gibbs functions are equal g′s = g′n. The coexistence surface projected
onto the three planes: (T,H), (p,H) and the (T, p) one, gives rise to three coexistence
curves which are determined by the equations analogous to the Clapaucius one - the
method of derivation is exactly the same:132

(

∂Hc

∂T

)

p

= − sn − ss
vnMn − vsMs

,

quantity H. Moreover, because of the assumed specimen shape, the magnetic field strength H inside the
material is the same as the strength H0 of the applied field (the demagnetization field is zero). Hence
we do not need to distinguish them. The symbol H0 will be therefore used to denote the critical value of
the magnetic firld strength at T = 0.

132E.g. if the pressure is fixed, on the coexistence curve the changes dHc and dT are correlated so that
g′n(T + dT, Hc + dHc, p) = g′s(T + dT, Hc + dHc, p).
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(

∂Hc

∂p

)

T

=
vn − vs

vnMn − vsMs

, (206)

(

∂p

∂T

)

H

=
sn − ss
vn − vs

.

As in the superconducting (perfectly diamagnetic) phase B = 0 means that Ms = −H/4π,
while the equality B = H holding in the normal phase implies that in this phase Mn = 0,
the first two of the above three equations can be rewritten in the forms

(

∂Hc

∂T

)

p

= − 4π

vsHc
(sn − ss) ,

(

∂Hc

∂p

)

T

=
4π

vsHc
(vn − vs) . (207)

The values ss, sn, etc. should be taken on the respective coexistence surfaces, but
their variation with the magnetic field is not large: since, as readily follows from (205),
(∂s/∂H)T,p = (∂vM/∂T )p,H, neither sn nor ss are appreciably field-dependent: the former
because Mn = 0 and the latter because Ms = −H/4π, so only a rather small temperature
dependence of vs can contribute to the variation of ss with the magnetic field strenhth.
Similarly, since (∂v/∂H)T,p = −(∂vM/∂p)T,H, vn is field independent and to the field
dependence of vs can contribute only the small compressibility of the specimen in this
phase. Thus, with the exception of the differences sn − ss and vn − vs one can use in the
above equations ss and vs taken at the zero magnetic field and similarly neglect the field
dependence of sn and vn.

Now, the first one of the two equations (207) rewritten in the form

sn − ss = −vsHc

4π

(

∂Hc

∂T

)

p

, vn − vs =
vsHc

4π

(

∂Hc

∂p

)

T

, (208)

shows, because - as already has been stressed and as the formula (203) makes it clear
- the slope (∂Hc/∂T )p is not infinite at Hc = 0, that at Hc = 0 the difference sn − ss
vanishes. This means that in zero magnetic field the transition conductor-superconductor
occurs without any latent heat.133 In the same way the second equation shows that in
zero magnetic field vanishes also the difference vn − vs (because Hc depends on p very
weakly and the derivative is certainly not infinite). Thus, in the ordinary two-parameter
space (T, p) corresponding to zero magnetic field, the conductor-superconductor transition
ceases to be first order. This means that the third of the equations (206) is indeterminate
at zero field.134 To show that the transition is of second order according to the Ehrenfest
classification, it is sufficient to show that the derivatives of entropies and/or of molar
volumes are discontinuous across the coexistence curve. Differentiating the first equation

133The same hold also at T = 0, because (∂Hc/∂T )p = 0 there; this is consistent with 3TMDL which
requires equality of molar entropies of both phases to be equal at absolute zero and therefore forbids
existence of first order phase transitions at this temperature.

134The transition remains first order in all two-parameter spaces (T, p) corresponding to non-zero mag-
netic field and on these planes the third equation (207) is well defined and does determine the coexistence
curve.
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(208) with respect to T at constant pressure (again neglecting the temperature dependence
of vs in their right hand sides) one finds

c(n)p − c(s)p = −vsT
4π

[

Hc

(

∂2Hc

∂T 2

)

p

+

(

∂Hc

∂T

)2

p

]

= −vsT
8π

(

∂2H2
c

∂T 2

)

p

. (209)

Appealing to the empirical formula (203) one sees that at zero magnetic field the discon-
tinuity of the molar heat capacities is finite and is equal135

c(n)p − c(s)p = −vsH
2
0

πTc
.

Since the discontinuity of molar heat capacities of the two phases is finite, the transition is
of second order. It remains to see what replaces the third, indeterminate equation (206) in
determining the conductor-superconductor coexistence curve on the (T, p) plane (at zero
magnetic field). To this end one takes the derivatives at H = 0 of both equalities (208)
with respect to T and with respect to p (again neglecting any small dependence of vs on
these parameters) obtaining three relations (the fourth one is identical with one of these
three, because of the Maxwell identity (∂s/∂p)T = −(∂v/∂T )p) which can be written in
the forms:136

(

∂Hc

∂T

)2

p

= − 4π

vT

(

c(n)p − c(s)p

)

,

(

∂Hc

∂p

)2

T

= −4π
(

k
(n)
T − k

(s)
T

)

,

(

∂Hc

∂T

)

p

(

∂Hc

∂p

)

T

= 4π
(

α(n)
p − α(s)

p

)

.

Taking their ratios and exploiting the standard shocking relation (∂Hc/∂p)T (∂Hc/∂T )p =
−(∂Tc/∂p)H, one obtains the two (mutually consistent, as follows from the construction)
equations

(

∂Tc
∂p

)

H=0

= vsT
α
(n)
p − α

(s)
p

c
(n)
p − c

(s)
p

=
k
(n)
T − k

(s)
T

α
(n)
p − α

(s)
p

,

which replace the last of the equations (206) in determining the second order phase tran-
sition line on the (T, p) plane. The equation obtained here, called the Ehrenfest equation,
is the analog of the Clapeyron-Clausius equation in the case of second order phase tran-
sitions.

135Since we restrict our attention to the zero magnetic field plane, we denote these heat capacities cp;
beyond that plane one should call it more properly cp,H.

136Recall that kT = −(1/v)(∂v/∂p)T and αp = (1/v)(∂v/∂T )p.
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LECTURE X (STAT)

We have finished the thermodynamic part of this Course. Thermodynamics is a phe-
nomenological theory the main aim of which is establishing relations between measurable
quantities characterizing macroscopic properties of bodies (systems). It also formulates
general rules allowig to tell which processes are possible and imposes limits on possible
useful works that can be extracted from macroscopic systems. Results obtained within
this theory are very general and are always true. The central role in the structure of ther-
modynamics is played by entropy which, however, does not find a natural interpretation
within this theory itself. Furthermore, making quantitative predictions on the basis of
thermodynamics requires that certain functions (thermodynamic potentials) be known,
but within the formalism of pure thermodynamics these functions cannot be computed
- they have to be laboriously reconstructed from experimental data (which, however, in
applied and technical sciences is a good and fruitful method!).

We now turn to statistical physics (or statistical mechanics) the first (but not the only
one!) goal of which is the derivation of thermodynamics or, putting it differently, pro-
viding methods for computing equilibrium properties of various physical systems on the
basis of more fundamental laws137 (theories) governing the behaviour of microscopic con-
stituents (molecules, atoms or physical fields) of these system. In this approach entropy
will acquire a concrete interpretation of a measure of disorder or rather of a measure of
the lack of information on the actual microscopic state of the system. Our primary task
will therefore be understanding how this lack of information neverheless does not prevent
making definite predictions concerning macroscopic quantities characterizing a given sys-
tem and to provide concrete recipies for obtaining with the help of statistical methods
thermodynamical potentials such as entropy, Helmholtz free energy etc. (depending on
the conditions in which the system is placed) as functions of their natural variables on
the basis of concrete microscopic theories.

Within the statistical approach it is, of course, possible to go much further and relying
on microscopic dynamical theories investigate fluctuations of various quantities as well as
their correlations. Statistical approach makes it also possible to consider systems not
in equilibrium, in particular to study how equilibrium is reached in various situations.
This part of the statistical method is called kinetic theory. In fact the whole statistical
mechanics (also the equilibrium one) partly grew out from the Boltzmann and Maxwell
studies of such problems within the kinetic theory of gases based on classical mechanics.
The kinetic approach, essentially still based on the classical Boltzmann equation supple-
mented only with reaction rates computed within a suitable quantum theory, finds at
present numerous applications for example in modern cosmology.

In this Course we will only discuss fundamentals of the equilibrium statistical ther-
mordynamics (the one based on classical as well the one based on quantum mechanics).

137It should be clear from the beginning that the ultimate laws of Nature are not known yet (will
they be ever known?), but they are largely irrelevant for understanding the behaviour of matter from
the statistical standpoint: all that is needed is an effective theory sufficiently accurately predicting the
behaviour of atoms and molecules.
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Moreover, we will mainly treat only the simplest systems of mutually nointeracting ele-
ments (molecules, spins, etc.). Going further requires introducing special mathematical
tools and in fact quickly leads to developing methods which are most easily understood
only for those who have been trained on quantum field theory.

Thermodynamics was based on the assumption, which in fact is an idealization, but
a one which macroscopically seems possible to be approached as closely as it is required,
that by suitable walls every physical system can be isolated from any influences from
without. A system isolated in this way attains then, after some time (which barring some
exceptional systems is usually not too long on the macroscopic scale), an equilibrium state.
Thermodynamics applies strictly speaking only to such equilibrium states. In contrast
to the assumption on which thermodynamics is based, the most realistic assumption on
which to base statistical mechanics is the statement that at the microscopic level no real
system can be absolutely isolated with respect to random (uncontrolable) minute external
perturbations. This is particularily true of that macroscopic part of a (classical) system on
which measurements are being made and which for short periods (when the mesurements
are made) can be treated as macroscopically isolated from the rest of the system. More
fundamentally, one should adopt the view that, for reasons which will be given in the
next Lecture, this is always true for any macroscopically large quantum system, so it is
the right basis on which to base quantum statistical mechanics; its classical counterpart
must be constructed in such a way as to be the limit of quantum statistical mechanics
and (from the pragmatic point of view) its role is only to simplify calculational aspects
of the statistical treatement of physical systems.

When one is interested (measures) in those few properties of a macroscopic system
which characterize its equilibrium state, then the same their values could be obtained
by measuring them on copies of the system which microscopically are in states different
than is our system. In other words, typically the same macrostate of a given system
is realized by a very large number of its different microstates and this is true of equi-
librium macrostates (which we consider in this Course) as well as of its nonequilibrium
macrostates. The notion of the microstate depends on whether at the microscopic level
the system is treated classically or quantum-mechanically and will acquire proper mean-
ings in both these cases in due course. The crucial consequence of the impossibility of
putting the system in absolute (from the microscopic point of view) isolation is that its
microstate can never be known sufficiently precisely: even if the system started in a well
defined microstate it would immediately make innumerable transitions to different mi-
crostates as a result of being perturbed by randomly acting external agents. Thus the
most reasonable physical assumption on which to base the foundations of statistical me-
chanics of a macroscopic physical system the energy and the deformative parameters of
which are fixed (directly controlled) is, as will be argued, to assume that all its possible
microstates which realize the same its macrostate are equally probable. This is called the
equal probabilities postulate which can also be given a justification on the basis of the
information theory.

Foundations of classical statistical mechanics
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Microscopic constituents of matter - molecules, atoms, fields - obey the laws of quantum
mechanics.138 For this reason it is certainly well justified to claim that the foundations
of equilibrium and nonequilibrium statistical physics should be based only on this theory.
While this is principially true, it is nevertheless worthwhile to consider statistical physics
based on classical mechanics. Although some ingredients neessary to fully acccount for the
behaviour of real physical systems are lost in this way (lost for example are spin degrees of
freedom; indistinguishability of identical particles can only approximately be accounted
for, phenomena at very low, T → 0, temperatures cannot be captured correctly, etc.),
developing statistical approach based on classical mechanics is not completely useless.
Firstly, as it is closer to our intuition, it allows to better understand the basic princi-
ples and rules. Secondly, it is also useful in practice: for instance, it turns out that if
properties of gases at not too low temperatures are considered, the contributions to the
thermodynamic potentials of the motions of centers of masses of the molecules can always
be treated classically (from the quantum mechanics point of view this motion is quasi-
classical) and combined with the contributions of the internal motions of these molecules
(rotations and vibrations) which (at least in some ranges of the temperature) must be
treated quantum mechanically.

Thus we begin by considering a system consisting of a fixed number N of particles
(molecules) which obey the laws of classical mechanics. A microstatate of such a system
is in principle fully specified by giving instantaneous values of 3N generalized coordinates
qi and 3N velocities q̇i (together they constitute the complete set of initial data for the
Euler-Lagrange equations which would uniquely determine further evolution of the system
if it were completely isolated). However, as the classical statistical mechanics should
eventually emerge as a limiting case of quantum statistical mechanics which necessarily
must be formulated in terms of Hamiltonians and the so-called canonical variables, it is
much more convenient to specify the classical system’s microstate by giving instantaneous
values of 3N coordinates qi and 3N conjugated momenta pi and to adopt the Hamilton’s
equations as the ones which would determine the time evolution of an isolated system.
The actual state of a system of N particles will be therefore represented by a point in a 6N
dimensional phase space Γ(q,p) the 3N axes of which represent the system’s positions
qi and the remaining 3N axes represent its momenta pi. As these change with time,
the point representing the system moves through the phase space Γ(q,p) (irrespectively of
whether the system is microscopically isolated or not).

A macroscopic quantity139 (an observable) which characterizes a given system depends,
of course, on its actual microscopic state and can, therefore, be represented by a function
O = O(q, p) of its generalized coordinates and momenta. Because of some inertia of
all macroscopic devices, experimental measurments made on the system do not really

138Or, at a yet deeper level penetrated (experimentally) to date, by the laws of quantum field theory
which is in a sense (it takes me rougly half of the semester of teaching to explain this properly) the
application of the general principles quantum mechanics to systems of relativistic fields or to systems of
relativistic particles.

139We have in mind here a thermodynamic quantity of a mechanical nature, like pressure.
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measure instantaneous values of the observable O but rather its time average of the sort

Oobs =
1

τ

∫ t0+τ

t0

dtO(q, p) , (210)

in which τ is sufficiently long on the microscopic scale to smooth out fluctuations. Ob-
viously, the formula (210) stays valid whether the system is completely isolated or not.
If the real system were completely isolated, the time evolution of its coordinates qi and
momenta pi would be determined by the canonical Hamilton’s equations of motion

q̇i =
∂H (q, p)

∂pi
, ṗi = −∂H (q, p)

∂qi
, i = 1, . . . , 3N, (211)

and the initial conditions qi(t0), pi(t0) set at some instant t0. The measured quantity
(210) could be then in principle computed in terms of these initial data as

O =
1

τ

∫ t0+τ

t0

dtO(q(t), p(t)) . (212)

It is clear, however, that in the case of a real system this is not feasible: firstly, although
owing to the growing power of computers one is at present able to simulate numerically the
classical time evolution of systems consisting of, say, N ∼ 104 particles (such simulations
are done in modeling e.g the formation of structures - galaxies, clusters of galaxies, etc.
- in the expanding Universe), simulating the time evolution of systems consisting of N ∼
NA = 6.022×1023 particles is certainly beoynd reach. Secondly, and this ultimately turns
out to be decisive, one can never know the initial values qi(t0), pi(t0) of the coordinates
qi and momenta pi.

Even worse is the situation when the system is not isolated from the microscopic point
of view (or even not isolated macroscopically, when e.g. being in equilibrium it remains
in thermal contact with a heat bath). In this case the time evolution of the variables qi

and pi is not determined by a Hamiltonian depending solely only on these variables - to
determine the evolution of the variables qi and pi of the considered system one would have
to follow also the evolution of the variables specifying the state of the entire surrounding.

In view of this situation one has to resort to the statistical method (suggested by Gibbs)
which employs statistical ensembles. By the ensemble one means a set of a very large
number N (implicitly the limit N → ∞ is to be taken) of copies of microscopically
isolated systems which are all macroscopically indistinguishable from the considered real
system (which itself may be not isolated microscopically or even macroscopically, when it
is in contact with e.g. a heat bath, or may even not be in equilibrium) at an initial instant
of time - that is, all have their macroscopic characteristics (these are rather easy to specify
if the considered real system is in full equlibrium as a macroscopically isolated system,
or in equilibrium with its surrounding; considerably more difficult is the specification of
macroscopic characteristics of a system which is not in equilibrium) identical with those
of the considered real system at some tin. For example, the ensemble representing at the
moment tin a real system in equlibrium (either a macroscopically isolated system or in
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equilibrium with its surrounding) the macrostate of which does not change in time, could
be constructed by taking all points of the phase space Γ(q,p) which this system “visits” in
consequtive instants tin + n∆t with some ∆t and n → ∞ and assigning them all as the
initial data at the instant tin to members of the ensemble. More generally (not restricting
to systems in equilibrium), one could operationally construct an ensemble by preparing N
copies of identical systems in the same way as the system itself (in the same conditions)
and putting all of them in perfect isolation at some initial moment tin. The systems of the
ensemble constucted according to these prescriptions would populate in the phase space
Γ(q,p) different possible microstates which give rise to the same macrostate (as specified
by its macroscopically measured characteristics) and can be taken to represent the real
system. However in view of the fact that the construction of the ensemble along the
indicated lines evidently cannot be carried out in practice, the task central to the statistical
method is to theoretically construct an ensemble (that is, in statistical physics bases
on classical mechanics, to select a distribution function ρ(q, p, tin) - see below) in such a
way that the distribution of its systems over the phase space Γ(q,p) (at the instant tin) is,
from the macroscopic point of view, representative for the considered real system (at the
same instant tin). It will be seen that in the case of systems in equilibrium there exist
definite rules of achieving this.

In general ensembles obtained either operationally in the way specified above or con-
structed theoretically can be characterized by their phase space distribution function
ρ(q, p, t) normalized to unity140

∫

Γ

dΓ(q,p) ρ(q, p, t) = 1 , (213)

(the precise form - its normalization factor - of the measure dΓ(q,p) ∝ d3Nq d3Np will be
specified later). It gives the fraction of the number of the ensemble systems which at the
instant t are contained in the infinitesimal phase space volume element dΓ(q,p) around the
point (qi, pi). In other words,

N ρ(q, p, t) dΓ(q,p) ,

is the number of systems of the ensemble contained (at the instant t) in this infinitesimal
phase space volume element. Given the distribution function ρ(q, p, t), with every observ-
able quantity O which is determined by the microscopic state of the system associated
can be the ensemble average O(t) over the phase space:

O(t) ≡
∫

Γ

dΓ(q,p) ρ(q, p, t)O(q, p) . (214)

It is the ensemble average which in the statistical approach is going to replace the time
averages (210) and the justification of this replacement will be discussed (to the extent
to which it is possible) below.

140We restrict ourselves here to real systems not exchanging matter with their surrounding. Extension
to open systems (in equlibrium) will be made later.
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Since the systems forming an ensemble are by definition constructed as (microscopi-
cally) isolated, the time evolution of each of them can be analyzed with the help of the
canonical equations of motion (211) with the Hamiltonian H (q, p) which includes only
the internal interactions of the system (the terms Hsurr and Hsyst−surr are absent from it)
and defines therefore the dynamics of an autonomous system. As each of the systems of
the ensemble evolves in time, also, in general, changes the distribution function ρ globally
characterizing their distribution over the phase space. Certain global features of these
changes of ρ can be understood on the basis of the Liouville theorem.

Liouville theorem and its consequences
The Liouville theorem is a technical result obtained within classical mechanics141 which
provides a global characterization of the dynamical behaviour of a large number of iden-
tical systems forming an ensemble. It is needed in the development of the argument
justifying the statistical approach.

Let us consider first the total differential of the introduced distribution function:

dρ =
∂ρ

∂t
dt+

3N
∑

i=1

(

∂ρ

∂qi
dqi +

∂ρ

∂pi
dpi

)

.

The sum ρ + dρ is obviously the value of the distribution function at the neighbouring
point (qi + dqi, pi + dpi) of an arbitrarily chosen point (qi, pi) of the phase space at the
moment t + dt, written in terms of its value ρ at the point (qi, pi) at the instant t. One
can, however, ask what will be the value of the distribution function at the instant t+ dt
at the point (qi + dqi, pi + dpi) which is related to (qi, pi) by the motion of the system.
This requires correlating dqi and dpi with dt by dqi = q̇idt, dpi = ṗidt. The distribution
function at this neighbouring point linked to (qi, pi) by the dynamics is equal ρ+(dρ/dt)dt
with (the second form follows by using the canonical equations (211) and the definition
of the Poisson bracket denoted “PB”)

dρ

dt
=
∂ρ

∂t
+

3N
∑

i=1

(

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)

≡ ∂ρ

∂t
+ {ρ, H }PB . (215)

The first part of the Liouville theorem states that dρ/dt is zero.

To prove this we consider an arbitrarily chosen finite (i.e. of finite measure, in the
mathematical language) domain ∆Γ(q,p) of the phase space Γ(q,p) and ask how the instan-
taneous number

N∆Γ(t) =

∫

∆Γ

dΓ(q,p)N ρ(q, p, t) ,

of phase points (representing the systems of the ensemble) contained in this domain
changes between t and t+dt. On one hand, this change is simply given by (dN∆Γ(t)/dt)dt

141It has, of course, also a counterpart in quantum mechanics.
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where

dN∆Γ(t)

dt
=

d

dt

∫

∆Γ

dΓ(q,p)N ρ(q, p, t) =

∫

∆Γ

dΓ(q,p)N
∂ρ(q, p, t)

∂t
.

On the other hand, the same change dN∆Γ(t) must be equal to the flux of the phase
points, given by the 6N dimensional flux “vector”

N ρu ≡ N ρ

(

q̇i

ṗi

)

,

(which is the product of N ρ itself and the 6N dimensional “velocity vector” u), inte-
grated over the boundary of the domain ∆Γ(q,p) and multiplied by dt (dΣ is the 6N − 1-
dimensional differential area vector normal to the surface and directed outwards):

dN∆Γ(t) = −dt
∫

∂∆Γ

dΣ·uN ρ .

By the Stokes theorem this can be written in the form (∇ stands for the 6N -dimensional
differential operator)

dN∆Γ(t)

dt
= −

∫

∆Γ

dΓ(q,p)∇·(uN ρ) .

Equating the two forms of the rate dN∆Γ(t)/dt and taking into account that the domain
∆Γ(q,p) was arbitrary (which implies that the integral equality can be replaced by its local
differential version), we obtain the equality

0 =
∂ρ

∂t
+∇·(u ρ) = ∂ρ

∂t
+

3N
∑

i=1

[

∂

∂qi
(q̇iρ) +

∂

∂pi
(ṗiρ)

]

=
∂ρ

∂t
+

3N
∑

i=1

[

∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi +

(

∂q̇i

∂qi
+
∂ṗi
∂pi

)

ρ

]

.

Since

∂q̇i

∂qi
=

∂

∂qi
∂H

∂pi
=

∂2H

∂qi∂pi
,

∂ṗi
∂pi

= − ∂

∂pi

∂H

∂qi
= − ∂2H

∂pi∂qi
,

the last term in the square brackets is zero and, comparing with (215), we indeed conclude
that dρ/dt = 0. The vanishing of the total time derivative of the distribution function
ρ means that this function is constant along trajectories of the phase points or, that the
“phase fluid is incompressible”. Alternatively, this can be written as the equality

ρ(q, p, t) = ρ(q0, p0, t0) , (216)

holding for (qi, pi) related at t = t0+s to the values (qi0, p
0
i ) of the phase space coordinates

at t0 by the motion: qi = qi(s, q0, p0, t0) and pi = pi(s, q0, p0, t0).
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To obtain the second part of the Liouville theorem we consider a small (infinitesimal
in fact) domain ∆Γ(q,p) of the phase space and follow over the interval s of time the
motion of all the phase points which were contained in it at some instant t0. At the
moment t = t0 + s these points will occupy another domain of the phase space. The
shape of this new domain is marked by the points which at t0 formed the boundary of
∆Γ(q,p). Moreover, no one point of those which at t0 formed the interior of ∆Γ(q,p) could
have evolved outside of the new domain, because in doing so it would have to cross on
the way the moving boundary of the domain: at some moment between t0 and t0 + s it
would have to coincide with some boundary point; but since the Hamilton’s equations of
motion are causal and their solutions are unique, it would have to coincide at every other
instant with this point of the boundary. It follows that the number of phase points inside
the migrating domain could not change and since we have shown that along the phase
trajectories the distribution function (i.e. the density of the points in the phase space) is
constant, we conclude that although the shape of the moving domain could have (even
drastically) changed between t0 and t0 + s, its volume remained unchanged. This in turn
means that

J =
∂(q, p)

∂(q0, p0)
= 1 . (217)

where J is the jacobian of the change (transformation) of the integration variables from
(qi, pi) to (qi0, p

0
i ) which is given by the motion: qi = qi(s, q0, p0), pi = pi(s, q0, p0) (with

the time s playing the role of an arbitrary transformation parameter).
Put differently, the argument given above shows that

∫

∆Γ(t0+s)

dΓ(q,p)N ρ(q, p, t0 + s) =

∫

∆Γ(t0)

dΓ(q0,p0)N ρ(q0, p0, t0) . (218)

After using the formulae: qi = qi(s, q0, p0, t0), pi = pi(s, q0, p0, t0) following from the
system’s time evolution, as defining the transformation of the integration variables and
using the equality (216) to replace ρ(q, p, t0 + s) with ρ(q0, p0, t0), the left integral takes
the form

∫

∆Γ(t0)

dΓ(q0,p0)
∂(q, p)

∂(q0, p0)
N ρ(q0, p0, t0) ,

Its equality to the integral on the right side of (218) means therefore that (217) holds.142

Correspondence of the time and ensemble averages
We now make the crucial step in developing the statistical approach. We are going to
postulate the relation between the quantity (210)

Oobs =
1

τ

∫ t0+τ

t0

dtO(q, p) ,

142The same follows also from the general fact that the transformation qi = qi(s, q0, p0, t0), pi =
pi(s, q0, p0, t0) from the set (qi0, p

0
i ) of the canonical variables to the new variables (qi, pi) defined by

the actual motion of the system is a canonical transformation and as such must have unit Jacobian.
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measured on the real system (isolated macroscopically or not) and the appropriate en-
semble average. The latter is defined as follows. We construct an ensemble which at
tin is representative for the considered real system. With each (isolated) system of the
ensemble which from its microstate (qi0, p

0
i ) at t0 ≥ tin evolves as dictate the autonomous

Hamilton’s equations (211):

qi = qi(s, q0, p0) , pi = pi(s, q0, p0) ,

the time average

Oτ(q0, p0) =
1

τ

∫ τ

0

dsO(q(s, q0, p0), p(s, q0, p0)) , (219)

can be associated. The period τ (here and in (210)) can be taken sufficiently long from the
microscopic point of view (for instance, in the case of a gas τ should be large compared
to the mean time between collisions), so that Oτ is practically independent of τ (though,
as indicated by the notation, it can still depend on the initial point (qi0, p

0
i )). If the

system is not in equlibrium, τ cannot be too long too, if the formulae are to represent
a measurement which pertains to a definite stage of the system’s evolution (towards an
equilibrium state). The main postulate is then that Oobs should be identified with the
ensemble average

Oτ ≡
∫

dΓ(q0,p0) ρ(q0, p0, t0)Oτ (q0, p0) . (220)

The validity of the identification of Oobs with Oτ depends on the magnitude of the
fluctuations of the values of Oτ ’s (computed starting from different (q0, p0)’s) around the
mean Oτ . If the real system is completely (microscopically) isolated (which is the limiting,
not very realistic, case), it can be taken as one of the systems of the ensemble. Smallness
of the fluctuations means that the probability that Oτ (q0, p0) computed taking a randomly
chosen element of the ensemble - in particular taking the real system - markedly deviates
from Oτ is very small, so the same must be true of Oobs. If the real system is not isolated
(either only microscopically or because it is in contact with its surrounding), then its phase
space trajectory can be imagined to be piecewise composed out of parts of trajectories
traced out by different systems (which are microscopically isolated) of the ensemble - due
to random external perturbations the real system jumps from time to time from a phase
space trajectory of one isolated system onto the trajectory of another isolated system.
It again follows (or, better, can be maintained) that the probability that Oobs which is
a composition (in varying proportions) of parts of different Oτ ’s deviates significantly
from the ensemble average Oτ is small if the fluctuations (which are determined by the
ensemble) of Oτ ’s given by (219) are small provided the ensemble represents the real
system sufficiently faithfully.143 In either case, the validity of the identification of Oobs

143This is why the problem of choosing the representative ensemble is the central one of the whole
statistical approach. Fortunately simple choices which are made in typical situations of macroscopically
isolated systems, or systems exchanging energy with a heat bath prove (by the results they lead to) to
be sufficiently adequate.
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with the ensemble average Oτ is reduced to the problem whether the fluctuations of Oτ ’s
around Oτ are small, which can be investigated entirely in the framework of the ensemble
itself, without any further reference to the real system. It is expected that typically the
fluctuations are indeed small owing to the smoothing effect of time averaging involved
in computing individual Oτ ’s and owing to the enormous number of degrees of freedom
involved.

The arguments given above are by no means rigorous. It is clear that the value of Oτ

depends on the form of the distribution function ρ(q, p, t) which, at t0 must reasonably
well represent the real system. It can be however expected that the mean values Oτ of
observable quantities O (but not their fluctuations) are to some extent insensitive to the
form of ρ. Indeed, one knows that e.g. a system in equilibrium in contact with a heat
bath at a temperature T and an identical system in complete isolation but having the
same temperature T are thermodynamically equivalent although the distribution functions
associated with them will be different.

The construction of the statistical ensembles and the prescription for computing the
ensemble average Oτ , which according to the adopted postulate is to be identified with
the really measured value Oobs given above, are fairly general and apply to (real) systems
in equlibrium (either as macroscopically isolated system or with their surrounding) as well
as to systems out of equilibrium. If, as in this Course, we are interested only in systems in
equilibrium, some simplifications can be made. Firstly, the measured quantities Oobs are
in this case independent of time (macroscopic characteristics of systems in equilibrium by
definition do not vary in time). Therefore also the ensemble averages Oτ given by (220)
should be independent of t0. It is clear that this requires that the corresponding ensemble
distribution function ρ(q, p, t) does not depend explicitly on time:

∂

∂t
ρ(q, p, t) = 0 . (221)

Since the Liuoville theorem states that dρ/dt = 0, from the formula (215) it follows that
the distribution functions ρ of the ensembles intended to represent systems in equilibrium,
in addition to being not explicitly dependent on time, must have zero Poisson bracket with
the Hamiltonian of the system (treated as isolated):

{ρ(q, p), H (q, p)}PB = 0 . (222)

This means that the distribution function can depend on the dynamical variables qi and
pi only through conserved quantities specific for the considered system. Most of complex
(isolated) systems consisting of very large numbers of particles have only a few of con-
served quantities:144 energy, represented by the Hamiltonian itself, and perhaps the total
momentum and total angular momentum of which the last two are usually eliminated by
enclosing the system in suitable spatial walls. Thus typically the distribution function of

144The exception are so called integrable systems which can have up to 6N (completely integrable
systems) conserved quantities. We will not be concerned here with such systems.
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an ensemble representing a real system in equilibrium has the form

ρ(q, p, t) = ρ(q, p) = ρ(H (q, p)) . (223)

Moreover, the recipe for calculating the ensemble average (220) pertaining to the
properties of a system in equilibrium can be considerably simplified: in the explicit formula

Oτ =
1

τ

∫

dΓ(q0,p0) ρ(q0, p0)

∫ τ

0

dsO(q(s, q0, p0), p(s, q0, p0))

=
1

τ

∫ τ

0

ds

∫

dΓ(q0,p0) ρ(q0, p0)O(q(s, q0, p0), p(s, q0, p0)) ,

one can use the result (216) with qi = qi(s, q0, p0), pi = pi(s, q0, p0) specified to distribution
fuctions satisfying (221) and the result (217) to replace dΓ(q0,p0) by dΓ(q,p). After these
operations the integral over dτ factorizes completely, cancels out against the explicit 1/τ
factor and one obtains an explicitly τ -independent formula

Oτ ≡ O =

∫

dΓ(q,p) ρ(q, p)O(q, p) . (224)

In the case of systems in equilibrium, when taking the limit τ → ∞ in the definition
(210) of the measured quantity is allowed (because the measured macroscopic properties
do not depend in this case on time) the formula (224) can be also justified à la Landau:
in this case one can imagine that the phase space trajectory of the real system is followed
over a period τ and the time intervals ∆t(q,p)(τ) the trajectory spends in different small
domains ∆Γ(q,p) of the phase space are counted. If the equilibrium distribution function
is constructed by taking

ρ(q, p) ∝ lim
τ→∞

∆t(q,p)(τ)

τ
, (225)

and normalizing the resulting function of qi and pi to unity with respect to the measure
dΓ(q,p), the equality

lim
τ→∞

1

τ

∫ τ

0

dtO(q(t), p(t)) =

∫

dΓ(q,p) ρ(q, p)O(q, p) ,

follows automatically because the left integral over dt can be (somewhat heuristically)
written as

lim
τ→∞

1

τ

∫ τ

0

dtO(q(t), p(t)) = lim
τ→∞

∑

(q,p)

∆t(q,p)
τ

O(q, p) ,

with the sum on the right hand side taken over cells of the phase space in which the
system spends overall periods ∆t(q,p) in its journey over the phase space. Of course also
in this derivation the question how to theoretically construct the distribution ρ similar to
the one defined here operationally is not solved by the above reasoning.
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Once the distribution function ρ(q, p) of the ensemble representing a real system in
equilibrium is given, obtaining theoretical predictions for measured macroscopic quantities
characterizing this system reduces to the application of the probability theory: the phase
space parametrized by the variables (qi, pi) plays the role of the space of elementary events,
ρ(q, p)dΓ(q,p) plays the role of the probability distribution and observables O(q, p) become
random variables defined on the space of elementary events. The probability distribution
ρO(O) of a random variable (observable) O can be then constructed according to the
standard prescription145

ρO(O) =

∫

dΓ(q,p) ρ(q, p) δ(O(q, p)− O) . (226)

Owing to the properties of the Dirac delta function, the probability distribution ρO(O)
constructed in this way is automatically normalized to unity. The mean value of O can
be then computed either as in (224) or, as

O =

∫

dOO ρO(O) . (227)

The standard estimate of the fluctuations of the random variable O around its mean value
O is obtained by computing the quantity

σ2
O ≡ (O − O)2 =

∫

dO (O − O)2 ρO(O) = O2 −O
2
. (228)

called the mean quadratic fluctuation and the taking its square root. The (dimen-
sionless) measure of fluctuations is the relative fluctuation given by the ratio

√

σ2
O

O
, (229)

which tells how large fluctuations are compared to the mean value.146 The success of the
statistical method applied to large (N ∼ NA) systems relies mostly on the fact that even
if the distribution ρ(q, p) itself is flat (as in the case of the microcanonical ensemble - to
be defined below), the probability distribution ρO(O) of any macroscopic observable has
in most cases147 an enormously sharp peak at a value O∗ which is therefore almost the
same as O and the relative fluctuations are very tiny indeed.

145This prescription generalizes the ordinary summation of probabilities of discrete elementary events
leading to the same value of the random variable; for instance, if the value of the random variable f
is −1 for an odd number number of dots on a (perfectly symmetric) dice and and f = +1 for an even
number, the probabilities of the values f = ∓1 are p(−1) = 1

6 + 1
6 + 1

6 and p(+1) = 1
6 + 1

6 + 1
6 . In

the case of continuos probability distributions the integration over dΓ(q,p) combined with the Dirac delta
function essentially sums up probabilities of elementary events (qi, pi) which lead to the same value of
the observable O.

146Of course, if O = 0, one has to invent another dimensionless measure of fluctuations.
147But not in all cases: for instance, the distribution function of the density of a fluid at the critical

point does not have this property.
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Statistical independence
If the system (the space of elementary events in the general probability theory) can be
split into two mutually (almost) noninteracting parts a and b (two sets the elementary
events belonging to them are mutually unrelated) which can be treated as not influencing
one another in any significant way, these systems should be statistically independent:
their joint distribution function ρa,b(qa, pa, qb, pb, t) should factorize, that is, the following
equality should hold

dΓ(qa,pa,qb,pb) ρa,b(qa, pa, qb, pb, t) = dΓ(qa,pa) ρa(qa, pa, t) dΓ(qb,pb) ρb(qb, pb, t) . (230)

The observables Oa = O(qa, pa) and Ob = O(qb, pb) pertaining to these two subsystems
are then independent which for example means that

OaOb = Oa Ob ,

etc.
Statistical independence can be invoked to obtain two important results concerning

macroscopic systems (bodies). Firstly, if the system is large it can be mentally divided into
large macroscopic parts which are to a good approximation statistically independent.148

It is natural to assume that the number of statistically independent parts (which can still
be treated as macroscopic) into which the system is divided remains in a proportion to
the number N of its constitutive elements (molecules, for instance). If one is interested in
an additive (extensive) quantity O characterizing the system - for instance the system is
in equilibrium with the heat bath and therefore one is interested in its internal energy, or
when the system is in mechanical contact with the atmosphere and one asks about its total
volume - then from the statistical independence of its macroscopic parts it immediately
follows that the relative fluctuation (229) of this quantity decreases with the size of the
body. Indeed, an extensive quantity O can be split into the sum

O =
∑

a

Oa ,

of quantities characterizing its macroscopic parts (labeled by a) and by the argument
given above,

O =
∑

a

Oa ∝ N ,

because all the parts are essentially identical. Moreover,

σ2
O = (O − O )2 =

(

∑

a

(Oa −Oa )

)2

=
∑

a

∑

b

(Oa − Oa )(Ob −Ob ) .

148Statistical independence holds in such a case over not too long periods; in the case of systems
in equilibrium the macroscopic states of which do not change in time, it should however be always
(approximately) true.
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In the double sum one can now single out the terms in which a = b and, appealing to the
statistical independence, write

σ2
O =

∑

a

(Oa − Oa )2 +
∑

a6=b

(Oa − Oa )(Ob − Ob )

=
∑

a

(Oa −Oa )2 +
∑

a6=b

(Oa −Oa ) (Ob −Ob ) . (231)

The second sum vanishes because Ob − Ob = Ob − Ob = 0 and the first sum, since all
parts into which the system has been split are essentially identical, is proportional to N .
It follows therefore, that the relative fluctuation of the extensive quantity scales as

√

σ2
O

O
∝

√
N

N
=

1√
N
, (232)

and is really minute, if the system is large (N ∼ NA, where NA is the Avogadro number).
Another important consequence of the statistical independence which is implied by the

factorization (230) of the distribution function is as follows. Suppose two subsystems, a
and b, of a large real system in an equilibrium state can be treated as independent because,
as in the considerations above, they are two macroscopic parts of the same macroscopic
body. The Hamiltonian of the members of the ensemble (which, recall it once more, are
completely isolated systems) which represents the entire real system in equilibrium is then
just the sum H = Ha + Hb (Ha depends on the variables of the subsystem a, while Hb

on the variables of the subsystem b). In view of the fact that the subsystems a and b of the
members of the ensemble should in this case be statistically independent, the distribution
function of the ensemble representing the entire system must have the property (recall
the result (223)!)

ρa,b(H ) = ρa,b(Ha + Hb) = ρa(Ha) ρb(Hb) ,

or

ln ρa,b(Ha + Hb) = ln ρa(Ha) + ln ρb(Hb) . (233)

The only possibility of satisfying this requirement is149

ln ρa(Ha) = αa − βHa , (234)

or, in the case the number of molecules becomes a dynamical variable (when the real
system is in equilibrium exchanging with its surrounding both energy and matter),

ln ρa(Ha) = αa − βHa + γNa . (235)

149Indeed, differentiating the equality ln f(x+ y) = ln f(x) + ln f(y) with respect to x one obtains that
f ′(x+ y)/f(x+ y) = f ′(x)/f(x); in the same way one finds that f ′(x+ y)/f(x+ y) = f ′(y)/f(y); hence
f ′(y)/f(y) = f ′(x)/f(x) = −β = const., because both sides are functions of a different independent
variable. From this the conclusion follows.
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Thus, statistical independence of systems which can be treated as isolated from one an-
other imposes stringent constraints on the possible forms of the distribution functions of
statistical ensembles representing systems in equilibrium.

Classical Microcanonical Ensemble
We now introduce the distribution function of the statistical ensemble which should ade-
quately represent the system which from the macroscopic point of view is isolated and in
equilibrium or more precisely, is (macroscopically) adiathermally isolated and its defor-
mative parameters have fixed values (are directly controlled). Because according to the
point of view adopted here such a system is not isolated at the microscopic level, but is
constantly perturbed by its surrounding, it is reasonable to assume that its internal en-
ergy is fixed only up to some uncertainty, which we will represent by allowing the system’s
energy to be in the range (E,E +∆E) with ∆E ≪ E, and that all system’s microstates
with the energy in this range are equally probable. In agreement with this assump-
tion the distribution function of the statistical ensemble representing a macroscopically
isolated system is taken in the form

ρ(q, p) =

{

Const. if E ≤ H (q, p) ≤ E +∆E
0 otherwise

(236)

The ensemble defined by this distribution function is called microcanonical. Since the
distribution function ρmust be normalized to unity, the constant is equal 1/Γ(E, V,N,∆E)
where

Γ(E, V,N,∆E) =

∫

E≤H (q,p)≤E+∆E

dΓ(q,p) , (237)

is the volume of the corresponding part of the phase space. In various considerations
useful are also two other quantities:

Σ(E, V,N) =

∫

H (q,p)≤E

dΓ(q,p) ≡
∫

dΓ(q,p) θ(E − H (q, p)) , (238)

which gives the phase space volume corresponding to the system’s total energy less than
E and:

ω(E, V,N) =
∂Σ(E, V,N)

∂E
=

∫

dΓ(q,p) δ(H (q, p)−E) , (239)

which gives the “area” of the shell corresponding to the system’s total energy equal E; in
the quantum case ω(E) will have the clear interpretation of the density of quantum states
of the system. Since the energy allowance ∆E is small compared to E, a useful working
approximation is

Γ(E, V,N,∆E) = Σ(E, V,N)− Σ(E −∆E, V,N)

≈ ∂Σ(E, V,N)

∂E
∆E = ω(E, V,N)∆E . (240)
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As the quantity Γ(E, V,N,∆E) characterizing the spread of the systems of the micro-
canonical ensemble over the phase space is finite, one can define the statistical entropy
by the simple formula150

Sstat = kB ln Γ(E, V,N,∆E) , (241)

in which kB = 8.617 × 10−5 eV·K−1 is the Boltzmann constant. This generalizes to
all systems by interpreting Γ as the “volume” of the phase space (the number of the
microstates - see below) correspondng to the system’s energy in the range (E,E + ∆E)
and fixed values of the system’s o−1 deformative variables and possibly r different matter
constituents:

Sstat = kB ln Γ(E,X1, . . . , Xo−1, N1, . . . , Nr,∆E) .

In this way the statistical entropy gives the measure of the “disorder” in the system,
that is characterizes how much a given macrostate of the system is spread out over the
systems’ phase space, or how many microstates are associated with the given macrostate
(specified by the total energy E, the volume V and the number N of particles). Of
course it still remains to be shown how the statistical entropy Sstat defined by (241) is
related to the thermodynamic entropy S, but the resonings needed for this follow closely
those employed in showing that the Callenian entropy agrees with that introduced via
the Clausius inequality. This will be done after we consider statistical mechanics based
on quantum mechanics. The result will be that the thermodynamic entropy S should be
identfied with

S = N lim
∞

(

Sstat(E, V,N,∆E)

N

)

, (242)

where the symbol lim∞ denotes the so-called thermodynamic limit which means N →
∞, E → ∞, V → ∞ with the ratios E/N and V/N kept fixed. In this limit the de-
pendence on ∆E drops out.151 In most cases the statistical entropies computed replacing
Γ(E, V,N,∆E) under the logarithm in (241) by Σ(E, V,N) or by ω(E, V,N)∆E lead in
the thermodynamic limit to the same thermodynamic entropy.

Since the statistical entropy (241) is proportional to the logarithm of Γ(E, V,N,∆E),
it changes by an additive constant, when the normalization factor of the integration
measure dΓ(q,p) is altered. In classical physics this factor is arbitrary. There is not such
an ambiguity (apart from the choice of the energy allowance ∆E) in quantum statistical
physics in which entropy (in the thermodynamic limit) is assigned unambigously to each

150This is the famous Boltzmann formula which in the form

S = k lnW ,

is engraved on his tomb auf dem Haupstad Wien Zentralfriedhof (at the Viennese cemetery).
151In classical statistical physics one could from the beginning set ∆E = 0, but this is not so in

quantum statistical mechanics (unless the system is peculiar). The dependence of S on ∆E drops out in
the thermodynamic limit in both cases.
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macrostate. It will be seen that if classical statistical mechanics is to be the limit of
its quantum counterpart, the measure dΓ(q,p) appropriate for a system composed of N
identical particle (molecules) should have the form

dΓ(q,p) =
d3Nqd3Np

N ! (2π~)3N
. (243)

The factor (2π~)3N in the denominator makes the measure dimensionless. It is related
to the rule (following e.g. from the old Bohr-Sommerfeld quantization condition) that
in a one-dimensional quasi-classical motion of a single particle with every single quan-
tum state associated can be the “area” 2π~ of the two-dimensional phase space. Thus
d3Nqd3Np/(2π~)3N simply gives the number of 6N dimensional cells in the phase space
available to the system each of which would correspond to one quantum state if the N
particles were distinquishable. If particles are indistinguishable, the rules of quantum
mechanics require that their quantum states be either symmetric (if particles are bosons -
particles of integer spin) or antisymmetric (if they are fermions - particles of half-integer
spin) with respect to interchanging particles (this will become more clear when we discuss
the second quantization formalism). As a result the states which would be counted as
distinct if the particles were distinguishable, are, when the particles are indistinguishable,
one and the same quantum state. Therefore the number of quantum states available to
particles is reduced roughly152 by the factor of N !. This explains the origin of the extra
factor of N ! in the denominator of the measure (243). This factor was first introduced
by Gibbs (before its quantum origin became clear) to save extensiveness of entropy of the
perfect gas which would not hold without it (this will be seen in classes; the problem is
sometimes referred to as the Gibbs paradox). It should be also remarked that if the system
consists of N1 (indistinguishable) particles of one kind and of N2 (indistinguishable) par-
ticles of another kind (the two kinds being different, so distinguishable) the appropriate
measure is

dΓ(q,p) =
d3N1q(1)d

3Np(1)
N1! (2π~)3N1

d3N2q(2)d
3Np(2)

N2! (2π~)3N2
,

and it is precisely the factor (N1+N2)!/N1!N2! by which it differs from the measure asso-
ciated with the system of N1 +N2 identical (indistinguishable) particles that leads to the
entropy of mixing by which thermodynamic entropies of the two systems differ (Lecture
VIII). With the normalization specified in (243) the Boltzmann formula (241) states that
entropy (in units of kB) of a macroscopically isolated system is just the logarithm of the
number of (microscopic) quantum states consistent with the macroscopic characteristics
of (with the constraints imposed on) the system.

If the system is not macroscopically isolated and the distribution function of the
representing it statistical ensemble is not localized in the phase space as is (236), the

152This does not allow to count the number of states absolutely correctly (it does not make distinction
between systems of many bosons and fermions) but is a sufficiently good estimate in situations in which
genuine quantum effects are not important for thermodynamics, that is, if the temperature is not too
low.
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entropy cannot be given by the formula (241) because the volume of the phase space
avalilable to the system is infinite. One needs to invent then another measure of “disorder”
in terms of which entropy can be defined. We will discuss this in general terms after we
consider foundations of quantum statistical mechanics.

Ergodicity
It seems appropriate to close this Lecture by discussing briefly the so-called ergodic prob-
lem and the place it occupied in the past in the foundations of (classical) statistical
mechanics. We have not made any reference to it in our considerations owing to our
adoption of the point of view, which physically seems very natural and moreover allows to
put the foundations of classical and quantum statistical mechanics (see the next Lecture)
on the same basis, that no real system can be considered completely isolated at the mi-
croscopic level. It served us to justify (somewhat heuristically, let us agree!) the postulate
of a priori equal probabilities assigned to all microstates accessible to a macroscopically
isolated system (the energy and the deformative parameters of which are prescribed).
This postulate can be introduced also without the necessity of relying (only) on the mi-
croscopic non-isolation of macroscopic systems by appealing to the information theory,
if a somewhat more realistic view is taken on the possible outcomes of real measure-
ments made on macroscopic systems. The microcanonical ensemble which results from
this postulate leads to correct physical predictions and there can be no doubts about
its correctness. However in the past many physicists subscribed to the position that a
system which is isolated macroscopically is also microscopically strictly isolated against
any influences from without, however minute (and the relevance of arguments based on
the information theory were not yet commonly known), and were trying153 to justify the
postulate of a priori equal probabilities directly on the basis of microscopic time evolution
of large autonomous isolated dynamical systems. It is in this context that the ergodicity
problem appeared.

Briefly, the problem in which the notion of ergodicity has appeared was to show
rigorously154 that if the macroscopic system is isolated, the time average (210) with τ → ∞
is equivalent (that is, equal in this limit) to the ensemble average with the constant
distribution function on the 6N − 1-dimensional hypersurface of constant energy. The
proof of the equivalence has two parts. One is showing that a given point representing the
time evolution of an isolated system in the phase space spends on its journey through the
phase space in different domains ∆Γ(q,p) the time intervals ∆t which are proportional to the
volumes of these domains.155 The second part is showing that this is true independently
of where in the phase space such a volume is located, that is that this proportionality
holds (with the same proportionality constant) independently of which (initial) point the

153At least those who were not contented with the results the postulate leads to as its ultimate justifi-
cation.

154And this is what attracted pure mathematicians to this field so that it effectively became a branch
of mathematics.

155We will simplify slightly the problem and will consider the 6N -dimensional domains assuming im-
plicitly that the limit ∆E → 0 is taken only at the very end; otherwise we would have to consider the
projections of the measure dΓ(q,p) onto the hypersurface of constant energy.
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Figure 22: Migration over the phase space of a set of points.

trajectory is followed. If both parts are rigorously demonstrated then the equivalence of
the (infinite) time averages and the corressponding phase space averages follows just as
in the Landau’s reasoning because this then means that the distribution function ρ(q, p)
defined as in (225) is uniform.

The proof of the first part is simple. Consider a set of points in the phase space which
at t1 fill the domain ∆Γ(q,p)(t1) as in Figure 22. At a later instant t2 the same points
fill the domain ∆Γ(q,p)(t2) which is uniquely determined by the positions at t2 of those
phase points which at t1 formed the boundary of ∆Γ(q,p)(t1). By the Liouville theorem
the volumes of the two domains are equal (though their shapes may be different). Let
us follow two boundary points, A and B, which lie on the same trajectory as in Figure
22. The time tAC it takes the point A to reach C must be therefore the same as the time
tBD it takes the point B to reach D because these two points and their images define the
boundaries of ∆Γ(q,p)(t1) and ∆Γ(q,p)(t2). Moreover

tAC = tAB + tBC , tBD = tBC + tCD ,

from which it follows, because tAC = tBD by assumption, that tAB = tCD: the phase
point does indeed spend the same times in ∆Γ(q,p)(t1) and ∆Γ(q,p)(t2) of equal volumes.
Furthermore, if τ is sent to infinity, any time the phase point passes through the domain
∆Γ(q,p)(t1) it must also pass through ∆Γ(q,p)(t2).

The difficulty lies in showing that this result holds wherever the volumes are located.
The original hypothesis of Boltzmann (called by him the ergodic hypothesis) was that as
τ → ∞ the trajectory passes through every point of the constant energy hypersurface.
As this was untenable on mathematical grounds, it has been replaced by the so-called
quasi-ergodic hypothesis (now frequently called just ergodic) that as τ → ∞ the trajec-
tory passes through any arbitrarily small neighbourhood of every point of the constant
energy hypersurface. Although this may seem physically obvious if the system is large, it
is not easy to prove mathematically. The important step towards the complete proof was
done by Birkhoff. The crucial problem is in showing that the constant energy hypersur-
face does not split into parts mutually inaccessible from one another (the so called metric
indecomposability of this hypersurface). Some results have been reached by mathemati-
cians (Sinai) in this direction but concerning idealized systems like the model of N hard
spheres (elastically scattering on one another). No general proof exists.
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At present the common view is that, while being very interestig as a problem in pure
mathematics and also as an important part of the investigations of chaotic phenomena
exhibited by complex classical systems, the ergodic problem is not very relevant to the
physical foundations of classical statistical mechanics and we mentioned it here only in
order to make students (with more mathematical inclinations) aware of its existence as
a potentially interesting field of research and to at least partly remove an atmosphere of
misticism surrounding it.
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LECTURE XI (STAT)

Quantum mechanics
As it should be known, the primitive notion of quantum mechanics is the one of the
quantum state of the considered system.156 In the mathematical formalism of quantum
mechanics quantum states are represented in a Hilbert space H - a complete (in the
sense of convergence in it of all Cauchy sequences) vector space over the field of complex
numbers endowed with a scalar product (·|·) and therefore also a norm ‖ · ‖ - by classes
(called rays) of equivalence of vectors: two vectors Ψ and Ψ′ = eiδΨ belong to the same
ray (and represent the same physical state of the system). The proper Hilbert space
H consists of normalizable vectors, i.e. such vectors that ‖ Ψ ‖2 = (Ψ|Ψ) < ∞, but
in many cases it is convenient to enlarge it (essentially replacing it with its dual H∗ -
the space of linear forms over H - and identifying elements of the proper Hilbert space
with the one-forms corresponding to them via the Frechet-Riesz isomorphism) including
also the nonnormalizable vectors (also called generalized vectors). Representants of rays
are called state-vectors. Observables - quantities which can be measured on the system
- are represented by linear self-adjoint operators Ô (also called - not entirely correctly
- Hermitian operators), that is such that Ô† = Ô, where the operator Ô† adjoint with
respect to Ô is defined by the equality

(Φ|Ô†Ψ) = (ÔΦ|Ψ) , (244)

which must hold for all vectors Ψ and Φ belonging157 to H. The spectrum - the set of
its eigenvalues ok i.e. the set of such numbers that there exists vectors satisfying the
equation ÔΨk = okΨk - of a self adjoint operator Ô is real which enables one to identify it
with possible outputs of individual measurements on the system of the physical quantity
represented by this operator. The most important operator for the quantum mechanics
of a given physical system is the (self-adjoint) Hamiltonian Ĥ representing the (total)
energy of this system. It determines the system’s state time evolution via the Schrödinger
equation

i~
d

dt
Ψ(t) = Ĥ Ψ(t) . (245)

156Let us remark that to some this notion remains still too abstract to be immediately accepted as a
basis of the whole quantum mechanics. In connection with this it is amusing to read the first chapter
of the Dirac’s Principles of Quantum Mechanics and then the preface written to the russian translation
of this renowned monograph by the academician V.I. Fock: the preface clearly shows that its author,
who himself made a significant contribution to the quantum theory - we will use in this Course the Fock
space, when we come to discuss systems exchanging matter with the surrounding - evidently could not
liberate himself from the conventional notion of the “wave function” understood narrowly in the spirit of
the Schrödinger wave mechanics.

157We are slightly simplifying things here in order not to enter into somewhat subtle but largely irrelevant
for us issues related to domains of operators and distinctions between Hermitian (symmetric) and truly
self-adjoint operators.
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If the Hamiltonian operator is not explicitly time-dependent, the solution of the Schrödinger
equation is given by

Ψ(t) = exp

(

− i

~
Ĥ (t− t0)

)

Ψ(t0) , (246)

with the state-vector Ψ(t0) playing the role of the initial conditions. The spectrum of the
Hamiltonian which we will assume (as is appropriate for finite systems usually considered
in statistical mechanics) to be purely discrete (but which, in general, if quantum mechanics
is formulated in the infinite space, can consist also of a continuos part - the corresponding
eigenvectors are nonnormalizable generalized vectors belonging to H∗) constitutes always
the most important characteristics of the considered physical system.

Wherever more subtle mathematical issues do not intervene, convenient is the Dirac
notation in which state-vectors are written as “kets” |Ψ〉 and elements of the dual space
as 〈Φ|. The scalar product (Φ|Ψ) takes in this notation the form (which in fact implicitly
employs the Frechet-Riesz isomorphism) 〈Φ|Ψ〉 and the action of an operator Ô on a state
vector Ψ is written as Ô|Ψ〉. The quantities 〈Φ|Ô|Ψ〉 are called matrix elements158 of the
operator Ô between the states Ψ and Φ.

As is usually the case with vector spaces, also in the Hilbert space it is possible to
choose a basis, a set of vectors Ψl, or just |l〉, labeled by some label l; the basis of the proper
Hilbert space H can always be chosen so that the label l, which can also stand for a multi-
label of the sort l1l2 . . . ln, is discrete. Only calculational convenience dictates employing
continuos labels (the corresponding vectors are then generalized nonnormalizable vectors,
i.e. elements of H∗). If a countable basis can be chosen (so that l runs over a finite or a
countably infinite set of values), the Hilberst space H is separable. If it is uncountable -
e.g. when l = l1l2 . . . ln with n = ∞ and each li runs over a countably infinte set - then
H is nonseparable and infinitely many mutually orthogonal separable subspaces can be
chosen in it; in statistical physics nonseparable Hilbert spaces enter the game with the
Grand Canonical Ensemble and lie in fact at the basis of the theoretical description of
several interesting phenomena (Bose-Einstein condenstation, phase transitions, which can
be studied only after the thermodynamic limit (242) is properly taken), but except for a
single digression in Lecture XIII we will not enter into these fine mathematical details in
this Course. Any state-vector can be written as a linear combination

Φ =
∑

l

Ψl cl , or |Φ〉 =
∑

l

|l〉 cl , (247)

of vectors Ψl (or |l〉) forming the chosen basis. Usually one works with bases formed by
mutually orthonormal vectors: (Ψl′ |Ψl) = 〈l′|l〉 = δl′l, which are eigenvectors of an observ-

able Ô (in most cases of the Hamiltonian Ĥ of the system under consideration) which can
be constructed using the well known Gramm - Schmidt orthonormalization prescription.

158The Dirac notation is adapted to self adjoint operators; if Ô is not self adjoint one has to adopt the
convention that the symbol 〈Φ|Ô|Ψ〉 means (Φ|ÔΨ). The scalar product (ÔΦ|Ψ) can in this notation be
written only as (〈Ψ|Ô|Φ〉)∗.
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Matrix elements of an operator Ô between the state-vectors |l〉 of the orthonormal basis
formed by its own eigenvectors are “diagonal” that is, take the form

〈l′|Ô|l〉 = ol δl′l , (248)

and the operator itself can be written in the form

Ô =
∑

l

|l〉 ol 〈l| =
∑

ol∈(spectrum)

ol P̂ol , (249)

where P̂ol = P̂ 2
ol

is the projector onto the subspace (which may well be multidimensional)

of H corresponding to the eigenvalue ol of the operator Ô. Also important is the fact that
if two operators Ô1 and Ô2 commute, that is [Ô1, Ô2] ≡ Ô1Ô2 − Ô2Ô1 = 0, it is possible
to find the basis in which both these operators are simultaneously diagonal.

Formulation of quantum statistical mechanics
In the previous Lecture we have formulated the approach to classical statistical mechanics
based on the use of ensembles in general terms so as to make it applicable in principle
also to systems not in equilibrium. Only later we have narrowed down the discussion
to systems in equilibrium (either macroscopically isolated or in equilibrium with their
surrounding). Our discussion of statistical methods based on quantum mechanics will
be from the beginning restricted to systems in equilibrium because I’m not very familiar
(although I wish I would be!) with the treatment of nonequilibrium quantum systems.
(But most probably it the fomulation given below can be straightforwardly extended to
systems not in equilibrium).

There are two circumstances which make the assumption that systems macroscopically
looking as perfectly isolated cannot be treated as such at the microscopic level even more
true in the quantum case than in classical physics. The first one is the extreme density
of the spectra of Hamiltonians of real quantum systems which are macroscopically large
(i.e. consist of N ∼ NA particles or molecules or other elements). Statistical systems
are always assumed to be of finite (although macroscopically large) spatial dimensions
and therefore the problems associated with nonnormalizable (generalized) eigenvectors
of Hamiltonians and their related continuous (parts of) energy spectra can in principle
always be avoided.159 Yet the spectra of Hamiltonians of macroscopic systems are so

159This in fact can be said of any physical system which can be of interest (barring somewhat abstract
questions about the quantum state of the entire Universe). However, there is a strong physical conviction
that local physical results cannot depend on whether the theory is formulated in the continuum (infinite
space) or in a finite (but sufficiently large) volume. Even problems like the one of the Hydrogen atom
energy spectrum should not depend on this, at least from the practical point of view, eventhough in the
finite volume the entire spectrum is discrete and the density of states near E = 0− and above zero is
significantly modified. (Also in many problems in my own favourite branch of theoretical physics - in
quantum field theory - it is good to remember that in fact the theory should be formulated in a finite
space.) From the computational point of view formulation of the theory in the infinite space has many
advantages. The problem however is that quantum mechanics in a finite volume and in the continuum
are mathematically very different! To give the simplest example: the scattering theory which can be used
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dense that they are nearly continuous and in many situations can formally be treated as
such. Roughly, the energy levels of such systems are separated by gaps of order

En+1 −En ∼ exp(−N) .

This character of the spectrum is not seen if the N elements of which the system is com-
posed are mutually noininteracting (examples used in introductory courses of statistical
physics are mostly of this kind) - in such cases it is the degeneracy of individual energy
levels which grows exponentially with N (this will be illustrated in classes by the system
of N non-interacting particles confined in a macroscopic finite volume V ) - but mutual
interactions, even if they can be neglected in computing gross macroscopic features of
the system, must always be present (otherwise the system could not reach equilibrium)
and always cause fine spliting of degenerate energy levels so that the above estimate
of typical interlevel gap becomes true. The estimate remains true also in the case of
strongly interacting systems, when the energy levels of the Hamiltonians cannot be seen
as perturbations of the free Hamiltonian spectrum which can be interpreted in terms of
individual energy levels of separate particles (elements) composing the system. In view
of this extreme narrowness of gaps between energy levels of a macroscopic system, any
external perturbation, however weak, is associated with an energy transfer to or from the
system which is much much larger than its energy gaps and therefore the system, even if
it macroscopically perceived as isolated, is continuously making innumerable transitions
between its different energy eigenstates.

The second circumstance has its origin in the energy-time uncertainty principle which
tells that preparing a quantum system in a state in which its energy uncertainty is ∆E
takes at least a time ∆t related to ∆E by

∆E∆t >
∼ ~ .

In view of the density of energy levels of a macroscopic body (discussed above) preparing
the system in a states of definite energy (i.e. ∆E smaller than typical energy splittings)
woud require a time longer than the lifetime od the Universe.160 For both these reasons
one should treat all macroscopic quantum systems, even the macroscopically isolated ones,
as interacting with their surrounding and certainly not in a stationary state of definite
energy. Therefore we shall now develop the formalism of the density operator and of
mixed states which allows to treat such macroscopic systems.

Mixed states and the density operator
Suppose the world is divided into the considered system and its surrounding. Even if states
of elements which constitute the system and those which constitute the surrounding can be

if the quantum mechanics of a single particle moving in a potential in one dimension is formulated in the
continum does not exist if the same problem is formulated on a finite segment of R1, no matter how large,
and all quantities like transmition and reflection coefficients must be replaced by other characteristics
simply because the asymptotic (scattering) states cannot be in this case defined.

160Although in equilibrium statistical mechanics time does not play any role, its formalism is supposed
to apply to real systems the preparation time of which certainly can not be infinite.
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separately identified and therefore the Hilbert space H of the entire universe (consisting of
the system and the surrounding) can be represented as the tensor product H = Hsys⊗Henv

which in particular means that as its basis one can take vectors

|l, L〉 ≡ |l〉 ⊗ |L〉 , (250)

where |l〉 ∈ Hsys and |L〉 ∈ Henv, quantum states of both, of the system and of the
surrounding, i.e. of the entire content of the Universe, are usually highly entangled, that
is, state-vectors representing them in H must be written as general superpositions

|Ψ〉 =
∑

l

∑

L

|l〉 ⊗ |L〉 cL,l , (251)

and in general cannot be factorized, i.e. are not of the form |ψsys〉⊗|φenv〉 (the coefficients
cL,l are not in general of the form cL,l = cenvL csysl ).

Suppose now that in the Hamiltonian of the Universe Ĥ = Ĥsys + Ĥenv + Ĥint in

which Ĥsys stands for Ĥsys ⊗ 1̂env and Ĥenv for 1̂sys ⊗ Ĥenv (which means that each of
these operators acts essentially in only one space of the tensor product161) the interaction
term is small and we are interested in an observable pertaining to the system alone and
not to its surrounding. Such an observable is represented, therefore, by an operator of the
form Ô ≡ Ôsys⊗ 1̂env. We would like to express its quantum mechanical expectation value
in a state of the form (251) entirely by objects pertaining to Hsys. This can be done with
the help of the density operator of the (real) system which is introduced in the following
way. We start by writing

〈Ψ|Ô|Ψ〉 =
(

∑

l′,L′

c∗L′,l′〈L′| ⊗ 〈l′|
)

Ôsys ⊗ 1̂env

(

∑

l,L

|l〉 ⊗ |L〉 cL,l
)

=
∑

l′,l

〈l′|Ôsys|l〉
∑

L

cL,l c
∗
L,l′ . (252)

We have used the way Ô acts on the state-vectors of the product basis of the complete
Hilbert space H:

Ô(|l〉 ⊗ |L〉) = Ôsys ⊗ 1̂env(|l〉 ⊗ |L〉) = (Ôsys|l〉)⊗ (1̂env|L〉) = (Ôsys|l〉)⊗ |L〉 ,
and the orthogonality162 〈L′|L〉 = δL′L of the basis of Henv. The density operator ρ̂
acting in Hsys (which depends, of course, on the state of the system’s surrounding and

161An operator of the form Â1 ⊗ Â2 acts on a vector of the form |l1〉 ⊗ |l2〉 belonging to the tensor
product H1 ⊗H2 of two Hilbert spaces according to the rule

Â1 ⊗ Â2 (|l1〉 ⊗ |l2〉) =
(

Â1|l1〉
)

⊗
(

Â2|l2〉
)

,

and its action is extended to the entire H1 ⊗H2 by linearity.
162The scalar product of the vectors |ψsys〉 ⊗ |φenv〉 and |ψ′

sys〉 ⊗ |φ′env〉 belonging to Hsys ⊗ Henv is
naturally defined as

(

〈φ′env| ⊗ 〈ψ′
sys|
)

(|ψsys〉 ⊗ |φenv〉) = 〈φ′env|φenv〉 · 〈ψ′
sys|ψsys〉 ,

and extended using linearity to all vectors of H = Hsys ⊗Henv.
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evolving in time with it) is now defined by giving its matrix elements between the basis
vectors |l〉 of Hsys:

(Ψl|ρ̂Ψl′) ≡ 〈l|ρ̂|l′〉 =
∑

L

cL,l c
∗
L,l′ . (253)

Using this operator the expectation value (252) can be written in the form

〈Ψ|Ô|Ψ〉 =
∑

l′l

〈l|ρ̂|l′〉〈l′|Ôsys|l〉 = Tr(ρ̂ Ôsys) , (254)

in which the trace on the right hand side is restricted to Hsys.
The operator ρ̂ acting in Hsys defined by the equality (253) is Hermitian (self-adjoint).

To see this, it suffices to apply the definition (244) to the matrix elements of ρ̂† between
the basis vectors |l〉, or Ψl:

(Ψl′|ρ̂†Ψl) = (ρ̂Ψl′|Ψl) = (Ψl|ρ̂Ψl′)
∗ =

(

∑

L

cL,lc
∗
L,l′

)∗

=
∑

L

c∗L,lcL,l′ ,

and to compare this with the matrix elements of ρ̂ given by (253):

(Ψl′|ρ̂Ψl) = 〈l′|ρ̂|l〉 =
∑

L

c∗L,lcL,l′ .

The two right hand sides are identical, which shows that ρ̂† = ρ̂.
As every self-adjoint operator, ρ̂ can be diagonalized, that is there exists in Hsys a

complete set of orthonormal basis vectors Φk ≡ |k〉 which are eigenvectors of ρ̂ and the
corresponding eigenvalues wk are real. In this basis

(Φk|ρ̂Φk′) = 〈k|ρ̂|k′〉 = wk δk′k (255)

If one now takes the expectation value (252) of the unit operator 1̂ = 1̂sys ⊗ 1̂env so that
obviously 〈Ψ|1̂|Ψ〉 = 1 and writes the right hand side of the formula (254) using the
vectors |k〉 as the basis of Hsys (instead of |l〉’s), one will get the equality

1 = 〈Ψ|1̂|Ψ〉 = Tr(ρ̂) =
∑

k

〈k|ρ̂|k〉 =
∑

k

wk . (256)

Thus, the sum of the eigenvalues of the statistical operator equals one. Another informa-
tion about the eigenvalues wk can be obtained by realizing that ρ̂ can be written as163

ρ̂ =
∑

k

|k〉wk〈k| , (257)

163Indeed,

〈k′′|ρ̂|k′〉 = 〈k′′|
(

∑

k

|k〉wk〈k|
)

|k′〉 =
∑

k

〈k′′|k〉wk〈k|k′〉 = wk′ δk′k′′ .

184



and using this representation to write in two ways Tr(ρ̂ Ôsys) with the particular operator

Ôsys = |k〉〈k|, i.e. with a self-adjoint projector onto the ρ̂ eigensubspace corresponding to
the eigenvalue wk. On one hand then

Tr(ρ̂ Ôsys) =
∑

k′′

〈k′′|
(

∑

k′

|k′〉wk′ 〈k′|
)

(|k〉〈k|) |k′′〉 = wk ,

and on the other, using the definition (253),

Tr(ρ̂ Ôsys) =
∑

l′,l

〈l|ρ̂|l′〉〈l′|Ôsys|l〉 =
∑

L

∑

l′,l

cL,l c
∗
L,l′ 〈l′|k〉〈k|l〉 =

∑

L

∣

∣

∣

∣

∣

∑

l

cL,l〈k|l〉
∣

∣

∣

∣

∣

2

≥ 0 .

Thus, 0 ≤ wk ≤ 1. Finally, written in the basis of the density operator eigenvectors |k〉
the formula (254) takes the form

〈Ψ|Ô|Ψ〉 = Tr(ρ̂ Ôsys) =
∑

k

wk 〈k|Ôsys|k〉 . (258)

It follows that if the system interacting with its surrounding is considered separately,
it cannot be viewed as being in a well-defined quantum state, called pure state, which in
the Hilbert space can be represented by a state-vector which can always be written as a
superposition (however complicated) of state-vectors of some basis. Instead, its state must
be represented by a density operator ρ̂; the system is then said to be in a mixed state.
The difference between the two situations is best seen by writing a pure state |ψ〉 (of the
system) as a superposition of the basis state-vectors |k〉 of Hsys which are eigenvectors of

ρ̂. The expectation value of an operator Ôsys in the pure state |ψ〉 =∑k |k〉ck reads

〈ψ|Ôsys|ψ〉 =
∑

k′k

c∗k′ck 〈k′|Ôsys|k〉 =
∑

k

|ck|2〈k|Ôsys|k〉+
∑

k′ 6=k

c∗k′ck 〈k′|Ôsys|k〉 . (259)

The first term resembles the formula (258) if the factors |ck|2 are identified164 with wk.
But the expectation value of Ôsys in the pure state |ψ〉 involves also the second term which
has no counterpart in (258). One may say that while a pure state |ψ〉 is always a coherent
superposition of the basis states |k〉 with definite relative phases ϕk of the superposition
coefficients ck, a mixed state can be viewed as their incoherent superposition, with
random relative phases of the coefficients of the superposition, because (259) goes over
into (258) upon averaging (with the flat probability distribution in the [0, 2π] range) over
the phases ϕk of the coefficients ck = |ck| exp(iϕk) (the products c∗k′ck with k 6= k′ are
removed by such averaging as a result of the statistical independence of different phases).
Mixed states are generalization of pure states because every pure state can be represented
in the formalism of mixed states by the density operator ρ̂ satisfying the equality

ρ̂2 = ρ̂ , (260)

164Similarly to the wk’s, 0 ≤ |ck|2 ≤ 1.
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which means that in the basis formed by its eigenvectors the operator ρ̂ is such that
w2

k = wk and since the factors wk are nonnegative and must sum up to unity, this implies
that only one wk = 1 and all others are zero. In other words, in the formalism of mixed
states, a pure state normally represented by the normalized to unity state-vector |ψ〉 is
represented by the density operator ρ̂ = |ψ〉〈ψ| which is simply the projection operator
onto the subspace spanned in the Hilbert space by this vector (it is evident that it is in
fact the ray, and not the state-vector itself, which determines ρ̂).

Ensembles in quantum statistical mechanics
Thus any real system, if considered separately, must be at a given instant t0 treated as
being in a mixed state represented by some density operator ρ̂ which is diagonal in some
basis |k〉 and takes the form (257) at some initial moment t0. Of course, as the state of
the entire universe evolves with time, the density operator ρ̂ representing the considered
real system in Hsys changes too and, as in the classical case, these changes cannot be
determined by the Hamiltonian of the system alone; this would require following the time
evolution of the state of the entire universe.

As in the classical case, in view of this situation, one resorts to the method of statis-
tical ensembles. The statistical ensemble corresponding to a real system microscopically
perturbed by the rest of the universe is a collection of N absolutely isolated systems
each of which is at the initial instant t0 in one of the pure states |k〉. To be representative
for the considered real system (which may be macroscopically isolated or in equilibrium
with its surrounding), the relative numbers Nk/N of systems in different pure states |k〉
in the ensemble at the initial moment t0 (which, because the systems in the ensemble are
isolated, can be taken to be t0 = 0) must be such that (the limits Nk → ∞, N → ∞ are
understood)

Nk/N = wk , where N =
∑

k

Nk .

The (statistical) mean values over the ensemble of expectation values of operators repre-
senting observables are then formally identical to the formula (258):

O =
1

N
∑

k

Nk〈k|Ô|k〉 =
∑

k

wk〈k|Ô|k〉 , (261)

and can be written as

O = Tr(ρ̂ Ôsys) , (262)

with the statistical operator

ρ̂ =
∑

k

|k〉 (Nk/N ) 〈k| , (263)

which at t0 is formally identical with the density operator ρ̂ =
∑

k |k〉wk〈k| of the real
system at that instant.165 The operator ρ̂(t) replaces the distribution function ρ(q, p, t)

165Because of this formal identity one can take the position that the ensemble is just a single system in
an appropriate mixed state.
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of classical statistical mechanics. The central problem, as in the classical case, is to
theoretically determine the form of the statistical operator which would represent the
mixed state of the real system of interest in different situations (when the real system
is macroscopically isolated, or is in thermal equlibrium with its surrounding, or in a
nonequilibrium state).

Because the systems forming the ensemble are isolated (autonomous), their time evolu-

tion is completely determined by the Hamiltonian Ĥ (from now on we drop the subscript
“sys”) which acts only in the system’s Hilbert space. Each of the basis state-vectors |k〉
changes with time according to (246):

|k(t)〉 = exp(−(i/~)Ĥ t)|k〉 .

as a result the time evolution of the statistical operator (263) of the ensemble (but not
the density operator of the real system!) is

ρ̂(t) =
∑

k

wk e
− i

~
Ĥ t|k〉〈k|e+ i

~
Ĥ t .

Differentiating both sides with respect to t gives the differential equation

dρ̂(t)

dt
= − i

~
[Ĥ , ρ̂(t)] , (264)

satisfied by the ensemble’s statistical operator ρ̂(t). This equation plays in quantum
statistical mechanics the same role as does the Liouville equation

∂ρ̂(q, p, t)

∂t
= {H (q, p), ρ(q, p, t)}PB , (265)

in classical statistical physics.166

If the considered real system is in equilibrium (either as a macroscopically isolated sys-
tem or as a system in equilibrium with its surrounding), which means that macroscopic

166The equation (264) looks very similar to the Heisenberg equation

dÔH(t)

dt
=
i

~
[Ĥ , ÔH(t)] ,

satisfied by time-dependent Heisenberg picture operators ÔH(t) which are couterparts of time-
independent Schrödinger picture operators (for more details, see Chapter 1 of my notes to quantum
field theory), but the signs of the right hand sides are different; in fact the Heisenberg picture counter-
part ρ̂H of the statistical operator ρ̂(t) is time independent. It is also worth noting that the transition
from the classical Liouville equation (265) to the equation (264) can be done with the usual “quantiza-
tion rule” according to which in classical equations all c-number functions are replaced by their operator
counterparts and the Poisson brackets are replaced by commutators according to the prescription

{· , ·}PB → − i

~
[· , ·] .
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observables measured on it do not depend on time, the statistical operator of the rep-
resentative ensemble should be time independent, just as was the distribution functions
ρ(q, p) corresponding to a classical system in equilibrium (only then the ensemble mean
values (262) will be stationary), From the equation (264) it follows that dρ̂/dt = 0 implies

[Ĥ , ρ̂] = 0 . (266)

According to the usual rules of quantum mechanics this means that there exist in H a
basis |n〉 in which both operators, Ĥ and ρ̂, are simultaneously diagonal:

Ĥ =
∑

n

En|n〉〈n| , ρ̂ =
∑

n

wn|n〉〈n| . (267)

Another information on the form of the statistical operator corresponding to a macro-
scopic system in equilibrium is provided by the statistical independence of its macroscopic
subsystems. If the system is composed of two167 mutually nointeracting, or interact-
ing negligibly weakly, parts, its Hilbert space H can be taken to be the tensor product
H = H1⊗H2 and the system’s Hamiltonian is Ĥ = Ĥ1⊗ 1̂2+1̂1⊗Ĥ2 (the term Ĥint be-
ing either absent or negligible). The basis of H built out of the Hamiltonian eigenvectors
|n〉 can be then chosen to be of the form

|n〉 ≡ |n1, n2〉 ≡ |n1〉 ⊗ |n2〉 ,

The statistical operator of the corresponding ensemble should then have the form ρ̂ =
ρ̂1⊗ ρ̂2 which ensures that the mean value O of an observable represented by the operator
of the form Ô1 ⊗ Ô2, that is which is a product of observables pertaining to different
systems, equals O1O2:

O = O1O2 = TrH

(

ρ̂1 ⊗ ρ̂2 Ô1 ⊗ Ô2

)

= TrH

(

ρ̂1Ô1 ⊗ ρ̂2Ô2

)

=
∑

n1n2

〈n2, n1|ρ̂1Ô1 ⊗ ρ̂2Ô2|n1, n2〉

=
∑

n1

〈n1|ρ̂1 Ô1|n1〉
∑

n2

〈n2|ρ̂2 Ô2|n2〉 = TrH1

(

ρ̂1 Ô1

)

TrH2

(

ρ̂2 Ô2

)

= O1 O2 .

The operators ρ̂1 and ρ̂2 must be both Hermitian (the first one in H1 and the second one
in H2) and both should be diagonal in the bases formed by the eigenvectors |n1〉 and |n2〉
of the respective Hamiltonians:

w(12)
n δn′n = 〈n′|ρ̂|n〉 = 〈n′

2, n
′
1|ρ̂1 ⊗ ρ̂2|n1, n2〉

= 〈n′
1|ρ̂1|n1〉 〈n′

2|ρ̂2|n2〉 = w(1)
n1
δn′

1n1
w(2)

n2
δn′

2n2
.

In other words, w
(12)
n ≡ w

(12)
n1,n2 = w

(1)
n1 w

(2)
n2 , or

lnw(12)
n ≡ lnw(12)

n1,n2
= lnw(1)

n1
+ lnw(2)

n2
, (268)

167Extension to more than two independent subsystems is straightforward.
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which, since energies of the two (noninteracting or interacting negligibly weakly with
one another) parts of the system are additive, En1n2 = En1 + En2 while, in general, the
probabilities can be viewed as functions of energies: wni

= w(Eni
), means that

lnw(En1) = α1 − βEn1 , and lnw(En2) = α2 − βEn2 , (269)

as this is the only way of satisfying the requirement (268) if En ≡ En1n2,... = En1+En2+. . ..
All this can be concisely written in the form168

ln ρ̂(12) = (ln ρ̂1)⊗ 1̂2 + 1̂1 ⊗ (ln ρ̂2) . (270)

This imposes a strong constraint on statistical operators of macroscopic systems and will
be crucial in deriving the general formula for entropy.

The Quantum Microcanical Ensemble
We now consider a real system which macroscopically can be treated as isolated from its
surrounding and in equilibrium, or more precisely, macroscopically not exchanging heat
with its surrounding and having fixed values (i.e. directly controlled) of its deformative
parameters. Again, appealing to the principle of a priori equal probabilities, we postulate
that the statistical operator ρ̂ of the representative ensemble (of strictly, that is, also at
the microscopic level, isolated systems) has the form

ρ̂ = Const.
∑

n
E ≤ En ≤ E +∆E

|n〉〈n| , (271)

where |n〉 are the eigenvectors of the ensemble systems Hamiltonian (that is, of the Hamil-
tonian of the real system from which the terms corresponding to its interaction with the
rest of the universe have been removed). In (271) it has been taken into account that as a
result of its microscopic residual interaction with the surrounding as well as a consequence
of the mentioned restriction imposed by the general quantum mechanical uncertainty prin-
ciple, the energy of a real macroscopically isolated system can be specified only up to some
tolerance ∆E (of course ∆E ≪ E, in the case of a large system). Since Tr(ρ̂) = 1, the
constant in the definition (271) must be given by (the elipses stand for other macroscopic
deformative variables like magnetization, etc. which possibly can characterize the system)

Const.−1 =

(

number of quantum states
in the interval [E,E +∆E]

)

≡ Γ(E, V, . . . , N,∆E) . (272)

As the energy levels of the system are discrete, and the volume V is finite, the number of
states corresponding to the energy interval [E,E +∆E] should be finite.169 Together the

168Recall that a function of an operator is defined by giving matrix elements of this operator function
in the basis in which the operator is diagonal.

169Here it is important that the theory is formulated in the finite volume: for instance, to the range
[−ε, 0] (with arbitrarily small positive ε) there correspond infinitely many discrete energy eigenstates of
the Hydrogen atom Hamiltonian (recall that Enlml,sz = −mc2α2

EM/2n
2 and the degeneracy of the energy

levels is 2n2), but this is true only if the quantum mechanics of the Hydrogen atom is formulated in the
infinite space; if the volume of the space is taken finite, the spectrum gets modified and the number of
states in the range [−ε, 0] is finite (I.I. Oppenheim and D.R. Hafeman, J.Chem.Phys. 39 (1963), 101).
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formulae (271) and (272) define the quantum microcanonical ensemble which should
be representative for systems macroscopically isolated and in equilibrium (macroscopi-
cally not exchanging heat with its surrounding and having fixed values of its deformative
parameters). The form (271) of the statistical operator ρ̂ is, of course consistent with the
general requirements (266) and (269).

As in the case of the classical microcanonical ensemble, the statistical entropy (called
also Boltzmann entropy) of a macroscopically isolated system in equilibrium is defined to
be

Sstat = kB ln Γ(E, V, . . . , N,∆E) . (273)

It should be noticed that in contrast to the classical case, the quantity Γ(E, V, . . . , N,∆E)
is in the quantum microcanonical ensemble defined in absolute terms, without any ar-
bitrary multiplicative constant which implies that entropy is also defined without any
arbitrary additive constants (the dependence on ∆E which cannot be avoided for fun-
damental reasons, drops out in the thermodynamical limit). As has been explained, the
arbitrarines in the classical case is removed by requiring that results of the classical and
quantum aproaches match in the appropriate limit.

As in the classical case, in addition to Γ(E, V, . . . , N,∆E) one can introduce the
quantity Σ(E, V, . . . , N) which here is just the number of quantum states of energies
En ≤ E and, owing to the fact that the spectrum of the Hamiltonian of a macroscopic
system, while being formally discrete, is almost continuous (and can formally be treated
as such), to define the density ω(E, V, . . . , N) of states (around En = E) by

ω(E, V, . . . , N) =
∂Σ(E, V, . . . , N)

∂E
, (274)

so that the relation (240) between Γ(E, V, . . . , N,∆E), ω(E, V, . . . , N) and ∆E holds true
also in the quantum case. Then, again as in the classical case, one can define two other
statistical entropies replacing in (273) Γ(E, V, . . . , N,∆E) either by Σ(E, V, . . . , N) - this
is sometimes called the Gibbs entropy - or by ω(E, V, . . . , N)∆E (another form of the
Boltzmann entropy). In the thermodynamical limit, if the energy spectrum of the system
is typical, all the three definitions of Sstat lead to the same thermodynamical entropy

STMD = N lim
∞

(

Sstat

N

)

, (275)

or, in cases in which the number of particles cannot be defined (e.g. because the system
is a relativistic quantum field, for instance)

STMD = V lim
∞

(

Sstat

V

)

. (276)

Thermodynamical entropy obtained in this way in the framework of the Microcanonical
Ensemble is given as a function of its natural variables (the dependence on ∆E drops out as
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a result of taking the thermodynamical limit) and constitutes therefore the fundamental
relation (in the Callenian sense) characterizing the system and encodes in it complete
thermodynamical information about it.

Before we demonstrate that the statistical entropies defined by (273) have (in the
thermodynamical limit) the properties of the entropy defined in the framework of the
pure thermodynamics, we will consider the problem of defining the statistical entropy of
systems in equilibrium (but not necessarily isolated) in general. Owing to the uniform
notation introduced, this can be done jointly for the classical and the quantum case.

The “golden formula” for entropy
Defining the statistical entropy - a measure of the microscopic disorder which is associ-
ated with a given equilibrium macrostate - by the formulae (241) and (273) in terms of
the phase space volume or the number of quantum states in the classical and quantum
cases respectively, was possible because the microcanonical ensemble distribution func-
tion ρ(q, p) in the classical case is localized (has a finite support in the mathematical
language) and in the quantum case the probabilities wn of only a finite number of states
are nonvanishing. If the real system is in equilibrium with its surrounding (e.g. with a
heat bath), the distribution function (in the classical case) or the probabilities wn (in the
quantum case) of the statistical ensemble representing the real system do not have this
simple property and the quantity Γ(E, V,N,∆E) employed in the definitions (241) and
(273) is ill defined (unlike the functions Σ(E, V,N) and ω(E, V,N) which are always finite
but cannot be directly used to define entropy). Consequently one has to invent another
measure of disorder in terms of which to define entropy.

In the general case to introduce the analog of the quantity Γ(E, V,N,∆E), one can
resort to the following reasoning (Landau & Lifschitz). One constructs first the distribu-
tion function ρE(E) of the random variable E - the system’s energy - defined on the space
of elementary events. In the classical case it is defined using the prescription (226) which
here, because when the considered system is in equilibrium ρ(q, p) = ρ(H (q, p)), gives

ρE(E) =

∫

dΓ(q,p) ρ(H (q, p)) δ(H (q, p)−E)

= ρ(E)

∫

dΓ(q,p) δ(H (q, p)− E) = ρ(E)ω(E) , (277)

upon using the formula (239). In the quantum case, exploiting the quasi-continuous
character of the spectra of macroscopic systems, one can define the analogous distribution
ρE(E) by the equality

ρE(E) dE =
∑

n
E ≤ En ≤ E + dE

wn . (278)

Since
∑

n wn = 1, the distribution ρE(E) defined in this way is automatically normalized:
∫

dE ρE(E) = 1. On the other hand, again owing to the quasi-continuity of the spectrum,
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the number of quantum states in the interval [E,E + dE] is equal to ω(E) dE, and the
probabilities wn = w(En) can be treated as a continuous function w(E) of the system’s
energy. This allows in the quantum case to write

ρE(E) = w(E)ω(E) . (279)

The two expressions: the classical one (277) and the quantum one (279) become therefore
identical if w(E) is identified with ρ(E).

If the considered system is large, the distribution ρE(E) is (in most cases) nonzero only
in the close vicinity of a value E∗ which is practically the same as the mean E computed
using ρE(E). In other words, ρE(E) has practically a Dirac delta-like peak almost at
E = E. It is therefore possible to characterize the spread of a given equilibrium macrostate
of the system over the phase space in the classical case and over the Hamiltonian spectrum
in the quantum case in terms of the “width” ∆E of its energy distribution defined by the
relation

ρE(E)∆E = 1 . (280)

This allows to define the effective number Γ(E, V,N,∆E) of microstates (that is, the
number of those microstates which are really relevant in the ensemble) by the equality (in
the classical case w(E) should be replaces by ρ(E))

1 = w(E)ω(E)∆E ≡ w(E) Γ(E, V,N,∆E) , (281)

and then the statistical entropy by

Sstat = kB ln Γ(E, V,N,∆E) = kB ln[ω(E)∆E] . (282)

It is easy to see that in the case of the mirocanonical statistical operator (271) or the
distribution function (236) the definitions (273) and (241) coincide with (282). Indeed (to
consider only the quantum case), in this case w(E) = w(E) = 1/Γ(E, V,N,∆E), which
implies the equality of Γ(E, V,N,∆E) and Γ(E, V,N,∆E).

Exploiting now the definition (281) of the effective number of microstates, the formula
(282) for entropy can be cast into the form

Sstat = −kB lnw(E) , (283)

It has been argued, however, that statistical independence of subsystems implies that the
logarithm of w(E) must be at most a linear170 function of energy, lnw(E) = α − βE
(ln ρ(H ) = α− βH , classically). This means that

lnw(E) = lnw(E) ,

which allows to write the formula (283) and, hence, the formula (282), in the form

Sstat = −kBTr(ρ̂ ln ρ̂) , (284)

170Here linear in the “school” sense.
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in the quantum case and as

Sstat = −kB
∫

dΓ(q,p) ρ(q, p) ln ρ(q, p) , (285)

in the classical case. It is clear that in the case of the classical microcanonical ensemble,
when ρ(q, p) = Const. = 1/Γ(E,∆E), and

∫

dΓ(q,p) ρ(q, p) ln ρ(q, p) =
1

Γ(E,∆E)
ln

1

Γ(E,∆E)

∫

E≤H ≤E+∆E

dΓ(q,p) ,

the formula (285) reduces to (241). An analogous reasoning readily shows that in the
quantum case the formula (284) reduces to (273).

Expressions (284) and (285) are the general, truly golden, formulae for entropy valid in-
dependently of the ensemble. Their virtue is that they can be (after some reinterpretation)
extended also to nonequilibrium situations (when ρ̂(t) of ρ(q, p, t) are not independent of
time), although we will not consider this extension in this Course.
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LECTURE XII (STAT)

Classical energy equipartition theorem
One general consequence of the classical statistical approach applied to macroscopic sys-
tems in equilibrium, which is independent of whether the system is macroscopically iso-
lated or in equilibrium with its surrounding (the corresponding distribution function
ρ(q, p) will be introduced shortly), is the equipartition of its mean energy between its
microscopic degrees of freedom. Here we demonstrate this (making also the meaning
of this statement more precise) using the classical microcanonical ensemble distribution
function (236).

We begin by computing the ensemble average

qi
∂H

∂qj
=

1

Γ(E,∆E)

∫

E≤H ≤E+∆E

dΓ(q,p) q
i ∂H

∂qj

≈ ∆E

Γ(E,∆E)

∂

∂E

∫

H ≤E

dΓ(q,p) q
i ∂H

∂qj
.

We have used the standard trick
∫

E≤H ≤E+∆E

dΓ(q,p) f(q, p) =

∫

H ≤E+∆E

dΓ(q,p) f(q, p)−
∫

H ≤E

dΓ(q,p) f(q, p)

= F (E +∆E)− F (E) ≈ ∆E
∂

∂E
F (E) .

This can be also written as

qi
∂H

∂qj
≈ ∆E

Γ(E,∆E)

∂

∂E

∫

H ≤E

dΓ(q,p)

{

∂

∂qj
[

qi(H − E)
]

− δi j(H − E)

}

.

The first term under the integral (the one with the derivative ∂/∂qj) will then give zero
because the integral over dqj which is part of the measure dΓ(q,p) can be written as the
boundary term but at the boundary, which is determined by the condition H = E,
vanishes the expression under the derivative.171 The derivative ∂/∂E can be then put
under the integral (again, differentiating with respect to the dependence on E of the
integration boundary would give the integrand evaluated at these boundary where it
vanishes) leading to the result

qi
∂H

∂qj
≈ ∆E

Γ(E,∆E)

∫

H ≤E

dΓ(q,p) δ
i
j ≈

∆E

ω(E)∆E
δi j Σ(E) =

Σ(E)

ω(E)
δi j .

171More precisely, the domain of the integrations over the variables qi should be effectively restricted by
introducing a smooth boundary potential V (q1, . . . , q3N ) which is almost zero if all qi’s are in the volume
V and tends to infinity if any of these variables is outside V ; then the limit

V →
{

0 if all qi ∈ V
∞ otherwise

,

should be taken.
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(The relation (240) has been used here.) Using the relation ω(E) = ∂Σ(E)/∂E, this
result can also be written as

qi
∂H

∂qj
= δi j

(

∂ ln Σ(E)

∂E

)−1

.

Since entropy S within the Microcanonical Ensemble can (from the thermodynamical
limit point of view) be defined in terms of the logarithm of Σ(E), using the general
thermodynamical relation (∂S/∂E) = 1/T , we obtain

qi
∂H

∂qj
= −qi ṗj = kBT δ

i
j . (286)

Exactly analogous computation172 gives the result

pi
∂H

∂pj
= pi q̇j = kBT δ

j
i . (287)

These two relations can be used in some special situations to obtain predictions of the clas-
sical statistical mechanics without complicated calculations. For instance, if the Hamil-
tonian has a regular form, e.g.

H =
K
∑

i=1

Aip
2
i +

f
∑

j=1

Bjq
2
j ,

with some constant Ai and Bj , so that

H =
1

2

K
∑

i=1

pj
∂H

∂pj
+

1

2

f
∑

i=1

qj
∂H

∂qj
,

then the results (286), (287) imply that the mean173 energy of the system is related to its
temperature by

U ≡ H =
1

2
(K + f)kBT . (288)

This immediately implies that the heat capacity cv per molecule of a classical monoatomic
perfect gas is 3

2
kB, that is 3

2
R per mole (f = 0, K = 3N , so three “degrees of freedom”

per molecule) and of a two-atomic gas 7
2
kB (K = 6N , f = N , so 7 “degrees of freedom”

per molecule). Similarly the heat capacity of the crystal lattice of a solid built out of N

172Actually even less complicated because one does not need to appeal to an artificial boundary potential.
173In the case of the microcanonical ensemble representative for a macroscopically isolated system with

fixed energy E (within the tolerance ∆E which in the classical case can be set equal zero) the mean
energy H ≡ U is the same as E; the result is valid however also if the system is in equilibrium but cannot
be ascribed a definite energy.
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molecules and behaving as 3N independent harmonic oscillators174 should be CV = 3NkB
(K = 3N , f = 3N ; this is the so-called Dulong-Petit law) irrespectively of the distribution
of frequencies of these oscillators. These results are heuristically formulated as the rule
that classically each degree of freedom contributes the amount 1

2
kBT of energy to the

mean system’s total energy, but it is clear that the implication of the general results
(286), (287) for the total energy depend on the precise form of the interactions.175 It goes
without saying, that the predictions of the equipartition theorem for the heat capacities
exemplified above (which are clearly at variance with 3TMDL) are experimentally verified
only at sufficiently high temperatures, at which genuine quantum effects (except for the
ones related to the indistinguishability of identical particles) are unimportant and systems
can be treated as classical.

Canonical (Gibbs) Ensemble energy distribution
The Microcanonical Ensemble introduced in the preceding Lectures representative for
macroscopically isolated systems is conceptually simple but very inconvenient in practical
computations. Much more convenient in this respect is the Canonical Ensemble which
formally is representative for a system remaining in thermal equilibrium with its sur-
rounding (i.e. in thermal contact with it through a diathermal wall) modeled by a large
(in the limit infinitely large) heat bath of fixed temperature T . Since in most cases, as
far as mean values of system’s characteristics are concerned (and not their fluctuations),
that is from the point of view of thermodynamics, there should be no difference between
an isolated system the temperature of which (defined as (∂S/∂U)V,N,...) is T and the same
system exchanging energy (in the form of heat) with a heat bath at temperature T , the
Canonical Ensemble is in most cases (at least classically) the preferred way to perform
actual computations also in the case of macroscopically isolated systems.

The form of the distribution function ρ(q, p) or of the statistical operator ρ̂ (in the
classical or quantum versions of the statistical mechanics, respectively) of the Canonical
Ensembles consisting of absolutely isolated systems (classical or quantum), which should
be representative of real systems in thermal contact with their surroundings at temper-
ature T , can be directly postulated by appealing to their general forms (234) and (269),
which in fact leave practically no freedom, given the fact that energies of such real sys-
tems can vary in very wide (infinite in the limit of infinitely large heat bath) ranges. It
is nevertheless instructive to derive them by considering the system and the heat bath
(representing its surrounding) as a single macroscopically isolated compound system and
by applying to this supersystem the Microcanonical Ensemble.

We derive first the distribution of energy of the system in contact with the heat bath
as this does not depend on whether it is treated classically or quantum mechanically.
According to the rules of the probability theory, the probability that the total energy

174Actually as 3N − 6 oscillators because 6 generalized variables corresponding to translations and
rotations of the solid as a whole are eliminated if it is kept at rest; however 3N−6 is practically the same
as 3N .

175One can also remark that the notion of a “degree of freedom”, fairly clear in mechanics, becomes,
as one enters deeper into theoretical physics, more and more elusive and ultimately is used without any
concrete content.
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Etot (fixed up to a small uncertainty ∆E) of the compound system is distributed as E
and Etot − E between the system and the heat bath is given by the relative number of
(absolutely isolated) supersystems in the ensemble realizing such a partition of energy
that is - because within the Microcanonical Ensemble all microstates (which correspond
to the fixed, up to ∆E, energy Etot) are equally populated - by the ratio of the number
of microstates (of the compound supersystem) corresponding to such a partition of the
total energy Etot to the total number of all microstates corresponding to this energy:

P (E, dE) =
1

Γ(Etot, Nh.b., Nsys, . . . ,∆E)
∆E ωsys(E)ωh.b.(Etot − E) dE , (289)

where

Γ(Etot, Nh.b., Nsys, . . . ,∆E) = ∆E

∫ Etot

0

dE ωsys(E)ωh.b.(Etot −E) . (290)

Using the Microcanonical Ensemble definition Sh.b.(E) = kB ln(ωh.b.(E)∆E) of the entropy
of the heat bath, the probability P (E, dE) can be written as

P (E, dE) ∝ dE ωsys(E) exp

{

1

kB
Sh.b(Etot −E)

}

.

Expanding now the expression in the exponent

Sh.b.(Etot − E) = Sh.b.(Etot)−
(

∂Sh.b.(Etot)

∂Etot

)

Nh.b.,...

E + . . . , (291)

and neglecting all the terms of higher order in E than the first one on account of the fact
that in the limit of the very large heat bath the probability P (E, dE) of distributions of
energy markedly different from those in which E/Etot ∼ Nsys/Nh.b. should be negligible,
while Sh.b. ∼ Nh.b. and Etot ∼ Nh.b. (the n-th derivative of Sh.b with respect to Etot is
then ∼ N1−n

h.b. and the terms of higher order in E than the first one are suppressed with
respect to it by powers of Nsys/Nh.b.), one can (in the limit of infinitely large heat bath)
write the Canonical Ensemble distribution ρE(E) of the system’s energy in the form

ρE(E) = Const.× ωsys(E) e
−E/kBT ≡ Const.× ωsys(E) e

−βE . (292)

We have introduced here the traditional symbol

β ≡ 1

kBT
. (293)

The normalization constant is of course given by176

Const.−1 =

∫ ∞

0

dE ωsys(E) e
−E/kBT .

176To make it clear: the probability distribution defined by (289) and (290) is normalized by construc-
tion. However, once the expansion (291) has been truncated, the tails of the distribution are modified
(insignificantly from the practical point of view) and its normalization must be readjusted.
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Classical distribution function of the Canonical Ensemble
The Canonical Ensemble energy distribution (292) is independent of whether the system
is treated classically or quantum mechanically. The corresponding phase space distribu-
tion function ρ(q, p) of the classical Canonical Ensemble representative for the system in
thermal equilibrium with its surrounding at temperature T can be obtained by marginal-
ization (in the language of statistics) of the joint distribution function177 ρ(q, p, qh.b., ph.b.)
of the microcanonical ensemble representative for the real system and its surrounding
treated as a single compound, macroscopically isolated supersystem:

ρ(q, p) =

∫

Etot≤Hh.b.+Hsys≤Etot+∆E

dΓ(qh.b., ph.b.) ρ(q, p, qh.b., ph.b.)

∝
∫

Etot−Hsys≤Hh.b.≤Etot+∆E−Hsys

dΓ(qh.b., ph.b.) = exp

{

1

kB
Sh.b.(Etot − Hsys(q, p))

}

.

It has been assumed here that the Hamiltonian of the compound (absolutely isolated)
supersystems forming the ensemble is the sum Hsys(q, p)+Hh.b.(qh.b., ph.b.); in other words
its part Hsys−h.b. has been omited in agreement with the way the Microcanonical Ensemble
considered here is constructed. Expanding Sh.b.(Etot − Hsys(q, p)) in the power series in
Hsys(q, p), rejecting terms of this expansion of order higher than the first one (again, on
account of the fact that they affect the constructed distribution function ρ(q, p) very little
- i.e. insignificantly from the practical point of view - in the limit of infinitely large heat
bath) and including the first term of the expansion into the normalization constant Zstat,
one obtains the distribution function ρ(q, p) of the classical Canonical Ensemble in the
form

ρ(q, p) =
1

Zstat

exp{−Hsys(q, p)/kBT} . (294)

By construction it is the distribution function of the ensemble of absolutely isolated sys-
tems representative of a real system in thermal contact with its surrounding at tempera-
ture T . The normalization factor

Zstat(T, V, . . . , N) =

∫

dΓ(q,p) exp{−Hsys(q, p)/kBT} . (295)

which is a function of the temperature T , the system’s volume V , the number N (num-
bers N1, . . . , Nr) of particles constituting it and possibly other macroscopic deformative
parameters (denoted by the elipses) characterizing the system, is called the Canonical

177It is the distribution function of the Microcanonical Ensemble which, while being representative for
the macroscopically isolated as a whole real supersystem consisting of the system and the heat bath
exchanging between one another energy, is itself a set of isolated supersystems each of which consists of a
system and a heat bath absolutely isolated not only from the rest of the world but also from one another.
Still, the joint distribution function ρ(q, p, qh.b., ph.b.) conforms the equal probability principle, that is
probabilities of all microstates corresponding to the total energy of the supersystem in the specified range
are equal.
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Statistical Sum or the Canonical Partition Function. By introducing under the in-
tegral in (295) the unity written as 1 =

∫

dE δ(E −H (q, p)) and interchanging the order
of the integrations, the canonical partition function can also be written in the alternative
form as

Zstat(T, V, . . . , N) =

∫ ∞

0

dE ω(E) exp{−E/kBT} , (296)

where ω(E) is the density defined (within the classical approach) in (239). As will be
shown below, it contains the complete thermodynamic information about the system.

Statistical operator of the quantum Canonical Ensemble
The derivation of the statistical operator ρ̂ of the quantum Canonical Ensemble represen-
tative for the system in thermal equilibrium with its surrounding at temperature T goes
as follows. We consider the same setting as in the classical case. The basis of the Hilbert
space H = Hsys ⊗ Hh.b. of the entire isolated compound supersystems (members of the
considered Microcanonical Ensemble) is formed by state-vectors of the form |l〉 ⊗ |lh.b〉
which are assumed to be eigenvectors of the Hamiltonian Ĥsys ⊗ 1̂h.b. + 1̂sys ⊗ Hh.b.; the
interaction term Hh.b.−sys ensuring the thermal contact between the real system and the
real heat bath is, as in the classical case, absent.178 Hence, energies of the two parts of
the system are additive. The statistical operator of the corresponding Microcanonical
Ensemble therefore reads (to make the notation easier we rename Etot to E)

ρ̂Micro =
1

Γ(E . . . ,∆E)

∑

lh.b., l
E ≤ Elh.b. + El ≤ E +∆E

(|l〉 ⊗ |lh.b.〉)(〈lh.b.| ⊗ 〈l|)

=
1

Γ(E . . . ,∆E)

∑

l

|l〉〈l| ⊗
∑

lh.b.
E − El ≤ Elh.b. ≤ E +∆E −El

|lh.b.〉〈lh.b.| .

The Canonical Ensemble statistical operator ρ̂ is now obtained by taking the trace of ρ̂Micro

with respect to the Hilbert space Hh.b. of the heat bath.179 The sum over lh.b. restricted to
the heat bath states of energies between E−El and E+∆E−El, where El is the energy of
the system yields then just the factor Γh.b.(E−El, Nh.b., . . . ,∆E) = exp(Sh.b.(E−El)/kB).
This, upon expanding up to the first order in El and including the zeroth order term in

178Let us stress again that the members of the considered Microcanonical Ensemble are the pairs con-
sisting of the system and the heat bath absolutely isolated from one another (and from the surrounding).

179More precisely, its matrix elements 〈l′|ρ̂|l〉 are identified with

∑

lh.b.

〈lh.b.| ⊗ 〈l′|ρ̂Micro|l〉 ⊗ |lh.b.〉 .
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the normalization,180 leads to the final result

ρ̂ =
1

Zstat

∑

l

|l〉〈l| exp(−El/kBT ) ≡
1

Zstat

exp
(

−Ĥ /kBT
)

, (297)

with the normalization factor (the quantum Canonical Ensemble partition function) Zstat

given by

Zstat = Tr
(

e−Ĥ /kBT
)

=
∑

l

〈l|e−Ĥ /kBT |l〉

=
∑

l

exp(−El/kBT ) =
∑

En

dn exp(−En/kBT ) . (298)

The first sum in the second line is over the system’s Hamiltonian eigenvectors |l〉 and the
second one is over the energy levels including their degeneracy factor dn. When the system
consists of interacting elements and its spectrum is quasi-continuous, the summation
∑

En
dn is replaced by the integral

∫

dE ω(E) over the system’s energy spectrum with
the weight function ω(E) which is the density of quantum states corresponding to the
system’s energy between E and E + dE). This second form of the formula (298) is thus
the quantum counterpart of the classical formula (296). It should be noted that both
results (294) in the classical case and (297) have the forms (234) and (269), respectively,
established by considering general properties of macroscopic systems.181

We will now show that if the system is simple in the thermodynamical sense, that is
only a work associated with changing its volume can be done on it, the statistical sum given
by (295) or (296) in the classical case and by (298) in the quantum case, is directly related
to the Helmholtz free energy F which is already known to be the proper thermodynamic
potential characterizing a system kept at a constant temperature by thermal contact with
a heat bath. This readily follows from the “golden formulae” (285) or (284). Indeed,
considering for the illustration the classical case, (285) applied to (294) yields:

S = −kBln ρ = −kB (−H /kBT − lnZstat) =
1

T
H + kB lnZstat .

After a small rearrangement and identifying H with the system’s internal energy U , this
means that (recall, that F = U − TS)

F (T, V,N) = −kBT lnZstat(T, V,N) . (299)

Obviously this formula stays valid in the quantum case (the steps are in that case com-
pletely analogous).

The rule (299) is also valid if the system consists of more than one material component
- simply N should be replaced by the numbers N1, . . . , Nr of different kinds of particles.

180Justification of the rejection of all higher order terms of the expansion is the same as in the classical
case.

181Notice also that the symbol β in the forms (234) and (269) has now acquired the interpretation (293).
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Of course, if a multicomponent system consisting of r groups of identical (hence, quantum
mechanically indistinguishable) particles is analysed classically, the measure over phase
space is

dΓ(q,p) =

r
∏

a=1

d3Naqad
3Napa

Na! (2π~)3Na
.

As a result, the (classical) Canonical Ensemble formalism applied to a mixture of different
classical perfect gases readily leads to the Gibbs Ansatz (167) and, as discussed in Lectures
VIII and XI, it is the product of factors N1! . . .Nr! which leads to the mixing entropy.

Fluctuations of the system’s energy
As already discussed, once the distribution function ρ(q, p) in the classical case or the
statistical operator ρ̂ in the quantum case are given, the mean value of an observable O
(represented by a phase space function O(q, p) in te classical case and by a Hermitian
operator Ô in the quatum case) can be computed as

O =

∫

dΓ(q,p)O(q, p) ρ(q, p) =
1

Zstat

∫

dΓ(q,p)O(q, p) e
−H (q,p)/kBT ,

O = Tr(Ô ρ̂) =
1

Zstat
Tr
(

Ô e−Ĥ /kBT
)

, (300)

in the classical and quantum cases, respectively. Similarly can be computed also its mean
quadratic fluctuation (228) to estimate its relative fluctuation (229) - recall (Lecture X)
that the reliability of the results obtained using the approach based on the use of ensem-
bles hinges on the smallness of relative fluctuations of the thermodynamical quantities
calculated in this way. Since the energy of a system remaining in thermal equilibrium
with a heat bath is not fixed, it is of interest to examine the possible magnitude of its
fluctuations. As the Canonical Ensemble distribution function ρ(q, p) or the statistical
operator ρ̂ are expressed through the system’s Hamiltonian, the formulae for the mean
system’s energy E ≡ U and its fluctuation can be obtained in general terms, without
using the explicit forms of these Hamiltonians. Indeed, from the formulae (300) it fol-
lows that (for definitess we consider the quantum case - classical calculation is completely
analogous)

U = E =
1

Zstat

Tr
(

Ĥ e−Ĥ /kBT
)

= − 1

Zstat

∂

∂β
Tr
(

e−βĤ

)

∣

∣

∣

∣

β=1/kBT

= − ∂

∂β
lnZstat

∣

∣

∣

∣

β=1/kBT

. (301)

Using the formula (299) and noticing that ∂/∂β = −kBT 2∂/∂T this can be also written
in the form

U = −T 2

(

∂

∂T

F

T

)

V,N

,
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which is just the standard thermodynamic identity (153). The mean quadratic fluctuation
of the random variable E can be expressed in the similarly general way. To this end one
starts with (we suppress the instruction to set β = 1/kBT at the end)

E2 =
1

Zstat
Tr
(

Ĥ
2e−Ĥ /kBT

)

= − 1

Zstat

∂

∂β
Tr
(

Ĥ e−βĤ

)

= − 1

Zstat

∂

∂β

(

ZstatE
)

= −∂E
∂β

− E
∂

∂β
lnZstat ≡ −∂E

∂β
+ E

2
.

It follows that

σ2
E ≡ E2 −E

2
= −∂E

∂β
= kBT

2

(

∂U

∂T

)

V,N

= kBT
2CV . (302)

Hence, in complete generality, the mean quadratic fluctuation of the system’s energy is
determined by its heat capacity (at constant volume) CV . Since if the system is macro-
scopic, CV = Ncv and U = Nu, the relative fluctuation of its energy is suppressed by
1/
√
N :

√

σ2
E

U
=

1

Nu

√

NkBT 2cV ∼ 1/
√
N ,

in agreement with the general result (232). It should be also recalled that smallness of
the fluctuations of thermodynamic quantities is a necessary conditions for equivalence of
different ensembles.

It is instructive to obtain the same result by a different technique which at the same
time will provide another justification - a one not relying on the “golden formulae” (285)
or (284) - of the rule (299). To this end we rewrite the system’s energy distribution (292),
which has the same form, indeendently of wheter the classical or quantum Canonical
Ensemble is used, in the form

ρE(E) =
1

Zstat∆E
exp{β (TS(E)− E)} , (303)

which exploits the Microcanonical Ensemble (Boltzmann) definition S = kB ln(ω(E)∆E)
of the entropy of the system (at fixed energy). If the system is large, ρE(E) should be
sharply peaked at E = E∗ which is practically equal to the mean E = U . The exponent in
the distribution (303) can be, therefore, expanded in the Taylor series around E = E∗ ≈ U
and the terms of this expansion higher than the second one can be discarded. The energy
most probable value E∗ is determined by the condition d(TS(E) − E)/dE = 0 which
implies that the system’s temperature (∂S(E)/∂E)−1 is equal to the temperature T of
the heat bath, and the truncated energy distribution takes the form

ρE(E) ≈
1

Zstat∆E
exp{β (TS(E∗)−E∗)} exp

{

− 1

2kBT 2CV
(E −E∗)

2

}

. (304)
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If the normalization constant in the truncated form (304) is readjusted (and the domain
of integration over energy is extended - in view of the negligible error this introduces - to
the entire real axis; E∗ becomes then identical with E given by the distribution obtained
in this way), the system’s energy fluctuation (302) is immediately recovered from the
formula

(E −E∗)2 = Const.

∫ ∞

−∞

dE (E − E∗)
2 exp

{

− 1

2kBT 2CV
(E − E∗)

2

}

.

Furthermore, if one neglects the difference between the prefactor of (304) and the read-
justed energy distribution normalization denoted “Const.” in the formula above, one can
write

Zstat =
1

∆E
eβ(TS(E∗)−E∗)

∫ ∞

−∞

dE exp

{

− 1

2kBT 2CV
(E − E∗)

2

}

,

which after evaluating the (gaussian) integral leads to the relation

lnZstat = −β (E∗ − TS(E∗))−
1

2
ln

(

2πkBT
2CV

(∆E)2

)

.

In the limit N ≫ 1 the first term on the right hand side is of order N while the second
one of order lnN , i.e. can be neglected in comparison with the first one. Since E∗ is in
this regime identical with the system’s mean energy U , the formula (299) is recovered.182

Canonical ensemble and magnetic systems
It is also worth to ask what thermodynamical potential is related to the Canonical Ensem-
ble statistical sum Zstat if the system is not simple but possesses e.g. magnetic properties.
Let the (quantum) Hamiltonian of the system have the form (the subscript “int” stands
here for “internal”)

Ĥ = Ĥint −
N
∑

i=1

µ̂i ·H ,

where the second term is the coupling of magnetic moments µi of the system’s individual
elements (molecules, for instance) to an external magnetic field H through the operators
µ̂i representing them.183 Assuming such a system to be in equilibrium with a heat bath

182It may superficially seem that the “golden rule” gives the formula (299) without any approximations,
while its derivation presented here strongly relies on the limit N ≫ 1 and typicality of the system’s
energy spectrum. In connection with this it should be recalled that the justification of the “golden rule”
also relies on similar assumptions so there is no real discrepancy here; the two derivations of the formula
(299) simply differ by the stage at which one appeals to the essentially identical assumptions.

183In such a setting there is no distinction between the magnetic field H0 produced by the experimental
setup - by a current passing through a coil, for instance - in the absence of the magnetic material
and the actual strength of the magnetic field H when the magnetic material is present, because the
magnetic moments µ of the system’s elements are implicitly assumed not to produce any magnetic field
by themselves. Their mutual coupling, which in reality occurs mostly through the magnetic field they
produce, is in statistical physics models usually taken into account in terms of their direct “contact”
interactions of the form −∑i6=j Jijµ̂j ·µ̂j (which, if present, are here included in Ĥint).
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at temperature T and applying the “golden formula” (284) to the Canonical Ensemble
representing it we get

S = −kB
(

− 1

kBT

(

Eint −
∑

i

µi ·H
))

+ kB lnZstat

=
1

T
Eint −

1

T
H·
∑

i

µi + kB lnZstat ,

Identifying now Eint with the system’s internal energy U and
∑

i µi with the system’s
total magnetization M, one obtains

−kBT lnZstat(T, V,H, N) = U − TS −M·H ,

which is the magnetic Gibbs function G(T, V,H, N) the differential of which is184

dG = −SdT − p dV −M·dH+ µdN .

The differential of the internal energy is then as usually (and always in this Course)

dU = TdS − p dV +H·dM+ µdN .

The reader should be warned, however, that there is another school of authors who include
the interaction of magnetic moments into what they call the system’s internal energy (let
us denote it Ũ); the statistical sum is then related to the function F̃

−kBT lnZstat(T, V,H, N) = F̃ = Ũ − TS ,

This is however not only a mere change of the notation (using F̃ in place of G): since

Ũ = U −M·H ,

the differential of the “internal energy” Ũ is

dŨ = TdS − p dV −M·dH+ µdN .

so that the elementary work of magnetization is now −M·dH (if Ũ is used the Pippard’s
derivation of the elementary work must be modified). In any case the “golden formula”
always allows to properly identify thermodynamical quantities related to the used ensem-
ble.

Quantum Canonical Ensemble
Computing the partition function and the mean values of observables

Zstat = Tr
(

e−Ĥ /kBT
)

, O =
1

Zstat
Tr
(

Ô e−Ĥ /kBT
)

, (305)

184The chemical potential µ should not be confused with the magnetic moment µ. It is clear that the
SI system of units which brings in yet another µ0 (the magnetic susceptibility of vaccuum) is utterly
inconvenient here!
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of the quantum Canonical Ensemble requires specifying the Hilbert space of the system
of interest in which act the operators Ĥ , ρ̂ and all operators Ô representing observables.
If the system is, as usually is the case, composed of N elements, e.g. of N particles of
some kind (we assume properties of these particles, like masses, spins, magnetic moments
are known), quantum states of the world can be specified in terms of quantum states of
individual elements (particles). The Hilbert space of the system can be then constructed
as a tensor product of the Hilbert spaces spanned by state-vectors representing states of
individual elements (particles), which for definiteness we will call single-particle states.185

That is, one first specifies a basis of state-vectors representing quantum states of a single
element taking for instance, if these elements are particles, the generalized eigenvectors
|x〉 of the position operator,186 or the eigenvectors |p〉 of the momentum operator or - if
the particle has a nonzero spin - the vectors |p, σ〉, where σ is the spin projection onto a
chosen axis (usually the z-axis). We will denote these basis vectors |l〉 (understanding the
a single label l may stand for a set of independent labels). The vectors |li〉 thus span the

single-particle Hilbert space H(1)
i of the i-th particle (i-th element) of the system. The

Hilbert space H(N) of the entire system is then constructed as H(N) = H(1)
1 ⊗ . . .⊗H(1)

N ,
that is, it is spanned by the basis state vectors of the form

|l1〉 ⊗ . . .⊗ |lN〉 . (306)

Most of physical systems however are composed of identical indistinguishable particles
(or several groups of particles which are identical within these groups, but for definiteness
we will consider only one type of identical particles - extension to several groups is more
or less straightforward) and in this case the rules of quantum mechanics (which have
been abstracted from experimental facts in the course of its developement) dictate that
physical states of such systems are represented not by arbitrary superpositions of the
state-vectors (306) but only by superpositions of totally antisymmetrized state-vectors (if
the identical particles have half-integer spin, that is, are fermions) or superpositions of
only totally symmetrized state-vectors (if the identical particles have integer spin, that is,
are bosons). The roots of this rule are in special relativity - in four space-time dimensions
states of half-integer spin particles must be antisymmetric while those of bosons must be
symmetric if relativistically invariant quantum theories of their interactions, satisfying
the so-called “local causality” requirements, are to be constructed (this is the celebrated
spin-statistics connection); in two space dimensions other symmetry properties are
also possible and the corresponding particles are called anyons (we will not consider this

185One sometimes meets with statements to the effect that the construction of the Hilbert space of a
system as a tensor product of individual Hilbert spaces of its elements has something to do with the
assumption that mutual interactions of these elements are (negligibly) weak. This is wrong. The choice
of the Hilbert space in which quantum mechanics of a given system is realized is something which belongs
to physics and goes beyond mathematics; one has first to decide - and this is what requires an amount
of a physical insight - what are the possible quantum states (in the abstract sense) of the system - what
states of its individual elements can physically be identified (be it only in principle) - and only then model
them by the choice of the appropriate Hilbert space in which the action of operators is realized.

186These should better (and in fact can) be avoided, as the position operator does not exist in relativistic
physics!
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possibility here). Therefore the Hilbert spaces of a system of N fermions or of N bosons
are spanned by the following basis vectors:

1√
N !

∑

P

(−1)P |lP (1)〉 ⊗ . . .⊗ |lP (N)〉 ≡ |l1, l2, . . . , lN〉 fermions ,

1√
N !

∑

P

|lP (1)〉 ⊗ . . .⊗ |lP (N)〉 ≡ |l1, l2, . . . , lN〉 bosons . (307)

The symbol P stands here for permutations of N labels and (−1)P denotes the permuta-
tion sign. These vectors will be denoted |l1, . . . , lN〉. In both cases the labels li run over
a countably infinite set of values; below we will assume that li = 1, 2, . . . The number
of labels li in each ket is, of course, equal N . It is convenient to adopt the convention
(exploiting the antisymmetry or symmery of the vectors (307)) that the labels in kets are
always ordered so that l1 < l2 < . . . < lN in the case of fermions (no two labels li and lj
can in this case be equal - this is just the Pauli exclusion principle) and l1 ≤ l2 ≤ . . . ≤ lN
in the case of bosons (many bosons can be simultaneously in the same single-particle
state). Assuming that the single-particle state vectors |l〉 are normalized (〈l′|l〉 = δl′l), the
fermionic vectors (307) are automatically normalized to unity, while in the case of they
require additional normalization if some labels li are equal.187

As the Hamiltonian Ĥ (N) of a system of N particles is supposed to be built (as
appropriate tensor products) out of operators acting in the single-particle Hilbert spaces
of individual particles, the traces in the formulae (305) can be computed using the bases
(307):

Tr
(

e−Ĥ /kBT
)

=
1

N !

∞
∑

l1=1

. . .
∞
∑

lN=1

〈lN , . . . , l1|e−Ĥ /kBT |l1, . . . , lN〉 ,

and

Tr(ρ̂ Ô) =
1

N !

∞
∑

l1=1

. . .

∞
∑

lN=1

1

N !

∞
∑

l′1=1

. . .

∞
∑

l′
N
=1

〈lN , . . . , l1|ρ̂|l′1, . . . , l′N〉〈l′N , . . . , l′1|Ô|l1, . . . , lN〉 .

Notice that in these sums the orderings of labels li are not respected: The factors 1/N !
cancel then multiple countings in these sums of the same state vectors written with differ-
ent orderings of the labels li. This ensures proper taking into account of the normalization
of the basis vectors. It should be stressed that in this form the formulae are completely
general and include all possible quantum effects. In particular effects of the the mythical
“quantum statistics”. This will become clear as we come to consider the Grand Canonical
Ensemble.

The adopted notation |l1, . . . , lN〉 for the basis state-vectors is rather inconvenient,
particularly when the considered particles are bosons. It is much more practical to pass

187If nl bosons are in the same single-particle state |l〉, one has to multiply the state vector |l1, . . . , lN〉
by the factor 1/

√
nl! - see the formula (308).
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to the so called occupation number representation in which the numbers in kets tell
how many particles occupy successive single-particle states. Thus we set

|n1, n2, . . .〉 =
1√

n1!n2! . . .
|1, . . . , 1, 2, . . . , 2, . . .〉 . (308)

The square root of the product of the factorials makes these vectors well normalized. Of
course in the case of fermions ni = 0 or 1 only. The sum of the occupation numbers ni

must always be N . For example, the (normalized to unity) vector

1√
3!2!2!

|1, 1, 1, 2, 3, 3, 7, 7, 11, 13〉 ,

of 10 bosons is of which three occupy the state l = 1, one is in the state l = 2, etc., in the
occupation number representation written as

|3, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, . . .〉 .

It should be stressed that this is not a change of the basis in the Hilbert space but only
a change of the notation. It is also important to note that in the notation |l1, . . . , lN〉
the number of entries in the ket is finite, but each label li can assume infinitely many
(discrete values); in the notation |n1, n2 . . .〉, the number of entries in the ket is infinite
but the values of the labels ni are restricted by the condition n1 + n2 + . . . = N (and,
moreover, if particles are fermions each ni is only either zero or one). The occupation
number notation of state-vectors of N bosons should be also contrasted (in order to avoid
a confusion) with the basis state-vectors |n1, . . . , nN〉 of a system of N (identical or not
but distinguishable!) quantum harmonic oscillators: in this case it is the number of the
labels ni in each ket which is N but each ni can run from 0 to infinity. We will see that
when the restriction n1 + n2 + . . . = N will get removed - and we will remove it passing
to the Grand Canonical Ensemble - the system of bosons will become mathematically
identical with a system of (infinitely many) harmonic oscillators.

Boltzmann approximation
The usefulness of the notation just explained will become evident when we introduce the
creation and annihilation operators (associated with the single-particle states) through

which all operators of interest acting in the system’s Hilbert space - the Hamiltonian Ĥ

(including its interaction terms) of the system as well as all observables - can be expressed.
Here, in order to illustrate the difficulty which exists, whether the particle interact with
one another or not, we will consider only a system of N mutually noninteracting identical
elements (atoms, molecules, spins) the joint Hamiltonian of which has the general form

Ĥ
(N) =

N
∑

i=1

1̂(1) ⊗ . . .⊗ Ĥ
(1)(i)⊗ . . .⊗ 1̂(1) , (309)

(Ĥ (1)(i) at the i-th position) of a sum of N operators each of which acts essentially in
only one single-particle Hilbert space. If the vectors |l〉 are chosen to be eigenvectors
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of the single particle Hamiltonian Ĥ (1) with with the eigenvalues εl, the action of the
Hamiltonian (309) on the basis vectors |n1, n2, n3, . . .〉 of the Hilbert space of N molecules
(elements) is particularly simple

Ĥ
(N)|n1, n2, n3, . . .〉 =

(

∑

l

nl εl

)

|n1, n2, n3, . . .〉 .

The statistical sum Zstat of such a system of N mutually noninteracting molecules is given
by the expression

Zstat =
nmax
∑

n1=0

nmax
∑

n2=0

. . . δN,
∑

l nl
e−n1ε1/kBT e−n2ε2/kBT . . . , (310)

in which nmax = 1, if the molecules are fermions and nmax = ∞, if they are bosons.
Unfortunately, even in this simple case the statistical sum cannot be computed easily
(except for special forms of the spectra εl of the Hamiltonian of a single molecule) because
of the presence of the Kronecker delta which expresses the condition of constancy of the
number of the molecules in the Canonical Ensemble.

There are two ways of going around this diffuculty: one is to use the standard trick
of statistical physics (and thermodynamics): in order to control o quantity which is ab-
solutely conserved188 by the system’s dynamics we imagine that the system is in contact
with a reservoir of this quantity allowing for exchanging it between the system and the
reservoir (the Canonical Ensemble is itself an example of this trick: to control the system’s
internal energy we imagine it being exchanged with the heat bath at a fixed temperature
and by controling the temperature of the heat bath we are able to control the mean en-
ergy of the system). This will lead to the Grand Canonical Ensemble which in general is
representative for systems exchanging matter (molecules or other quantities) with their
surroundings modeled by reservoirs of the matter kept at fixed chemical potentials µ.
Another way (applicable only to systems composed of mutually noninteracting elements)
is to use the so-called Boltzmann approximation which we now discuss.

188This is a subtle point: the quantity must be absolutely conserved not only by the interactions
which are explicitly included in the Hamiltonian taken to perform actual computations but also by those
interactions which are neglected on the account that they are weak but do exist in the real system and
must be present for instance to let it reach the equilibrium. The example is the photon gas: photons
interact with one another extremely weakly (linearity of the Maxwell equations means that “classical”
photons do not interact with one another at all - their interaction is effectively induced by quantum effects)
and this interaction which in principle can change their number can be safely neglected in computing
statistical properties of the photon gas; moreover photons interact also with the walls of the container in
which the gas is enclosed (the walls constantly absorb and emit photons, so their number is not conserved)
and it is mostly these interactions, although they are neglected in computing statistical properties of the
system, that are absolutely crucial for establishing the equilibrium. For those reasons one cannot apply
this trick to the photon gas: the chemical potential of the gas of photons is zero. (Fortunately, the trick
is not necessary - there are no restriction on the number of photons.)
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In the Boltzmann approximation the expression (310) is replaced by

Zstat =
1

N !

(

∑

l

e−εl/kBT

)N

. (311)

In this approximation the statistical sum factorizes into the product of contributions
of individual (mutually noninteracting) elements just as it does in analogous classical
situations. The approximation (311) corresponds to the simple, essentially classical in
its character, counting of the system’s microstates: the number of ways of choosing n1

particles which will be in the single-particle states l = 1 is

(

N
n1

)

,

then the number of ways of choosing n2 particles which will be in the single-particle state
l = 2 out of the remaining N − n1 particles is

(

N − n1

n2

)

,

and so on. This gives as the statistical weight (the degeneracy factor dn in the formula
(298)) of the level of energy n1ε1 + n2ε2 + . . . the factor

(

N
n1

)(

N − n1

n2

)(

N − n1 − n2

n3

)

. . . = N !

[

∞
∏

l=1

nl!

]−1

.

Notice that this counting treats particles as distinquishable (and does not take into ac-
count the Pauli exclusion principle); it corresponds to taking as the Hilbert space of the
system of N identical elements the space spanned by all tensor products of the form (306)
and not only by their totally symmetrized or totally antisymmetrized combinations. In-
distinguishability of particles is here only taken into account by dividing all these factors
by N !

With this counting the sum (310) is replaced by

Zstat =
1

N !

N
∑

n1=0

N
∑

n2=0

. . .
N !

∏∞
l=1(nl!)

δN,
∑

l nl
e−n1ε1/kBT e−n2ε2/kBT . . . , (312)

This precisely gives189 the expression (311).

189The sum obtained in this way just the extension of the formula

(x1 + x2)
N =

N
∑

n=0

(

N
n

)

xn1x
N−n
2 =

N
∑

n1=0

N
∑

n2=0

N !

n1!n2!
δN,n1+n2

xn1

1 xn2

2 ,

to the expression (x1 + x2 + x3 + . . .)N .
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It is instructive to see on a simple example, what is the difference between the sums
(310) in the cases when particles are bosons or fermions and the sum in (311). Let’s take
N = 3 particles and introduce the notation xl = exp(−εl/kBT ). If N = 3 the formula
(310) yields

Zstat = x31 + x21x2 + x1x
2
2 + x1x2x3 + . . . bosons,

Zstat = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + . . . fermions,

while from the formula (311) we obtain (in both cases)

Zstat =
1

3!
(x1 + x2 + x3 + x4 + . . .)3 =

1

6

(

x31 + 3x21x2 + 3x1x
2
2 + 6x1x2x3 + . . .

)

.

It is clear that contributions to the statistical sum Zstat of singly occupied single-particle
states in (310) are properly taken into account in the approximation (311), but not those
of multiply occupied single-particle states: if particles are fermions they are totally absent
in (310) whereas if particles are bosons they have higher weights.

It follows that the Boltzmann approximation (311) should be reasonable in situations
in which probabilities of multiple occupancy of the same single-particle states are low.
This can be made quantitative only by going over to the Grand Canonical Ensemble in
which the number of particles of the system is not fixed (this ensemble is representative
for the system which can exchange energy and matter with a large - infinitely large in
the limit - reservoir at temperature T and chemical potential µ). It is then possible to
consider the mean number nl of particles occupying a single-particle state |l〉. The formula
which will be derived reads

nl =
1

∓1 + exp((εl − µ)/kBT )

{

bosons
fermions

.

This is smaller than 1 (that is, the probability of the occupation of a given energy state |l〉
is low) independently of the label l of the state, if the chemical potential (of the reservoir,
and hence, also of the system which is in equilibrium with it) is large negative, i.e. when
the activity z is small compared to unity:

z ≡ eµ/kBT ≪ 1 . (313)

This is typically satisfied in rarefied perfect gases at temperatures not too low, so that the
gas is not liquefied, and not too high so that the molecules do not dissociate yet and atoms
are not ionized. The chemical potential of a perfect gas can be estimated by computing
it within the classical Canonical Ensemble:

µ = −kBT ln

[

V

N

(

mkBT

2π~2

)3/2
]

. (314)

It becomes large negative at high temperatures (and moreover, µ/kBT → −∞ as T → ∞).
More precisely, the condition (313) translates into the condition

V

N

(

mkBT

2π~2

)3/2

≫ 1 ,
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or

λT ≡
(

2π~2

mkBT

)1/2

≪
(

V

N

)1/3

,

which means that the so-called thermal wavelength λT of the molecules should be small
compared to the mean intermolecular distances.

It is now clear that the factor 1/N ! included in the measure (243) over the classical
phase space of a system of N identical particles results from the Boltzmann approximation
to the proper quantum mechanical treatement of such particles.

The Boltzmann approximation to the statistical sum of a system of mutually noint-
eracting elements allows to develop the quantitative and fairly successful theory of spe-
cific heats of rarefied gases composed of molecules possessing internal structures which is
valid at temperatures not too low (in order the Boltzmann approximation to be valid)
and not too high (in order to allow neglecting processes of ionization and/or dissocia-
tion). The Boltzmann approximation allows then to neatly separate the motion of the
centers of masses of the gas molecules from their internal excitations. To this end, the
single-molecule Hilbert spaces H(1) are taken to be spanned by the vectors of the form
|l〉 = |p, n〉 ≡ |p〉 ⊗ |n〉 where p (if the molecules of the gas are enclosed in the volume
V = L3, the vectors p must be of the form (2π/L)n, where n are the three-vectors of
integer components) specifies the quantum state of the center of mass and n (which can
be a multi-index) labels the internal energy levels of the single molecule. The action of
the single molecule Hamiltonian on these vectors is

Ĥ
(1)|p, n〉 =

(

p2

2m
+ εn

)

|p, n〉 ,

where m is the mass of the molecule and εn energies of its internal excitation. The factors
∑

l exp(−εl/kBT ) in the formula (311) then read

∑

l

e−εl/kBT =

(

∑

p

e−p2/2mkBT

)(

∑

n

e−εn/kBT

)

=

(

V

∫

d3p

(2π~)3
e−p2/2mkBT

)

(

∑

n

e−εn/kBT

)

,

(in the second line the sum over discrete wave vectors p has been converted into the
integral using the standard prescription) and the entire statistical sum of the gas of
mutually noninteracting molecules takes in the Boltzmann approximation the form

Zstat =
V N

N !

(

mkBT

2π~2

)3N/2
(

∑

n

e−εn/kBT

)N

.

As a result the Helmholtza free nergy F = −kBT lnZstat becomes the sum

F = −NkBT
{

1 + ln

[

V

N

(

mkBT

2π~2

)3/2
]

+ ln

(

∑

n

e−εn/kBT

)}

.
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The effects of the molecules internal structure enters therefore this function additively and
the same character have its contributions to internal energy, entropy and specific heats.
In principle in the states |n〉 one should take into account all possible excitations of the
nuclei of atoms out of which the molecules are buit as well as the quntum states of all
their electrons. At temperatures T <

∼ 105 K most important are, however, only the lowest
lying energy levels of electrons and the relative motion of the nuclei (their rotations and
oscillations mentioned already in Lecture III) can be separated from the electronic one
essentially by using the Feynman - Hellman theorem.
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LECTURE XIII (STAT)

Grand Canonical Ensemble
As has been discussed, while the Canonical Ensemble applied to classical systems allows
to effectively treat virtually all problems of systems consisting of mutually noninteracting
elements (molecules), in the quantum case it is not as efficient because of the complicated
structure of Hilbert spaces of states of indistinguishable elements composing physical
systems: even if these indistinguishable elements (particles) are mutually noninteracting
(in the sense of absence in the system’s Hamiltonian of terms coupling them), there
is an intrinsic quantum entanglement of their states resulting from the requirements of
symmetry. As a result the quantum canonical statistical sum Zstat cannot be computed
(except for very special cases). Technically it is the condition of the constancy of the
number of particles (elements) or, more generally, the strict conservation law of some
physical quantity (like e.g. the electric charge) which makes the computation of Zstat

intractable practically. Therefore it is convenient to consider most of the problems of
quantum statistical mechanics within the Grand Canonical Ensemble of systems which
formally is representative for a system in equilibrium with its surrounding with which it
can exchange heat (energy) and that quantity which is globally conserved.190 The system’s
surrounding is modeled as a very big (in the limit infinitely large) reservoir at temperature
T and chemical potential µ associated with the absolutely conserved quantity. As in most
elementary applications this quantity is the number of (some kind of) particles, we will
assume for definiteness, although this is not necessary, that the conserved quantity can
take on discrete values and will denote it N .

The theoretically constructed ensemble representative of this real situation consists,
as usually, of a set of N (the limit N → ∞ being implicitly understood) absolutely
isolated systems which splits into groups of Nk (where

∑

k Nk = N , Nk → ∞ with the
ratios Nk/N kept fixed) systems with different values of the conserved quantity. The
dynamics of each of these N systems forming the ensemble, which preserves the quantity
of interest,191 is set by the same Hamiltonian which is the Hamiltonian of the real system
but with the terms coupling it to the surrounding - the reservoir - (and, perhaps, some
other terms which are believed to be irrelevant from the practical point of view) removed.
Although the numbers of particles (the values of the absolutely conserved quantity) and
the internal energies of the different isolated and closed systems of the ensemble are then
different, in all situations in which the computed within this ensemble fluctuations of the
number of particles (of the quantity conserved in the real supersystem consisting of the
system and the reservoir) around the mean value N are negligible (essentially proportional

190Extension of the formalism which will be developed to cases in which several quantities are absolutely
conserved is straightforward.

191As already explained at the end of Lecture XII, the possibility of applying the Grand Canonical En-
semble technique relies on the strict conservation of the quantity of interest by the complete Hamiltonian
of the real system and its surrounding and not only by those terms of the system’s Hamiltonian which
have been retained (in the course of simplifying the real problem to a tractable form) for doing actual
statistical computations exploiting the ensemble of systems constructed theoretically.
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to 1/N
1/2

), all thermodynamical results obtained using the Grand Canonical Ensemble
are from the practical point of view the same as the ones that would be obtained using
the Canonical Ensemble representing the real system (in thermal contact with a heat bath
at temperature T ) with the fixed number N = N of particles. Similarly, if the computed
within this ensemble fluctuations of the number of particles and of energy around their
means N and E are small, the results can be applied to real macroscopically isolated
and closed systems (for which the proper representative ensemble would otherwise be the
microcanonical ensemble) with fixed energy U = E and fixed number N = N of particles.

As usually, the central problem is to theoretically construct the ensemble that is, to
choose in the classical case the set of distribution functions ρ(q, p, N) (specifying the
density of the points in the phase spaces of N -particle systems and the distribution of
systems with different values of N in the ensemble) or in the quantum case the appro-
priate statistical operator ρ̂ (this will require introducing first the appropriate Hilbert
space). This can be done by considering the system and its surrounding (the reservoir
of heat and of N) as a macroscopically isolated supersystem and by associating with it
the microcanonical ensemble. We will derive in this way first the probability distribution
of energy and of the number of particles in the system of interest, because this (joint)
distribution is independent of wheter the problem is treated within classical or quantum
statistical mechanics.

Grand Canonical Ensemble joint energy-particle number distribution
Thus we assume that the real supersystem consists of a big reservoir weakly interacting
with the system of interest and that particles (molecules) which are treated as indestruc-
tible (or the quantity which is conserved) can be exchanged between the system and the
reservoir. The entire supersystem is macroscopically isolated and characterized by the
total energy Etot (with some uncertainty ∆E) and the total number of particles Ntot (to-
tal value of the conserved quantity; if this can assume continuous values one has to also
assume that it too is fixed up to some uncertainty). The corresponding microcanonical
ensemble representative for the real physical supersystem consists of N (N → ∞ in the
limit) absolutely isolated supersystems composed of the reservoir and the system; it is
however essential that in this ensemble the particles (the conserved quantity) and energy
are not allowed to be exchanged between the reservoir and the system (the reservoir and
the system are separated by completely isolating walls): the total energy Etot of the su-
persystem and its total number Ntot of particles are distributed between the system and
the reservoir in all possible ways and - in agreement with the principle of a priori equal
probabilities - all microstates of the supersystem characterized by a concrete distributions
of Etot and Ntot have the same statistical weight. According to the rules of the probability
theory the probability ρE(N,E)dE that there are N particles in the system (and Ntot−N
particles in the reservoir) and that its energy is between E and E + dE is given by the
relative number of supersystems in the ensemble realizing this partition that is, because
of a priori equal probabilities, by the ratio of the number of microstates realizing this
situation to the total number of all microstates of the entire supersystem (the subscripts
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“res” and “sys” refer to the reservoir and the system, respectively)

ρE(N,E) dE = Const. ωsys(E,N)ωres(Etot − E, Ntot −N)∆E dE ,

where

Const.−1 =

Ntot
∑

N=0

∫ Etot

0

dE ωsys(E,N)ωres(Etot − E, Ntot −N)∆E .

The quantity ωres(Etot − E, Ntot − N) ∆E is however directly related to the entropy of
the reservoir treated as a macroscopically isolated system with energy Etot − E and the
number Ntot −N of particles. Thus

ρE(E,N) ∝ dE ωsys(E,N) exp

{

1

kB
Sres(Etot −E, Ntot −N)

}

,

and, upon expanding this entropy to the first order in E and N (the justification of trun-
cating the expansion being essentially the same as in the case of the canonical ensemble),
taking the limit of infinitely large reservoir (and therefore, implicitly letting Etot and Ntot

to tend to infinity with the ratio Etot/Ntot kept constant - in this way the constructed
distribution ρE(E,N) extends to an arbitrarily big number N of particles and arbitrarily
large energies E of the system) and normalizing the distribution anew (to correct for
the inessential change in its tails introduced by dropping the higher order terms of the
expansion), one obtains the distribution

ρE(E,N) = Const. ωsys(E,N) exp

{

− 1

kBT
E +

µ

kBT
N

}

, (315)

in which T and µ are to be identified with the temperature and the chemical potential of
the reservoir and

Const.−1 =

∞
∑

N=0

∫ ∞

0

dE ωsys(E,N) exp

{

− 1

kBT
E +

µ

kBT
N

}

,

The mean number of particles in the system and/or its mean energy as well as the fluctu-
ations of these quantities and their correlations can now be computed using directly the
distribution (315).

Classical phase space distribution
The corresponding classical distribution functions ρ(q, p, N) of the Grand Canonical En-
semble representative for the system in thermal and material contact with its surrounding
(necessary for instance to compute mean values of quantities other than energy and par-
ticle number) is derived by marginalizing (in the statistical sense) the distributions ρNmicro

corresponding to N particles in the system (and Ntot −N in the reservoir) of the super-
system’s microcanonical ensemble

ρNmicro =

{

Const., if Etot ≤ H
(N)
sys + H

(Ntot−N)
res ≤ Etot +∆E

0 , otherwise
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in which Const.−1 = Γ(Etot, Vres, Vsys, Ntot,∆E) is given by

Ntot
∑

N=0

∫

dΓ(N)
sys

∫

dΓ(Ntot−N)
res θ(Etot +∆E − H

(N)
sys − H

(Ntot−N)
res ) θ(H (N)

sys + H
(Ntot−N)
res −Etot) ,

with respect to the variables of the reservoir. That is,

ρ(q, p, N) = Const.

∫

Etot−H
(N)
sys ≤H

(Ntot−N)
res ≤Etot+∆E−H

(N)
sys

dΓ(Ntot−N)
res

= Const.× Γres(Etot − H
(N)
sys , Vres, Ntot −N,∆E) .

This again is proportional to the exponential of the reservoir’s entropy (1/kB)Sres(Etot −
H

(N)
sys , Vres, Ntot − N), so upon expanding to the first order, taking the limits Etot → ∞,

Ntot → ∞ with the ratio Etot/Ntot kept constant and re-adjusting the normalization one
arrives at the final result

ρ(q, p, N) =
1

Ξstat
exp

{

− 1

kBT

(

H
(N)(q, p)− µN

)

}

, (316)

in which the Grand Canonical Ensemble statistical sum Ξstat(T, V, µ) (in case only the
volume work can be done on the system in question) is given by

Ξstat =
∞
∑

N=0

∫

dΓ
(N)
(q,p) exp

{

− 1

kBT

(

H
(N)(q, p)− µN

)

}

(317)

=
∞
∑

N=0

eµN/kBT

∫

dΓ
(N)
(q,p) exp

(

−H
(N)(q, p)/kBT

)

≡
∞
∑

N=0

eµN/kBT Zstat(T, V,N) .

The quantity z ≡ exp(µ/kBT ) is frequently called activity. Using the formula (296) the
statistical sum Ξstat of the Grand Canonical Ensemble can be also written in the form

Ξstat =
∞
∑

N=0

eβµN
∫

dE ω(E,N) e−βE , (318)

in which ω(E,N) is the N -particle system energy density. The last expression for Ξstat

in (317) as well as the formula (318) will be valid also within the quantum version of
the grand canonical ensemble. Moreover, the comparison with the system’s joint energy-
particle number distribution (315) shows that the normalization factor denoted “Const.”
in the latter formula is precisely equal 1/Ξstat.

One can now use the entropy golden formula (285) to relate the statistical sum Ξstat

to the appropropriate thermodynamical potential:

S = −kB ln ρ = −kB
∞
∑

N=0

∫

dΓ(N) ρ(q, p, N) ln ρ(q, p, N)

=
1

T

∞
∑

N=0

∫

dΓ(N) ρ(q, p, N)
(

H
(N)(q, p)− µN

)

+ kB ln Ξstat .
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Identifying the first term on the right hand side with E/T , the second one with µN/T
and rearranging the formula one obtains (we denote E by U and drop the bar on N)

−kBT ln Ξstat(T, V, µ) = U − TS − µN . (319)

Thus, the Grand Canonical Ensemble partition function is related to the thermodynamical
potential (151)

Ω(T, V, µ) = U − TS − µN = −V p(T, µ) . (320)

(The last form follows from extensiveness - see Lectures VII and VIII.) It is given as a
function of its natural variables and contains, therefore, the complete information about
the system’s thermodynamics. Of course, if additional reversible works can be done on the
system, for instance if the system has magnetic properties and is placed in an external
magnetic field H, the function −kBT ln Ξstat(T, V,H, µ) is the appropriate thermody-
namical potential Φ = U − TS −H ·M− µN (provided we continue not to include the
interaction of the system magnetization with the external field into internal energy).

Fluctuations of the number of particles
Before we embark ourselves in developing the mathematical formalism necessary to discuss
the quantum version of the Grand Canonical Ensemble, let us estimate the magnitude of
fluctuations of the number of particles in a simple system (a fluid, for instance). Since
the distribution (315) which is sufficient to compute it is independent of whether one
works within classical or quantum ensembles (it must follow within both approaches),
one can use for this purpose the formula (317) obtained so far using the classical version
of the ensemble. Using this formula the mean number of particles in the system can be
computed as (β ≡ 1/kBT )

N =
1

Ξstat

∞
∑

N=1

N eβµN Zstat(T, V,N) =
1

β Ξstat

∂

∂µ

∞
∑

N=1

eβµN Zstat(T, V,N) =
1

β

∂

∂µ
ln Ξstat .

To compute the mean quadratic fluctuation σ2
N = (N −N)2 = N2 − N

2
one uses the

standard trick and writes

N2 =
1

Ξstat

∞
∑

N=1

N2 eβµN Zstat(T, V,N) =
1

β Ξstat

∂

∂µ

∞
∑

N=1

N eβµN Zstat(T, V,N)

=
1

β Ξstat

∂

∂µ

(

ΞstatN
)

=
1

β

∂N

∂µ
+
N

β

∂

∂µ
ln Ξstat .

(In the penultimate step the factor Ξstat/Ξstat has been inserted between the derivative

and the summation sign). Since the last term is just N
2
, one arrives at the result

σ2
N = kBT

(

∂N

∂µ

)

V,T

(321)
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In the last formula the mean N has been identified with the thermodynamical variable N .
To bring this result to a more informative form, one imagines that N = N(T, V, p(T, µ))
to write it as

σ2
N = kBT

(

∂N

∂p

)

V,T

(

∂p

∂µ

)

T

.

One can now use the Gibbs-Duhem differential relation (161) but now with s and v
interpreted as quantities per particle

dµ = −s dT + v dp ,

which implies that at constant T the derivative of p with respect to µ is 1/v. Furthermore,
since the first derivative is taken at constant volume, one can write it as the derivative of
1/v ≡ N/V , instead of the derivative of N :

σ2
N = kBTV

(

∂

∂p

1

v

)

T

1

v
= −kBT

V

v3

(

∂v

∂p

)

T

=
kBT

v2
kT V =

N

v
kBT kT . (322)

Thus, the mean quadratic fluctuation of the number of particles in the ensemble is pro-
portional to the system’s isothermal compressibility kT and the volume V . Hence, in
normal circumstances σ2

N ∝ N (because V ∝ N) and the relative fluctuation
√

σ2
N/N

is tiny being of order 1/
√
N , in agreement with the general considerations of Lecture X

based on the principle of statistical independence. The number of particles in the system
is therefore, practically equal to the mean and the results obtained by applying the Grand
Canonical Ensemble to the system are practically the same as would be the ones obtained
using the Canonical Ensemble in which the number of particles is strictly fixed. The two
ensembles are from the practical point of view equivalent as far as the predictions are con-
cerned (but may be not equivalent as far as the computational difficulties are concerned
- this is why using the Grand Canonical Ensemble may be preferred). Thus, going over
to the Grand Canonical Ensemble is yet another application of the same general idea: to
keep fixed in the system the value of a quantity which is strictly conserved by the dy-
namics (not only by the interactions which are explicitly taken into account in statistical
mechanics computations but also by those which are so weak that can be neglected form
the practical point of view but in fact ensure establishing equilibrium), one imagines it
being exchanged between the system and an (infinitely) large reservoir at an appropriate
chemical potential of this quantity. By controling this chemical potential one controls the
mean value of the quantity of interest in the system. If the fluctuations of this quantity
(quantified by its mean quadratic fluctuation and, perhaps, other moments of its prob-
ability distribution) in this generalized setting are small, the results should agree with
those obtained withn the approach in which the value of this quantity in the system is
strictly fixed.

The two approaches (the one using the canonical ensemble and the one using the
grand ensemble) cesse however to give the same result in some special situations: near
the critical point of a fluid kT becomes very large and diverges at the critical point; the
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fluctuations of the number of particles in the system (think of a small subvolume of a
fluid enclosed in a large container as the system) then strongly fluctuates and this is
reflected in strong fluid density fluctuations. This is responsible for the phenomenon of
the so-called critical opalescence - the fluctuations of the fluid occur on all length scales
and all wavelength of light directed onto the fluid are strongly scattered by the density
fluctuations.

It is instructive to compute the particle number fluctuations using the distribution
(315) integrated over energy:

PN(N) =

∫

dE ρE(E,N) =
1

Ξstat
eβµN Zstat(T, V,N)

=
1

Ξstat

exp{−β(F (T, V,N)− µN)} .

Since in normal conditions (i.e. not close to a critical point) the distribution PN(N) should
be extremely sharply peaked at N∗ which is practically equal to N , one can expand the
exponent in the taylor series around N∗ defined by the condition d(F −µN)/dN = 0. The
second derivative of F which gives the coefficient of the first nontrivial term of this series
(the zeroth order term combines with the normalization factor of PN(N) and the first
order term vanishes) can be computed by writing F (T, V,N) = Nf(T, v) ≡ Nf(T, V/N):

∂2F

∂N2
= 2

∂f(T, v)

∂N
+N

∂2f(T, v)

∂N2
=
v2

N

∂2f

∂v2
=

v

N

1

kT
.

After the expansion of the exponent in the distribution PN(N) is truncated at the second
term, the summation over N replaced by integration over the entire real N -axis (in view
of the shape of the distribution this should introduce only a negligibly small error) and
the normalization factor readjusted, the result (322) is readily recovered.

On the other hand if (in the limit of a large system) the difference between the re-
adjusted normalization factor of the truncated distribution PN(N) and the original one,
1/Ξstat is disregarded, one can write

Ξstat = e−β(F (T,V,N∗)−µN∗)

∫

dN exp

{

− 1

2σ2
N

(N −N∗)
2

}

,

which, after the (gaussian) integral is evaluated, gives the relation

ln Ξstat = −β(F (T, V,N∗)− µN∗)−
1

2
ln(2πσ2

N) .

Since the first bracket on the right hand side is of order N∗, while the last term - of
order lnN∗, in the thermodynamic limit one obtains in this way another justification
(which does not use the “golden formula” for entropy) of the formula (319) central to all
thermodynamical applications of the Grand Canonical Ensemble.
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Quantum Grand Canoncal Ensemble
As has been explained, it is the quantum case in which the transition to the Grand
Canonical Ensemble is of great help even in the situations in which the number of parti-
cles (molecules) in the system is really fixed because the Canonical Ensemble statistical
sum is intractable exactly even in the simplest case of mutually noninteracting particles
(elements). One then imagines that the system is coupled with a reservoir with which it
exchanges energy and particles and constructs a statistical ensemble corresponding to this
situation. If the fluctuations of the number of particles in the system around the mean

value N are negligibly small (typically suppressed by the factor 1/N
1/2

) all thermody-
namical results derived using the Grand Canonical Ensemble are practically the same as
those which would be obtained if the Canonical Ensemble partition function Zstat could
be computed exactly.

The microcanonical ensemble corresponding to the system of interest exchanging mat-
ter and energy with a reservoir consists of a set of N (with the limit N → ∞ implicitly
understood) absolutely isolated supersystems each consisting of a copy of the system
and of the reservoir which are both microscopically isolated and closed i.e. do not
exchange between one another particles or energy. Still the distribution of the super-
system’s total energy Etot and of its total number Ntot of particles between the system
and the reservoir follows the principle of a priori equal weights (because it is intended
to reflect the situation of the real system which does exchange energy and matter with
the reservoir). Owing to this, for each particular partition of Ntot into Nr and N it is

possible to introduce two separate Hilbert spaces H(N)
sys and H(Nr)

res spanned respectively
by the vectors192 |l1, . . . , lN〉 and |L1, . . . , LNr〉 defined in (307). In each of the Hilbert

spaces H(N)
sys of the system (Hilbert spaces H(Nr)

res of the reservoir) acts the corresponding

Hamiltonian Ĥ
(N)
sys of the system consisting of N particles (the corresponding Hamilto-

nian Ĥ
(Nr)
res of the reservoir consisting of Nr = Ntot −N particles). We assume here that

each of the Hamiltonians, Ĥ
(N)
sys of the N -particle system and Ĥ

(Nr)
res of the Nr-particle

reservoir can be split into an interaction term and a free part which has the form of
the sum (309) of the single particle Hamiltonians and that the vectors |l1, . . . , lN〉 and
|L1, . . . , LNr〉 are the eigenvectors of the free parts of the respective Hamiltonians of the
system and of the reservoir.193 It is clear that because the real system is viewed as ex-
changing particles with the reservoir, both types of vectors must be either symmetric (if
exchanged particles are bosons) or antisymmetric (if the exchanged particles are fermions)
in their labels l1, . . . , lN and L1, . . . , LNr . These vectors can also be written in the occu-
pation number representation discussed in Lecture XII. We do not assume here that the

192If particles are bosons, additional factors ensuring their proper normalization should be included in
those vectors in which some of the labels in the set l1, . . . , lN (in the set L1, . . . , LNr

) assume the same
values.

193Since this is to model the real supersystem in which one kind of particles are exchanged between the

system and the reservoir, it is clear that the Hamiltonians Ĥ
(N)
sys and Ĥ

(Nr)
res are built out of the same

the single-particle Hamiltonians Ĥ (1) and the structures of the Hilbert spaces H(N)
sys and H(Nr)

res are the
same - they differ only in the number of copies of the single-particle spaces H(1). We do not however

need to assume that the interaction terms of the Hamiltonians Ĥ
(N)
sys and Ĥ

(Nr)
res are of the same sort.
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Hamiltonians Ĥ
(N)
sys and Ĥ

(Nr)
res correspond to nointeracting systems. Still, in each of the

separate Hilbert spaces Hsys
(N) of the system (Hres

(Nr)
of the reservoir) we can, as is always

possible when quantum systems are not of infinite spatial extent, introduce a basis |n(N)〉
(|n(Nr)

res 〉) formed by proper (i.e. normalizable) eigenvectors of the Hamiltonian Ĥ
(N)
sys (of

the Hamiltonian Ĥ
(Nr)
res ). If these Hamiltonians are not trivial, the eigenvectors |n(N)〉

(|n(Nr)
res 〉) are built as, perhaps very complicated, linear combinations of the basis vectors

|l1, . . . , lN〉 (|L1, . . . , LNr〉). Only if the elements (particles) of the system (reservoir) are

mutually noninteracting are the Hamiltonian eigenvectors |n(N)〉 (|n(Nr)
res 〉) simply identical

with the vectors |l1, . . . , lN〉 (|L1, . . . , LNr〉). To each member (consisting of a copy of the
system and of a copy of the reservoir) of the ensemble there corresponds therefore the

Hilbert space H(N)
sys ⊗H(Nr)

res which can be viewed as spaned either by the vectors

|l1, . . . , lN〉 ⊗ |L1, . . . , LNr〉 ,

or, equivalently, by the vectors |n(N)〉 ⊗ |nNr
res〉. It is this second basis in terms of which

the assignement of the statistical weight to the supersystems of the ensemble is given
according to the principle of a priori equal probabilities by introducing the set of Ntot

statistical operators ρ̂
(N,Nr)
Micro , each acting in one of the product Hilbert spaces Hsys

(N)⊗Hres
(Nr)

and having the form

ρ̂
(N,Nr)
Micro = Const.

∑

n(N), n
(Nr)
res

Etot ≤ Esys

n(N) + Eres

n
(Nr)
res

≤ Etot +∆E

(

|n(N)〉 ⊗ |n(Nr)
res 〉

) (

〈n(Nr)
res | ⊗ 〈n(N)|

)

.

in which

Const.−1 =
Ntot
∑

N=0

(

number of states |n(N)〉 ⊗ |n(Nr)
res 〉

with Etot ≤ Esys

n(N) + Eres

n
(Nr)
res

≤ Etot +∆E

)

. (323)

The set of the statistical operators ρ̂(N) (each acting in the N -particle Hilbert space H(N)
sys

of the Grand Canonical Ensemble pertaining to the system alone is now obtained by
taking traces of the operators ρ̂

(N,Nr)
Micro over the Hilbert spaces H(Nr)

res . Each such a trace

gives the sum of the operators |n(N)〉〈n(N)| (acting in H(N)
sys ) weighted with the number of

microstates of the reservoir corresponding to the number Nr = Ntot −N of particles in it
and its energy in the interval (Etot − Esys

n(N) , Etot +∆E − Esys

n(N)). The resulting operator
can be, therefore, written in the form

ρ̂(N) ∝
∑

n(N)

|n(N)〉〈n(N)| exp
{

1

kB
Sres(Etot − Esys

n(N)
, Ntot −N)

}

.

Expanding now as usually the argument of the exponent

Sres(Etot −En(N)
, Ntot −N) = Sres(Etot, Ntot)−

1

T
Esys

n(N)
+
µ

T
N + . . . ,
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and discarding higher order terms of the expansion on account on the fact that they
vanish in the limit of infinitely big reservoir (Ntot → ∞, Etot → ∞, Etot/Ntot fixed), or
modify the distribution insignificantly if the reservoir is very large but not really infinite,
one obtains

ρ̂(N) ∝ eµN/kBT
∑

n(N)

e
−Esys

n(N)
/kBT |n(N)〉〈n(N)| ≡ eµN/kBT e−Ĥ

(N)
sys /kBT . (324)

In this way the statistical operator ρ̂(N) acting H(N)
sys is cast in the operator form, indep-

dendent of the particular choice of the basis in the N -particle Hilbert space. The constant
of proportionality, the Grand Canonical statistical sum Ξstat, is given by

Ξstat =
∞
∑

N=0

eµN/kBT
∑

n(N)

e
−Esys

n(N)
/kBT

=
∞
∑

N=0

eµN/kBT Tr
H

(N)
sys

(

e−Ĥ
(N)
sys /kBT

)

≡
∞
∑

N=0

eµN/kBT Zstat(T, V,N) . (325)

Again, the trace in the penultimate formula for Ξstat is independent of the choice of
the basis in H(N)

sys and can, for instance, be computed using the basis |l1, . . . , lN〉 which

are eigenvectors of the free part of the Hamiltonian Ĥ
(N)
sys . As in the classical case,

the sum Ξstat(T, V, µ), being related to the thermodynamic potential (we assume the
system is simple) Ω(T, V, µ) by the formula (319), contains the complete thermodynamical
information about the considered system. All other characteristics of the system, like
mean values of different observables O, their fluctuations around the mean values, their
correlations, etc. can be computed using the statistical operator (324).

Formulation in the “big” Hilbert space
It is practical to advance the mathematical formalism a little bit by introducing the “big”
Hilbert space constructed as the direct sum

H = ⊕∞
N=0H(N)

sys , (326)

of N -particle Hilbert spaces of the system. The Hilbert space H(0)
sys corresponding to zero

particles is here an artificially constructed one-dimensional vector space spanned by a
single vector |void〉. General vectors |Ψ〉 of H have, of course components in all subspaces

H(N)
sys

|Ψ〉 = c0|void〉+
∞
∑

N=1

cN |Ψ(N)〉 ,

where each vector |Ψ(N)〉 is a linear combination of the basis vectors (307) and the scalar
product in H is introduced naturally by declaring that 〈Ψ(N)|Ψ(N ′)〉 = 0 if N 6= N ′.
It is the big Hilbert space H in which the creation and annihilation operators can be
introduced. With each single-particle state |l〉 (belonging to H(1)

sys) a pair of the conjugated
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to one another operators a†l (the creation operator) and al (the annihilation operator) is
associated and their action is defined by194

a†l |l1, . . . , lN〉 = |l, l1, . . . , lN〉 ,

al|l1, . . . , lN〉 =
N
∑

j=1

ζj−1δl,lj |l1, . . . , (no lj, . . . , lN〉 , (327)

where ζ = 1, if the particles are bosons and −1, if they are fermions. These definitions
must be supplemented by the rule al|void〉 = 0. Thus a†l maps H(N)

sys into H(N+1)
sys and al

maps H(N)
sys into H(N−1)

sys (this is why the introduction of the big Hilbert space is necessary).
It can be shown that the creation and annihilation operators satisfy the commutation rules

[al′ , a
†
l ] = δl′l , [al′ , al] = [a†l′ , a

†
l ] = 0 , (328)

if the particles are bosons and the anticommutation rules

{al′ , a†l } = δl′l , {al′, al} = {a†l′, a†l } = 0 , (329)

where {·, ·} is the anticommutator, if the particles are fermions. In the occupation number
representation |n1, n2, . . .〉 of the basis vectors (307) the action of the bosonic operators
takes the familiar (at least to some) form

a†l |n1, . . . , nl, . . .〉 =
√
nl + 1 |n1, . . . , nl + 1, . . .〉 ,

al |n1, . . . , nl, . . .〉 =
√
nl |n1, . . . , nl − 1, . . .〉 . (330)

The action of the fermionic operators in this representation is less familiar

a†l |n1, . . . , nl, . . .〉 =
{

0 if nl = 1
η|n1, . . . , 1, . . .〉 if nl = 0

al |n1, . . . , nl, . . .〉 =
{

η|n1, . . . , 0, . . .〉 if nl = 1
0 if nl = 0

. (331)

η is here some phase factor which we will not need (see my Lectures on Quantum Field
Theory).

Usefulness of the introduced formalism stems from the fact that any operator acting in
the individual N -particle Hilbert spaces H(N)

sys , like the free Hamiltonian of the form (309)
as well as operators representing interactions (binary or even multibody) of particles can
be expressed through the set of the creation and annihilation operators (associated with
any basis |l〉 of the single-particle space H(1)) and at the same time and this promotes
it to the operator acting in the entire big space H (326). In particular, introducing the
particle number operator acting in the big Hilbert space H by the formula

ˆN =

∞
∑

N=0

N 1̂(N) =
∑

l

a†lal , (332)

194Actually the action of al follows form the action of a†l and the requirement that al be the Hermitian

conjugate of a†l in the sense of the definition (244).
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where 1̂(N) are unit operators of the N -particle Hilbert spaces and expressing Ĥ (N)

through the creation and annihilation operators it is possible to write the statistical
operator of the Grand Canonical Ensemble in the concise form (we drop the subscript
“sys”)

ρ̂ =
1

Ξstat
exp
{

−
(

Ĥ − µN̂

)

/kBT
}

, (333)

and the statistical sum Ξstat as the single trace

Ξstat = TrH

(

e−(Ĥ −µ ˆN )/kBT
)

, (334)

over the entire big space H. In fact, there is a subtle point here related to the fact that
the big Hilbert space H is nonseparable and different bases |l〉 of one-particle spaces H(1)

may lead to different results - the art then is to choose the right basis of H in which to
perform actual computations corresponding to the real situation.

This can be illustrated most simply on the example of N distinguishable spins s = 1
2

(forming e.g. a D-dimensional lattice). The natural basis of states of such a system
is represented by the vectors (we assume spins are somehow ordered from 1 to N)
|σ1, . . . , σN 〉 = |σ1〉 ⊗ . . .⊗ |σN〉 which are tensor products of the state-vectors |σi〉 = |±〉
forming a basis of the single-spin space. In the space of a single spin one can however
equally well take as the basis the vectors |σi〉θ: |+〉θ = cos(θ/2)|+〉 + sin(θ/2)|−〉 and
|−〉θ = − sin(θ/2)|+〉+cos(θ/2)|−〉 with an arbitrary angle θ corresponding to a different
orientation of the spin quantization axis.195 If the vectors |σ1, . . . , σN〉θ = |σ1〉θ⊗. . .⊗|σN 〉θ
are taken as the basis of the N -spin Hilbert space, in the limit N = ∞ all vectors of the
basis |σ1, . . . σN 〉θ will have zero scalar products with all vectors of the basis |σ1, . . . , σN 〉.
For instance

θ〈+, . . . ,+|+, . . . ,+〉 = lim
N→∞

(cos θ/2)N = 0 ,

etc., if θ 6= 0. Therefore in the limitN = ∞ no one vector of the first basis can be expressed
as a linear combination of vectors of the second one (and the other way around).

To explain the implications of this, consider a system of N spins interacting with
one another which at low temperatures exhibits (because of the interactions of spins)
spontaneous (that is, in the absence of any extrnal magnetic field) magnetization, i.e. a
nonzero mean value of the total spin S, which formally should be obtained as196

Sa = Tr
(

ρ̂ Ŝa
)

, Ŝa =

N
∑

i=1

~

2
σa
i , a = x, y, z , (335)

195Of course, one could also take different quantization axes for different spins.
196We chose to work within the Canonical Ensemble here. The problem we consider here is not specific to

the Grand Canonical Ensemble. It arises whenever the number of dynamical degrees of freedom becomes
infinite.

224



with ρ̂ = Z−1
stat exp(−Ĥ /kBT ), where Ĥ is the invariant (by assumption) with respect to

rotations Hamiltonian of N spins and Zstat = Tr exp(−Ĥ /kBT ). However, as long as N is
finite, the values of Sa/N given by formula (335) are zero because of the assumed rotational
invariance. Of course, in Nature N is also finite, but the residual interactions with the
surrounding, not accounted (by the very definition of the ensemble!) in the Hamiltonian

Ĥ used for statististical physics computations, always break the rotational invariance of
the real system. Thermal fluctuations, necessarily present, do tend to erase the mean
value of the total spin but because the system is large (macroscopic), the probability that
they move simultaneously (almost) all spins - so that the change of the total spin of the
system is done at low energy cost (gradual fliping of different spins would cost a large
amount of energy which the system - if not adiathermally isolated in the macroscopic sense
- would have to absorb from the surrounding) - from a configuration determined by a first
random external perturbation (or rather by the way the real system has been prepared)
grows with N , the flip of the total spin is extremely improbable and never happens
during the measurement of the magnetization. This is the reason why the measured
magnetization of the real system is nonzero (if the temperature is suffeciently low). To
reflect this state of affairs in the statistical approach, one takes the thermodynamic limit
selecting first a particular basis |σ1, . . . σN〉θ; in the limit N = ∞ this has the effect that
the formula (335) gives a nonzero magnetization precisely owing to the orthogonality of all
states |σ1, . . . σN 〉θ′ with θ′ 6= θ. This means that the trace in this formula effectively gets
restricted to only one of infinitely many orthogonal Fock spaces which in the limit N = ∞
are spanned by the bases |σ1, . . . σN 〉θ with different angles θ. The direction of the mean
magnetization is in this way selected “by hands”, just by taking the thermodynamic limit
using one particular out of many possible bases.197 This can be improved by placing the
system in a constant magnetic field which singles out a direction in space and therefore
makes the energy cost of configurations with the total spin not aligned with the magnetic
field very high, infinite in the limit N = ∞, and this suppresses their contributions to
the trace in (335). In this way the applied field automatically selects one particular base
|σ1, . . . σN 〉θ. In this approach the magnetization is nonzero even at finite N because of
the external field breaking explicitly the rotational invariance and he limit of zero external
magnetic field is to be taken after the thermodynamic limit N → ∞ (the thermodynamic
and the N → ∞ limits do not commute).

Nointeracting particles. (Mythical quantum statistics)
To get acquainted with the formalism let us first consider a system consisting of mutually
noninteracting particles (molecules). The Hamiltonian of the N -particle system of the
form (309) and the particle number operator (332) when written in terms of the creaction
and annihilation operators al and a†l associated with the eigenvectors |l〉 of the single

197It is interesting to remark that if the system is treated within the Microcanonical Ensemble (the real
system is treated as macroscopically isolated) obtaining a nonzero value of the total spin statistically
requires breaking the “ergodicity” that is, only microstates leading to one direction of the total spin
are ascribed a nonzero probability; microstates corresponding to opposite total spin orientation must be
excluded “by hands”.
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particle Hamiltonian Ĥ (1) (this Hamiltonian may include also single-particle interaction
with e.g. an external electric or magnetic field or of an external biding potential) take
the forms (which, as said, promote them to operators acting in the entire big space H)

Ĥ =
∑

l

εl a
†
lal ,

ˆN =
∑

l

a†lal . (336)

The grand statistical sum can in this case be easily computed using in the formula
(334) the occupation number representation of the common eigenvectors (which form, at
least formally - this is a somewhat subtle issue - the basis of H) of the operators (336)

Ξstat =

∞
∑

N=0

nmax
∑

n1=0

nmax
∑

n2=0

. . . δN,
∑

l nl
〈n1, n2, . . . | exp

(

−β
∑

l

(εl − µ)a†lal

)

|n1, n2, . . .〉 ,

where nmax = ∞, if the considered particles (molecules) are bosons and nmax = 1, if they
are fermions. The sum over N effectively removes the troublesome Kronecker deltas and

Ξstat =
nmax
∑

n1=0

nmax
∑

n2=0

. . . 〈n1, n2, . . . | exp
(

−β
∑

l

(εl − µ)a†lal

)

|n1, n2, . . .〉 .

Therefore,

Ξstat =
∏

l

(

nmax
∑

n=0

e−β(εl−µ)n

)

=







∏

l[1− exp(−β(εl − µ)]−1, bosons

∏

l[1 + exp(−β(εl − µ)], fermions
. (337)

Owing to the Pauli exclusion principle (built in into the formalism), the sum in the bracket
reduces, if the particles are fermions, to two terms only. The analogous sum in the case
of free bosons requires instead performing the summation of the infinite geometric series.
Its convergence therefore imposes on the chemical potential µ the condition

µ < minl(εl) bosons. (338)

Using the statistical operator one can also compute the mean occupation nl of a single-
particle state |l〉. The observable nl is represented by the operator a†lal and

nl =
1

Ξstat
Tr
(

e−β(Ĥ −µN̂ ) a†lal

)

.

In the occupation number representation this reduces to

nl =
1

Ξstat

(

nmax
∑

nl=0

nl e
−β(εl−µ)nl

)

∏

l′ 6=l





nmax
∑

nl′=0

e−β(εl−µ)nl′



 .

226



All the sums of this product, except the first one, cancel between the numerator and the
denominator and the result are the celebrated Bose-Einstein and Fermi-Dirac distribu-
tions:198

nl =
[

e(εl−µ)/kBT − 1
]−1

bosons,

nl =
[

e(εl−µ)/kBT + 1
]−1

fermions. (339)

Many quantities characterizing equilibrium states of noninteracting systems can be
expressed directly in terms of these distributions. For instance, the potential Ω =
−kBT ln Ξstat can be written (c.f. (337)) as

Ω = −kBT
∑

l

ln(1 + nl) bosons,

Ω = kBT
∑

l

ln(1− nl) fermions, (340)

and the mean energy as

U = E = TrH

(

ρ̂Ĥ
)

=
∑

l

nl εl , (341)

(bosons and fermions alike). We leave the calculations of entropy of the system (S =
−(∂Ω/∂T )V,µ) in terms of the mean occupation numbers as well as the calculation of the
mean quadratic fluctuation of the occupation number nl as good exercises.

Gas of noninteracting particles in the quantum regime.
We will now apply the Grand Canonical Ensemble to the system of mutually noninter-
acting particles (bosons or fermions).

As usually we assume that N particles occupy the volume V = L3 and that the single-
electron Hilbert space is spanned by the vectors |l〉 = |p, σ〉 which are eigenvectors of the

single particle Hamiltonian Ĥ (1) and correspond to its eigenvalues (energies of individual
particles) εp = p2/2m (independent of the spin label σ), where p = (2π~/L) n, with
n being three-vectors of integer components. The label σ runs over gs = 2s + 1 values
−s, . . . ,+s, where s is half-integer if the particles are fermions (s = 1

2
and gs = 2 if they

are electrons) and integer, if they are bosons. The statistical sum is given by the formulae
(337) in which now the products over l stand for the products over p and σ. After the
standard replacement

∑

p,σ

→ V

(2π~)3

∑

σ

∫

d3p ,

198The Bose-Einstein distribution has been first derived by a polish theoretical physicist Władysław
Natanson (1864 - 1937) in 1911 with the help of the combinatoric reasoning and by appealing to the
indistinguishability of particles (L. Natanson, Physikalishe Zeitschrift 12 659, (1911)). I thank prof. K.
Byczuk and prof. P. Sułkowski for recalling this fact.
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the thermodynamical potential Ω(T, V, µ) = U − TS − µN = −kBT ln Ξstat(T, V, µ) takes
the form

Ω(T, V, µ) = ±kBT gsV
∫

d3p

(2π~)3
ln
(

1∓ z e−βεp
)

,

in which z ≡ exp(µ/kBT ) = exp(βµ), is the activity and the upper and lower signs
correspond to bosons and fermions respectively. The potential Ω(T, V, µ), which is given in
this way as a function of its natural variables, encodes in it the complete thermodynamical
(i.e. not taking into account statististical fluctuations) information about the system.

Differentiating the (minus) potential Ω with respect to µ at fixed T and V one obtains
the mean number N of particles in the system (since this is identified with the thermody-
namic quantity, in what follows we will suppress the bar over it). The same quantity can
be however obtained as the sum over l (replaced by the integral) of the mean occupation
numbers nl given by the celebrated formulae (339). Yet one more quantity of interest
which can be obtained by appropriately combining derivatives of the potential Ω(T, V, µ)

but is much easier obtained as the mean Tr(ρ̂ Ĥ ) over the ensemble which directly leads
to the expression (341) is the system’s internal energy U . These three - counting also the
formula for Ω(V, T, µ) = −V p(T, µ) itself - results are most conveniently represented in
the forms

p

kBT
= ∓gs

∫

d3p

(2π~)3
ln
(

1∓ z e−βεp
)

,

N

V
≡ 1

v
= gs

∫

d3p

(2π~)3
1

z−1eβεp ∓ 1
, (342)

U

V
= gs

∫

d3p

(2π~)3
εp

z−1eβεp ∓ 1
,

(again, upper signs refer to bosons, the lower ones - to fermions). In order to express
thermodynamical quantities in the conventional way as functions of the variables T , V i
N , one has to solve the middle equation with respect to µ, that is to determine from this
equation the chemical potential as a function of T and V/N = v. This is of course not
feasible analytically199 and one has to resort to different approximations (expansions) valid
in two different regimes: one in the limit z ≪ 1, i.e. large negative chemical potential
µ (here one is interested in the corrections to the Boltzmann approximation discussed
in Lecture XII brought in by the exact accounting for the symmetry/antisymmetry of
the system’s state-vectors) and another one in the opposite regime kBT → 0 (in which
quantum effects should lead to vanishing of the system’s entropy and heat capacity).

199It is in two dimensions (in the nonrelativistic case, i.e. when εp = p2/2m), owing to the identity

1

z−1ex ∓ 1
= ± d

dx
ln
(

1∓ z e−x
)

.

One then obtains µ = kBT ln[−1 + exp(2π~2n/gsmkBT )], if particles are fermions and µ = kBT ln[1 −
exp(−2π~2n/gsmkBT )], if they are bosons; in both these formulae n is the surface density of particles.
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Some information about the system’s thermodynamics contained in the formulae (342)
(in fact in the statistical sum Ξstat) can however be extracted rigorously and we discuss
these first.

To this end, going over to integrating over the energy with the help of the rule (that
is performing the integral over the directions of the momentum p)

d3p −→ 4π
√
2m3/2 dε

√
ε , (343)

(valid as long as we treat particles as nonrelativistic), we represent the first one of the
three formulae (342) in the form

p

kBT
= ∓gs

√
2m3/2

(2π~)3
4π

∫ ∞

0

dε
√
ε ln
(

1∓ z e−βε
)

,

and integrate by parts:

p

kBT
= ∓gs

√
2m3/2

(2π~)3
4π

{

2

3
ε3/2 ln

(

1∓ z e−βε
)

∣

∣

∣

∣

∞

0

∓ 2

3

∫ ∞

0

dε ε3/2
β

z−1 eβε ∓ 1

}

.

The boundary term vanishes: in the lower limit because of the factor ε3/2 and in the
upper one, because the expression under the logarithm approaches unity (exponentially
fast). After taking into account that β = 1/kBT (the factors 1/kBT on both sides of
the equality can therefore by removed) one obtains for the pressure the expression in
which the integral on the right hand side is identical with the integral obtained on the
right hand side of the third of the formulae (342) after applying to it the rule (343).
Thus we rigorously (without making any approximations or expansions) arrive at the
conclusion that the quantum gas of noninteracting nonrelativistic particles, whether they
are fermions or bosons,200 satisfies the relation

p V =
2

3
U , (344)

identical with the one satisfied by the classical perfect gas that is, a gas of mutually non-
interacting structureless particles treated either according the the rules of classical statis-
tical mechanics or according to the quantum statistical mechanics but in the Boltzmann
approximation which ignores effects of the (anti)symmetrization of the state vectors.

Another result pertaining to the quantum gas of noninteracting nonrelativistic parti-
cles (bosons or fermions) which can be obtained rigorously is the equation of its adiabatic
(reversible adiathermal) change (the isentrop equation). Going over in the integral

Ω = −p V = −2

3
gs

√
2m3/2

(2π~)3
4π V

∫ ∞

0

dε
ε3/2

z−1 eβε ∓ 1
, (345)

200Actually, in the case of bosons the derivation given here is not complete for very low temperatures
because it neglects the possibility of the Bose-Einstein condensation (Lecture XIV). Still, the final result
(344) turns out to hold also in the presence of the condensation.
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to integration over the dimensionless variable x = βε ≡ ε/kBT , the potential Ω can be
written in the general form

Ω(T, V, µ) = V (kBT )
5/2f(µ/kBT ) , (346)

in which f(·) is some function of a real argument. This form makes it clear that Ω(T, V, µ)
is a homogeneous function of order 5/2 of its arguments T and µ that is, that it satisfies
the relation

Ω(λT, V, λµ) = λ5/2Ω(T, V, µ) .

From the general properties of homogeneous functions it then follows that the derivatives
of Ω(T, V, µ) with respect to T and µ, that is the entropy S and the (mean) number of
particles N , must be homogeneous functions of order 3/2 (of the same variables), and
can, therefore, be written in general in the forms

S(T, V, µ) = V (kBT )
3/2 g(µ/kBT ) ,

N(T, V, µ) = V (kBT )
3/2 h(µ/kBT ) ,

with h(·) and g(·) some functions of a real argument. Factorization of the volume V
follows in all these three cases from the formula (345) and expresses the extensiveness
of Ω, S and N . From these formulae it readily follows that in an adiabatic (reversible,
adiathermal) change in which S and N do not change, separately constant must be the
combinations µ/kBT and V (kBT )

3/2. Indeed, the entropy per particle, s = S/N , is a
function of the single variable µ/kBT only and since s stays constant, constant must also
be µ/kBT . The constancy of V (kBT )

3/2 then follows from constancy of S and N . From
(346) written in the form

p V = −V (kBT )
5/2f(µ/kBT ) = Const. V (kBT )

5/2 ,

it then follows that in such a change pV = Const.′kBT and this combined with the
constancy of V (kBT )

3/2 implies that p V 5/3 =Const., just as in the case of an adiabatic
change of a classical gas of (structureless) particles. It should be stressed that the adiabat
equation of the quantum perfect gas of nonrelativistic particles is identical with the one
of the classical perfect gas despite that201 it is neither true that its heat capacity is
independent of the temperature T nor that Cp = CV +NkB.

Corrections to the perfect gas equation of state
We now consider the regime in which z ≪ 1 (i.e. large negative chemical potential µ).
This is the limit in which the Boltzmann approximation works and leads to the perfect
gas equation of state202 p V = NkBT . We will compute the correction to this equation

201For those who still do not remember it, let us recall that the form pV κ = const. of the adiabat equation
of the classical perfect gas relies on the assumption of constancy of the its heat capacity CV ; the exponent
κ = 5/3 is then just the ratio Cp/CV , when CV = 3

2NkB (by the Meyer’s relation Cp = CV +NkB).
202Let us recall, that within classical statistical mechanics as well as within the Boltzmann approx-

imation to the quantum canonical statistical sum, this is the equation of state of any gas of mutually
noninteracting molecules, not only of the gas of structureless particles of molar heat capacity independent
of the temperature.
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of state resulting from the proper treatement of the requirement of (anti)symmetrization
of the system’s state vectors. For definiteness we will consider the gas of fermions but
the analogous steps can be applied to the equations pertaining to the gas of bosons (the
necessary auxiliary functions will be defined when we consider the phenomenon of Bose-
Einstein condensation) with the final leading correction to the equation of state differing
only by the sign.

To determine the equation of state we should solve the second one of the equations
(342) to obtain the chemical potential µ as a function of T and v and insert it into the first
equation. As already said, this can be done only by using appropriate expansions. The one
applicable in the limit |z| ≪ 1 is constructed as follows. After performing in the formulae
(342) the integrations over the directions of the momentum p one writes the expressions
remaining on the right hand sides as the integrals over the variable ξ = |p|/

√
2mkBT .

The two equations then read:

p

kBT
= gs

4π

(2π~)3
(2mkBT )

3/2

∫ ∞

0

dξ ξ2 ln
(

1 + z e−ξ2
)

,

1

v
= gs

4π

(2π~)3
(2mkBT )

3/2

∫ ∞

0

dξ ξ2
1

1 + z−1eξ2
.

“Borrowing” the factors
√
π one can rewrite these formulae as

p

kBT
= gs

(

mkBT

2π~2

)3/2

f5/2(z) , (347)

1

v
= gs

(

mkBT

2π~2

)3/2

f3/2(z) , (348)

thereby definig rigorously (using the language of quantum field theory one would say
“nonperturbatively”) two functions (f , because of fermions; analogous functions used to
work out the properties of bosons will be denoted bp(z)) f5/2(z) and f3/2(z);

f5/2(z) =
4√
π

∫ ∞

0

dξ ξ2 ln
(

1 + z e−ξ2
)

=
2√
π

∫ ∞

0

dx
√
x ln
(

1 + z e−x
)

,

f3/2(z) =
4√
π

∫ ∞

0

dξ ξ2
1

1 + z−1eξ2
=

2√
π

∫ ∞

0

dx

√
x

1 + z−1ex
.

An alternative form of f5/2(z) is203

f5/2(z) =
2

3

4√
π

∫ ∞

0

dξ ξ4
1

1 + z−1eξ2
.

In general the family of functions fp(z) is defined by the integrals

fp(z) =
1

Γ(p)

∫ ∞

0

dxxp−1 1

1 + z−1ex
=

1

Γ(p)

∫ ∞

0

dxxp−1 z e−x

1 + z e−x
. (349)

203The first form of f5/2(z) (the one with the logaritm) can be reduced to this one by integrating by
parts in the same way as in showing that p V = (2/3)U .
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It is straightforward to write their series expansions in powers of z:

fp(z) =
1

Γ(p)

∫ ∞

0

dxxp−1
∞
∑

l=1

(−1)l+1zl e−lx =
∞
∑

l=1

(−1)l+1zl
1

Γ(p)

∫ ∞

0

dxxp−1 e−lx .

Rescaling now the integration variable, i.e. setting lx = y, one arrives, using the integral
representation of Γ(p), at the result204

fp(z) =

∞
∑

l=1

(−1)l+1

lp
zl . (350)

The series converges only for |z| < 1 (for |z| ≤ 1 when p > 1), but the “nonperturbative”
definition (349) of fp(z) allows to analytically continue the series beyond its domain of
convergence.

Using the series (350) the ratio of the expressions: (347) for p/kBT and (348) for 1/v
can be easily expanded in powers of z:

p v

kBT
=
f5/2(z)

f3/2(z)
= 1 +

1

25/2
z + . . . (351)

To find the leading correction to the equation of state it suffices now to invert to the first
order the relation

1

v
= gs

(

mkBT

2π~2

)3/2

f3/2(z) = gs

(

mkBT

2π~2

)3/2

z +O(z2) ,

to determine z as a function of the variables T and v. This immediately leads to the
result (λT is the thermal wavelength)

p v = kBT

(

1 +
1

25/2gs

(

2π~2

mkBT

)3/2
1

v
+ . . .

)

= kBT

(

1 +
1

25/2gs

λ3T
v

+ . . .

)

. (352)

The pressure of the quantum perfect gas of fermions is slightly greater than that of the
classical perfect gas (at the same temperature and density 1/v): fermions do not “like”
to be close to one another which results, even in the absence of a genuine interaction, in
an effective repelling which increses the pressure. It is therefore an effect of the Fermi-
Dirac “statistics”, that is of the underlying antisymmetry of state vectors representing the
system of identical fermions.

204The first form of f5/2(z) leads, of course, to the same expansion: after expanding the logarithm

f5/2(z) =
4√
π

∞
∑

l=1

(−1)l+1

l
zl
∫ ∞

0

dξ ξ2 e−lξ2 .

the subsitution η = ξ
√
l leads to an integral which is independent of l and precisely cancels the factor

4/
√
π.
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The derivation of the leading correction to the equation of state of the perfect gas
of bosons proceeds analogously (one has only to replace the fp(z) functions by the bp(z)
ones) and gives the same correction205 as in (352) but with the opposite sign: bosons do
“like” to “gather” (especially if illegally) which results in their effective attraction (even
in the absence of a genuine interaction) which slightly decreases the pressure. This too
is the effect of the “statistics”, in this case of the Bose-Einstein one (of the symmetry of
state vectors representing systems of identical bosons).

Relativistic theories
A characteriscic feature of interactions of relativistic particles is that their number is not
conserved. Therefore the Grand Canonical Ensemble in the form presented above cannot
be applied to systems of relativistic particles. Usually however models of quantum field
theory - which are the proper framework in which to consider relativistic interactions -
predict strict conservation (in addition to energy, momentum and angular momentum) of
certain quantities, like e.g. the electric charge in the case of Quantum Electrodynamics or
isospin, strangeness, etc. in the case of Quantum Chromodynamics - the theory of strong
interactions, etc. These quantities, let denote them Qb, generally called charges, are re-
lated to symmetries of the given model. The operators representing them in the theory’s
Hilbert space are Hermitian and form a closed algebra playing the roles of symmetry gen-
erators (much in the same way as the angular momentum operators generate rotations).
Usually the symmetry generators do not commute, [Q̂b, Q̂a] 6= 0, but it is always possible
to select a subset of them, Q̂b, b = 1, . . . , r, which forms the so-called Cartan subalgebra of
mutually commuting generators. It is with the quantities represented by these operators
that one associates the set of chemical potentials µb and constructs the Grand Canonical
Ensemble representing the system in thermal contact with the heat bath with which it
exchanges also the quantities Qb, b = 1, . . . , r.

When reactions between relativistic particles are considered one has to appeal to the
Callenian concept of virtual equilibrium states in which reactions are “frozen”. It is then
possible to ascribe chemical potentials to individual types of particles. When the reactions
are next allowed, the final state is such that for every reaction i1 + i2 + . . .↔ i′1 + i′2 + . . .
which can occur between relativistic particles in the system’s way to equilibrium the
relation

µi1 + µi2 + . . . = µi′1
+ µi′2

+ . . . (353)

(obtained within the thermodynamical theory of chemical reactions) must be satisfied
where µi1 , . . . are the chemical potentials of the particles entering the reaction and µi′1

,
. . . are the chemical potentials of the particles which are products of the reaction. The
chemical potentials µi of particles of the given theory are not independent but must be
fixed by the chemical potentials µb of the absolutely conserved quantities Qb. They are
given by the relations

µi =

r
∑

b=1

qib µb , (354)

205Of course, the factor gs must be different in this case.
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which ensure, since in every reaction the sum of the charges qib of the particles defined by
Q̂b|pi, σi〉 = qib|pi, σi〉, must be conserved (because Qa are absolutely conserved quanti-
ties!), that all the relations (353) which pertain to the reactions possible (even if predicted
to occur with a very low probability!) within a given quantum field theory model, are
automatically satisfied (in a given quantum field theory model usually infinitely many
reactions are possible).

In applications of statistical mechanics to relativistic theories usually the values of the
densities nb = Qb/V of the conserved quantities are fixed (the Grand Canonical Ensemble
approach is only a technical mean to cope with their conservation). In terms of the
densities ni of the particles of the sort i they are given by

nb =
∑

i

ni qib . (355)

These are then the relations which in principle allow to determine the r chemical potentials
µb, and, through (354), also the dependent chemical potentials of stable particles.

Systems of interacting particles (elements)
Nointeracting systems are rather artificial constructs, applicable at first sight to only very
special physical situations; the most interesting physical phenomena are usually due to
interactions correlating the behaviour of individual elements out of which real physical
systems are made. Nevertheless, the importance and ubiquity of the results obtained
without interactions, in particular of the Bose-Einstein and Fermi-Dirac distributions
(i.e. of the “quantum statistics”) stems from the fact that they constitute the first terms
of the perturbative expansions by which realistic, interacting systems can be handled. It
is here that the formalism of the Fock space and of the creation and annihilation operators
coupled with the general quantum field theory methods fully shows its advantages. Here
we only outline the lines along which systematic perturbative computations of properties
of interacting statistical systems can be organized. We limit ourselves to the computation
of the statistical sum Ξstat which contains the complete thermodynamical information
about the considered system although computations of mean values of observables and of
various correlation functions can be formulated similarly.

Suppose the Hamiltonian of the system of interacting elements consists of two terms
Ĥ = Ĥ0 + V̂int with Ĥ0 of the form (336) and V̂int represents interactions coupling el-
ements of the system. Such an interaction term can always be expressed through the
creation and annihilation operators associated with the basis of the single-particle Hamil-
tonian Ĥ

(1)
0 . For example, if the system consists of particles (or molecules the internal

structure of which can be neglected) of mass m and spin s (bosons or fermions) enclosed in
the box of volume V = L3 and interacting with one another through the spin-independent
potentials V (ri − rj), the Hamiltonian takes the form

Ĥ =
∑

p,σ

p2

2m
a†p,σap,σ +

1

2V

∑

q

Ṽ (q)
∑

p,σ

∑

p′,σ′

a†p+q,σa
†
p′−q,σ′ap′,σ′ap,σ ,

where Ṽ (q) is the Fourier transform of the potential V (r).
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The perturbative expansion of the statistical sum Ξstat = TrH{exp(−β(Ĥ −µ ˆN )} can
be formulated by defining the “interaction picture imaginary time” evolution operator206

ÛI(β, 0) = eβK̂0 e−βK̂ , (356)

in which K̂0 = Ĥ0 − µN̂ and K̂ = Ĥ − µN̂ . The operator ÛI(β, 0) satisfies the
differential equation

d

dβ
ÛI(β, 0) = −V̂

I
int(β) ÛI(β, 0) , (357)

in which

V̂
I
int(β) = eβK̂0 V̂int e

−βK̂0 ,

with the “initial” condition ÛI(0, 0) = 1̂. The differential equation can be converted into
the integral equation

ÛI(β, 0) = 1̂−
∫ β

0

dβ ′
V̂

I
int(β

′) ÛI(β
′, 0) ,

into which the initial condition is automaically built in. One can now solve this integral
equation iteratively (Banach’s principle!) obtaining the expansion

ÛI(β, 0) =
∞
∑

p=0

Û
(p)
I (β, 0) ,

in which Û
(0)
I (β, 0) = 1̂ and

Û
(p+1)
I (β, 0) = −

∫ β

0

dβ ′
V̂

I
int(β

′) Û
(p)
I (β ′, 0) .

Since e−βK̂ = e−βK̂0 ÛI(β, 0),

TrH

(

e−βK̂

)

= TrH

(

e−βK̂0

)

+

∞
∑

p=1

TrH

(

e−βK̂0 Û
(p)
I (β, 0)

)

= Ξ
(0)
stat

{

1 +

∞
∑

p=1

〈Û (p)
I (β, 0)〉0

}

,

one obtains in this way the perturbative expansion of the statistical sum Ξ
(0)
stat of which

the first term is the statistical sum of the noninteracting system and the corrections to it
take the form of means (denoted 〈. . .〉0) with respect to the free statistical operator

ρ̂(0) =
1

Ξ
(0)
stat

e−β(Ĥ0−µ ˆN ) , (358)

206Who attended my Advanced Quantum Mechanics course will easily recognize some known formulae
in a new disguise.
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which are naturally computed in the basis of the eigenvectors of the free Hamiltonian Ĥ0

exploiting the associated distributions (339) and Fermi levels.
Another circumstance owing to which the developed quantum theory of systems con-

sisting of many nointeracting elements is not only of academic interest is the following.
In many cases of interacting systems (also strongly interacting ones) it turns out to be
possible to introduce in the big Hilbert space (326) an alternative basis which has the
structure similar to the Fock space of vectors |n1, n2, . . .〉 generated out of the vector
|void〉 by the action of the original creation operators and to associate with this new basis
another set of creation and annihilation operators which are related in a complicated way
to the original ones but satisfy the same commutation relations (the transition from the
original to the new creation and annihilation operators is therefore a sort of a canonical
transformation). The Hamiltonian of the theory expressed in terms of the new creation

and annihilation operators can again be split into Ĥ new
0 and V̂ new

int with Ĥ new
0 which has

the form of the Hamiltonian (336) of nonineracting elements (called quasiparticles) but

the interaction term V̂ new
int representing the interaction of quasiparticles is now small and

can be, in the first approximation, neglected. Therefore the whole quantum statistical
theory of noninteracting systems developed in this Lecture can be applied and its results
usually reflect quite well the behaviour of real strongly interacting systems which can be
interpreted in terms of weakly interacting quasiparticles. Of course the approach based
on quasiparticles can be, if their mutual interaction can be obtained (exactly, or in some
approximation) from the original Hamiltonian, combined with the perturbative expansion
outlined above.
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LECTURE XIV (STAT)

In Lecture XIII, using the Grand Canonical Ensemble, we have considered quantum per-
fect gases of indistinguishable particles. We have obtained two rigorous results: the rela-
tion p V = (2/3)U and the equation p V 5/3 =Const. of an adiabatic change which hold
true irrespectively of the nature of the particles forming the gas, that is, irrespectively of
whether they are bosons or fermions. We have also obtained the leading correction to the
perfect gas equation of state in the regime |z| ≪ 1 in which the Boltzmann approximation
becomes reliable. Although the correction does depend on the nature of particles, it too
can be obtained essentially by the same steps in both these cases. Other properties of
perfect gases of fermions and bosons which are specific for their behavious in the low
temperature regime are however markedly different and require separate treatements. We
consider the gas of fermion first. The results which will be obtained apply for example to
the gas of conduction electrons in metals. Its heat capacity adds up to the heat capacity
of the lattice (which can be calculated using the Debye approximation) to give the total
heat capacity of a conducting solid at low temperatures.

Zero temperature energy and pressure of the perfect gas of fermions
As a first step towards considering properties the perfect gas of indistinguishable fermions
in the low temperature regime we compute the pressure exerted by N fermions of mass m
and a half-integer spin s (gs = 2s+ 1 internal spin states) enclosed in the box of volume
V = L3 at exactly zero temperature. In doing this we will introduce some quantities
which will prove useful in further computations.

At T → 0 the mean occupancy of the one-fermion state |p, σ〉 given by the lower
formula (339) takes the form of the simple “step” function of the energy εp of this state:

np,σ =
1

1 + exp((εp − µ)/kBT )
−→

{

1 , if εp < µ
0 , if εp > µ

. (359)

Owing to this, determination of the chemical potential µ of the Grand Canonical Ensemble
by fitting it at fixed temperature T and volume V to the (mean, but we have already agreed
upon not writing the bar over it) number N of particles using the relation

N = gsV

∫

d3p

(2π~)3
np,σ ,

becomes straightforward at T = 0. The zero temperature chemical potential through the
equalities

µ(T = 0, v) ≡ εF =
p2F
2m

,

determines the Fermi energy εF and the corresponding Fermi momentum pF at which,
because of the form (359) of the Fermi-Dirac distribution, all integrals over momenta are
cutted. In turn, these are fixed by the condition

N

V
≡ 1

v
= 4π

gs
(2π~)3

∫ pF

0

dp p2 =
4

3
π

gs
(2π~)3

p3F =
gs
6π2

(pF
~

)3

.
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Hence,

pF = ~

(

6π2

gs

1

v

)1/3

, εF =
~
2

2m

(

6π2

gs

1

v

)2/3

. (360)

At exactly zero temperature all single-particle states |p, σ〉 of energies lower than the
Fermi energy εF (|p| < pF) are occupied (np,σ = 1), while those of energies greater than
εF (|p| > pF) are empty (np,σ = 0). Electrons are said to fill in the momentum space
the volume enclosed by the Fermi shell defined by the condition |p| = pF. The internal
energy U (which is simply the energy of the ground state of the system of noninteracting
fermions) can now be easily computed as

U = gsV
4π

(2π~)3

∫ pF

0

dp p2
p2

2m
=

3

5
N

p2F
2m

=
3

5
N εF . (361)

The pressure of the (quantum) gas of fermions at T = 0 (one speaks of the degenerate
gas of fermions) follows now directly from the first one of the three formulae (342):

p = lim
T→0

gs

∫

d3p

(2π~)3
kBT ln

(

1 + e−(εp−µ)/kBT
)

.

The contribution to the integral from the region εp > µ vanishes in the indicated limit
because both the logarithm itself and the factor kBT tend to zero. In turn, in the region in
which εp < µ the exponens under the logarithm diverges, the factor +1 can be neglected
and (replacing µ(T = 0, v) by εF and hoping that the reader is smart enough not to
confuse the integration variable p with the pressure p) one obtains

p = gs
4π

(2π~)3

∫ pF

0

dp p2
(

εF − p2

2m

)

= gs
4π

(2π~)3
p3F

(

εF
3

− p2F
10m

)

.

The zerotemperature pressure of the quantum gas of fermions which upon using the result
(360) can be written in the form

p =
gs

30π2

~
2

m

(

6π2

gs

1

v

)5/3

,

is that pressure which, as it has first been understood by S. Chandrasekhar, opposing
itself to gravity, maintains the equilibrium of neutron stars.207

The Sommerfeld expansion
We now set ourselves to determine the properties of the perfect gas of fermions. We will
be interested in particular in the behaviour of its entropy and heat capacity in the limit
T → 0. To this end we must analyse the formulae (342) in the regime kBT ≪ εF, that is
in the limit z ≫ 1 (opposite to the one in which the Boltzmann approximation works).

207In fact in deriving the Chandrasekhar result one should use the relativistic formula for the energy of
particles.
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The technical mean to achieve this goal is the so-called Sommerfeld expansion which
allows to compute in the limit β → ∞ integrals of the general form

∫ ∞

0

dε f(ε)
1

1 + eβ(ε−µ)
. (362)

In this limit the factor [1 + exp(β(ε− µ)]−1 under the integral is very close to the “step”
function considered above and its derivative with respect to ε is nonvanishing practically
only in the vicinity of the point ε = εF, say in the domain |ε− εF| ∼ kBT . This suggests
integration of (362) by parts208 which will precisely yield under the integral the derivative
of the factor [1+ exp(β(ε−µ)]−1; it will be then possible to expand the remaining factors
of the integrand in the Taylor series around ε = εF.

To stress the general validity of the final formula209 we will deal with the integral (362)
written in the ”neutral” variable x. Let F (x) be the primitive function of f(x), that is,
such that F ′(x) = f(x). Integrating (362) by parts we obtain

∫ ∞

0

dx
f(x)

1 + ex−ν
= − F (0)

1 + e−ν
+

∫ ∞

0

dxF (x)
ex−ν

(1 + ex−ν)2
.

It has been assumed here that F (x) e−x → 0 as x → ∞. Furthermore, the primitive
F of the function f can alway be defined so that F (0) = 0. With such a definition the
whole boundary term vanishes. The function multiplying F (x) under the integral on the
right hand side vanishes very fast, essentially like e−|x−ν|, both to left and to the right of
the point x = ν. Therefore expanding F (x) in the Taylor series around this point and
integrating term by term the resulting integrand should yield a reasonable approximation
to the original integral. After shifting the integration variable, ξ = x− ν, one obtains in
this way
∫ ∞

0

dx
f(x)

1 + ex−ν
=

∫ ∞

−ν

dξ

[

F (ν) + ξ f(ν) +
1

2
ξ2f ′(ν) +

1

6
ξ3f ′′(ν) + . . .

]

eξ

(1 + eξ)2
.

If ν ≫ 1, which is precisely the case when the integrals (362) are considered in the limit
T → 0, extending the lower integration limit to −∞ should result in an only exponentially
small, i.e. of order e−ν , error.210

Thus, to obtain the series expansion of the original integral one needs to evaluate the
integrals

In =

∫ ∞

−∞

dξ ξn
eξ

(1 + eξ)2
.

208The Sommerfelda expansion can be also derived differently - see e.g. the textbook of Schwabl.
209Its derivation involves some fancy mathematics which can be omitted, if the reader doesn’t like it;

what matters is only the result (363).
210Nevertheless, this operation has the effect that the resulting series representing the original (decent,

i.e. perfectly convergent) integral is not convergent, but only asymptotic. This follows from the fact that
the similar extension of the lower integration limit done in the original integral produces, if the function
f(x) does not tend to zero fast enough as x → −∞ (and we typically will consider functions f(x) = xα

with a fractional exponent α, which require in addition to be further specified for x < 0), a divergent
integral.
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The zeroth one, I0, is elementary:211

I0 =

∫ ∞

−∞

dξ
eξ

(1 + eξ)2
= −

∫ ∞

−∞

dξ
d

dξ

1

1 + eξ
= 1 .

Next, making the substitiution ξ = −η, one notices that

In = −
∫ −∞

∞

dη (−η)n e−η

(1 + e−η)2
= (−1)n

∫ ∞

−∞

dη ηn
eη

(1 + eη)2
= (−1)nIn .

It follows that I2n+1 = 0, while the integrals I2n (their integrands are even functions of
ξ) can be taken from 0 to ∞ if the result is doubled; these integrals212 can be therefore
written in the form

I2n = 2

[

− d

dλ

∫ ∞

0

dξ
ξ2n−1

1 + eλξ

]

λ=1

= 2

[

− d

dλ

1

λ2n

]

λ=1

∫ ∞

0

dη
η2n−1

1 + eη
= 4n

∫ ∞

0

dη
η2n−1

1 + eη
.

(In the second step the integration variable has been rescaled.) One is therefore led to
consider the integrals

Jp =

∫ ∞

0

dξ
ξp−1

1 + eξ
= Γ(p)fp(1) ,

The functions fp(z), defined in (349), can be expressed as infinite series (350) which are
convergent at z = 1 if p > 1. Their values fp(1) can be expressed through the famous
Riemann ζ-function. To this end one writes two different infinite power series (absolutely
convergent if p > 1) splitting each of them into two sums:213

∞
∑

l=1

(−1)l+1

lp
= −

∞
∑

l=1

1

(2l)p
+

∞
∑

l=0

1

(2l + 1)p
≡ fp(1) ,

∞
∑

l=1

1

lp
=

∞
∑

l=1

1

(2l)p
+

∞
∑

l=0

1

(2l + 1)p
≡ bp(1) = ζ(p) .

Subtracting them side by side one obtains the relation

fp(1)− bp(1) = −2

∞
∑

l=1

1

(2l)p
= −21−p bp(1) ,

211I0 can be also evaluated in the limits [−ν,∞). This allows to check that the expansion does not depend
on the adopted assumption that F (0) = 0; moreover, if F (0) 6= 0 and the lower limit of the integral is
extended to −∞ the boundary term would be not canceled but if ν ≫ 1 it would be ∼ F (0) e−ν, that is
of the same order as the error introduced by extending the lower integration limit to −∞.

212Except for I0.
213The second series is denoted bp(1), because it gives the values at z = 1 of the functions bp(z) - the

“bosonic” analogs of the functions fp(z) - which play an important role in analysing low temperature
properties of noninteracting bosons.
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which implies, because bp(1) = ζ(p), that

fp(1) =
(

1− 21−p
)

bp(1) =
(

1− 21−p
)

ζ(p) .

Therefore,

I2n = 4nJ2n = 4n (1− 21−2n) ζ(2n) Γ(2n) .

The values ζ(2n) of the Riemann ζ-function can be obtained by summing infinite series
using e.g. methods of the complex analysis (see e.g. my notes to complex integrals) which
yield214

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, . . .

Using these mathematical results we can finally write the Sommerfeld expansion215

∫ ∞

0

dx
f(x)

1 + ex−ν
= F (ν) +

π2

6
f ′(ν) +

7π4

360
f ′′′(ν) +

31π6

15120
f (5)(ν) + . . . (363)

Gas of noninteracting fermions in the low temperature regime
We can now analyse the content of the formulae (342), expressed below in terms of the
functions f5/2(z) and f3/2(z),

p

kBT
= gs

(

mkBT

2π~2

)3/2

f5/2(z) ,

1

v
= gs

(

mkBT

2π~2

)3/2

f3/2(z) , (364)

U

V
=

3

2
kBT gs

(

mkBT

2π~2

)3/2

f5/2(z) =
3

2
p ,

in the regime z ≫ 1. We first apply the Sommerfeld expansion (363) to the functions
f3/2(z) i f5/2(z): taking into account their “nonperturbative” definition (349) we find
(recall that ν = ln z = µ/kBT ):

f3/2(z) =
2√
π

∫ ∞

0

dx
x1/2

1 + ex−ν
=

2√
π

{

2

3
ν3/2 +

π2

12
ν−1/2 +

7π4

960
ν−5/2 + . . .

}

, (365)

214We note that the integrals J2n can be also written in terms of the Bernoulli numbers Bn

J2n =

∫ η

0

dη
η2n−1

1 + eη
=

22n−1 − 1

2n
π2n Bn ,

where B1 = 1/6, B2 = 1/30, B3 = 1/42, B4 = 1/6, etc.
215This is the final formula, which is important; recall that F (x) is the primitive function of f(x)

satisfying the condition F (0) = 0.
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3

2
f5/2(z) =

2√
π

∫ ∞

0

dx
x3/2

1 + ex−ν
=

2√
π

{

2

5
ν5/2 +

π2

4
ν1/2 − 7π4

960
ν−3/2 + . . .

}

. (366)

The formula for 1/v can be, therefore, (extracting the factors of 2/3 and ν3/2 ≡ (µ/kBT )
3/2

from the curly bracket and combining the latter with the bracket depending on the
fermion’s mass) written in the form

1

v
=

4gs
3
√
π

( mµ

2π~2

)3/2
{

1 +
π2

8

1

ν2
+

7π4

640

1

ν4
+ . . .

}

.

Multiplying both sides of this relation by v expressed in the right hand side in terms of
the Fermi energy εF defined in (360):

v =
6π2

gs

(

~
2

2mεF

)3/2

,

we obtain the identity

1 =

(

µ

εF

)3/2
{

1 +
π2

8

(

kBT

µ

)2

+
7π4

640

(

kBT

µ

)4

+ . . .

}

,

which determines the chemical potential µ as a function of T and v = V/N (the depen-
dence on this quantity is hidden in εF). As we are interested in the limit kBT ≪ εF ≡
µ(0, v), we insert in the right hand side of this identity216

µ = εF(1 + x) ,

which, after expanding in powers of x gives the relation

1 =

(

1 +
3

2
x+ . . .

)

[

1 +
π2

8

(

T

TF

)2

− π2

4

(

T

TF

)2

x+ . . .

]

,

in which TF ≡ εF/kB. Since x is itself of order (T/TF)
2, the third and all other terms in

the bracket can be discarded and one obtains

x = −π
2

12

(

T

TF

)2

+ . . .

that is (the dependence on v is hidden in εF)

µ(T, v) = εF

[

1− π2

12

(

T

TF

)2

+O
(

T 4

T 4
F

)

]

.

216Actually, it would be more systematic to insert there the Taylor expansion of the chemical potential
around T = 0: µ = εF(1 + a1x + a2x

2 + . . .) with x ≡ T/TF and to determine the coefficients ai by
requiring that the coefficients of all the powers of T (i.e. of x) vanish, but since we want to find only the
first term of the expansion, the adopted method is sufficient.
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Knowing the chemical potential as a function of T and v = V/N we can now express
the internal energy and entropy through T , V , and N and compute the heat capacity
of the quantum gas of noninteracting fermions. To this end, using the expansion of the
function (3/2)f5/2(z), we write (putting the factor (kBT )

5/2 into the curly bracket and
replacing ν by µ/kBT )

U

V
= gs

(

2m

~2

)3/2 (
1

4π

)3/2
4

5
√
π

{

µ5/2 +
5

8
π2(kBT )

2µ1/2 + . . .

}

. (367)

Inserting here (cf. the definition (360))

2m

~2
=

1

εF

(

6π2

gs

1

v

)2/3

,

and µ = εF(1 + x), we obtain

U

V
=

3

5

εF
v

[

(

1 +
5

2
x+ . . .

)

+
5

8
π2

(

T

TF

)2(

1 +
1

2
x+ . . .

)

]

,

or, because 1/v = N/V (we remember that the dependence on v is also hidden in εF),

U =
3

5
NεF

(

1 +
5

12
π2

(

T

TF

)2

+ . . .

)

. (368)

This of course agrees with the result (361). The heat capacity CV can be now easily
computed:

CV =

(

∂U

∂T

)

V,N

=
π2

2
NεF

T

T 2
F

+ . . . =
π2

2
NkB

T

TF
+ . . . (369)

It vanishes as T → 0, as required by 3TMDL.
In turn the entropy of the quantum gas of noninteracting fermions can be obtained as

the derivative

S = −
(

∂Ω

∂T

)

V,µ

=

(

∂(p V )

∂T

)

V,µ

=
2

3

(

∂U

∂T

)

V,µ

.

It should be noted that this is the derivative at constant µ (not at constant N , as in
computing CV ). It should, therefore, be taken before the chemical potential µ in the
formula (367) for U is expressed through T and v:

S =
2

3
V gs

(

2m

~2

)3/2 (
1

4π

)3/2
4

5
√
π

∂

∂T

{

µ5/2 +
5

8
π2(kBT )

2µ1/2 + . . .

}

.

Only after the derivative is taken can one substitute here µ = εF + . . . to get

S =
π2

2
NkB

T

TF
+ . . .
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As required by 3TMDL, entropy vanishes in the limit T → 0. And, of course, the heat
capacity computed using the formula CV = T (∂S/∂T )V,N gives again the result (369).

The equation of state of the gas of fermions valid in the limit kBT ≪ εF can be
obtained from the rigorously proved relation (344) expressing in it U in terms of T using
(368):

p V =
2

5
NεF

(

1 +
5

12
π2

(

T

TF

)2

+ . . .

)

.

Entropy can be now obtained in the alternative way, without differentiation (therefore
the chemical potential can from the beginning be expressed throught T and v) using the
relation Ω = U − TS − µN :

S

NkB
=
U − Ω− µN

NkBT
=

5

2

p V

NkBT
− µ

kBT
.

The second form follows from the fact that Ω = −p V and the (rigorous) relation (344)
U = (3/2)p V . Therefore,

S

NkB
=

5

2

p v

kBT
− ν .

Expressing here the ratio p v/kBT as in (351) throught the ratio of the f5/2 and f3/2
functions and using their Sommerfeld expansions217 (366) and (365) we get

S

NkB
=

5

2

f5/2(ν)

f3/2(ν)
− ν = ν

1 + (5/8)π2ν−2 + . . .

1 + (1/8)π2ν−2 + . . .
− ν =

π2

2

1

ν
+ . . . =

π2

2

kBT

µ
+ . . .

To this order, however, µ = εF = kBTF, so this is the result obtained previously.

Quantum perfect gas of bosons
Analysing low temperature properties of the quantum gas of noninteracting indistinguish-
able fermions we have learned that at exactly zero temperature such particles occupy all
single-particle states of (single-particle) energies lower than the Fermi energy εF which is
the same as the zero temperature chemical potential and is determined by the gas density
1/v (and the particle’s halfinteger spin) and that the pressure of the gas is not zero -
a fact which is crucial for final stages of evolution of stars. We have also seen that, as
required by 3TMDL, entropy S and heat capacity CV of the gas vanish at T = 0 (both
like ∼ Const. T ).

We now consider properties of the gas of noninteracting indistinguishable bosons in
the analogous regime. It will turn out that although entropy and heat capacity of the gas
of bosons, similarly as those of the gas of fermions, vanish at T = 0 (again in agreement
with 3TMDL), other its properties are markedly different due to symmetry (instead of

217Note that we expand now f5/2(z) and not (3/2)f5/2(z), as we did previously.
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antisymmetry) of state vectors representing systems of indistinguishable bosons. In par-
ticular at sufficiently low temperature in the gas of bosons the so-called Bose-Einstein
condensation occurs.

We begin by recalling once more the three general formulae (now specified to bosons)
which encode the complete thermodynamical information about the system:

Ω = −p V = −kBT ln Ξstat = kBT
∑

l

ln
(

1− z e−βεl
)

,

N =
∑

l

1

z−1eβεl − 1
, (370)

U =
∑

l

εl
z−1eβεl − 1

.

The sums are over single-particle states |l〉 which are eigenstates of the single-particle

Hamiltonian Ĥ (1) with energies εl and z = exp(βµ) is the activity. We recall also that
the convergence of the summations over the occupation numbers of these single-particle
states, which gave rise to these formulae, required (unlike the case of fermions) that the
chemical potential µ is less than the lowest one of the energies εl.

If the gas of noninteracting nonrelativistic bosons of integer spin s (gs = 2s + 1 spin
states) is enclosed in the box of volume V = L3 and periodic boundary conditions are
imposed, the role of the states |l〉 is played by the states |p, σ〉 with momenta p = (2π/L)n
and σ = −s, . . . ,+s. The corresponding energies are εp,σ ≡ εp = p2/2m. The summation
over the labels l in the formulae (370) runs in this case over all triplets n = (nx, ny, nz) of
integers and over σ. As usually, when the system is large (macroscopic), and as was done
in the case of the gas of fermions, one wants to make the standard replacement

s
∑

σ=−s

∑

p

→ gsV

∫

d3p

(2π~)3
. (371)

One has however be careful in this case and think about the physics of the system. As
T → 0, all bosons can and certainly will (just because they like to do so!) occupy the
single one-particle state corresponding to p = 0 that is to εl = 0. If the summation over l
is replaced by the integration according to the prescription (371), the contribution of this
state will be lost (because the measure dp p2 vanishes at p = |p| = 0). Therefore one has
to take it (and perhaps also the contribution of the other states corresponding to |p| ∼ 0)
into account separately by writing the formulae (370) in the forms

p

kBT
= −gs

∫

d3p

(2π~)3
ln
(

1− z e−εp/kBT
)

− gs
V

ln(1− z)− gs
V

ln
(

1− z e−ε1/kBT
)

+ . . . ,

1

v
= gs

∫

d3p

(2π~)3
1

z−1eεp/kBT − 1
+
gs
V

z

1− z
+
gs
V

1

z−1eε1/kBT − 1
+ . . . , (372)

U

V
= gs

∫

d3p

(2π~)3
εp

z−1eεp/kBT − 1
+ 0 +

gs
V

ε1
z−1eε1/kBT − 1

+ . . .
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Figure 23: Plot of the function b3/2(z). Its value at z = 1 is 2.612.

in which the contributions of the one-particle states of energies ε0 = 0, ε1, . . . , have been
explicitly singled out.

To proceed, it is convenient to introduce the family of functions bp(z), the bosonic
counterparts of the functions fp(z) (cf. the formulae (349) and (350)) defined by

bp(z) =
1

Γ(p)

∫ ∞

0

dxxp−1 1

z−1ex − 1
=

∞
∑

l=1

zl

lp
. (373)

Their series expansions, convergent because |z| < 1, as a result of the condition µ < ε0 = 0,
is obtained in the same way as the expansions of the fp(z) functions (see Lecture XIII).
Written in terms of these functions the equations (372) take the form218

p

kBT
=

gs
λ3T

b5/2(z)−
gs
V

ln(1− z)− gs
V

ln
(

1− z e−ε1/kBT
)

+ . . . ,

1

v
=

gs
λ3T

b3/2(z) +
gs
V

z

1− z
+
gs
V

1

z−1eε1/kBT − 1
+ . . . , (374)

U

V
=

3

2
kBT

gs
λ3T

b5/2(z) + 0 +
gs
V

ε1
z−1eε1/kBT − 1

+ . . .

λT = (2π~/mkBT )
1/2 is here the thermal wavelength of the particle.

As in the case of fermions, the first step towards the investigation of the gas properties
is to determine the chemical potential µ or the activity z as a function of T and v from
the second one of the relations (374). It is convenient to rewrite it in the form

λ3T
gsv

= b3/2(z) +

(

λ3T
gsv

)

gs
N

z

1− z
+

(

λ3T
gsv

)

gs
N

1

z−1eε1/kBT − 1
+ . . . . (375)

The dependence on z of the first term on the right hand side is shown in Figure 23.
What is important for the analysis below is that the function b3/2(z) is monotonically
increasing and bounded in the domain 0 ≤ z ≤ 1, reaching at z = 1 its maximal value
equal ζ(3/2) = 2.612; this value is obviously independent of N . When the left hand side
of the equation (375) increases (either because T → 0 or because the gas density ρ = 1/v

218The first of these equations is written in terms of the function b5/2(z) after integration by parts of
its right hand side; in writing the third one the rigorously proved (in Lecture XIII) relation pV = (2/3)U
- but applied here only to the terms given by integrals - has been used.
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Figure 24: Graphical determination of the activity z. N = 104, λ3T/v = 3, gs = 1. The
four curves (going from below near the vertical axis) show the values of: a) (z/(1−z))/N ,
b) b3/2(z), c) b3/2(z)+ (λ3T/V )z (1− z)−1, d) λ3T/v. Owing to the contribution of the term
(λ3T/V )z (1− z)−1 which for finite N (finite V ) diverges at z = 1, the solution exists even
if λ3T/v > ζ(3/2). As N → ∞ with v fixed, the deviation of the solution z from unity is
∼ 1/N .

increases) but remains smaller that ζ(3/2), it is balanced essentially by the value of the
function b3/2(z) on the right hand side by appropriately increasing the value of z towards
unity, while the contribution of the remaining terms is killed in the thermodynamic limit
(N → ∞, V → ∞ with V/N kept fixed) because, as is clear from Figure 23, the solution
of (375) exists also in the absence of these terms. However, when the factor λ3T/gsv
exceeds ζ(3/2), it is precisely the additional terms on the right hand side of (375) which
must complement the value of the function b3/2(z) to balance the left hand side; graphical
solving the equation (375) for z in this situation at finite value of N is shown in Figure 24.
Moreover, of the additional terms present on the right hand side of (375) only the first one
is singular at z = 1 and therefore it is only this term which can contribute nonnegligibly
in the thermodynamic limit:219

lim
∞

(

gs
N

z

1− z

)

≡ lim
∞

np=0

N
=

(

1− gsv

λ3T
b3/2(1)

)

6= 0 . (376)

The last equality follows from the fact, clear from Figure 24, that if N ≫ 1, the devi-
ation of the value of z obtained from (375) from unity is of order 1/N , so in the strict
thermodynamic limit z = 1.

It follows that if λ3T/gsv > ζ(3/2), the fraction of the total number of particles occu-
pying the zero-momentum, zero-energy one-particle state is, in the thermodynamic limit,
finite. This is the phenomenon called Bose-Einstein condensation. The domain in the

219It becomes now clear that the terms singled out in the third formula of (374), the one for the system’s
internal energy U , being nonsingular at z = 1, simply drop out in the thermodynamic limit. Similarly
drop also the corresponding terms in the first formula of (374); the first one because (376) shows that
(gs/N) ∼ (1− z)/z and limz→1(1− z) ln(1− z) = 0, and the remaining ones, because they are explicitly
nonsingular at z = 1. Therefore the relation (344) derived in Lecture XIII remains true also in the
presence of the condensation; heuristically, because the particles in the condensate contribute neither to
the total energy of the gas nor to its pressure.
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Figure 25: The (T, v) plane of the system of noninteracting identical bosons (arbitrary
units). Marked is the region in which the Bose-Einstein condensation occurs, that is one
in which the “gaseous” phase coexists with the “liquid-like” phase.

plane (T, v) in which the system of free bosons condenses in this limit is bounded by the
curve

gsv

(

mkBT

2π~2

)3/2

ζ(3/2) = Const. v T 3/2 = 1 . (377)

In the thermodynamical limit the activity is, therefore, given by

z = exp(µ/kBT ) =

{

b−1
3/2(λ

3
T/gsv) outside the condensation domain

1 inside the condensation domain
.

The fraction of particles occupying the zero-energy, zero-momentu state is

lim
∞

np=0

N
=

{

0 outside the condensation domain
1− (gsv/λ

3
T )ζ(3/2) inside the condensation domain

.

In other words, at fixed gas density ρ = 1/v, the condensation appears below the critical
temperature Tcr determined by the condition (377) and

lim
∞

np=0

N
= 1−

(

T

Tcr

)3/2

,

while at fixed temperature the condensation appears above the critical density and

lim
∞

np=0

N
= 1− v

vcr
= 1− ρcr

ρ
.

On the (T, v) plane there are therefore two domains (see Figure 25): one in which
only the “gaseous” phase of the system exists (in the thermodynamic limit np=0 = 0) and
another one in which the condensate of bosons, np=0 6= 0, forms and coexists with the
gaseous phase. Ultimately, at T = 0 or ρ = ∞, all particles, being bosons, will occupy the
single state (gs degenerate states, if s > 0). The forms of the thermodynamic potentials
and quantities characterizing the system are different in these two domains because in
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the first one the chemical potential, i.e. z, varies with T and v, while in the second one
it is constant (z ≡ 1 in the thermodynamic limit). This has the consequence that in the
condensation region (marked in Figure 25) the pressure p given by the formula

p = kBT
gs
λ3T

b5/2(z) ∝ (kBT )
5/2 b5/2(z) , (378)

is independent of the density ρ = 1/v because in this region z ≡ 1. The situation
is therefore very similar to the ordinary first order vapour-liquid transition: particles
occupying the p = 0 state do not exert any pressure and behave like a liquid phase;
increasing the system’s density at fixed temperature instead of increasing its pressure
causes only more particles to occupy the p = 0 state; as a result isotherms of the system
plotted in the (v, p) (or the (ρ, p) plane) have flat parts corresponding to the condensation
region. The equation of the curve separating on the (v, p) plane the “gaseous” (vapour)
region from the one in which the condensation begins can be obtained by determining
kBTcr as a function of v from (377) and inserting it into the formula (378) evaluated at
z = 1. This gives

p v5/3 =
2π~2

m

ζ(5/2)

[ζ(3/2)]5/3
g−2/3
s . (379)

On the (v, p) plane the reqion of the phase coexistence is delimited by one of the system’s
adiabats! The phase diagram of the system of free bosons in the (T, p) coordinates is
shown in Figure 26.

Using the Clapeyron-Clausius equation (192) one can also determine the latent heat
qcond→gas (per particle) of the Bose-Einstein condensate (“liquid”) - gas transition provided
one assumes that the volume per particle of the “liquid” phase, i.e. of the condensate,
is zero. The derivative dp/dT is easily determined from the relation (378) evaluated at
z = 1. Thus

qcond→gas =
5

2
kB gs

(

mkBT

2π~2

)3/2

ζ(5/2)T vcr(T ) .

Iserting here vcr(T ) determined from the relation (377) one obtains the simple result

qcond→gas =
5

2
kBT

ζ(5/2)

ζ(3/2)
. (380)

We now determine other thermodynamic functions characterizing the system of noin-
teracting identical bosons. The internal energy per particle is given by

U

N
=

{

(3/2)kBT gsv λ
−3
T b5/2(z(T, v)) outside the condensation domain

(3/2)kBT gsv λ
−3
T ζ(5/2) inside the condensation domain

, (381)

and in both regions - in the condensation region, because the particles forming the con-
densate neither exert any pressure nor contribute to energy - the relation p V = (2/3)U
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Figure 26: The (T, p) plane phase diagram of noninteracting identical bosons (arbitrary
units). The marked region is empty: in the “liquid phase” the pressure is uniquely deter-
mined by the temperature, the same as at the “coexistence curve”; therefore the points
above this curve do not correspond to any states of the system.

found previously holds true. Owing to this, entropy can be computed as in the case of
fermions from the formula

S

NkB
=
U − Ω−Nµ

NkBT
=

5

2

p v

kBT
− ln z ,

which exploits this relation. This immediately leads to

S

NkB
=

{

(5/2)gs v λ
−3
T b5/2(z(T, v))− ln z outside the condensation domain

(5/2) gs v λ
−3
T ζ(5/2) inside the condensation domain

. (382)

Entropy can be also computed as

S = −
(

∂Ω

∂T

)

V,µ

=

(

∂(p V )

∂T

)

V,µ

.

Using the first one of the formulae (374) this gives

S =
5

2
kB gs

(

mkBT

2π~2

)3/2

V b5/2(z)− kB gs ln(1− z)

+

[

kBT gs

(

mkBT

2π~2

)3/2

V b′5/2(z) + kBT gs
1

1− z

]

(

∂z

∂T

)

µ

.

By differentiating with respect to z the series representing the bp(z) functions in (373) it
is easy to find that b′5/2(z) = z−1b3/2(z). Furthermore,

(

∂z

∂T

)

µ

=

(

∂

∂T
eµ/kBT

)

µ

= − µ

kBT 2
z = −z ln z

T
,

so

S

NkB
=

5

2
gs v λ

−3
T b5/2(z)−

gs
N

ln(1− z)

−
(

gs v λ
−3
T b3/2(z) +

gs
N

z

1− z

)

ln z .
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In the thermodynamic limit the term with ln(1− z) drops out while the entire bracket in
the second line equals 1, as follows by comparison with the middle formula in (374). Thus,
also this method of calculating entropy leads to (382). As required by 3TMDL, entropy
of the system of noninteracting identical bosons vanishes at T = 0; however, unlike the
entropy of the gas of fermions, at very low temperatures entropy of bosons is ∝ T 3/2.

Finally we consider the heat capacity of the system of noninteracting identical bosons.
Computation of CV of the system in the state with the gaseous phase coexisting with
the condensate is straightforward because then z = 1 and entropy is given by the simple
formula; therefore:

CV = NkB

(

T
∂

∂T

[

5

2
v gs λ

−3
T ζ(5/2)

])

V,N

=
15

4
v gs λ

−3
T ζ(5/2)NkB . (383)

At very low temperatures the heat capacity vanishes as T 3/2, in agreement with the
requirements imposed by 3TMDL.

Computation of CV of the pure “gaseous” phase is somewhat more involved (recall:
b′5/2(z) = z−1b3/2(z)):

CV

NkB
=

(

T
∂

∂T

[

5

2
v gs λ

−3
T b5/2(z)− ln z

])

V,N

=
15

4
v gs λ

−3
T b5/2(z) +

[

5

2
v gs λ

−3
T b3/2(z)− 1

]

T

z

(

∂z(T, v)

∂T

)

v

.

To work out the second term we rewrite the first bracket in the form

5

2
v gs λ

−3
T b3/2(z)− 1 =

3

2
− 5

2

gs
N

z

1− z
.

using the middle one of the three relations (374) and then apply the shocking relation

T

z

(

∂z(T, v)

∂T

)

v

=
T

z

(

∂z(T, v)

∂T

)

1/v

= −T
z

(∂(1/v)/∂T )z
(∂(1/v)/∂z)T

.

Also using the middle one of the three relations (374) one can write:

T

z

(

∂z(T, v)

∂T

)

v

= −T
z

(3/2)T−1 gs λ
−3
T b3/2(z)

gs λ
−3
T b′3/2(z) + (gs/V )(1− z)−2

.

Remembering that b′3/2(z) = z−1b1/2(z) and taking into account that in the “gaseous”
phase z 6= 1, so the terms inversely proportional to N or V vanish in the thermodynamic
limit, we finally get

CV

NkB
=

15

4
gs v λ

−3
T b5/2(z(T, v))−

9

4

b3/2(z(T, v))

b1/2(z(T, v))
. (384)
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Since, as follows from the series in (373), b1/2(1) = ∞, the heat capacity per particle
is continuous at the “phase transition” point, assuming there its maximal value equal
(15/4)[ζ(5/2)/ζ(3/2)]kB ≈ 1.926kB (as can be seen by using the relation (377)), but has
there a cusp (the derivatives (∂CV /∂T )V on both sides of this point are different). In
the limit T → ∞, z → λ3T/v → 0 (cf. the classical formula (314)), so the expansions
bp(z) = z+. . . can be used and CV /N → 3

2
kB, in agreement with the classical equipartition

theorem.
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