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Warunki zaliczenia

e Zaliczenie w pierwszym terminie

1. Kolokwium, 14 kwietnia, 2025, sala , 9:00-
13:00, test 10p., 3 zadania po 10p.

2. Egzamin, 23 czerwca 2025, sala , 9:00-13:00,
test 10p., 3 zadania po 10p.

3. Mozliwy egzamin ustny i poprawienie oceny
W pierwszym terminie

e Zaliczenie poprawkowe

1. Egzamin pisemny poprawkowy

2. Egzamin ustny poprawkowy, mozliwosé¢ po-
prawy oceny w drugim terminie

Wypadkowa ocena na podstawie zebranej liczby
punktéw w kazdym ze sposobdéw zaliczania po unor-
mowaniu do 100 :

5+ za 99-100p.,
5 za 90-98p.,
4+ za 81-89p.,
4 za 72-80p.,
3+ za 62-T1.,

3 za 50-61p.,

2 za 0-49p.

Uwaga: punkty z zaliczenia w pierwszym terminie i po-
prawkowym nie sumuja sie.

1 Tydzien I, 24/02-02/03/2025
1.1 Wyklad

I. Termodynamika i fizyka statystyczna - wstep

1. Termodynamika fenomenologiczna, liczba Avoga-
dro

2. Fizyka statystyczna

3. Krotka historia termodynamiki

4. Historia gazu doskonalego

5. Krotka historia fizyki statystycznej

6. Wiek XX

1.2 Zadania na ¢wiczenia

1. Pochodne czastkowe

2. Metoda Jacobianéow

3. Wielkosci ekstensywne i intensywne - przyktad
4. Formy rézniczkowe Pfaffa

5. Czynnik calkujacy

1.3 Zadania domowe

1. Wiedzac, ze dU = T'(S,V)dS—p(S,V)dV jest roz-
niczka zupelna, pokaz, ze

(T, S)

V)

2. Pokaz, ze w trzech wymiarach czynnik catkujacy
jednoforme istnieje tylko, jesli spelnia ona

w-(Vxw)=0.

3. Znajdz czynnik calkujacy dla formy w =
(yz/z)dx + zdy + y dz.

4. Rozwazmy ciag kolejnych iloczynéw zewnetrznych
w, dw, w A dw, dw A dw, w A dw A dw itd. Jesli
ktorys wyraz sie wyzeruje, wszystkie nastepne tez.
Twierdzenie (Darboux) moéwi, ze jesli r-ty wyraz
jest pierwszym znikajacym, to dla r = 2m + 1
mamy

w= dz—l—iyidxi,
i=1

za$ dla r = 2m mozna napisa¢ w = Y .-, y;dz;
gdzie x,y,z to funkcje. Sprawdz, jak wygladaja
kolejne wyrazy ciagu dla dU = T'dS — pdV i ja-
kiego wymiaru jest w takim razie reprezentacja tej
formy.
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Tydzien II, 03-09/03,/2025

2.1 Wyklad

II.

3.

4.

Podstawowe pojecia termodynamiki

. Uktad termodynamiczny i zmienne termodyna-
miczne

Temperatura, cisnienie, zerowa zasada termody-
namiki

Rownowaga termodynamiczna

Przemiany termodynamiczne

III. Praca, cieplo, pierwsza zasada termody-
namiki

1

2

3

4

. Praca mechaniczna
. Cieplo
. Pierwsza zasada termodynamiki

. Entalpia

2.2 Zadania na ¢éwiczenia

1

2.

9.

10.

. Istnienie temperatury empirycznej
izotermy bez przecieé

Izotermy ciata stalego

Czas relaksacji

Klasyfikacja stanéw uktadu
Roéwnanie stanu 1

Roéwnanie stanu 2

Roéwnanie stanu 3

Roéwnanie stanu 4

Wspolezynnik rozszerzalnosci

2.3 Zadania domowe

1

. Badajac uktady termodynamiczne mozna zmie-
rzy¢ rézne wspodlezynniki, miedzy innymi:

e (izobaryczna) rozszerzalno$¢ objetosciowa
op =¥ (57)
p = v \or)p
o (izotermiczny) wspolczynnik scigliwosci By =

_1(ov
VvV \ op T7

e (izochoryczny) wspolczynnik termiczny ci-
$nienia Ky = % %ﬂ .

\%

3

a) Pokaz, ze wspolczynniki o, B, Ky nie s od
siebie niezalezne — znajac dwa z nich i parame-
try termodynamiczne ukladu mozna wyznaczyé
trzeci.

b) Oblicz te wspotezynniki dla gazu spelniajacego
réwnanie van der Waalsa:

an?
(p-i— V2> (V —TLb) =nRT,

gdzie a i b to znane stale. Pokaz, ze tak uzyskane

wspolezynniki spetniaja relacje z podpunktu (a).

. (a) Udowodnij, ze zachodzi zwiazek

3),~-(3)
op )+ oT »
(b) Wiedzac, ze wspolczynnik rozszerzalnosci ob-
jetosciowej pewnego gazu zmienia sie zgodnie ze
wzorem

ap=A—Bp,

gdzie A i B sa znanymi stalymi, znajdz dla tego

gazu
or » ’ oV » '

. Badajac pewien gaz zmierzono jego wspolczynnik

termiczny cis$nienia:

1 (0p 1 a
_p<8T>V_T+T%’

gdzie v = V/n to objetos¢ molowa, za$ a to stala.
Zauwazono rowniez, ze w wysokich temperaturach
objetos¢ molowa tego gazu rozni sie od odpowiada-
jacej objetosci molowej gazu doskonatego o stalg

wartosé b:
RT
v——— | =D
( p(T, v)>

Znajdz réwnanie stanu tego gazu.

kv

lim
T—o0

. Dla pewnego gazu spelnione sa zwiazki

(8‘/) nRk (8V> Vv
— | =—, — | =———anR,
oT » p Op T p

gdzie a to znana stalta. Znajdz réwnanie stanu tego
gazu.

Tydzien I1I, 10-16/03 /2025

3.1 Wyklad

IVv.

Druga zasada Termodynamiki

. Historyczne sformultowania drugiej zasady termo-

dynamiki

. Sprawno$¢ maszyn cieplnych i bezwzgledna skala

temperatury



3.2 Zadania na éwiczenia

1.

2.

Proces pseudostatyczny

Proces Joule’a-Thomsona

Praca w polu magnetycznym

Pierwsza zasada termodynamiki dla magnetyka
Proces adiabatyczny gazu doskonatego
Niezalezne zmienne termodynamiczne
Pojemnosé cieplna przy statym N lub p

Wybrane procesy termodynamiczne

3.3 Zadania domowe

1.

Analogicznie do materialéw magnetycznych mo-
zemy rozwazaé termodynamike dielketrykow.
Niech uktad sktada sie¢ z kondensatora podlaczo-
nego do zrédla o napieciu U, w ktéry wsuniety
jest dielektryk. Na ptytce kondensatora nad po-
wierzchnig dielektryka gesto$é tadunku wynosi X
(taczny tadunek @), a poza dielektrykiem o (q).
Wyindukowany tadunek na powierzchni dielek-
tryka ma gesto§¢ —P (polaryzacja). Zaktadamy
jednorodne pole elektryczne wewnatrz kondensa-
tora. Pokaz, ze praca potrzebna na zmiane la-
dunku na plytce wynosi

W=F (60V0dE + Vdp) s

gdzie pierwszy czlon opisuje pusty kondensator o
objetosci Vj, zas objetosé¢ dielektryka to V. Zatem
pierwsza zasada termodynamiki dla elektryka gdy
pole elektryczne jest state to

dU = Q + EdP

Znajdz ciepto molowe gazu doskonalego (pv =
RT) ktory podlega odwracalnej przemianie, w kto-
rej pv®*t! = const.

Korzystajac tylko z pierwszej zasady, udowodnij
wzOr

(,)82T+% or\ _(9c or
K Opdv op ), \Ov » v » op /.,

Oblicz wspoélezynnik izobarycznej rozszerzalnosci

termicznej o, = (1/V) (%)p i Scisliwosci izoter-

micznej kr = —(1/V) (%—‘;) oraz preznosci izo-
T

chorycznej By = (1/p) (‘%Z)V gazu z rOwnaniem

stanu Dietericiego

p(V —nb) = nRT exp (—%) .

Jaki zwiazek spelniaja te wspotczynniki? Czy da
sie to stwierdzi¢ bez znajomosci doktadnej postaci
rOéwnania stanu?

4

Tydzien IV, 17-23/03/2025

4.1 Wyktad

IV. Druga zasada Termodynamiki

1.

2.

Entropia i II zasada termodynamiki

Entropia jako zmienna termodynamiczna

4.2 Zadania na ¢wiczenia

1.
2.

© % X >

Pochodne energii wewnetrznej
Pochodne pojemnoéci cieplnych
Proces izoentalpowy Joule’a-Thomsona

Pojemnosci cieplne dla gazéw van der Waalsa i
Berthelota

Rozprezanie gazu van der Waalsa do prézni
Twierdzenie Hessa

Entalpa reakcji chemicznej z tw. Hessa

Ciepto w procesie izotermicznym z dielektrykiem

Pojemnosé cieplna paramagnetyka

4.3 Zadania domowe

1.

= 2.

Wykorzystujac prawo Hessa, oblicz cieplo Q wy-
dzielane w reakcji

Cgraﬁt + 2H2 I CH4 + Q7

na podstawie ciepel wydzielanych w nastepuja-
cych reakcjach chemicznych

1 _
H2+502—>H20+Q17

Cgraﬁt + 02 — CO2 +Q2a
CHy +205 — COQ+2H2O+Q3a

gdzie Q1 = 285,8 kJ, Q> = 393,5 kJ i Q3 = 890,4
kJ.

Korzystajac z tozsamosci Maxwella udowodnionej
na ¢wiczeniach

().~ (@),

udowodnij nastepujaca postaé¢ tozsamosci Mayera

2

C,—Cy=TVL

P T By
dzie « :i(a—v) ifr=—-+(2%) .
g »= v \er),1PT v o )

. Pokaz, ze jesli energia wewnetrzna pewnego gazu

przy ustalonej temperaturze nie zalezy od jego ob-

jetosci ((g—g)T =0), to wtedy



4.

5)

e jego pojemnos¢ cieplna C'y tez nie zalezy od
objetosci: (%)T =0,
e jego réwnanie stanu posta¢ V. = f(p/T),

gdzie f(-) jest pewna funkcja ilorazu p/T,

e roznica C), — Cy tego gazu tez jest pewng
funkcja ilorazu p/T.

Infinitezymalna praca rozciggniecia gumowej ta-
$my o naprezeniu K z dlugosci L do L + dL wy-
nosi W = KdL. Naprezenie pewnej gumowej ta-
$my jest, przy ustalonej dtugosci L, liniowa funk-
cja temperatury: K = TA(L). Pokaz, ze energia
wewnetrzna takiej tasmy nie zalezy od dlugosci
((g—g)T = 0) i ze w zakresie dtugosci L, dla kto-
rych jej naprezenie K jest dodatnie, jej entropia
maleje przy izotermicznym rozcigganiu. Pokaz tez,
ze w tym samym zakresie dtugosci temperatura ta-
$my wzrasta, gdy jest adiabatycznie rozciagana.

Tydzien V, 24-30/03 /2025

5.1 Wyklad

IV.

2.
3.

Druga zasada Termodynamiki

. Entropia jako funkcja stanu, réwnanie podsta-

wowe termodynamiki
IIT zasada termodynamiki, postulat Nernsta

Podsumowanie zasad termodynamiki

V. Zmienne losowe i rozklady prawdopodo-
bienstwa

1.
2.

Elementy teorii prawdopodobienistwa

Funkcje tworzace, momenty, kummulanty i kore-
lacje

5.2 Zadania na éwiczenia

1.

@

© © N> o

10.

Roéwnowaznosé sformutowan Clausiusa i Kelvina
IT zasady termodynamiki

Sprawno$é¢ w procesach nieodwracalnych

Temperatura bezwgledna z paramagnetycznym
cialem roboczym

Sprawnosé lodéwki Carnot’a

Nieréwnosé Clausiusa

Transformacja skalowania entropii

Cieplny réownowaznik pracy w cyklu Mayera
Cykl Carnot’a, zmiana entropii

Praca w cyklu odracalnym

Sprawnosé¢ w cyklu odwracalnym innym od Car-
not’a

11.
12.
13.
14.
15.

Sprawnosé silnika Stirlinga

Entropia gazu van der Waalsa
Potencjal chemiczny gazu doskonatego
Zastosowania pochodnych entropii

Niemozliwo$é ochtodzenia wody w pokoju

5.3 Zadania domowe

1.

6

WyprowadzZ wzory na energie wewnetrzna orz en-
tropie wyrazone w zmiennych 7T i v dla jednego
mola gazu opisanego rownaniem stanu Berthelota

a

(p+—7) (=) = RT
zakladajac, ze znana jest jego molowa pojemnosé
cieplna ¢, (T,vo) jako funkcja temperatury przy
jednej wartosci vy molowej objetosci. Zapisujac ja
jako sume ¢, (T, v) = ¢%(T) +dc, (T, v), w ktorej )
jest czescia niezalezna od objetosci i odpowiada ¢,
gazu doskonatego wyznacz poprawke dc, pamieta-
jac, ze gazy bardzo rozrzedzone zachowuja sie jak
gaz doskonaty.

. Cykl Diesla sktada sie z czterech przemian:

e izobarycznego rozprezania gazu od V; do V,

adiabatycznego rozprezania do V3

e chlodzenia przy stalej objetosci

adiabatycznego sprezania z powrotem do
stanu poczatkowego.

Oblicz sprawno$é tego cyklu dla gazu doskonalego.

. Cykl Otto sktada sie z czterech przemian, dwdch

adiabatycznych i dwoch izochorycznych. Oblicz
sprawnos¢ tego cyklu dla gazu doskonaltego i wy-
raz przez objetosci gazu w kolejnych punktach.

. Cykl Stirlinga sktada sie z czterech przemian,

dwoch izotermicznych i dwoéch izochorycznych.
Oblicz sprawno$¢ tego cyklu dla gazu doskonatego.

. Wyznacz maksymalna prace, jaka mozemy uzy-

skaé taczac ze sobg dwa naczynia o réznych objeto-
Sciach V; 1 V5 utrzymywane w identycznej tempe-
raturze i zawierajace po n moli tego samego gazu
doskonatego o stalym cieple molowym c,.

Tydziei VI, 31/03-06,/04/2025

6.1 Wyktad

V. Zmienne losowe i rozklady prawdopodo-
bieristwa

1. Prawdopodobienstwo, informacja i entropia infor-

macyjna

. Centralne twierdzenie graniczne i rozklad Ma-

xwella



VI. Podstawy fizyki statystycznej

2.
3.

. Wspoélne cechy ukltadéw makroskopowych, mikro i

makrostany
Postulat réwnych prawdopodobieristw a priori

Hipoteza ergodyczna

VII. Zespo6l mikrokanoniczny

1.

Uktad izolowany, statystyczny zespdt mikrokano-
niczny

6.2 Zadania na éwiczenia

1.

N

S ok W

Sprawnos$é cyklu Carnot’a na gazie doskonalym
Sprawnosé cyklu Otto na gazie doskonalym
Termodynamika gazu doskonalego fotonéw
Sprawnos¢ cyklu Carnot’a na fotonach
Termodynamika czarnej dziury

Sprawnosé cyklu Carnot’a na czarnej dziurze i fo-
tonach

6.3 Zadania domowe

1.

Ustalono, ze zalezno$¢ naprezenia K pewnej gu-
mowej tasmy od temperatury 7T i dtugosci L jest
(w pewnym zakresie temperatur) dana wzorem

L L2
K(T,L)=aT [ — -2
rn=ar(£-73)

gdzie a i Lo to znane stale. Ponadto zmierzono
pojemnosé cieplna tej tasmy przy ustalonej dlu-
goéci L = Lo i wyniosta ona Cr—r, = T, gdzie
b to znana stata. Zmiana energii wewnetrznej ta-
kiej tasmy w kwazistatycznym procesie wynosi
dU =TdS + KdL. Wyznacz energie wewnetrzna i
entropie tej tasmy jako funkcje temperatury i dtu-
gosci. Znajdz tez pojemnosé cieplng przy stalym
naprezeniu, Ck.

. Gumowe tasmy z poprzedniego zadania wykorzy-

stamy do zbudowania silnika. Wezmy kolo o pro-
mieniu R, ktére moze swobodnie obracaé si¢ wokot
swojej osi. NV tasm o Ly = R przyczepiamy jed-
nym konicem do punktéw na brzegu kola (mate,
brazowe punkty), za§ drugim do punktu przesu-
nietego o AR od osi kota (duzy, brazowy punkt,
patrz rysunek):

Dolne pél kola (i tasm gumowych) zanurzonych
jest w cieplej wodzie o temperaturze Ty, zas
gorne pot znajduje si¢ w chlodniejszym powie-
trzu o temperaturze T¢. Scigganie tasm na sku-
tek rozgrzania i rozciaganie na skutek chlodze-
nia powoduje, ze kolo powoli sie obraca. Zaktada-
jac, ze tasmy ogrzewaja/chlodza sie podczas zanu-
rzania/wynurzania duzo szybciej, niz czas obrotu

kota (wiec mozna to potraktowaé za przemiany
przy stalej dtugosci L), za$ przez reszte obrotu
podlegaja izotermicznemu rozcigganiu/$cigganiu,
oblicz sprawnosé tego silnika. Jaka jest jego spraw-
no$¢ w poréwnaniu do silnika Carnot’a miedzy
tymi samymi temperaturami?

. Cylindryczne naczynie podzielone jest wewnatrz

na pot tlokiem. Kazda potowa zawiera n moli gazu
doskonatego o identycznych objetosciach V' i ci-
$nieniach p. Caly uktad przez caly czas znajduje
sie w rownowadze z otoczeniem o temperaturze 7.
Ttok ma mase m, pole powierzchni bocznej A i
moze poruszaé sie wewnatrz naczynia bez tarcia.
W pewnym momencie naczynie obrécono o 90°,
tak, ze na tlok zadzialalo przyspieszenie ziemskie
g wzdluz osi naczynia. Oblicz, o ile zmienita si¢
entropia ukladu na skutek przesuniecia tloka wy-
wolanego grawitacja do nowego stanu réwnowagi,
zakladajac, ze proces ten przebiegal przy stalej
temperaturze.

. W bardzo niskich temperaturach podatnosé ma-

gnetyczna x = M /H paramagnetykow zachowuje
sie w przyblizeniu jak (tzw. paramagnetyzm Pau-
liego):

X~ xo—al?,

gdzie xo 1 a to dodatnie state. Wiedzac dodatkowo,
ze w niskich temperaturach pojemnosé cieplna pa-
ramagnetyka przy zerowym polu H = 0 wynosi
Cr—o = BT3 +~T, gdzie 3 i ~ to stale, wyznacz




jego entropie w niskich temperaturach. Czy spel-
nia ona III zasade termodynamiki?

7 Tydzien VII, 06-13/04,/2025
7.1 Wyktad

VII. Zesp6l mikrokanoniczny

1. Uklad izolowany, statystyczny zespdét mikrokano-
niczny

2. Dwa poduktady w rownowadze termodynamicznej

VIII. Zespo6t kanoniczny

1. Definicja zespotu kanonicznego
2. Rozktad Boltzmanna

3. Suma statystyczna, termodynamika, réwnowaz-
nosé zespoléw w granicy termodynamicznej

4. Ciénienie - mikroskopowo i makroskopowo
5. Praca i ciepto mikroskopowo, twierdzenie o ekwi-

partycji energii

7.2 Zadania na ¢éwiczenia

1. Dokoiiczenie materiatu z poprzednich tygodni i
przygotowanie do kolokwium

8 Tydzien VIII, 14-20/04/2025

8.1 Wyktad
VIII. Zesp6t kanoniczny

1. Energia swobodna
2. Demon Maxwella, silnik Szilarda, zasada Landau-

era

8.2 Zadania na ¢wiczenia
(Zrobiono wybrane przyktady)
1. Prawdopodobieristwo - kostki na rozgrzewke
2. Prawdopodobienistwo - rozktad armata
3. Prawdopodobienistwo - rozklad spadajacy kamien
4. Momenty i kumulanty
5. Momenty i kumulanty
6. Twierdzenie o transformacji zmiennej losowej
7. Rozktad log-normal

8. Suma dwoch zmiennych losowych

9. Centralne twierdzenie graniczne

10. Momenty centralne a rozklad prawdopodobien-
stwa

11. Catka Gaussowska
12. Funkcja Gamma
13. Objeto$¢ d-wymiarowej kuli

14. Przyblizenie Stirlinga

8.3 Zadania domowe

1. Korzystajac z definicji wyprowadz zwiazki pomie-
dzy momentami i kumulantami.

2. Czastka (lub zmeczona, glodna i niezdecydowana
osoba) w chwili ¢ = 0 znajduje sie w punkcie = 0.
Co 0t wykonuje krok o dz w lewo lub prawo (w
strone lodowki lub w strone 16zka) z prawdopodo-
bienistwem 1/2. Znajdz rozktad prawdopodobieri-
stwa znalezienia czastki w weztach siatki po N
krokach. Jaka jest warto$¢ oczekiwana i warian-
cja rozktadu? Co sie dzieje w granicy duzej liczby
krokow?

3. Tym razem proces zaczyna sie o jeden krok dz od
tozka, ale z prawdopodobieristwem p = 2/3 osoba
przesuwa sie w strone lodowki, a tylko 1/3 tozka.
Jakie jest prawdopodobienistwo, ze pdjdzie kiedys
spa¢ (zakladamy, ze ktadzie sie do 16zka natych-
miast po osiggnieciu celu)? Jak wyglada wynik dla
dowolnej wartosci p?

4. Prowadzacy ¢wiczenia ma w grupie n studentéow,
ktéorym chce rozdaé¢ prace domowe, ale oddaje
je zupelnie przypadkowo. Jaka jest oczekiwana
liczba osob, ktore dostana swoja prace? Jakie jest
prawdopodobienstwo, ze doktadnie r oséb dosta-
nie wlasciwa prace?

9 Tydzien IX, 21-27/04/2025

9.1 Wyktad

VIII. Zespd6t kanoniczny

1. Gaz idealny w zespole kanonicznym, paradoks
Gibbsa

9.2 Zadania na éwiczenia

1. Omowienie zadan z kolokwium

2. Dokoriczenie materiatu z poprzedniego tygodnia



10 Tydzien X, 28,/04-04/05,/2025
10.1 Wyklad

IX. Rozklad Plancka i zastosowania

1. Rozklad Plancka w pojedynczym oscylatorze
kwantowym

2. Promieniowanie ciata doskonale czarnego

10.2 Zadania na ¢wiczenia
1. Gestos$¢ stanow w d-wymiarach

2. Mikrokanoniczne warunki réwnowagi termodyna-
micznej

3. Gaz idealny w zespole mikrokanonicznym

4. Gaz idealny w zespole mikrokanonicznym - termo-
dynamika

5. Klasyczny oscylator harmoniczny w zespole mi-
krokanonicznym i jego termodynamika

11 Tydzien XI, 05-11/05/2025
11.1 Wyklad

IX. Rozklad Plancka i zastosowania

1. Promieniowanie ciala doskonale czarnego, prawo
Plancka

11.2 Zadania na ¢wiczenia
1. Spiny Isinga w polu - mikrokanonicznie

2. Spiny Isinga w polu - kanonicznie

11.3 Zadania domowe

1. Znalezé Q(U,N) w zespole mikrokanonicznym
dla N identycznych, rozréznialnych kwantowych
oscylatoréw harmonicznych o czestosci w w
jednym wymiarze. Wyznaczyé¢ entropie, tempe-
rature i potencjal chemiczny ukladu. Znalezé
granice klasyczna, tzn. U/N > hw. Wsk.
Ho = 37 (@i +1/2), 6@ — w) =
(1/27) [ ke*(@=20) oraz zastosowaé do obliczenia
calki metode punkty siodtowego.

2. Dany jest jednowymiarowy tancuch sktadajacy sie
z N > 1 segmentow o dlugosci a zawieszony
pomiedzy brzegami w odleglosci L < alV, rysu-
nek. Znalez¢ entropie S(L, N) = kp In Q(LN) tego
uktadu jako funkcje L = a|Ny — N_|, gdzie Ny
jest liczba segmentow zwroconych w prawo/lewo,
i otrzymaé¢ zwigzek miedzy temperaturg T a sila
X (napiecie) jakie jest niezbedne aby utrzymaé

odleglos¢ L, zakladajac, ze segmenty mozna ob-
raca¢ swobodnie. Przyjmij, ze L jest wielokrot-
noscia a. Model ten opisuje wtasnosci elastyczne
gumy, w szczeg6lnosci prawo Hook’a. Wsk. X =
(OF/OL)r = —T(0S/0L)r ~ (kgT/Na?)l dla du-
zych N.

3. Zalézmy, ze izolowane od otoczenia dwa uktady
maja caltkowita liczbe stanéw dang przez
Li(U;, N;) ~ eNioiUi/Ni) odzie i = 1, 2, N; to
liczba czastek t-tego ukladu o energii U;, a funk-
cje ¢;(U;/N;) sa rzedu jednosci oraz ¢(x) > 0,
¢'(x) > 01 ¢"(x) < 0, gdzie prim oznacza
pochodng. Jesli uktady 1 i 2 sa w kontakcie
termicznym to pokazac, ze: i) Jesli temperatury
byly T3 > T35 to cieplo przeptywa z 2 do 1, a
entropia wzrosnie o dQ(1/T> — 1/T1); ii) Jesli
dwa uklady sa w réwnowadze termodynamicznej
(Th = T») to entropia calosci jest suma entropii
poduktadow S1o = S1 + So; iii) Fluktuacje energii
Uy i Uy w stanie rownowagi termodynamicznej
miedzy 11 2 dane sa przez KgT?/(1/Cy +1/C5),
gdzie C; to pojemnosci cieplne i-tego poduktadu.

4. W szeSciennym pudetku o boku dtugosci L w d-
wymiarach znajduje sie N czasteczek gazu dosko-
nalego. Uklad jest catkowicie izolowany od otocze-
nia. Znalez¢ dyspersje srodka masy gazu w réwno-
wadze termodynamicznej. Jak ona zalezy od L7

5. Rozwazmy N identycznych, rozrbznialnych cza-
stek obsadzajacych k komorek o tej samej objeto-
Sci. Makrostan scharakteryzowany jest liczba cza-
stek n; w kazdej komoérce. Nie interesuje nas ktora
czastka gdzie jest. Pokazaé, ze liczba makrosta-
now wynosi Q(ny,na,....,ng) = N!/nilng!. . ngl.
Pokazaé,, ze przy ustalonej liczbie czastek N =
Zle n; najbardziej prawdopodobne rozlozenie
czastek jest takie, ze n; = N/k, czyli rozklad jest
jednorodny.

12 Tydzien XII, 12-18/05/2025

12.1 Wyklad

IX. Rozklad Plancka i zastosowania

1. Drgania krysztalu, kwaziczastki, fonony, ciepto
wlasciwe



12.2 Zadania na ¢wiczenia

1. Podsumowanie i uzupelnienie materiatu z roz-

ktadu mikrokanonicznego

12.3 Zadania domowe

1. a) Igte dtugosci ¢ upuszczono na podloge tak, ze z

réwna gestoscia prawdopodobieristwa mogta upasé
w dowolne miejsce i byé dowolnie obrécona. Pod-
toga sklada sie z rownoleglych desek szerokosci
d. Jakie jest prawdopodobienistwo, ze igla prze-
tnie przynajmniej jedno taczenie miedzy deskami?
Rozwaz oddzielnie przypadki £ < d il > d.

b) Eksperyment powtérzono N razy. lle razy sred-
nio igta przeciela taczenie? Jakie jest odchylenie
standardowe tej liczby?

. Przy analizowaniu klasycznego gazu doskonatego
pomineliSmy wplyw zewnetrznej grawitacji na cza-
steczki gazu. By pokazaé, ze to rzeczywiscie uza-
sadnione, rozwaz w zespole mikrokanonicznym gaz
N nieoddzialujacych czasteczek o masie m kazda
w sze$ciennym zbiorniku o boku L, znajdujacym
sie w jednorodnym polu grawitacyjnym o przyspie-
szeniu ¢ prostopadtym do dwoch przeciwlegltych
$cian. Przyjmij, ze energia wewnetrzna gazu jest
duzo wieksza, niz energia potencjalna czasteczek
gazu (w typowych warunkach 7~300 K, Nm~10
g, 9~10 3, L~1 m energie te roznia si¢ o 4 rzedy
wielkosci, wiec mozna tak przyjac).

. Gaz tworzony przez N twardych kul o masie m
i objetosci b kazda zamkniety jest w izolowanym
pojemniku o objetosci V' (V > Nb). Postugujac
si¢ klasycznym zespotem mikrokanonicznym wy-
prowadz rownanie stanu takiego gazu i jego ener-
gie wewnetrzna w funkcji parametréw termodyna-
micznych. Przyjmij, ze kule nie oddzialuja ze soba,
ale przy sumowaniu stanéw podczas caltkowania po
polozeniu [d3%--- [ d®Zy pierwsza kula ma do-
stepna cala objetosé V', druga ma ja pomniejszona
o objetosé pierwszej kuli, czyli dostepne V —b, trze-
cia ma dostepne V — 2b itd.

. Korzystajac z zespolu mikrokanonicznego oblicz
prawdopodobieristwo p(E)dE tego, ze w zamknie-
tym w objetosci V' gazie doskonalym o catkowitej
energii U sktadajacym sie z N klasycznych czastek
o masie m, wybrana czastka ma energie pomiedzy
E, a E + dFE. Podaj posta¢ p(F)dE w granicy
termodynamicznej (N — oo, U — oo, przy U/N
ustalonym) i pokaz, ze ma ono taka postac¢, jak w
zespole kanonicznym zastosowanym do wybranej
czastki (gdzie reszta gazu pelni role rezerwuaru).

13.1 Wyklad
X Wielki zesp6l kanoniczny

1. Potencjal chemiczny, interpretacja fizyczna

. Potencjal chemiczny i entropia, relacje termody-

namiczne

Wielki zesp6t kanoniczny w mechanice statystycz-
nej

Wielki potencjat kanoniczny

. Gaz doskonaty w wielkim zespole kanonicznym.

13.2 Zadania na ¢wiczenia

1.

Gaz doskonaly, suma statystyczna, zespdt kano-
niczny

. Gaz doskonaly, termodynamika, zesp6t kano-

niczny

Gaz doskonaly czasteczek dwuatomowych, suma
statystyczna, zesp6t kanoniczny

Gaz doskonaly czasteczek dwuatomowych, termo-
dynamika, zesp6t kanoniczny

. Dipole w polu elektrycznym, zespét kanoniczny

13.3 Zadania domowe

1.

14 Tydzien

Rozwaz gaz N nieoddzialujacych czastek w pu-
detku o boku L, ktére moga przyjmowaé dyskretne
wartosci energii E(ny,no,ng) = %(n% +n3 +
n%). Oblicz sume statystyczna uktadu przechodzac
do granicy duzych rozmiaréw pudetka. Sprawdz,
ze wynik jest identyczny jak dla klasycznego gazu
doskonatego.

. Rozwaz jednowymiarowy gaz IN nieoddzialujacych

relatywistycznych czastek o relacji dyspersyjnej
€ = pc w kontakcie z rezerwuarem o temperaturze
T. Oblicz sume statystyczng uktadu, jego energie
wewnetrzng, energie na jedna czastke, pojemmnosé

cieplng Cy =T (g—; oraz ci$nienie.

Jv.x
W jednorodnym polu grawitacyjnym skierowanym
wzdluz osi z umieszczono naczynie o polu pod-
stawy S i nieskiiczonej wysokosci. W naczyniu
znajduje sie gaz skladajacy sie z N identycznych
czasteczek o masie m wzajemnie nieoddziatuja-
cych. Wyznacz wartosé érednig i fluktuacje skta-
dowej srodka masy ukladu w stanie réwnowagi o
temperaturze T.

XTIV, 27/05-

01/06/2025

14.1 Wyktad

. Funkcje

13 Tydzien XIII, 19-26/05/2025 XI Doskonale gazy kwantowe
L.

Wieloczastkowa funkcja falowa, zasada nierozroz-
nialnosci czastek kwantowych i jej konsekwencje

rozkladu Fermiego-Diraca i DBosego-

Einsteina



14.2 Zadania na ¢wiczenia

1.

= W

10.
11.

Rozktad Maxwella, predkosé¢ wyplywu gazu
Rozklad Maxwella, czasteczki padajace na tarcze
Rozktad Maxwella, wzgledna predkosé

Rozklad Maxwella, efekt Dopplera

Rozklad Maxwella, wzér barometryczny

Sita nosna

Liczba fotonéw we Wszechswiecie

prawo przesunie¢ Wiena

Promieniowanie ze Stoiica

Scisliwosé gazu doskonatego i gazu fotonow

Promieniowanie g-onéw

14.3 Zadania domowe

1.

Kula o promieniu R i masie M porusza sie z pred-
koscia U wzgledem $cian duzego pojemnika w ga-
zie czastek doskonaltych o temperaturze T', gesto-
$ci m 1 masie czastek m. Znalezé site oporu jaka
doznaje kula. Wynik wyrazi¢ przez funkcje btedu.
Omoéwié graniczne przypadki. pokazaé, ze w dla
malych U wyraz wiodacy sity tarcia jest propor-
cjonalny do U.

Rozwazy¢ klasyczny gaz doskonaly N czastek o
masie m w objetosci V. Kazda czastka moze znaj-
dowacé sie w dwoch stanach wewnetrznych o ener-
giach €; > 01 degeneracji g; oraz es > €; i degene-
racji go. Wyznaczyé sume statystyczna tego gazu
w zespole kanonicznym jesli jest on w rownowadze
termodynamicznej z otoczeniem o temperaturze
T. Znalez¢é energie wewnetrzna U oraz pojemnosé
cieplna przy stalej objetosci Cy . Przeanalizowaé
niskotemperaturowe zachowanie sie Cy/ .

Znalez¢ kanoniczng sume statystyczna i na
tej podstawie wyznaczy¢ pelna termodynamike
uktadu N spinéw +1 w polu magnetycznym B
skierowanym w kierunku osi z. Poréwna¢ obecne
rozwiazanie z rozwiazaniem tego problemu w ra-
mach zespolu mikrokanonicznego.

. Uktad kwantowy opisywany jest hamiltonianem w

postaci

X B
H=—-g—
V2

0 1 0

1 0 1|,

0 1 0

gdzie g > 0. Jaki jest sens tego hamiltonianu?
Wsk. Poréwnaé¢ z operatorem L. Rozpatrzy¢ ze-
spot N takich uktadéw kwantowych w réwnowa-
dze termodynamicznej z otoczeniem o tempera-
turze 7. Znalez¢é kanoniczna sume statystyczna,
energie wewnetrzng i pojemnosé cieplna. Wyniki
przedyskutowac.

10.

. Czastka o masie m porusza sie w jednym wymiarze

pod wplywem sity zachowawczej o potencjale

imw?(z+a)? dla z<-a
V(z) = 0 dla -a<x<a
imw?(z —a)? dla z>a,

gdzie a > 0. Znalez¢ kanoniczng sume statystyczna
dla N takich czastek w réwnowadze termodyna-
micznej z rezerwuarem o temperaturze 1. Zba-
da¢ termodynamike (U, Cy, itd) i przedyskutowaé
wyniki. Zbadaé¢ granice a — 0.

N niezaleznych i rozréznialnych czastek porusza
si¢ w jednym wymiarze miedzy t =0ixz =L > 0.
Zmnalez¢ rownanie stanu tego uktadu jesli hamilto-
nian kazdej czastki ma postaé

2

P x
H= _an(Z

2m an<L0>,

gdzie a > 01 Ly > 0 jest charakterystyczna skala
dtugosci. Wyznaczyé¢ cidnienie i skomentowaé gra-
nice o — 0.

. Gaz doskonaly N jednoatomowych czasteczek o

masie m znajduje sie w cylindrze o wysokosci h
i promieniu R. Uktad (naczynie i gaz) wiruje wo-
kot osi symetrii z predkoscia katowa w. Gaz jest w
rownowadze z termostatem o temperaturze T'. Jak
zmienia sie koncentracja (liczba czasteczek na jed-
nostke objetosci) w réznych miejscach wewnatrz
walca? Znajdz cis$nienie, z jakim gaz napiera na
boczng Sciane walca.

Wskazowka: ,Sita odsrodkowa” dzialajaca na cza-
steczki F,q = mw?7 jest sila potencjalna.

W klasycznym gazie doskonalym czasteczek mo-
gacych mieé¢ rézne masy wyr6zniamy dwie cza-
steczki (nazwijmy je 11 2), o masach odpowiednio
m1 1 ms. Gaz jest w rownowadze z rezerwuarem o
temperaturze T. Znajdz prawdopodobienistwo, ze
wzgledna szybkosé |v] = |} — v3] czasteczek 11 2
zawiera sie w przedziale [v/,v" + dv’]. Oblicz Sred-
nig wartosé¢ tej szybkosci.

Rozwaz gaz doskonaly N czasteczek o masie m w
szesciennym pudle o boku L w sposob kwantowy
—jako N nierozréznialnych nieoddziatujacych cza-
steczek o energiach Ep, = %(niz + nzl +n?)
kazda. Gaz jest w réwnowadze z rezerwuarem o
temperaturze T'. Znajdz sume statystyczna, ener-
gie wewnetrzng, réwnanie stanu i entropie tego
gazu.

Wskazowka: Zaloz, ze réznice energii poszczegdl-
nych modéw sa na tyle male, ze uciaglié¢ sume

Sono f(n) = [5F f(n)dn.

Rozwaz w zespole kanonicznym zmodyfikowany
gaz fotonéw, w ktorym liczba wzbudzen kazdego
modu jest ograniczona od goéry, tj. energia modu o
pedzie P’ dana jest wzorem Ey = hwy(s+ %), gdzie
s =1,2,...,q to liczba wzbudzeri tego modu i ¢



jest liczba naturalna, wspoélng dla wszystkich mo-
dow. Energie stanu podstawowego hwﬁ% mozna zi-
gnorowaé. Znajdz energie wewnetrzng U, entropie
S, ci$nienie p, robwnanie stanu, koncentracje N/V
i ciepto wlasciwe cy tego ukladu. Jak roznig sie
one od odpowiednikéw dla zwyktych fotondéw?

15 Tydzien XV, 02-09/06/2025
15.1 Wyklad

XTI Doskonate gazy kwantowe

1.

Rozwiniecie wysoko-temperaturowe dla fermionow
i bozonéw

. Wtasnosci fermionéw w stanie podstawowym T =

0

Nisko-temperaturowe rozwiniecie Sommerfelda
dla fermionow, ciepto wtasciwe, kwaziczastki

Kondensacja Bosego-Einsteina

15.2 Zadania na ¢wiczenia

1.
2.

© ®° =N o

10.
11.

12.

Prawo Kirchhoffa
Wspoélezynniki Einsteina
Kwaziczastki - ciepto wlasciwe

Gaz fotonéw - poréwnanie zespotéw kanonicznego
i wielkiego kanonicznego

Potencjal chemiczny dla czastek z dodatkowymi
stopniami swobody

Reakcje chemiczne w gazach

Prawo dzialania mas

Roéwnowaga chemiczna

Adsorpcja gazu na powierzchni

Gaz doskonaly - wielki zesp6t kanoniczny

Gaz doskonaly - wielki zesp6t kanoniczny, rozktad
Poissona na liczbe czastek

Gaz doskonaly w polu grawitacyjnym, wielki ze-
sp6t kanoniczny

15.3 Zadania domowe

Patrz poprzedni i nastepny tydzien.

16 Tydzieii XVI, 10-17/06,/2025
16.1 Wyktad

XTI Doskonate gazy kwantowe

1.

Kondensacja Bosego-Einsteina

XII Przemiany fazowe

AN

. Klasyfikacja przejsé¢ fazowych

Ciepto utajone w przemianach nieciagtych
Indeksy krytyczne w przemianach ciagtych
Modele sredniego pola przemian fazowych

Teoria Yanga-Lee przemian fazowych i zera sumy
statystycznej

16.2 Zadania na ¢wiczenia

1.
2.

10.

Srednie obsadzenie bozonow i fermionéow

Rozwiniecia wysokotemperaturowe dla bozonéw i
fermionow

Paramagnetyzm Pauliego

Bozony i fermiony w granicy relatywistycznej i ul-
trarelatywistycznej

. Stan podstawowy fermionéw w granicy relatywi-

stycznej

Stan podstawowy nierelatywistycznych fermiondw
w d wymiarach

Rozwiniecie niskotemperaturowe Sommerfelda -
teoria

Rozwiniecie niskotemperaturowe Sommerfelda -
zastosowania

Rozwiniecie niskotemperaturowe Sommerfelda -
fermiony w d = 1 z liniowa relacja dyspersji

Bozony w niskich temperaturach

16.3 Zadania domowe

1.

Znalez¢ w literaturze (Internecie) wiadomosei o
funkcjach polilogarytmicznych. Wyrazi¢ wielki po-
tencjal termodynamiczny dla doskonatych fermio-
néw i bozonoéw za pomoca tych funkeji. (Wsk.
Nalezy zrobi¢ rozwiniecie wzgledem aktywnosci
a = ePr) Wyrazié¢ $rednia liczbe czastek oraz
ci$nienie za pomoca funkcji polilogarytmicznych.
Sa to termodynamiczne rownania stanu. Wyzna-
czy¢ energie wewnetrzna (kalorymetryczne rowna-
nie stanu) i poréwnaé je z wynikiem dla klasycz-
nego gazu doskonalego. Eliminujac potencjat che-
miczny z réwnai stanu znalezé cidnienie wraz z
pierwszg poprawka kwantowa. Sprobowaé¢ wyzna-
czy¢ kolejna poprawke kwantowa do rozwiniecia
wysokotemperaturowego.

. Dla idealnego gazu bozonéw o masie m w d wymia-

rach wyznaczy¢ temperature kondensacji Bosego-
Einsteina. Jak ta temperatura zalezy od wymiaro-
wosci uktadu. Kiedy kondensacja nie jest mozliwa?

Idealny gaz bozonéw o masie m w d = 3 wymia-
rach i spinie s = 1 ma energie stané6w jednoczast-
kowych

h2k?

= 2m

+ An,



gdzie n = 0,1 w zaleznosci od rzutu spinu odpo-
wiednio, S, = 01 S, = £1. Wyznaczy¢ tempe-
rature kondensacji Bosego-Einsteina i poréwna¢ z
przypadkiem bez spinowym.

. Idealny gaz bozonéw o masie m w d = 3 wymia-
rach, w polu magnetycznym B i spinie s = 1 ma
energie stanéw jednoczastkowych

h2k?

- - B z
¢ 2m HBos

gdzie s, = 0, %1 jest rzutem spinu, a up jest mo-
mentem magnetycznym. Wyprowadzi¢ wzory na
érednig liczbe czastek N oraz na $rednig magnety-
zacje M. Pokazaé, ze w granicy niskich temperatur
podatnos$é magnetyczna

_ (oM
X=\oB ),

spelia prawo Curie

. N
11m ~ —
B—)OX

. Dla idealnych fermionéw o masie m w d = 3 wy-
miarach pokazaé, ze w niskich temperaturach za-
chodzi

V=

Cp—Cy 7 (kpT ?
Cy 3 ’

€EF

gdzie er jest energia Fermiego.

. Tréjwymiarowa objetosé podzielona jest na dwie
czesei ruchoma, lecz sztywna i nieprzepuszczalna
adiabatyczng przegroda. W jednej czesci znajduja
sie fermiony o spinie 1/2,; a w drugiej fermiony
o spinie 3/2. W obu przypadkach jednoczastkowa
energia wynosi € = p?/2m, gdzie p jest wartoscia
pedu, a m masa czastek. Znalez¢ stosunek gestosci
tych czastek w stanie rownowagi mechanicznej w
granicy zerowej temperatury.

. Elektrony o spinie 1/2 i masie m sa w objeto-
$ci V' w stanie réwnowagi z temperatura 7" = 0.
Jednoczastkowa relacja dyspersji ma postaé¢ € =
p?/2m, gdzie p jest wartoScia pedu. Nagle obje-
tos¢ uklad wzrosta o AV, gdzie AV < V. Energia
uktadu pozostala niezmieniona. Jaka jest tempe-
ratura uktadu w nowym stanie réwnowagi? Porow-
naé¢ wynik z przypadkiem klasycznym.
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