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Warunki zaliczenia
• Zaliczenie w pierwszym terminie

1. Kolokwium, 14 kwietnia, 2025, sala , 9:00-
13:00, test 10p., 3 zadania po 10p.

2. Egzamin, 23 czerwca 2025, sala , 9:00-13:00,
test 10p., 3 zadania po 10p.

3. Możliwy egzamin ustny i poprawienie oceny
w pierwszym terminie

• Zaliczenie poprawkowe

1. Egzamin pisemny poprawkowy

2. Egzamin ustny poprawkowy, możliwość po-
prawy oceny w drugim terminie

Wypadkowa ocena na podstawie zebranej liczby
punktów w każdym ze sposobów zaliczania po unor-
mowaniu do 100 :

5+ za 99-100p.,
5 za 90-98p.,
4+ za 81-89p.,
4 za 72-80p.,
3+ za 62-71.,
3 za 50-61p.,
2 za 0-49p.

Uwaga: punkty z zaliczenia w pierwszym terminie i po-
prawkowym nie sumują się.

1 Tydzień I, 24/02-02/03/2025

1.1 Wykład

I. Termodynamika i fizyka statystyczna - wstęp

1. Termodynamika fenomenologiczna, liczba Avoga-
dro

2. Fizyka statystyczna

3. Krótka historia termodynamiki

4. Historia gazu doskonałego

5. Krótka historia fizyki statystycznej

6. Wiek XX

1.2 Zadania na ćwiczenia

1. Pochodne cząstkowe

2. Metoda Jacobianów

3. Wielkości ekstensywne i intensywne - przykład

4. Formy różniczkowe Pfaffa

5. Czynnik calkujący

1.3 Zadania domowe

1. Wiedząc, że dU = T (S, V )dS−p(S, V )dV jest róż-
niczką zupełną, pokaż, że

∂(T, S)
∂(p, V )

= 1 .

2. Pokaż, że w trzech wymiarach czynnik całkujący
jednoformę istnieje tylko, jeśli spełnia ona

ω · (∇× ω) = 0 .

3. Znajdź czynnik całkujący dla formy ω =
(yz/x)dx+ z dy + y dz.

4. Rozważmy ciąg kolejnych iloczynów zewnętrznych
ω, dω, ω ∧ dω, dω ∧ dω, ω ∧ dω ∧ dω itd. Jeśli
któryś wyraz się wyzeruje, wszystkie następne też.
Twierdzenie (Darboux) mówi, że jeśli r-ty wyraz
jest pierwszym znikającym, to dla r = 2m + 1
mamy

ω = dz +
m∑
i=1

yidxi ,

zaś dla r = 2m można napisać ω =
∑m
i=1 yidxi

gdzie x, y, z to funkcje. Sprawdź, jak wyglądają
kolejne wyrazy ciągu dla dU = T dS − p dV i ja-
kiego wymiaru jest w takim razie reprezentacja tej
formy.
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2 Tydzień II, 03-09/03/2025

2.1 Wykład

II. Podstawowe pojęcia termodynamiki

1. Układ termodynamiczny i zmienne termodyna-
miczne

2. Temperatura, ciśnienie, zerowa zasada termody-
namiki

3. Równowaga termodynamiczna

4. Przemiany termodynamiczne

III. Praca, ciepło, pierwsza zasada termody-
namiki

1. Praca mechaniczna

2. Ciepło

3. Pierwsza zasada termodynamiki

4. Entalpia

2.2 Zadania na ćwiczenia

1. Istnienie temperatury empirycznej

2. izotermy bez przecięć

3. Izotermy ciała stałego

4. Czas relaksacji

5. Klasyfikacja stanów układu

6. Równanie stanu 1

7. Równanie stanu 2

8. Równanie stanu 3

9. Równanie stanu 4

10. Współczynnik rozszerzalności

2.3 Zadania domowe

1. Badając układy termodynamiczne można zmie-
rzyć różne współczynniki, między innymi:

• (izobaryczną) rozszerzalność objętościową
αp = 1

V

(
∂V
∂T

)
p
,

• (izotermiczny) współczynnik ściśliwości βT =

− 1
V

(
∂V
∂p

)
T
,

• (izochoryczny) współczynnik termiczny ci-
śnienia κV = 1

p

(
∂p
∂T

)
V
.

a) Pokaż, że współczynniki αp, βT , κV nie są od
siebie niezależne – znając dwa z nich i parame-
try termodynamiczne układu można wyznaczyć
trzeci.

b) Oblicz te współczynniki dla gazu spełniającego
równanie van der Waalsa:(

p+
an2

V 2

)
(V − nb) = nRT ,

gdzie a i b to znane stałe. Pokaż, że tak uzyskane
współczynniki spełniają relację z podpunktu (a).

2. (a) Udowodnij, że zachodzi związek(
∂αp
∂p

)
T

= −
(
∂βT
∂T

)
p

.

(b) Wiedząc, że współczynnik rozszerzalności ob-
jętościowej pewnego gazu zmienia się zgodnie ze
wzorem

αp = A−Bp ,

gdzie A i B są znanymi stałymi, znajdź dla tego
gazu (

∂βT
∂T

)
p

,

(
∂βT
∂V

)
p

.

3. Badając pewien gaz zmierzono jego współczynnik
termiczny ciśnienia:

κV =
1
p

(
∂p

∂T

)
V

=
1
T

+
a

T 2v
,

gdzie v = V/n to objętość molowa, zaś a to stała.
Zauważono również, że w wysokich temperaturach
objętość molowa tego gazu różni się od odpowiada-
jącej objętości molowej gazu doskonałego o stałą
wartość b:

lim
T→∞

(
v − RT

p(T, v)

)
= b .

Znajdź równanie stanu tego gazu.

4. Dla pewnego gazu spełnione są związki(
∂V

∂T

)
p

=
nR

p
,

(
∂V

∂p

)
T

= −V
p
− anR ,

gdzie a to znana stała. Znajdź równanie stanu tego
gazu.

3 Tydzień III, 10-16/03/2025

3.1 Wykład
IV. Druga zasada Termodynamiki

1. Historyczne sformułowania drugiej zasady termo-
dynamiki

2. Sprawność maszyn cieplnych i bezwzględna skala
temperatury
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3.2 Zadania na ćwiczenia

1. Proces pseudostatyczny

2. Proces Joule’a-Thomsona

3. Praca w polu magnetycznym

4. Pierwsza zasada termodynamiki dla magnetyka

5. Proces adiabatyczny gazu doskonałego

6. Niezależne zmienne termodynamiczne

7. Pojemność cieplna przy stałym N lub µ

8. Wybrane procesy termodynamiczne

3.3 Zadania domowe

1. Analogicznie do materiałów magnetycznych mo-
żemy rozważać termodynamikę dielketryków.
Niech układ składa się z kondensatora podłączo-
nego do źródła o napięciu U , w który wsunięty
jest dielektryk. Na płytce kondensatora nad po-
wierzchnią dielektryka gęstość ładunku wynosi Σ
(łączny ładunek Q), a poza dielektrykiem σ (q).
Wyindukowany ładunek na powierzchni dielek-
tryka ma gęstość −P (polaryzacja). Zakładamy
jednorodne pole elektryczne wewnątrz kondensa-
tora. Pokaż, że praca potrzebna na zmianę ła-
dunku na płytce wynosi

W = E (ε0V0dE + V dP ) ,

gdzie pierwszy człon opisuje pusty kondensator o
objętości V0, zaś objętość dielektryka to V . Zatem
pierwsza zasada termodynamiki dla elektryka gdy
pole elektryczne jest stałe to

dU = Q+ ~Ed~P

2. Znajdź ciepło molowe gazu doskonałego (pv =
RT ) który podlega odwracalnej przemianie, w któ-
rej pva+1 = const.

3. Korzystając tylko z pierwszej zasady, udowodnij
wzór

(cp−cv)
∂2T

∂p∂v
+
(
∂cp
∂p

)
v

(
∂T

∂v

)
p

−
(
∂cv
∂v

)
p

(
∂T

∂p

)
v

= 1

4. Oblicz współczynnik izobarycznej rozszerzalności
termicznej αp = (1/V )

(
∂V
∂T

)
p
i ściśliwości izoter-

micznej kT = −(1/V )
(
∂V
∂p

)
T

oraz prężności izo-

chorycznej βV = (1/p)
(
∂p
∂T

)
V

gazu z równaniem
stanu Dietericiego

p(V − nb) = nRT exp
(
− an

TV

)
.

Jaki związek spełniają te współczynniki? Czy da
się to stwierdzić bez znajomości dokładnej postaci
równania stanu?

4 Tydzień IV, 17-23/03/2025

4.1 Wykład
IV. Druga zasada Termodynamiki

1. Entropia i II zasada termodynamiki

2. Entropia jako zmienna termodynamiczna

4.2 Zadania na ćwiczenia
1. Pochodne energii wewnętrznej

2. Pochodne pojemności cieplnych

3. Proces izoentalpowy Joule’a-Thomsona

4. Pojemnosci cieplne dla gazów van der Waalsa i
Berthelota

5. Rozprężanie gazu van der Waalsa do próżni

6. Twierdzenie Hessa

7. Entalpa reakcji chemicznej z tw. Hessa

8. Ciepło w procesie izotermicznym z dielektrykiem

9. Pojemność cieplna paramagnetyka

4.3 Zadania domowe
1. Wykorzystując prawo Hessa, oblicz ciepło Q̄ wy-

dzielane w reakcji

Cgrafit + 2 H2 −→ CH4 + Q̄ ,

na podstawie ciepeł wydzielanych w następują-
cych reakcjach chemicznych

H2 +
1
2

O2 −→ H2O + Q̄1 ,

Cgrafit + O2 −→ CO2 + Q̄2 ,

CH4 + 2 O2 −→ CO2 + 2 H2O + Q̄3 ,

gdzie Q̄1 = 285,8 kJ, Q̄2 = 393,5 kJ i Q̄3 = 890,4
kJ.

2. Korzystając z tożsamości Maxwella udowodnionej
na ćwiczeniach(

∂S

∂V

)
T

=
(
∂p

∂T

)
V

,

udowodnij następującą postać tożsamości Mayera

Cp − CV = TV
α2
p

βT
,

gdzie αp = 1
V

(
∂V
∂T

)
p
i βT = − 1

V

(
∂V
∂p

)
T
.

3. Pokaż, że jeśli energia wewnętrzna pewnego gazu
przy ustalonej temperaturze nie zależy od jego ob-
jętości (

(
∂U
∂V

)
T

= 0), to wtedy
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• jego pojemność cieplna CV też nie zależy od
objętości:

(
∂CV
∂V

)
T

= 0,

• jego równanie stanu postać V = f(p/T ),
gdzie f(·) jest pewną funkcją ilorazu p/T ,

• różnica Cp − CV tego gazu też jest pewną
funkcją ilorazu p/T .

4. Infinitezymalna praca rozciągnięcia gumowej ta-
śmy o naprężeniu K z długości L do L + dL wy-
nosi W = KdL. Naprężenie pewnej gumowej ta-
śmy jest, przy ustalonej długości L, liniową funk-
cją temperatury: K = TA(L). Pokaż, że energia
wewnętrzna takiej taśmy nie zależy od długości
(
(
∂U
∂L

)
T

= 0) i że w zakresie długości L, dla któ-
rych jej naprężenie K jest dodatnie, jej entropia
maleje przy izotermicznym rozciąganiu. Pokaż też,
że w tym samym zakresie długości temperatura ta-
śmy wzrasta, gdy jest adiabatycznie rozciągana.

5 Tydzień V, 24-30/03/2025

5.1 Wykład
IV. Druga zasada Termodynamiki

1. Entropia jako funkcja stanu, równanie podsta-
wowe termodynamiki

2. III zasada termodynamiki, postulat Nernsta

3. Podsumowanie zasad termodynamiki

V. Zmienne losowe i rozkłady prawdopodo-
bieństwa

1. Elementy teorii prawdopodobieństwa

2. Funkcje tworzące, momenty, kummulanty i kore-
lacje

5.2 Zadania na ćwiczenia
1. Równoważność sformułowań Clausiusa i Kelvina

II zasady termodynamiki

2. Sprawność w procesach nieodwracalnych

3. Temperatura bezwględna z paramagnetycznym
ciałem roboczym

4. Sprawność lodówki Carnot’a

5. Nierówność Clausiusa

6. Transformacja skalowania entropii

7. Cieplny równoważnik pracy w cyklu Mayera

8. Cykl Carnot’a, zmiana entropii

9. Praca w cyklu odracalnym

10. Sprawność w cyklu odwracalnym innym od Car-
not’a

11. Sprawność silnika Stirlinga

12. Entropia gazu van der Waalsa

13. Potencjał chemiczny gazu doskonałego

14. Zastosowania pochodnych entropii

15. Niemożliwość ochłodzenia wody w pokoju

5.3 Zadania domowe
1. Wyprowadź wzory na energię wewnętrzną orz en-

tropię wyrażone w zmiennych T i v dla jednego
mola gazu opisanego równaniem stanu Berthelota(

p+
a

v2T

)
(v − b) = RT

zakładając, że znana jest jego molowa pojemność
cieplna cv(T, v0) jako funkcja temperatury przy
jednej wartości v0 molowej objętości. Zapisując ją
jako sumę cv(T, v) = c0v(T )+δcv(T, v), w której c0v
jest częścią niezależną od objętości i odpowiada cv
gazu doskonałego wyznacz poprawkę δcv pamięta-
jąc, że gazy bardzo rozrzedzone zachowują się jak
gaz doskonały.

2. Cykl Diesla składa się z czterech przemian:

• izobarycznego rozprężania gazu od V1 do V2

• adiabatycznego rozprężania do V3

• chłodzenia przy stałej objętości
• adiabatycznego sprężania z powrotem do

stanu początkowego.

Oblicz sprawność tego cyklu dla gazu doskonałego.

3. Cykl Otto składa się z czterech przemian, dwóch
adiabatycznych i dwóch izochorycznych. Oblicz
sprawność tego cyklu dla gazu doskonałego i wy-
raź przez objętości gazu w kolejnych punktach.

4. Cykl Stirlinga składa się z czterech przemian,
dwóch izotermicznych i dwóch izochorycznych.
Oblicz sprawność tego cyklu dla gazu doskonałego.

5. Wyznacz maksymalną pracę, jaką możemy uzy-
skać łącząc ze sobą dwa naczynia o różnych objęto-
ściach V1 i V2 utrzymywane w identycznej tempe-
raturze i zawierające po n moli tego samego gazu
doskonałego o stałym cieple molowym cv.

6 Tydzień VI, 31/03-06/04/2025

6.1 Wykład
V. Zmienne losowe i rozkłady prawdopodo-
bieństwa

1. Prawdopodobieństwo, informacja i entropia infor-
macyjna

2. Centralne twierdzenie graniczne i rozkład Ma-
xwella
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VI. Podstawy fizyki statystycznej

1. Wspólne cechy układów makroskopowych, mikro i
makrostany

2. Postulat równych prawdopodobieństw a priori

3. Hipoteza ergodyczna

VII. Zespół mikrokanoniczny

1. Układ izolowany, statystyczny zespół mikrokano-
niczny

6.2 Zadania na ćwiczenia
1. Sprawność cyklu Carnot’a na gazie doskonałym

2. Sprawność cyklu Otto na gazie doskonałym

3. Termodynamika gazu doskonałego fotonów

4. Sprawność cyklu Carnot’a na fotonach

5. Termodynamika czarnej dziury

6. Sprawność cyklu Carnot’a na czarnej dziurze i fo-
tonach

6.3 Zadania domowe
1. Ustalono, że zależność naprężenia K pewnej gu-

mowej taśmy od temperatury T i długości L jest
(w pewnym zakresie temperatur) dana wzorem

K(T, L) = aT

(
L

L0
− L2

0

L2

)
,

gdzie a i L0 to znane stałe. Ponadto zmierzono
pojemność cieplną tej taśmy przy ustalonej dłu-
gości L = L0 i wyniosła ona CL=L0 = bT , gdzie
b to znana stała. Zmiana energii wewnętrznej ta-
kiej taśmy w kwazistatycznym procesie wynosi
dU = TdS+KdL. Wyznacz energię wewnętrzną i
entropię tej taśmy jako funkcje temperatury i dłu-
gości. Znajdź też pojemność cieplną przy stałym
naprężeniu, CK .

2. Gumowe taśmy z poprzedniego zadania wykorzy-
stamy do zbudowania silnika. Weźmy koło o pro-
mieniu R, które może swobodnie obracać się wokół
swojej osi. N taśm o L0 = R przyczepiamy jed-
nym końcem do punktów na brzegu koła (małe,
brązowe punkty), zaś drugim do punktu przesu-
niętego o ∆R od osi koła (duży, brązowy punkt,
patrz rysunek):

Dolne pół koła (i taśm gumowych) zanurzonych
jest w ciepłej wodzie o temperaturze TH , zaś
górne pół znajduje się w chłodniejszym powie-
trzu o temperaturze TC . Ściąganie taśm na sku-
tek rozgrzania i rozciąganie na skutek chłodze-
nia powoduje, że koło powoli się obraca. Zakłada-
jąc, że taśmy ogrzewają/chłodzą się podczas zanu-
rzania/wynurzania dużo szybciej, niż czas obrotu

koła (więc można to potraktować za przemiany
przy stałej długości L), zaś przez resztę obrotu
podlegają izotermicznemu rozciąganiu/ściąganiu,
oblicz sprawność tego silnika. Jaka jest jego spraw-
ność w porównaniu do silnika Carnot’a między
tymi samymi temperaturami?

3. Cylindryczne naczynie podzielone jest wewnątrz
na pół tłokiem. Każda połowa zawiera n moli gazu
doskonałego o identycznych objętościach V i ci-
śnieniach p. Cały układ przez cały czas znajduje
się w równowadze z otoczeniem o temperaturze T .
Tłok ma masę m, pole powierzchni bocznej A i
może poruszać się wewnątrz naczynia bez tarcia.
W pewnym momencie naczynie obrócono o 90◦,
tak, że na tłok zadziałało przyspieszenie ziemskie
g wzdłuż osi naczynia. Oblicz, o ile zmieniła się
entropia układu na skutek przesunięcia tłoka wy-
wołanego grawitacją do nowego stanu równowagi,
zakładając, że proces ten przebiegał przy stałej
temperaturze.

4. W bardzo niskich temperaturach podatność ma-
gnetyczna χ = M/H paramagnetyków zachowuje
się w przybliżeniu jak (tzw. paramagnetyzm Pau-
liego):

χ ≈ χ0 − aT 2 ,

gdzie χ0 i a to dodatnie stałe. Wiedząc dodatkowo,
że w niskich temperaturach pojemność cieplna pa-
ramagnetyka przy zerowym polu H = 0 wynosi
CH=0 = βT 3 + γT , gdzie β i γ to stałe, wyznacz

TH

TC

ÂR

R
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jego entropię w niskich temperaturach. Czy speł-
nia ona III zasadę termodynamiki?

7 Tydzień VII, 06-13/04/2025

7.1 Wykład
VII. Zespół mikrokanoniczny

1. Układ izolowany, statystyczny zespół mikrokano-
niczny

2. Dwa podukłady w równowadze termodynamicznej

VIII. Zespół kanoniczny

1. Definicja zespołu kanonicznego

2. Rozkład Boltzmanna

3. Suma statystyczna, termodynamika, równoważ-
ność zespołów w granicy termodynamicznej

4. Ciśnienie - mikroskopowo i makroskopowo

5. Praca i ciepło mikroskopowo, twierdzenie o ekwi-
partycji energii

7.2 Zadania na ćwiczenia
1. Dokończenie materiału z poprzednich tygodni i

przygotowanie do kolokwium

8 Tydzień VIII, 14-20/04/2025

8.1 Wykład
VIII. Zespół kanoniczny

1. Energia swobodna

2. Demon Maxwella, silnik Szilarda, zasada Landau-
era

8.2 Zadania na ćwiczenia
(Zrobiono wybrane przykłady)

1. Prawdopodobieństwo - kostki na rozgrzewkę

2. Prawdopodobieństwo - rozkład armata

3. Prawdopodobieństwo - rozkład spadający kamień

4. Momenty i kumulanty

5. Momenty i kumulanty

6. Twierdzenie o transformacji zmiennej losowej

7. Rozkład log-normal

8. Suma dwóch zmiennych losowych

9. Centralne twierdzenie graniczne

10. Momenty centralne a rozkład prawdopodobień-
stwa

11. Całka Gaussowska

12. Funkcja Gamma

13. Objętość d-wymiarowej kuli

14. Przybliżenie Stirlinga

8.3 Zadania domowe

1. Korzystając z definicji wyprowadź związki pomię-
dzy momentami i kumulantami.

2. Cząstka (lub zmęczona, głodna i niezdecydowana
osoba) w chwili t = 0 znajduje się w punkcie x = 0.
Co δt wykonuje krok o δx w lewo lub prawo (w
stronę lodówki lub w stronę łóżka) z prawdopodo-
bieństwem 1/2. Znajdź rozkład prawdopodobień-
stwa znalezienia cząstki w węzłach siatki po N
krokach. Jaka jest wartość oczekiwana i warian-
cja rozkładu? Co się dzieje w granicy dużej liczby
kroków?

3. Tym razem proces zaczyna się o jeden krok δx od
łóżka, ale z prawdopodobieństwem p = 2/3 osoba
przesuwa się w stronę lodówki, a tylko 1/3 łóżka.
Jakie jest prawdopodobieństwo, że pójdzie kiedyś
spać (zakładamy, że kładzie się do łóżka natych-
miast po osiągnięciu celu)? Jak wygląda wynik dla
dowolnej wartości p?

4. Prowadzący ćwiczenia ma w grupie n studentów,
którym chce rozdać prace domowe, ale oddaje
je zupełnie przypadkowo. Jaka jest oczekiwana
liczba osób, które dostaną swoją pracę? Jakie jest
prawdopodobieństwo, że dokładnie r osób dosta-
nie właściwą pracę?

9 Tydzień IX, 21-27/04/2025

9.1 Wykład

VIII. Zespół kanoniczny

1. Gaz idealny w zespole kanonicznym, paradoks
Gibbsa

9.2 Zadania na ćwiczenia

1. Omówienie zadań z kolokwium

2. Dokończenie materiału z poprzedniego tygodnia
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10 Tydzień X, 28/04-04/05/2025

10.1 Wykład

IX. Rozkład Plancka i zastosowania

1. Rozkład Plancka w pojedynczym oscylatorze
kwantowym

2. Promieniowanie ciała doskonale czarnego

10.2 Zadania na ćwiczenia

1. Gęstość stanów w d-wymiarach

2. Mikrokanoniczne warunki równowagi termodyna-
micznej

3. Gaz idealny w zespole mikrokanonicznym

4. Gaz idealny w zespole mikrokanonicznym - termo-
dynamika

5. Klasyczny oscylator harmoniczny w zespole mi-
krokanonicznym i jego termodynamika

11 Tydzień XI, 05-11/05/2025

11.1 Wykład

IX. Rozkład Plancka i zastosowania

1. Promieniowanie ciała doskonale czarnego, prawo
Plancka

11.2 Zadania na ćwiczenia

1. Spiny Isinga w polu - mikrokanonicznie

2. Spiny Isinga w polu - kanonicznie

11.3 Zadania domowe

1. Znaleźć Ω(U,N) w zespole mikrokanonicznym
dla N identycznych, rozróżnialnych kwantowych
oscylatorów harmonicznych o częstości ω w
jednym wymiarze. Wyznaczyć entropię, tempe-
raturę i potencjał chemiczny układu. Znaleźć
granicę klasyczną, tzn. U/N � ~ω. Wsk.
Ĥ =

∑N
j=1 ~ω(â†j âj + 1/2), δ(x − x0) =

(1/2π)
∫
keik(x−x0) oraz zastosować do obliczenia

całki metodę punkty siodłowego.

2. Dany jest jednowymiarowy łańcuch składający się
z N � 1 segmentów o długości a zawieszony
pomiędzy brzegami w odległości L ¬ aN , rysu-
nek. Znaleźć entropię S(L,N) = kB ln Ω(LN) tego
układu jako funkcję L = a|N+ − N−|, gdzie N±
jest liczbą segmentów zwróconych w prawo/lewo,
i otrzymać związek między temperaturą T a siłą
X (napięcie) jakie jest niezbędne aby utrzymać

odległość L, zakładając, że segmenty można ob-
racać swobodnie. Przyjmij, że L jest wielokrot-
nością a. Model ten opisuje własności elastyczne
gumy, w szczególności prawo Hook’a. Wsk. X =
(∂F/∂L)T = −T (∂S/∂L)T ∼ (kBT/Na2)l dla du-
żych N .

3. Załóżmy, że izolowane od otoczenia dwa układy
mają całkowitą liczbę stanów daną przez
Γi(Ui, Ni) ∼ eNiφi(Ui/Ni), gdzie i = 1, 2, Ni to
liczba cząstek t-tego układu o energii Ui, a funk-
cje φi(Ui/Ni) są rzędu jedności oraz φ(x) > 0,
φ′(x) > 0 i φ′′(x) < 0, gdzie prim oznacza
pochodną. Jesli układy 1 i 2 są w kontakcie
termicznym to pokazać, że: i) Jeśli temperatury
były T1 > T2 to ciepło przepływa z 2 do 1, a
entropia wzrośnie o d̄ Q(1/T2 − 1/T1); ii) Jeśli
dwa układy są w równowadze termodynamicznej
(T1 = T2) to entropia całości jest sumą entropii
podukładów S12 = S1 +S2; iii) Fluktuacje energii
U1 i U2 w stanie równowagi termodynamicznej
między 1 i 2 dane są przez KBT

2/(1/C1 + 1/C2),
gdzie Ci to pojemności cieplne i-tego podukładu.

4. W sześciennym pudełku o boku długości L w d-
wymiarach znajduje się N cząsteczek gazu dosko-
nałego. Układ jest całkowicie izolowany od otocze-
nia. Znaleźć dyspersję środka masy gazu w równo-
wadze termodynamicznej. Jak ona zależy od L?

5. Rozważmy N identycznych, rozróżnialnych czą-
stek obsadzających k komórek o tej samej objęto-
ści. Makrostan scharakteryzowany jest liczbą czą-
stek ni w każdej komórce. Nie interesuje nas która
cząstka gdzie jest. Pokazać, że liczba makrosta-
nów wynosi Ω(n1, n2, ..., nk) = N !/n1!n2! . . . nk!.
Pokazać„ że przy ustalonej liczbie cząstek N =∑k
i=1 ni najbardziej prawdopodobne rozłożenie

cząstek jest takie, że ni = N/k, czyli rozkład jest
jednorodny.

12 Tydzień XII, 12-18/05/2025

12.1 Wykład

IX. Rozkład Plancka i zastosowania

1. Drgania kryształu, kwazicząstki, fonony, ciepło
właściwe
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12.2 Zadania na ćwiczenia
1. Podsumowanie i uzupełnienie materiału z roz-

kładu mikrokanonicznego

12.3 Zadania domowe
1. a) Igłę długości ` upuszczono na podłogę tak, że z

równą gęstością prawdopodobieństwa mogła upaść
w dowolne miejsce i być dowolnie obrócona. Pod-
łoga składa się z równoległych desek szerokości
d. Jakie jest prawdopodobieństwo, że igła prze-
tnie przynajmniej jedno łączenie między deskami?
Rozważ oddzielnie przypadki ` < d i ` ­ d.
b) Eksperyment powtórzono N razy. Ile razy śred-
nio igła przecięła łączenie? Jakie jest odchylenie
standardowe tej liczby?

2. Przy analizowaniu klasycznego gazu doskonałego
pominęliśmy wpływ zewnętrznej grawitacji na czą-
steczki gazu. By pokazać, że to rzeczywiście uza-
sadnione, rozważ w zespole mikrokanonicznym gaz
N nieoddziałujących cząsteczek o masie m każda
w sześciennym zbiorniku o boku L, znajdującym
się w jednorodnym polu grawitacyjnym o przyspie-
szeniu ~g prostopadłym do dwóch przeciwległych
ścian. Przyjmij, że energia wewnętrzna gazu jest
dużo większa, niż energia potencjalna cząsteczek
gazu (w typowych warunkach T'300 K, Nm'10
g, g'10 m

s2 , L'1 m energie te różnią się o 4 rzędy
wielkości, więc można tak przyjąć).

3. Gaz tworzony przez N twardych kul o masie m
i objętości b każda zamknięty jest w izolowanym
pojemniku o objętości V (V � Nb). Posługując
się klasycznym zespołem mikrokanonicznym wy-
prowadź równanie stanu takiego gazu i jego ener-
gię wewnętrzną w funkcji parametrów termodyna-
micznych. Przyjmij, że kule nie oddziałują ze sobą,
ale przy sumowaniu stanów podczas całkowania po
położeniu

∫
d3~x1· · ·

∫
d3~xN pierwsza kula ma do-

stępną całą objętość V , druga ma ją pomniejszoną
o objętość pierwszej kuli, czyli dostępne V−b, trze-
cia ma dostępne V − 2b itd.

4. Korzystając z zespołu mikrokanonicznego oblicz
prawdopodobieństwo p(E)dE tego, że w zamknię-
tym w objętości V gazie doskonałym o całkowitej
energii U składającym się z N klasycznych cząstek
o masie m, wybrana cząstka ma energię pomiędzy
E, a E + dE. Podaj postać p(E)dE w granicy
termodynamicznej (N → ∞, U → ∞, przy U/N
ustalonym) i pokaż, że ma ono taką postać, jak w
zespole kanonicznym zastosowanym do wybranej
cząstki (gdzie reszta gazu pełni rolę rezerwuaru).

13 Tydzień XIII, 19-26/05/2025

13.1 Wykład
X Wielki zespół kanoniczny

1. Potencjał chemiczny, interpretacja fizyczna

2. Potencjał chemiczny i entropia, relacje termody-
namiczne

3. Wielki zespół kanoniczny w mechanice statystycz-
nej

4. Wielki potencjał kanoniczny

5. Gaz doskonały w wielkim zespole kanonicznym.

13.2 Zadania na ćwiczenia

1. Gaz doskonały, suma statystyczna, zespół kano-
niczny

2. Gaz doskonały, termodynamika, zespół kano-
niczny

3. Gaz doskonały cząsteczek dwuatomowych, suma
statystyczna, zespół kanoniczny

4. Gaz doskonały cząsteczek dwuatomowych, termo-
dynamika, zespół kanoniczny

5. Dipole w polu elektrycznym, zespół kanoniczny

13.3 Zadania domowe

1. Rozważ gaz N nieoddziałujących cząstek w pu-
dełku o boku L, które mogą przyjmować dyskretne
wartości energii E(n1, n2, n3) = π2~2

2mL2 (n2
1 + n2

2 +
n2

3). Oblicz sumę statystyczną układu przechodząc
do granicy dużych rozmiarów pudełka. Sprawdź,
że wynik jest identyczny jak dla klasycznego gazu
doskonałego.

2. Rozważ jednowymiarowy gazN nieoddziałujących
relatywistycznych cząstek o relacji dyspersyjnej
ε = pc w kontakcie z rezerwuarem o temperaturze
T . Oblicz sumę statystyczną układu, jego energię
wewnętrzną, energię na jedną cząstkę, pojemność
cieplną CV = T

(
∂S
∂T

)
V,N

oraz ciśnienie.

3. W jednorodnym polu grawitacyjnym skierowanym
wzdłuż osi z umieszczono naczynie o polu pod-
stawy S i nieskńczonej wysokości. W naczyniu
znajduje się gaz składajacy się z N identycznych
cząsteczek o masie m wzajemnie nieoddziałują-
cych. Wyznacz wartość średnią i fluktuacje skła-
dowej środka masy układu w stanie równowagi o
temperaturze T.

14 Tydzień XIV, 27/05-
01/06/2025

14.1 Wykład

XI Doskonałe gazy kwantowe

1. Wielocząstkowa funkcja falowa, zasada nierozróż-
nialności cząstek kwantowych i jej konsekwencje

2. Funkcje rozkładu Fermiego-Diraca i Bosego-
Einsteina

8



14.2 Zadania na ćwiczenia
1. Rozkład Maxwella, prędkość wypływu gazu

2. Rozkład Maxwella, cząsteczki padające na tarczę

3. Rozkład Maxwella, względna prędkość

4. Rozkład Maxwella, efekt Dopplera

5. Rozkład Maxwella, wzór barometryczny

6. Siła nośna

7. Liczba fotonów we Wszechświecie

8. prawo przesunięć Wiena

9. Promieniowanie ze Słońca

10. Ściśliwość gazu doskonałego i gazu fotonów

11. Promieniowanie q-onów

14.3 Zadania domowe
1. Kula o promieniu R i masie M porusza się z pręd-

kością ~U względem ścian dużego pojemnika w ga-
zie cząstek doskonałych o temperaturze T , gęsto-
ści n i masie cząstek m. Znaleźć siłę oporu jaką
doznaje kula. Wynik wyrazić przez funkcję błędu.
Omówić graniczne przypadki. pokazać, że w dla
małych ~U wyraz wiodący siły tarcia jest propor-
cjonalny do ~U .

2. Rozważyć klasyczny gaz doskonały N cząstek o
masie m w objętości V . Każda cząstka może znaj-
dować się w dwóch stanach wewnętrznych o ener-
giach ε1 > 0 i degeneracji g1 oraz ε2 > ε1 i degene-
racji g2. Wyznaczyć sumę statystyczna tego gazu
w zespole kanonicznym jeśli jest on w równowadze
termodynamicznej z otoczeniem o temperaturze
T . Znaleźć energię wewnętrzną U oraz pojemność
cieplna przy stałej objętości CV . Przeanalizować
niskotemperaturowe zachowanie się CV .

3. Znaleźć kanoniczną sumę statystyczną i na
tej podstawie wyznaczyć pełną termodynamikę
układu N spinów ±1 w polu magnetycznym B
skierowanym w kierunku osi z. Porównać obecne
rozwiązanie z rozwiązaniem tego problemu w ra-
mach zespołu mikrokanonicznego.

4. Układ kwantowy opisywany jest hamiltonianem w
postaci

Ĥ = −g B√
2

 0 1 0
1 0 1
0 1 0

 ,

gdzie g > 0. Jaki jest sens tego hamiltonianu?
Wsk. Porównać z operatorem L̂x. Rozpatrzyć ze-
spół N takich układów kwantowych w równowa-
dze termodynamicznej z otoczeniem o tempera-
turze T . Znaleźć kanoniczna sumę statystyczną,
energię wewnętrzną i pojemność cieplną. Wyniki
przedyskutować.

5. Cząstka o masiem porusza się w jednym wymiarze
pod wpływem siły zachowawczej o potencjale

V (x) =


1
2mω

2(x+ a)2 dla x ¬ −a
0 dla -a<x<a

1
2mω

2(x− a)2 dla x ­ a,

gdzie a > 0. Znaleźć kanoniczną sumę statystyczną
dla N takich cząstek w równowadze termodyna-
micznej z rezerwuarem o temperaturze T . Zba-
dać termodynamikę (U , CN , itd) i przedyskutować
wyniki. Zbadać granice a→ 0.

6. N niezależnych i rozróżnialnych cząstek porusza
się w jednym wymiarze między x = 0 i x = L > 0.
Znaleźć równanie stanu tego układu jeśli hamilto-
nian każdej cząstki ma postać

H =
p2

2m
− α ln

(
x

L0

)
,

gdzie α > 0 i L0 > 0 jest charakterystyczną skalą
długości. Wyznaczyć ciśnienie i skomentować gra-
nice α→ 0.

7. Gaz doskonały N jednoatomowych cząsteczek o
masie m znajduje się w cylindrze o wysokości h
i promieniu R. Układ (naczynie i gaz) wiruje wo-
kół osi symetrii z prędkością kątową ω. Gaz jest w
równowadze z termostatem o temperaturze T . Jak
zmienia się koncentracja (liczba cząsteczek na jed-
nostkę objętości) w różnych miejscach wewnątrz
walca? Znajdź ciśnienie, z jakim gaz napiera na
boczną ścianę walca.

Wskazówka: „Siła odśrodkowa” działająca na czą-
steczki ~Fod = mω2~r jest siłą potencjalną.

8. W klasycznym gazie doskonałym cząsteczek mo-
gących mieć różne masy wyróżniamy dwie czą-
steczki (nazwijmy je 1 i 2), o masach odpowiednio
m1 i m2. Gaz jest w równowadze z rezerwuarem o
temperaturze T . Znajdź prawdopodobieństwo, że
względna szybkość |~v| = |~v1 − ~v2| cząsteczek 1 i 2
zawiera się w przedziale [v′, v′ + dv′]. Oblicz śred-
nią wartość tej szybkości.

9. Rozważ gaz doskonały N cząsteczek o masie m w
sześciennym pudle o boku L w sposób kwantowy
– jako N nierozróżnialnych nieoddziałujących czą-
steczek o energiach E~ni = ~2π2

2mL2 (n2
xi + n2

yi + n2
zi)

każda. Gaz jest w równowadze z rezerwuarem o
temperaturze T . Znajdź sumę statystyczną, ener-
gię wewnętrzną, równanie stanu i entropię tego
gazu.

Wskazówka: Załóż, że różnice energii poszczegól-
nych modów są na tyle małe, że uciąglić sumę∑∞
n=0 f(n) 7→

∫∞
0 f(n)dn.

10. Rozważ w zespole kanonicznym zmodyfikowany
gaz fotonów, w którym liczba wzbudzeń każdego
modu jest ograniczona od góry, tj. energia modu o
pędzie ~p dana jest wzorem E~p = ~ω~p(s+ /12 ), gdzie
s = 1, 2, . . . , q to liczba wzbudzeń tego modu i q
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jest liczbą naturalną, wspólną dla wszystkich mo-
dów. Energię stanu podstawowego ~ω~p 1

2 można zi-
gnorować. Znajdź energię wewnętrzną U , entropię
S, ciśnienie p, równanie stanu, koncentrację N/V
i ciepło właściwe cV tego układu. Jak różnią się
one od odpowiedników dla zwykłych fotonów?

15 Tydzień XV, 02-09/06/2025

15.1 Wykład
XI Doskonałe gazy kwantowe

1. Rozwinięcie wysoko-temperaturowe dla fermionów
i bozonów

2. Własności fermionów w stanie podstawowym T =
0

3. Nisko-temperaturowe rozwinięcie Sommerfelda
dla fermionów, ciepło właściwe, kwazicząstki

4. Kondensacja Bosego-Einsteina

15.2 Zadania na ćwiczenia
1. Prawo Kirchhoffa

2. Współczynniki Einsteina

3. Kwazicząstki - ciepło właściwe

4. Gaz fotonów - porównanie zespołów kanonicznego
i wielkiego kanonicznego

5. Potencjał chemiczny dla cząstek z dodatkowymi
stopniami swobody

6. Reakcje chemiczne w gazach

7. Prawo działania mas

8. Równowaga chemiczna

9. Adsorpcja gazu na powierzchni

10. Gaz doskonały - wielki zespół kanoniczny

11. Gaz doskonały - wielki zespół kanoniczny, rozkład
Poissona na liczbę cząstek

12. Gaz doskonały w polu grawitacyjnym, wielki ze-
spół kanoniczny

15.3 Zadania domowe
Patrz poprzedni i następny tydzień.

16 Tydzień XVI, 10-17/06/2025

16.1 Wykład
XI Doskonałe gazy kwantowe

1. Kondensacja Bosego-Einsteina

XII Przemiany fazowe

1. Klasyfikacja przejść fazowych

2. Ciepło utajone w przemianach nieciągłych

3. Indeksy krytyczne w przemianach ciągłych

4. Modele średniego pola przemian fazowych

5. Teoria Yanga-Lee przemian fazowych i zera sumy
statystycznej

16.2 Zadania na ćwiczenia
1. Średnie obsadzenie bozonów i fermionów

2. Rozwinięcia wysokotemperaturowe dla bozonów i
fermionów

3. Paramagnetyzm Pauliego

4. Bozony i fermiony w granicy relatywistycznej i ul-
trarelatywistycznej

5. Stan podstawowy fermionów w granicy relatywi-
stycznej

6. Stan podstawowy nierelatywistycznych fermionów
w d wymiarach

7. Rozwinięcie niskotemperaturowe Sommerfelda -
teoria

8. Rozwinięcie niskotemperaturowe Sommerfelda -
zastosowania

9. Rozwinięcie niskotemperaturowe Sommerfelda -
fermiony w d = 1 z liniową relacją dyspersji

10. Bozony w niskich temperaturach

16.3 Zadania domowe
1. Znaleźć w literaturze (Internecie) wiadomości o

funkcjach polilogarytmicznych. Wyrazić wielki po-
tencjał termodynamiczny dla doskonałych fermio-
nów i bozonów za pomocą tych funkcji. (Wsk.
Należy zrobić rozwinięcie względem aktywności
α = eβµ.) Wyrazić średnią liczbę cząstek oraz
ciśnienie za pomocą funkcji polilogarytmicznych.
Są to termodynamiczne równania stanu. Wyzna-
czyć energię wewnętrzną (kalorymetryczne równa-
nie stanu) i porównać je z wynikiem dla klasycz-
nego gazu doskonałego. Eliminując potencjał che-
miczny z równań stanu znaleźć ciśnienie wraz z
pierwszą poprawką kwantową. Spróbować wyzna-
czyć kolejną poprawkę kwantową do rozwinięcia
wysokotemperaturowego.

2. Dla idealnego gazu bozonów o masiem w d wymia-
rach wyznaczyć temperaturę kondensacji Bosego-
Einsteina. Jak ta temperatura zależy od wymiaro-
wości układu. Kiedy kondensacja nie jest możliwa?

3. Idealny gaz bozonów o masie m w d = 3 wymia-
rach i spinie s = 1 ma energie stanów jednocząst-
kowych

ε =
~2k2

2m
+ ∆n,
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gdzie n = 0, 1 w zależności od rzutu spinu odpo-
wiednio, Sz = 0 i Sz = ±1. Wyznaczyć tempe-
raturę kondensacji Bosego-Einsteina i porównać z
przypadkiem bez spinowym.

4. Idealny gaz bozonów o masie m w d = 3 wymia-
rach, w polu magnetycznym B i spinie s = 1 ma
energie stanów jednocząstkowych

ε =
~2k2

2m
− µBBsz,

gdzie sz = 0,±1 jest rzutem spinu, a µB jest mo-
mentem magnetycznym. Wyprowadzić wzory na
średnią liczbę cząstek N̄ oraz na średnią magnety-
zacjęM . Pokazać, że w granicy niskich temperatur
podatność magnetyczna

χ =
(
∂M

∂B

)
T,N̄

spełnia prawo Curie

lim
B→0

χ ∼ N̄

T
.

5. Dla idealnych fermionów o masie m w d = 3 wy-
miarach pokazać, że w niskich temperaturach za-
chodzi

γ =
Cp − CV
CV

≈ π2

3

(
kBT

εF

)2

,

gdzie εF jest energią Fermiego.

6. Trójwymiarowa objętość podzielona jest na dwie
części ruchomą, lecz sztywną i nieprzepuszczalna
adiabatyczną przegrodą. W jednej części znajdują
się fermiony o spinie 1/2, a w drugiej fermiony
o spinie 3/2. W obu przypadkach jednocząstkowa
energia wynosi ε = p2/2m, gdzie p jest wartością
pędu, a m masą cząstek. Znaleźć stosunek gęstości
tych cząstek w stanie równowagi mechanicznej w
granicy zerowej temperatury.

7. Elektrony o spinie 1/2 i masie m są w objęto-
ści V w stanie równowagi z temperaturą T = 0.
Jednocząstkowa relacja dyspersji ma postać ε =
p2/2m, gdzie p jest wartością pędu. Nagle obję-
tość układ wzrosła o ∆V , gdzie ∆V � V . Energia
układu pozostała niezmieniona. Jaka jest tempe-
ratura układu w nowym stanie równowagi? Porów-
nać wynik z przypadkiem klasycznym.
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