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Rules

e Lectures are on Tuesdays at 14:15-16:00 in B0.21
room.

Tutorials are on Wednesday at 10:15-12:00 in
B0.21 room.

Home problems will be offered but not be chec-
ked. Some of these problems or similar ones might
occur during a colloquium or an exam.

Standard way of passing the course
— Mid term written exam (Kolokwium), max
50 pts.
— Final written exam, max 50 pts.

— Oral exam (in uncertain cases)

Second (resit) exam to pass the course

— Written exam, max 100 pts.

— Oral exam (in uncertain cases)

Final grade is based on total score points norma-
lized to 100 and determined as follows:

5+ for 99-100 pt.
5 for 90-98 pt.
4+ for 81-89 pt.
4 for 72-80 pt.
3+ for 62-71 pt.
3 for 50-61 pt.

2 for 0-49 pt.

Warning: points from the mod term exam and final
exam and from the second exams do not sum up.

Dates of exams:

colloquium, April 16th, 2025, 11:00-13:00, room
B0.21

written exam I, June 17th, 2024, 9:00-13:00, room

777

oral exam I, on e-mail note

written exam II, September 7th, 2025, 9:00-13:00,
room 777

oral exam II, on e-mail note

1

Week 1

1.1 Lecture

I - Symmetries in Quantum Mechanics

&1. Azioms of quantum mechanics - Postulates of
quantum mechanics, pure and mixed states, measure-
ment on pure and mixed states, ...

1.2

1.

5.

Tutorial

Conservation of momentum in classical physics -
Consider a single particle moving in a homogene-
ous space. Within the Lagrangian formalism show
that the momentum of the particle is conserved in
time.

. Conservation of energy in classical physics - Con-

sider a single particle moving in space in a time
independent potential. Within the Lagrangian for-
malism show that the energy of the particle is con-
served in time.

Conservation of angular momentum in classical
physics - Consider a particle moving in an isotro-
pic space. Within the Lagrangian formalism show
that the angular momentum of the particle is con-
served in time.

Conserved quantity for a charge classical particle
in a homogeneous electric field - Derive a conserva-
tion law and find a conserved quantity for a clas-
sical particle with charge ¢ and mass m moving in
a homogeneous electric field with an intensity E.

Ehrenfest theorem - Prove the Ehrenfest theorem.

1.3 Homework problems

1.

Conserved quantity for a charge classical particle
in a homogeneous magnetic field - Derive a con-
servation law and find a conserved quantity for a
classical particle with charge ¢ and mass m moving
in a homogeneous magnetic field with an induction
B.


https://www.fuw.edu.pl/~byczuk/

2. Angular momenta in different reference frames -
(a) What is the connection between the angular
momenta in two reference systems which are at
rest relative to each other and whose origins are
separated by the distance vector a?

(b) What is the relation between the angular
momenta in two inertial reference systems which
move with velocity V relative to each other?

3. Runge-Lenz-Laplace vector in the Kepler-Coulomb
problem - Consider a single particle moving in a
central force F(r) = —ar/r3. Introduce a vector
J =p x L — fBr/r, where p and L are momentum
and angular momentum, respectively. Check that
J-L=0and J? = 2HL?*+ 3%, where H = p?/2 —
B/r is the energy (Hamiltonian) per mass m, and
B = a/m. Prove that

i(l‘xL—a;):O,

so J is invariant in time. How many components
of J are in fact independent? Conclude why J and
r are in the plane perpendicular to L and how the
motion of a particle is constrained. In the polar
coordinate system parametrize J and r and write
J-r = Jrcos(¢p — ¢p), where ¢ and ¢ are angles
between horizontal axis and the vectors r and J,
respectively. Derive that the shape of the particle’s
trajectory is expressed by

_ p
1+ ecos(¢p — ¢o)’

r(9)

where p = L?/ma and e = J/a =
V14 2FEL?/ma?. What are interpretations of
these parameters? Think about the role of the vec-
tor J in this solution.

2 Week I1

2.1 Lecture

... Ehrenfest theorem, conservation laws.

&2. Symmetry transformations - definition of a sym-
metry transformation in quantum mechanics, Wigner’s
theorem, conservation laws obtained from a symmetry,
linear and antilinear operators, infinitesimal symmetry
transformations, symmetry generators as observables,
symmetry and degeneracy, classification of different
symmetry transformations: continuous (space transla-
tions, time translations, rotations) and discrete (perio-
dic translation in space, periodic translation in time,
parity, time reversal).

2.2 Tutorial

1. Units of bra and ket vectors - What are units of
bra and ket vectors in quantum mechanics. Discus-
sion based on: Do bras and kets have dimensions?,
C. Semay and C.T. Willemyns, Eur. J. Phys. 42,
025404 (2021) (arXiv:2008.03187).

2. Equation of symmetry generator Assuming that
Q(t) is a generator of the symmetry U(t) =
exp(—ia)(t)) and H is the Hamiltonian of the sys-
tem derive an equation satisfied by €.

3. Derivation of Pauli equation - Consider an inva-
riant Hamiltonian

o (Gp)
2m

)

where & is a three component vector made of 2 x
2 matrices. Show that if these matrices obey an
algebra of Pauli matrices

0,05+ 0;0; = 25”',
[O’i,Uj] = 2i5ijk0'k,

then the Hamiltonian is equivalent to the one for
free particles. For this you need to show

(¢-a)(d-b)=a-b+id-(axb).

Next, introducing a magnetic field via the vector
potential and the minimal coupling procedure p —
P — ¢gA derive the Pauli Hamiltonian for a spin
1/2 particles in an external magnetic field B. This
problem follows an article in Am. J. Phys. 49, 645
(1981).

2.3 Homework problems

1.

3 Week III

3.1 Lecture

&3. Continuous symmetry transformations - active
and passive view on space and time transformations,
translation in space, infinitesimal translation and its
generator, symmetry operator of arbitrary translation,
homogeneity of space and conservation of momen-
tum, translation in time, infinitesimal translation and
its generator, symmetry operator of arbitrary transla-
tion, homogeneity of time and conservation of energy,
rotation in space, infinitesimal rotation and its genera-
tor, symmetry operator of arbitrary rotation, isotropy
of space and conservation of angular momentum.

3.2 Tutorial

1. Conservation law in a uniform external electric
field - Derive a quantum mechanical generator for
the translational symmetry of a charged particle
in a homogeneous electric field with the intensity
E.

2. Mized state measurement - Derive the result, pro-
bability, and the state after the measurement of
the energy on a mixed state

p= Zqi|wi><wi|,



where

i) = > VP E

n

E,)

is a superposition of the eigen energy states.

3.3 Homework problems

1. Algebraic relations for translation operators -
Show that

(i) 2= (2) 5 (i)

v=0

where p is a momentum operator and B(a?) is every
differentiable operator. Next, using the result
above, calculate U(a)'A(x)U(a) where U(a) =
e—iap/h.

2. Conservation law in a uniform external magnetic
field - Derive a quantum mechanical generator for
the translational symmetry of a charged particle in
a homogeneous magnetic field with the induction
B.

4 Week IV

4.1 Lecture

&4 Discrete symmetry transformations -
Discrete translational symmetry in space, periodic
potential and primitive translational vectors of a
crystal structure (lattice), Bloch theorem and si-
multaneous eignestates of symmetry operator of
discrete translations and a periodic Hamiltonian,
Bloch wave function, quasimomentum in crystals,
Discrete translations in time, time dependent periodic
Hamiltonian, properties of the evolution operators for
periodic Hamiltonians, Floquet Hamiltonian, Floquet
theorem, Floquet eigenstates in time periodic systems,

4.2 Tutorial

1. Rotation of spin one particle wave function - Find
a transformation operator for a three-component
vector wave function (field). Conclude that it de-
scribes a spin one particle.

2. Periodic lattices, Brillouin zones, Bloch’s theorem,
part I - Consider one dimensional problem with
a periodic potential V(z) = V(x £ na), n € Z.
By imposing a periodic boundary condition ina fi-
nite system with N lattice sites find eigenvalues
of the discrete translation operator U(a), which
U(a)|n) = |z + a). Discuss number of those eige-
nvalues and a periodicity of the solution in a reci-
procal space. Identify the first Brillouin zone and
a periodic vector in reciprocal space.

3. Lattice (discrete) Fourier transform - Define the
Lattice (discrete) Fourier transform for a periodic

sequence Ay = Aj, ie.,

with £ = 2rm/aN and —N/2 < m < N/2, and
prove the lattice sum

1 o
ﬁ Zezka(jfl) _ 5jl~
k
Similarly it holds that

1 . . ’ a .
LS
J

4. Periodic lattices, Brillouin zones, Bloch’s theorem,
part II - Construct an eigenkets of U(a) and the
corresponding eigenfunctions ®(x). Discuss the
Bloch’s theorem.

5. Tight binding model - Consider an infinite one-
dimensional system with a periodic potential
V(z £ a) = V(x). Let |n) be a ground state vec-
tor describing a particle localized in the n-th cell
of the crystal. The ground state energy is Fy. As-
sume that,

(nlm) = Suum,

(n|H|n) = Eo,
(n|Hln+1) = -A <0,

and other amplitudes vanish. Write down the Ha-
miltonian in |n) base. Find the dispersion relation,
energy eigenvalues of particles.

4.3 Homework problems

1. Rotation of spin one-half particle wave function -
Find how the two-component spinor wave function
is transformed under rotations. Show that such a
wave function describes a spin one-half particle.
Hint: to find the transformation rules for the bi-
spinor wave function you need to discuss an in-
variance of the probability density and the Pauli
equation, cf. W. Greiner’s book.

2. Chain molecule - Tight binding model - Consider
a chain molecule of N atoms. Find the eigenstates
and eigenenergies of such a system. Assume a na-
tural boundary condition. Discuss the transition
from a single atom N =1 via N = 2 and 3 cases
to an infinite system and appearance of the con-
tinuum band. Hints: Take a one-particle localized
base {|j)} and expand any state

N
lv) = Z NE
j=1
Solve the Schroedinger equation

HJy) = Ely),



assuming that (j|H|j) = o and (j|H|k) = 8 for j
and k nearest neighbors, and zero otherwise. Prove
that £, = a+ 28cos(mr/(N + 1)) and ' =
V2/(N + 1) sin(mjn /(N + 1)). In the case of the
natural boundary condition ¢y = cy41 = 0, the
wave function out of the chain vanishes, being still
finite at edges in principle.

3. Ring molecule - Tight binding model - Consider a
ring molecule of N atoms. Find the eigenstates and
eigenenergies of such a system. Assume a periodic
boundary condition. Discuss the transition from
few atoms to the thermodynamic limit. Discuss
the Bloch theorem in the finite and in the infinite
systems. Hints: Take a one-particle localized base
{]7)} and expand any state

N
) =D _esld) -
j=1
Solve the Schrodinger equation

Hyp) = Ely),

assuming that (j|H|j) = a and (jlH|k) = 8
for j and k nearest neighbors, and zero other-
wise. Impose the periodic boundary conditions
and show that F,, = «a + 28cos(2rm/N) and
= exp(i2mjm/N)/V'N.

5 Week V

5.1 Lecture

Parity transformation, parity transformation in clas-
sical physics, polar and axial vectors and exam-
ples, role of parity transformation in quantum me-
chanics, transformation of different operators under
the parity, conservation of parity for parity symme-
tric Hamiltonians, classification of energy eigenstates
under their parity symmetry, even and odd states,
Time reversal transformation, reversal of time in clas-
sical physics, Newton law, transformation of position,
velocity, momentum, force, Maxwell equations, trans-
formation of current, electric intensity, magnetic induc-
tion, to be continued, problem with a unitary time
reversal operator in quantum mechanics, antiunitary
time reversal operator, classification of operators regar-
ding time reversal operation, transformation of a scalar
wave function under reversing a time, transformation
of spin under time reversing, Kramers degeneracy.

5.2 Tutorial

1. A quantum particle with a time dependent poten-
tial - Find the exact solution for a problem of
a one-dimensional quantum particle described by
the following Schrédinger equation

LG
m@ (z,t) _

_Fi 0%V (z,t)
ot 2m

0%z

—V()¥(x,t),

where V(t) is a time dependent potential, constant
in space. Find a solution for time-periodic poten-
tial V(t) = Vysin(Q2t 4+ ). Check the validity of
the Floquet theorem.

2. Harmonic oscillator with driven time-dependent
force - Find the exact solution of the problem with
one-dimensional quantum harmonic oscillator in
the presence of a driving force and described by
the following Schrédinger equation

OV (x,t) R? *(x,t) 1,

kel L2 e (z, t
! ot 2m 0%z + M (%)

—xF(t)¥(x,t),

where F(t) is a time dependent force. Next, di-
scuss an explicit solution for a periodic driving
force F(t) = Asin(Qt) and check the validity of
the Floquet theorem. Based on P. Hangi, Quan-
tum transport and dissipation, chapt. 5.

5.3 Homework problems

1. A quantum particle in a gravity field with a time
dependent force - Find the exact solution for a pro-
blem of a one-dimensional quantum particle in a
gravity field described by the following Schrédin-
ger equation

_halll(x,t) B _Fi 0%V (z,t)
’ ot 2m 0%z

—xF(t)¥(x,t),

+ mgz¥(z,t)

where F(t) is a time dependent force, constant in
space, and x > 0. Find a solution for time-periodic
force F(t) = Asin(Qt). Check the validity of the
Floquet theorem. Based on arXiv:2202.01213.



6 Literature

e W. Greiner, B. Miiller Quantum mechanics - sym-
metries.

L.E. Ballentine, Quantum mechanics. A modern
development.

A. Messiah, Quantum mechanics, vol. I and II.

J.J. Sakurai, J. Napolitano, Modern quantum me-
chanics.

L. I. Schiff, Quantum mechanics.

A. Altland, http://www.thp.uni-koeln.de/
Documents/altland_advgm_2012.pdf

More to be added in the course.


http://www.thp.uni-koeln.de/Documents/altland_advqm_2012.pdf
http://www.thp.uni-koeln.de/Documents/altland_advqm_2012.pdf
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