Zasada maksymalizacji entropii: Jeżeli energia wewnętrzna układu jest stała, $U=$ const, to parametry wewnętrzne układu w stanie równowagi odpowiadają stanowi o maksymalnej entropii S. Jeżeli entropia układu jest ustalona, $S=$ const, to parametry wewnętrzne układu w stanie równowagi odpowiadają stanowi o minimalnej energii wewnętrznej U.

Transformacja Legendre'a, czyli zamiast potencjału termodynamicznego energii wewnętrznej $U(S, V, N)$ chcemy zamienić entropię przez zmienną spzężoną do entropii, $(\partial U / \partial S)_{V}=T$. Uzyskujemy nowy potencjał tzw. energię swobodną, (lub inaczej energie swobodną Helmholtza) $F=$ $U-T S$. Można w ten sposób zamieniać też drugą zmienną, tj. V lub obydwie V i S. Otrzymujemy wtedy:

Energię swobodną: $F(T, V, N)=U-T S$
Entaplię $H(S, p, N)=U-p V$
Energię swobodną Gibbsa: $G(T, p, N)=U-T S+p V$
Ogólna formuła to: $f\left(P_{1}, X_{2} . . X_{n}\right)=f\left(X_{1}, X_{2} . . X_{n}\right)-P_{1} X_{1}$, gdzie nowa zmienna sprzężona to $P_{1}=\left(\partial f / \partial X_{1}\right)_{X_{2}, . . X_{n}}$.

Energia swobodna Gibbsa jest szczególnie wygodna, ponieważ zależy od dwóch zmiennych intensywnych, T, p, które najprościej wyznaczać w pomiarach. Z ekstensywności energii wewnętrznej, wiemy że dla każdej wartości $\lambda U(\lambda S, \lambda V, \lambda N)=\lambda U(S, V, N)$. Wynika stąd tzw. relacja GibbsaDuhema:
$U=T S-p V+\mu N$,
$d G=\mu d N$,
$S d T-V d p+N d \mu=0$.
Interpretacja fizyczna potencjałów $F(T, V, N), H(S, p, N)$ oraz $G(T, p, N)$.
Parametry wewnętrzne układu w kontakcie diatermicznym z bardzo dużym termostatem o temperaturze T^{r} odpowiadają minimum energii swobodnej F dla temperatury końcowej w pobliżu T_{r}. Inaczej mówiąc, w procesach spontanicznych zachodzących w stałej temperaturze energia swobobna F układu nie rośnie (a w równowadze osiąga minimum).

Parametry wewnętrzne układu w kontakcie mechanicznym z bardzo dużym barostatem o ciśnieniu p^{r} odpowiadają minimum entalpii H dla ciśnienia końcowego w pobliżu p^{r}. Inaczej mówiąc, w procesach spontanicznych zachodzących w stałym ciśnieniu entalpia H układu nie rośnie (a w równowadze osiąga minimum).

Parametry wewnętrzne układu w kontakcie mechanicznym z bardzo dużym termostatem i barostatem o stałej temperaturze T^{r} i ciśnieniu p^{r} odpowiadają minimum energii swobodnej Gibbsa G dla temperatury końcowej w pobliżu T^{r} ciśnienia końcowego w pobliżu p^{r}. Inaczej mówiąc, w procesach spontanicznych zachodzących w stałej temperaturze i stałym ciśnieniu energia swobodna Gibbsa G układu nie rośnie (z w równowadze osiąga minimum).

Przyrównując wartości drugiej pochodnej 'mieszanej' dla kazdego z potencjałów U, F, G oraz H otrzymujemy tzw. relacje Maxwella. np.:

$$
\left(\frac{\partial U^{2}}{\partial S \partial V}\right)=-\left(\frac{\partial p}{\partial S}\right)_{V, N}
$$

$$
\begin{aligned}
\left(\frac{\partial U^{2}}{\partial V \partial S}\right) & =\left(\frac{\partial T}{\partial V}\right)_{S, N} \\
-\left(\frac{\partial p}{\partial S}\right)_{V, N} & =\left(\frac{\partial T}{\partial V}\right)_{S, N}
\end{aligned}
$$

Omówiono trzy wielkości które zostały zmierzone i stablicowane dla większości znanych substancji:
$C_{p}=T(\partial S / \partial T)_{p}$ ciepło właściwe przy stałym ciśnieniu,
$\alpha_{p}=(\partial V / \partial T)_{p}(1 / V)$ współczynnik rozszerzalności termicznej w stałym ciśnieniu,
$\kappa_{T}=-(\partial V / \partial p)_{p}(1 / V)$ współczynnik ścisliwości izotermicznej.
Omówione zostało też działanie pola magnetycznego, elektrycznego oraz naprężeń zewnętrznych na kryształy. Wtedy energia swobodna Gibbsa ma postać:

$$
G=U-\sigma_{i j} \epsilon_{i j}-E_{k} P_{k}-H_{l} M_{l}-T S
$$

dalsze szczegóły w prezentacji [Hartmann, Crystal Physics].
Stabilność układów termodynamicznych.
Warunek globalny, dla każdego przyrostu energii wewnętrznej ΔU musi byc spełnione:

$$
S(U+\Delta U, V, N)+S(U-\Delta U, V, N) \leq 2 S(U<V, N)
$$

Warunek lokalny, dla infinitezymalnie małego $\Delta U \rightarrow 0$ mamy $\left(\frac{\partial^{2} S}{\partial U^{2}}\right)_{V, N} \leq 0$.
podobnie dla małych przyrostów objętości ΔV mamy $\left(\frac{\partial^{2} S}{\partial V^{2}}\right)_{U, N} \leq 0$.
Ogólny warunek stabilności jest taki:

$$
\left(\frac{\partial^{2} S}{\partial U^{2}}\right)_{V, N}\left(\frac{\partial^{2} S}{\partial V^{2}}\right)_{U, N}-\left(\frac{\partial^{2} S}{\partial U \partial V}\right)^{2} \geq 0
$$

analogicznie dla energii wewnętrznej uzyskujemy podobny warunek:

$$
\left(\frac{\partial^{2} U}{\partial S^{2}}\right)_{V, N}\left(\frac{\partial^{2} U}{\partial V^{2}}\right)_{U, N}-\left(\frac{\partial^{2} U}{\partial S \partial V}\right)^{2} \geq 0
$$

Ćwiczenia

Zadanie 1

Rozważmy prosty układ dla którego równanie podstawowe w reprezentacji energetycznej ma postać:

$$
U(S, V, N)=\frac{1}{V N}\left(\frac{S}{3 A}\right)^{3}
$$

gdzie A to pewna stała. Wyznaczyć energię swobodną Helmholtza, entalpię, entalpię swobodną Gibbsa i wielki potencjał termodynamiczny dla tego układu.

Zadanie 2

Wypisać wszystkie możliwe tożsamości Maxwella dla energii swobodnej Helmholtza $F(T, V, N)$ i entalpii swobodnej Gibbsa $G(T, p, N)$.

Zadanie 3
Pokaż, że

$$
\left(\frac{\partial H}{\partial p}\right)-V=-T\left(\frac{\partial V}{\partial T}\right)_{p}=-C_{p}\left(\frac{\partial T}{\partial p}\right)_{S} .
$$

Zadanie 4
Rozważmy paramagnetyk o następujących trzech własnościach:

- jego objętość nie zmienia się w procesach termodynamicznych ($\mathrm{V}=$ const $)$,
- spełnione jest prawo Curie: $\chi_{T}(T)=a / T$,
- pojemność cieplna w zerowym polu magnetycznym jest dana wzorem: $C_{h}(T, 0)=b V /\left(T^{2}\right)$,
gdzie a i b są dodatnymi stałymi. Znaleźć pojemność cieplną $C_{h}(T, h)$ dla dowolnej wartości natężenia pola magnetycznego h .

Zadanie 5

Proces Joule’a - Thomsona (dławienie gazu) polega na powolnym przeciskaniu gazu poprzez porowatą przegrodę (dławik) z jednego podukładu do drugiego przy ustalonych wartościach ciśnień w obu podukładach (równych odpowiednio p_{A} i $p_{B}, p_{A}>p_{B}$) i przy adiabatycznym osłonięciu całego układu. Stałość ciśnień gazu w każdym z podukładów zapewniona jest dzięki powolnemu ruchowi tłoków ograniczających te podukłady. Ruch tłoka w podukładzie o większym ciśnieniu związany jest ze zmniejszaniem jego objętości w trakcie przechodzenia gazu przez porowatą przegrodę; w podukładzie o mniejszym ciśnieniu ruchowi tłoka towarzyszy zwiększanie jego objętości. Przejściu przez dławik w tym procesie towarzyszy zmiana temperatury gazu:

$$
\left(T_{B}-T_{A}\right)=\mu_{J T}\left(p_{B}-p_{A}\right)
$$

' gdzie $\mu_{J T}=\left(\frac{\partial T}{\partial p}\right)_{H, N}$ nosi nazwę wzpółczynnika Joule'a-Thomsona. Krzywą inwersji nazywamy krzywą w przestrzeni stanów zadaną równaniem $\mu_{J T}(T, p)=0$. Wyznaczyć współczynnik $\mu_{J T}$, krzywą inwersji, a także maksymalną i minimalną temperaturę inwersji dla gazu van der Waalsa.

Zadanie 6
Sprawdzić stabilność mechaniczną 1 mola gazu van der Waalsa. Nasteqpnie przedyskutować konstrukcję Maxwella dla tego gazu wykorzystujacc odpowiednie potencjały termodynamiczne. Zinterpretować uzyskany diagram fazowy.

Zadanie 7

Gaz znajduje się w zbiorniku z ruchomym tłokiem i jest w równowadze cieplnej oraz mechanicznej
z otoczeniem o zadanej temperaturze T i ciśnieniu p. W wyniku jakiegoś zewnętrznego działania tłok adiabatycznie (odwracalnie) przesunął się na zewnątrz, a zatem zmalało ciśnienie gazu. Opisać jak układ zareaguje na tą zmianę.

Zadanie 8

Pokaż, że dla $k \neq i$ spełniona jest nierówność

$$
\left(\frac{\partial X_{i}}{\partial y_{i}}\right)_{X_{k}}<\left(\frac{\partial X_{i}}{\partial y_{i}}\right)_{y_{k}}
$$

gdzie $(S, V, N, \ldots)=\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ oraz $(T,-p, \mu, \ldots)=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$. Zinterpretuj ten wynik dla $\kappa_{S}<\kappa_{T}$ odwołując się do reguły przekory Le Châteliera-Brauna.

