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Fundamental Interactions - the Standard Model

& Gauge symmetry: SU(3)c x SU(2). x U(1)y
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& The Higgs sector:
G+

- The minimal choice H =
ni | ( (h"’lGo)/\/i

) necessary for
SU2). x U(1)y — U()em.

£ > (D,H)D"H — V(H)
for D, = 0, +igW,T' +ig’ L YB

- If u? < 0 then (0]|H|?|0) = —
the origin of mass)

., V(H) = p?|H?+X|H|* and Yy = L

i
1 2 _ 2 .
s =% (spontaneous symmetry breaking,

+ Boson masses: my = V2Av, my+ = 1gv and mz = mw /cw, for
cw = cosby = g/(g? + g’ 2)Y/?



& Fermions
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i=1,...,Nr =3, ¥rr = 2(1F ) (parity violation), @ = Tz + 2 Y
Neutrino masses:

- Dirac mass: ﬁj I:,'LZ/J'R /:/ + H.c. for /:/ = I'TzH*

* Majorana mass: 1 Mj v;rCvjg + H.C.



Gauge transformations: y(x) — exp {—igT'0i(x) — ig'3 Y B(x) } 1)(x)
Gauge interactions:

LD iy Dy for D, =08, +igW, T+ ig'%YB#
»

Yukawa interactions:

3
LD - Z (FUL-’I'RFITQJL + r,'J‘C_/,-RHTQjL + H.C.)

ij=1
I
if (H) 70 then mq 70

3
ﬁq mass = — Z (ﬂiRM,l‘j'UjL + (;'iRMB"djL + H.C.)

ij=1

I = no FCNC for one Higgs boson doublet



u u d1 d

U2 =Ur| ¢ d> =Dir| s
s /1 r t LR ds LR b LR
U;M”UL = diag(my, mc, m:) D);MdDL = diag(mg, ms, mp)
I
rr diagonal (gr = \@%) = no FCNC
d
- charged currents: 3 @iy di = (4,6, 0 U Dy™ | s
b
Uckm L

- neutral currents: Y gy uir, Y diy*d; . remain unchanged upon Up g,
D, r transformations



Uckm:

- unitary complex N x N matrix, gip — e“gi. = (N —1)(N —2)
phases in Uckm

- N>3 = CP violation in charged currents
& Masses in the SM: my o gv mp o< A2y me o< gfv
Leptons:

m,<3eV my,, $02MeV  m,, < 18 MeV

~ ~

me =0.5MeV m, =1055MeV m;, =178 GeV

Quarks:
my~2MeV me.~12GeV my~ 174 GeV
myg=5MeV ms=0.1GeV my=4.3GeV

Bosons:

my,+ = 80.4 GeV mz =91.2 GeV my =0 my = 125.3 GeV
4
Fine tuning:
Mve < 1.72.1071 = Bre <9.72.1071

my 8t



Introduction to the Standard Model: Experimental constraints

- Perfect agreement with the existing data
- The scalar sector not fully tested
- Higgs-boson representation:

2
w

2 b
m?% cos? Oy

m

p SM = p=1+0(a)

. . > LTI -]
for general Higgs multiplets: p = &= —~———""

Zl_szsv’?
+0.0024
data: p = 1.0002 —0.0009 = T

2 (doublets are favored)
- my, = 125.3 GeV

- Higgs-boson interactions: no direct tests of quartic Higgs interactions
(potential)



Outstanding problems of the SM

& Gauge-Higgs sector:

- Why is there only one Higgs boson?

- The Higgs field was introduced just to make the model renormalizable
(unitary)

- There exist many fermions and vector bosons, so why only one scalar? Why,
for instance, not a dedicated scalar for each fermion?

- The strong CP problem:
- symmetries of the SM allow for

r 1 v P 14
Tr (Fu Frv) = ¢ BT (Fuw Fap) — =Tr (Fun F™)
- odd under CP
2
Lo = 0355 SFP"F2, = neutron-EDM D, ~2.7-10"'°0ecm
iy
I

data: D, < 1.1-1072® e cm = 0<3-1071°

The strong CP problem: why is 6 so small?



& The flavor sector:
- parity violation:
W' Gimu(l—vs)d; 5 W' Giy(1+9s)d;
Maximal parity violation, why?
+ Charge quantization, why g, = 2, gs = —% and ¢, = —1?

- Number of generations, why N = 3?
- Why is the top quark so heavy (m; ~ 174 GeV while m, ~ 4.3 GeV) ?

m; =~ v = (0|H|0) ~ 246 GeV
I

top quark is very different (possibly sensitive to the mechanism of
gauge symmetry breaking)



- Mixing angles and fermion masses:

3
Lo~ Z (rUaiR’:’fQjL +TidirH QL+ H.c.)
ij=1
I
3
- Y - o
Lamass = = 2 (GirRMujL+ dipMidj +He)  for MY = ﬁr'j’ M =
iJj=
ux dl d
u2 = UL,R c do - DL,R s
R /e ds LR b LR
ULM“ U, = diag(m,, me, my) DEM?Dy = diag(mg, ms, m)
3
d
ZL_IIL'YHCIIL=(£—I,E, E)L UZDL’YH s
b
Uckm L

It is natural to expect that Uckm = UCKM(mq/m;).



& Parameters of the SM:

Mme my, ms my  Mmc M

my, my, m,. mg ms m
/

g ) g , 8 , M, )\7 UCKM

——— Y N =~

(cgep sinOw)  (agep) (A 01,2,3.6¢p

21 parameters !



& Cosmology:

3H2

o
M1l
]

for . =
o Pe” 8nGn

data = Qp = 3# ~ 70%, Qpp ~ 27% and Qg ~ 3%
)



- SM has no candidate for dark matter
COpn=2 07 = ~10"1°Mg, = (1072 eV)* while
typical scale of the SM is (9(100 GeV)I Fine tuning again!

- Inflation: period of fast expansion of the very early Universe,

a(t) o exp (\/§ t)

Again the SM has no means to explain the inflation (no inflaton in the
SM). For a typical inflaton my ~ 10 GeV and A ~ 1073, so the SM Higgs
boson is not an inflaton (assuming standard interactions with gravity).

- Baryogenesis and SM CP violation n = 2 7"" ~ Mo~ 6.10710

n.
The Sakharov's necessary conditions for baryogewnesm:
B number violation
- C and CP violation
- Departure from thermal equilibrium
SM:
- B number violation: OK
+ Cand CP violation: too weak CP violation o« IQ, for @ = Uy Uep U5 U7,
(re-phasing invariant)
- Departure from thermal equilibrium: first-order electro-weak phase
transition requires my, < 72 GeV

Conclusion: the SM doesn't explain the baryogenesis
- Why is gravity so weak? Or, why Mp; = 10%° GeV > v = 246 GeV?



The interaction rates I';

& Definition of the cross-section:
The S-matrix element wi— gives the probability for the transition to occur:

Pissr = [wissr|*= |(F]1)?
The translational invariance allows to write the matrix element as
Wi = 0 + i) 6% (pr — pi) Tisr

The above formula defines the transition matrix T.
Let's consider the following scattering process

a+tb—ca+ct---+c,

We assume that b is at rest, and the velocity of ais v = |p,|/Es. The number
of particles b per target volume is (that defines the normalization of plane
waves o (2E)~1/2e). 2E, = 2my, as b is at rest. The incident flux is the
velocity (p»/E,) of a times their number density 2E,, S0 2|p|.



If the reaction volume is V and the reaction takes place during the time T,
then the cross-section o is defined such that the transition probability per
unit time and unit volume equals the target density x the incident flux x
the cross-section o, that is, 2my x 2|p,|xo. On the other hand it is equal to
|wi—r|?/(VT). Hence summing over all available momenta for the final state
we get

oclath — ci+tc+t---+cy)=

1 . d3pj 4 a ~ 2

= — 2 6 , + — — e — Py T

Tmolp] / I 1| 2E,-(27r)3( ) 6 (pa + pp — p1 pn)| T
m e

where for unpolarized initial state we have
~ 1 1
TPz ) |Tine
| | S (253 + 1)(25b . 1) %:J /~>f|

The spins of initial states are denoted by s, and s,. The symmetry factor S
appears because in quantum mechanics we can't distinguish between two
final states which differ only by an exchange of identical particles, in general,
if there are k groups of n; (i = 1,2, ..., k) identical particles in the final state,
one has S=nitm!. .. ngl

In order to have the cross-section in a Lorentz invariant form one has to
replace

- 1/2
ms|al = [(pa - po)? — m2mz] Y °



For decays
a—c+tc+---+cy

we get instead of the cross-section the decay width

Ma — c1+cz+ N

/H 2;(2@ 7 (27)*6*(pa — p

for

2o 11 s
7= S s Z‘T‘*”
spins

Summing over all final states we get the total width
Mot = Z Ma—f)
final states f
Then the life time is given by

T=_—
rtot

while the branching ratio reads
Ma— f)

BR(a — f) = Tl

= pa)| TP



& Strong and Electroweak Transitions:
Estimates of cross-sections:

2 2
+ + — e 1
oem(e’e™ = pu'p”) ~ (47r) S for s =(pe *p-) > m:

where % = e 135, for /s =~ 100 GeV.

2o\’ 1
Ustrong(q(-] — q(-]) ~ (QCD> - for s> m§
4 s

2
& —
where S_[CrD = aqep ~ 10 1,

2 2
+ + Buweak s
Uweak(”e"‘e —>VH+IJ)N<X ) ( 2 )2
Us S — mW
where fieak = __€2__ - 20w
4m 4msin20y,  0.23




& The Interaction Rate:

If interactions between species are fast enough they could be in local/kinetic
equilibrium (state of maximal entropy). The reaction rate responsible for
establishing equilibrium can be characterized by the collision time:

te = 1/(nov)

where o is the cross-section, n is the number density of target particles and
v is the relative velocity. Note that o = 1/(n)\), where X is a mean free path,
so nov = v/Xis roughly a number of collisions per time, while its inverse is a
time per collision. For estimates we will be using an equilibrium number
density. In order to maintain the equilibrium this time must be much shorter

han the Univer ~
than the Universe age ty te <ty v

Then the local equilibrium is reached before the expansion becomes
relevant.

High-energy example

Let's consider T > 500 GeV, then the cross-section for strong and
electroweak interactions could be estimated applying just dimensional
analysis for typical energy-momentum p ~ T (masses are irrelevant at that
energy range) o~a?/T?

where « is the fine structure constant aw ~ 107! — 1072,




Taking into account that the equilibrium number density of relativistic
species behaves (see next section for details) as n ~ a=3 ~ T3 we obtain

1

t. ~
< a?T

If the universe is dominated by a single relativistic species then we have (see
next section for details)

ol L Me

H (Prad/Mg,)l/z T2’
where we have introduced the Planck mass defined as Mp, = G~*/2. Hence
we can see that the collision (reaction) time t. decreases slower (when T
increases) than the Hubble time ty, so if T is too large then (1) can not be
satisfied. Note that since prag ~ T* during the radiation dominated epoch
we have H ~ T2/Mp, (see next section for details). Therefore at
temperatures T ~ a®>Mp ~ 10*® — 107 GeV, we obtain t. ~ t. So for
T < 10" — 107 GeV but above few hundred GeV (where o ~ ‘;—2) the
inequality (1) is satisfied and the Universe made of quarks, leptons, gauge
bosons and Higgses remains in equilibrium. Above 107 GeV the interaction
that we know are too slow too keep the universe in equilibrium.

20



Low-energy example

For /s < 100 GeV, the masses of gauge bosons W* (my ~ 80.4 GeV) and Z
(mz ~ 91.2 GeV) become relevant and the cross-section for e.g.

o(ve + e — v, + ') scales as a2, T?/miy, SO

b o (M)4 1
a?veak T T

Again assuming the universe is dominated by a single relativistic species we
find that in order to have t. < ty one needs

T > 3.5 MeV

For lower temperatures the weak interaction becomes too slow to maintain
the equilibrium, as a consequence, e.g. neutrinos decouple at T ~ 1 MeV
(more on that later).

21



Rudiments of Equilibrium Thermodynamics
Assumptions

- The Universe is a dilute and weakly interacting gas.

- If rates of interactions between constituents of the Universe are large
enough, then we assume the Universe is in local/kinetic equilibrium (so
the state of maximal entropy, see Mukhanov for detailed discussion).

Then the number density n;, the energy density p;, and the pressure for
particles with g; internal degrees of freedom (massless gauge boson has g=2,
massive gauge boson has g=3, massless fermion has g = 1, massive fermion
has g = 2, same for anti-fermions) are given by the following integrals of the
expected number density of particles in states with energy E; (phase space
distribution or occupancy functions) f(p, T):

n,-(T)=g,-/f,-(ﬁ, T)(::r; @)

p1)-5 [E@HETIEE o EA-( )
. . |ﬁ|2 (= d3p

(T =g / G “

(See tutorials for the derivation of (4).)
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The phase space distribution (the expected number of particles in an energy
state) is given by the Fermi-Dirac (for fermions, + sign below) or
Bose-Einstein (for bosons, — sign below) distributions

1

6. T) = e 1

where u; is the chemical potential of the species, for our unit choice kg = 1.
It will be usually assumed that u; can be neglected in the early Universe.
Performing the angular integrations and changing variables from |p| to

E = (|p|>+m?)'/?, so |p|d|p|= EdE, so that d*p — 4n(E? — m?)*/2EdE and we

obtain o (2 212
g E—m
T) = EdE
n(7) 27r2/m exp[E — ul/T +1

g oo (EZ _ m2)1/2 s
T) = E dE
AT) 27r2/m explE — ul/T £1

g 00 (E27m2)3/2
T)= dE
p(T) 6772/m explE —pul/T+1

23



In the relativistic limit (T > m) with & = 0 we get (see class)

<@ 73 =2 o T4 T
gl bosons g bosons o(T)

n(T)= w2 . )= 30 . )=
{0 { %%g” fermions ) { 12gT* fermions AT 3
(5)

830

where ¢(3) = 1.202. .. is the Riemann zeta function of 3.
In the non-relativistic limit (T < m) there is no difference between fermions
and bosons, result for i = 0 reads (see class)

mT\3/?
M) =g (52) expl-m/T), ATV =mn(T),  p(T)=n(T)T < p(T)
©)

2



For relativistic species the average energy per particle reads

(E) = 7)

SRS

' T ~3151 T forfermions

7\'4 ~
i} ERE)] T ~2701 T forbosons
180¢(3)

For the rhs of Friedmann equations we need the total contribution to the
energy density and the pressure, that is

4 oo (y2 o Xi2)1/2y2dy
ras T () B [ e o

4 > (2 — x2)3/2,24
Yy =X y ay
TE(F) %
Pt = Z 5 / i (9)
where x; = m;j/T and y = E/ T, and it has been taken into account that

some species may have decoupled (maintaining an equilibrium distribution)
so that they may have different "temperatures" T;.

25



Note that at a given temperature the ratio of the energy density for
non-relativistic species to the relativistic one reads

Pnrel = (E)S/Z o™/ T
Prel T

For the species to be non-relativistic one needs m > T so the e ™7 is a

strong suppression factor, therefore we will neglect contributions from
non-relativistic species while calculating total energy density. In that case
we get

p(T) _ =?

4
3 9Og*T (10)

2
Ptot( T) = %g* T4 and P( T) =

where g, counts only massless/relativistic (m; < T) degrees of freedom:

TN\ 7 T\*
* = il=) *g5 il = 11
£ %:nsg(T) sfe%;nsg(T) ()
Note that g, = g.(T) is a function of temperature. An exact form of g,(T)
could be easily (see tutorials) obtained from (8) and (9). For T >> 100 MeV
g« = 106%, for T < 1 MeV g, = 3.36, while for 100 MeV > T > 1 MeV one
gets g, = 102 (see tutorials).

26



[]_particle [ Ravour spin colour particle + anti-particle total ]

quarks(u, d, c, s, t, b) 6 2 3 2 72
charged leptons (e, u, 7) 2 1 2 12
neutrinos (ve, vy, vr) 3 1 1 2 6
gluons (g) 1 2 8 1 16
photon (~) 1 2 1 1 2
charged massive gauge bosons (Wi) 1 3 1 2 6
neutral massive gauge bosons (Z) 1 3 1 1 3
Higgs boson (H) 1 1 1 1 1

Table 1: Standard Model internal degrees of freedom, 118 total.

Note that a single flavour neutrino is contributing only 1 dof and
anti-neutrino another 1. This is because in the SM there are only left-handed
neutrinos (1 dof) and right-handed anti-neutrinos.
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Figure 1: The evolution of the number density (g«n), energy density (gx.), pressure
(g+p), and entropy density (gs) as functions of temperature.

(plot from L. Husdal, “On Effective Degrees of Freedom in the Early Universe”,
Galaxies 4, no. 4, 78 (2016), doi10.3390/galaxies4040078, arXivi1609.04979)
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During the radiation dominated epoch (t < 4 x 10 s, see class for this
number), pwot = prag hence, for k = 0, inserting (10) into the Friedmann
equation one gets the very important formula for the physics of early
Universe:

3 30 o

For the radiation dominated Universe we have obtained earlier the following
time dependence of the scale factor

1/2 1/2 1/2 2
H= [Sngm(T)} [8““ *T“} -166g*MT

a(t) o tY/?

So, for the radiation domination one has
a1

a 2t
Hence the following time - temperature relation could be obtained

1/2 2 2
£= 030 M. (52) (1 MeV) o (1 MeV) .,
g*/ T2 - T T
where in the last step g« ~ 5.2 was adopted, note that for
100 MeV > T > 1 MeV one gets g, = 103, while for T < 1 MeV g, = 3.36. The

above is a useful formula to memorize as T ~ 1 MeV is a very important
temperature in the evolution of the early Universe.
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Distribution functions in expanding Universe

The momentum of freely moving particles redshifts with the expansion of
the universe as follows (see class):

At = 22 5)

a(t1)

while the physical coordinates (position vectors) scale as

. _ a(t1)
x(t1) = m x(t2)

Massless particles

We will show that relativistic non-interacting particles that decoupled from
the thermal bath preserve equilibrium distribution during the expansion of
the universe.

30



At moment t; a phase space element d*p1d®x contains

dn = (2 E f(p1)d pld X1

particles with distribution (note that £; = |51|= p1 for relativistic particles) at

the time t; )

6 mm a1 (12)
At time t, these same dn particles are in a phase space element d®p,d®xo.
We will find out how are the distributions at t» and t; related. For f(p) we

have (2
oy _ @27 dn
f(p2) = Fpadin

Since the phase space volumes scale as

3 _ a(t2)33 3 _ 3(t1)33
d’p1 = (a(t1)> d’p> and d’xq = <a(t2)> d>x

therefore

(13)

dn = g d®pid®xa
(27)3 elpr—pa)/T1 + 1

() 3 )\’ 3

alta alty)

g <a(t1)) d P2 (a(t )) d x2 _ g d3p2d3X2
(27T)3 (a( o lce 1)/ Ta +1 (27T)3 e(pz*Mz)/Tz + 1,

alty
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The latter line determines the temperature and chemical potential at time t»

alt:
T1 and M2 = ( 1)p,1

So, the distribution retains its thermal character (although particles have
decoupled) at red-shifted temperature and chemical potentials

1 1
T(t) m and wult) o m

32



Massive, non-relativistic particles

Now we assume that particles are decoupling from the thermal bath while
being non-relativistic.

The phase space distribution (the expected number of particles in an energy
state) is given by the Fermi-Dirac (for fermions, + sign below) or
Bose-Einstein (for bosons, — sign below) distributions

1

flp. T) = AE@—1l/T 11

Assuming =1 in the equilibrium distribution could be neglected we obtain in
the non-relativistic regime

From (13) one finds

_ 92(12)52
f(ﬁ2) =e T1 e 2m a(t7)2 T4

33



The above could be rewritten as follows

=2
. _m—p2 P2
f(pz) = e Ta e 2mTy

where

2
a(tl) m — [i2 m — 1
T, =T; and =
2o <a(t2)) T2 Ty

So, the distribution function still has the same form of equilibrium
distribution (although particles have decoupled) however the temperature
evolves as

T(t)

a2(t)
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Entropy
Let's define the entropy through its differential
ToS(V, T) = dlp(TIV1+ p(T)aV = Vlps (p+ plaV = V S2dT s+ plaV (1)

In general we have

_0s(v,T) aS(V, T)
ds(v, T) = gr—dT+ =5 —dV
So, we get from (12)
aS(V, T) _ V dp(T) as(v,T) 1
oT T dT and =y = 7T+ AT
The integrability condition tells us that
2*S(V,T) _8°S(V, T) o r1 0 [vdp(T)
aTov . ovaT - ﬁ{?[pm”’(m] Tov | T dT
I
dp(T) 1 T)+p(T
DL mepm)] = apmy= 202D

daT T T
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Rewriting dS from (14) as
1

d5=?

d(p+pV] - dp¥

and inserting (15) we get

ds = %d [Vip+p)] =25 v [o(T)+ p(T)] = d {%[p(T)w(T)] + const.}

T2
——
4(%)

So the entropy, up to an integration constant is given by
74
S(V, T) = Z1p(T) + p(T)]

Recall now the "first law of thermodynamics" (equivalently T#%, = 0)
3dP(T) _ d 3
=== @)+ p(T)]}
Combining with (15) we get
3 1dT _d (3
2 2 [T+ (TN = = {2°[p(T) + p(T)]}

———
~TE(%)

Hence
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Therefore, identifying volume with a*> we can conclude that the entropy of
the volume V is conserved. It proves useful to define the entropy density
S(T) _ p(T) + p(T)

14 T
Since relativistic particles dominate both p(T) and p(T), the same happens
for the entropy density. Using (5) one gets:

272

s(T) =

=2 5 T3
ST 45 &S
where 5 5
T 7 T;
es=> a(7) g > &(7) (1)
bosons fermions
Since n, oc T
_2¢(3) 3
ny = 2 T

therefore one can derive the following relation
4

s=ﬂ7 n, ~ 1.8g.sn
45<(3)g*5 Yo— = g*s Y

Note that the entropy conservation implies that g, s T>a® = const. , therefore
in the early Universe (a ~ 0) the temperature was maximal (roughly
T x a 1), consequently all species can be treated as highly relativistic.
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Let's now illustrate the possibility of some species having different
temperatures by the decoupling of neutrinos at about T ~ 1 MeV. For weak
interactions we had

2
Jweak(e+ te — it 7;:) ~ @

So, since (E) ~ 3T therefore at T < mz we get ;
Uweak(e te —uyit Vl = (gweak>©

Since the interaction rate Iy = t- ! = nov therefore we get fo

ve~l ) s
-
i QT (27
mz Q‘

where Gr = 1.1664 x 107° GeV~2 is the Fermi constant
(GE/V2 = g2.../(8m3))). Let's compare the interaction rate with the
expansion rate H ~ gi/>T2/Mp,

@ GFT®  GET® N( T )3
~ _ gi/sz/MPl - Tz/MP/ — \0.7 MeV

L Y
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So, at(qT <1 B\ev the interactions are too slow to provide an equilibrium
between leptons and neutrinos. Neutrinos decouple ("the freeze-out") from
the SM and evolve separately, so the possibility for neutrinos to have
different temperature appears. Their energy (temperature) is being
redshifted the same way as for photons

Adec 1

T, = Tgec X =
a a

Let's investigate consequences of entropy conservation for the thermal bath,
i.e. photons and e*:

_1/31
g.saTP=const. = T ~I(gs) 1/35

As long as (g, s) does not change the thermal emperature changes
only as a consequence of the expansion, i.ellT o« a~ %, Dhe same way the
neutrino temperature evolves. However around the same temperature
neutrinos decouple, electrons become non-relativistic me ~ 0.5 MeV so that
the number of relativistic degrees of freedom (rdf) g, s drops. e* annihilate
e*e*ﬁ ~7, while the inverse process is being suppressed as the averaged

energy decreases roughly below 2me..
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Therefore:
- for T 2 2m. ~1 MeV:

essLa(7) 5 X o7

bosons fermions

- for T < 2me:
8« S =2

From continuity of the entropy we get the following condition

(g.s@aT)], = [gs(aT)]

before after

which implies
11

(aT)2uiore = 2(aT)3 T, (47 T.
> before = <\@ 1 Jafter = before = 11 after
— —_—
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For the temperature "before", the neutrinos even though they decoupled a
bit earlier, have the same temperature as photons, however at T ~ 2m.
photons are heated up by e’e™ — vy as the entropy is transferred (since it
is a continuous function of T) from e*e™ to photons. The already decoupled
neutrinos do not benefit from that reheating, since they do not interact with
the thermal bath (photons and electrons) any more (in other words the
entropy of neutrinos is conserved separately after the decoupling).
Consequently there is a difference in temperatures of neutrinos and photons

after e"e™ freeze-out:
4\1/3 \
(2

Strictly speaking photon’s temperature does not jump at T = 2m,, but rather
starts to decrease slower already at temperatures slightly above T =2m. (in
reality the freeze-out process is smooth and starts already before T =2m).
So, for CMB photons of temperature T, = 2.73 K, there should be also the
cosmic neutrino background of temperature T, = 1.95 K.

Let's now determine the present energy density, number density and entropy
density for CMB photons and neutrinos assuming To = 2.75 K.
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14
b2, (7) 528 (Y 2 Do ()7 e
55228 (2] 0538 (7) :
p=Tg T 464-103%gcm=3 | 3.16-10"3gcm—3
n=2073 410 cm—3 149 cm—3
s=20g, 5T 1478 cm—3 1412 cm—3
Qh? = p% 2.47-105 1.68-1075

Table 2: Present Universe parameters for massless neutrinos.

I used the following conversion factors:

1K=4.3668 cm~!=8.6170-10"* GeV =1.5361-10"%" g,
1 Mpc = 1.5637 - 10% GeV !, G =6.7065 - 10~ >° GeV 2 and
Ho = h 2.1317 - 1072 GeV.
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There exists also a possibility for another kind of radiation present as a relic
of the early Universe, this is the graviton, the massless quantum fluctuation
of the gravitational field. The reaction responsible for maintaining the
equilibrium would be e.g. ¥t <+ hh, where h is the graviton and v is a
massless fermion. Graw i ith ordinary matter through the

standard Lagrangian %1/Mp, X hy, THY, qhere TH is the energy
momentum tensor, theréfore the reaction rate is @
3&( 2.&# N
Mgrav = nov ~@—
Mg, M, ﬂ/

1/2

T2 /Mg, therefore we get (g1/? ~ 10 for

Y Y

Since at the early Universe H ~ g
the SM at T > 100 GeV)

o Ty 1 (L)3
- te H 10 \ Mp,
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So gravitons freeze-out roughly at the Planck temperature

T ~ 2Mp; ~ 10* GeV. Using the continuity of entropy at all the SM
thresholds we get the relation between graviton temperature and the CMB
photon temperature at the present moment (see class fqr the discussion):

where we have apprc')ximated gf[gﬂck by its SM value for T > 100 GeV, i.e.

~ 100. Their contribution to the present energy density is
parav ~ T* ~ 0.018p,,.
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