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The Hubble Sphere, Null Rays, Horizons etc.

♠ Distance in general relativity
Along an arbitrary spacelike path P, the proper (physical) distance is given as
the line integral

DP =
∫
P

(−gµνdx
µdxν )1/2

♠ Conformal time and comoving radius
Conformal time η

dη ≡ dt

a(t)
⇒ η(t) =

∫ t

0

dt′

a(t′)

Then the FLRW metric

dτ2 ≡ gµνdx
µdxν = dt2 − a2(t)

{
dr2

1 − kr2 + r2dθ2 + r2 sin2
θdφ2

}
could be rewritten in the “conformal” manner

dτ2 ≡ gµνdx
µdxν = a2(η)

{
dη2 −

(
dr2

1 − kr2 + r2dθ2 + r2 sin2
θdφ2

)}
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Comoving radial coordinate χ (in contrast to the comoving radial coordinate
r )

dχ ≡ ± dr

(1 − kr2)1/2
⇒ χ =

∫ r

0

dr ′

(1 − kr ′ 2)1/2
=


arcsin r

r

arcsinh r

for k =


+1
0

−1

Then
dτ2 = dt2 − a2(t)

[
dχ2 + S2

k (χ)
(
dθ2 + sin2

θdφ2)]
where

Sk (χ) =


sin χ

χ

sinh χ

for k =


+1
0

−1
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♠ The recession velocity and the Hubble law
Discovery of expanding Universe

• In 1912, Vesto Slipher, American astronomer, discovered the "redshift" of
spectral lines of galaxies. In 1914, Slipher also made the first discovery
of the rotation of spiral galaxies. By 1922 Slipher had collected radial
velocities for 41 spiral nebulae (later identified as galaxies), almost all of
which were redshifted. Unfortunately, he did not formally publish the
full dataset in a journal; they became known to the community when
they were published in an early textbook on general relativity
(Eddington 1923). Interpreting the redshift as a non-relativistic Doppler
effect Sliper was able to determine radial velocities of the observed
nebulae.
The "redshift" z definition:

1 + z ≡ λobs

λemit

The Doppler (non-relativistic) effect:

1 + v

c
= λobs

λemit

⇓
v

c
= z
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• Edwin Hubble discovered that many objects previously thought to be
clouds of dust and gas and classified as "nebulae" were actually
galaxies beyond the Milky Way. He used correlation between a classical
Cepheid variable’s luminosity and pulsation period (discovered in 1908
by Henrietta Swan Leavitt) for determination of galactic distances. In
1929 Hubble published in Proc. Natl. Acad. Sci. USA 15, 168–173, that
farther galaxies are more redshifted (with a linear dependance) and
using results of Slipher he has concluded that v = H0r where v is the
radial velocity, H0 is a constant (estimated to be 500 km s−1 Mpc−1) and
r is the distance to the galaxy.

Figure 1: Velocity-distance relation among extra-galactic nebulae from 1929 paper by
Hubble. 5



The velocity-distance relation in GR

The proper (physical) distance (defined along the surface of constant time
dt = 0) to an object located at the coordinate r at the moment t :

D(t) =
∫
P

(−gµνdx
µdxν )1/2 = a(t)

∫ r

0

dr ′

(1 − kr ′ 2)1/2

We calculate variation of the proper distance at a time t

d

dt
D(t) = ˙a(t)

∫ r

0

dr ′

(1 − kr ′ 2)1/2
+ a(t) ṙ

(1 − kr2)1/2
(1)

The recession velocity is related (by definition) to the change of D(t) caused
by the evolution of a(t) for a constant comoving coordinate r , therefore

vrec(t) = ȧ(t)
∫ r

0

dr ′

(1 − kr ′ 2)1/2

So we get the Hubble law as

vrec(t) = ȧ(t)
∫ r

0

dr ′

(1 − kr ′ 2)1/2
=

(
ȧ(t)
a(t)

) (
a(t)

∫ r

0

dr ′

(1 − kr ′ 2)1/2

)
= H(t)D(t)

The second term in (1) describes the peculiar velocity related to a motion in
the comoving frame with changes of the comoving coordinate r :

vpec = a(t) ṙ

(1 − kr2)1/2 6



Note that in the FLRW geometry for a photon emitted from receding galaxy
we have dτ = 0, so

dτ2 = dt2 − a2(t)
{

dr2

1 − kr2 + r2dθ2 + r2 sin2
θdφ2

}

dt = ±a(t) dr

(1 − kr2)1/2

therefore we conclude that vpec = ±1, so locally photons have velocity 1, as
they should.

Assume that we observe light from a galaxy the recession velocity of which
we want to determine. Then the velocity could be calculated (see class) as a
function of the time at which we would like to know the velocity (i.e. t),
coordinates of the emission (tem, r ) and detection (tobs, 0) of photons from
the observed object (galaxy):

vrec(t, tem, tobs) = ȧ(t)
∫ r

0

dr ′

(1 − kr ′ 2)1/2
= ȧ(t)

∫ tobs

tem

dt′

a(t′)

and then assuming that the observation is performed now (z = 0) the
velocity could be expressed (see class) as a function of the redshift
(z ↔ tem) of the observed object

vrec(t) = ȧ(t)
a0

∫ z

0

dz ′

H(z ′)
(2) 7



where H(z ′) is a known function parametrized by Ω’s of universe constituents

H(z ′) = Ho

[
Ω0

rad(1 + z ′)4 + Ω0
m(1 + z ′)3 + Ω0

k (1 + z ′)2 + Ω0
Λ
]1/2

and z is referring to the moment of emission (tem).
Comments:

• We observe an object with redshift z and we have to specify the time t

at which we wish to know the recession velocity vrec(t). If we choose
t = tem in (2) then we get

vrec(z) = ȧ(z)
aobs

∫ z

0

dz ′

H(z ′)

then vrec(z) is the recession velocity at the moment photons were
emitted.

• There exist superluminal galaxies receding with vrec(z) > 1, e.g. for
(Ω0

m, Ω0
Λ) = (0.3, 0.7) objects with z > 1.46 have vrec > 1.

• Special relativity relation (based on the Doppler effect) between vrec

and z is incorrect if applied for large distances (redshifts).
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For farther reading see

• T. M. Davis and Ch. H. Lineweaver, "Superluminal Recession Velocities",
AIP Conf. Proc. 555, 348 (2001)

• T. M. Davis, Ch. H. Lineweaver, (New South Wales U.), "Expanding
confusion: common misconceptions of cosmological horizons and the
superluminal expansion of the universe", e-Print: astro-ph/0310808

• G.F.R. Ellis and T. Rothman, "Lost horizons", Am. J. Phys. 61, pp. 883-893
(1993)
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The velocity-redshift relation

• non-relativistic Doppler effect: β ≡ v
c

= z

• relativistic Doppler effect: β = (1+z)2−1
(1+z)1+1

• GR: vrec(z) = ȧ(z)
aobs

∫ z

0
dz′

H(z′)

Figure 2: Velocity-redshift relations, from T. M. Davis and Ch. H. Lineweaver,
"Superluminal Recession Velocities", AIP Conf. Proc. 555, 348 (2001). The thick brown
line corresponds to (ΩM , ΩΛ) = (0.3, 0.7).
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♠ The Hubble sphere and horizons
• The Hubble sphere
The Hubble sphere is defined as the surface that separates the region of the
Universe beyond which the recession velocity exceeds the speed of light. So,
we have the following condition for the proper (physical) distance DHs (t) to
the Hubble sphere:

vrec = 1 = ȧ(t)
∫ rHs (t)

0

dr ′

(1 − kr ′ 2)1/2
=

[
ȧ(t)
a(t)

] [
a(t)

∫ rHs (t)

0

dr ′

(1 − kr ′ 2)1/2

]
︸ ︷︷ ︸

DHs (t)

= H(t)DHs (t)

where rHs (t) are DHs (t) are the coordinate and the distance to the sphere,
respectively. So we get

DHs (t) = H−1(t)

For a geometry such that a(t) ∝ tα (for RD α = 1/2 for MD α = 2/3) one gets
H(t) = α

t
so

DHs (t) = t

α
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• The past null cone
We are going to determine the worldline of photons that we observe now, i.e.
at t = t0 at r0 = 0 (θ0, φ0 irrelevant). Since for the light signal dτ2 = 0,
therefore

dτ2 = 0 = dt2 − a2(t) dr2

1 − kr2 −→ dt

a(t)
= ± dr√

1 − kr2

Consider light emitted at t = te at some location r = re , then we integrate
from the emission to the observation (we choose minus sign)∫ t0

te

dt

a(t)
= −

∫ 0

re

dr√
1 − kr2

=
∫ re

0

dr√
1 − kr2

(3)

So the proper distance D(te ) at the emission time from the point of emission
to the observer is given by

D(te ) = a(te )
∫ re

0

dr√
1 − kr2

= a(te )
∫ t0

te

dt′

a(t′)

Replacing te by t we obtain a worldline of photons which are reaching us
today (at t0), this is an analog of the past light cone in special relativity.
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For cosmologies such that a ∝ tα one obtains

D(t) = t

1 − α

[(
t

t0

)α−1
− 1

]
Remarks:

• D(t) is not a monotonic function of t , its maximum is at

tmax = t0

α
1

α−1

• D(0) = D(t0) = 0
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• The particle horizon
The fundamental question in cosmology: what fraction of the Universe is in
causal contact?
More precisely:
For a comoving observer with coordinate r0 = 0 for what values of the
emission coordinate r would a light signal emitted at t = 0 reach the
observer at, or before, time t? The particle horizon is a surface of the region
from which a light signal emitted at t = 0 may reach an observer at r0 = 0 at
time t . As for an ordinary horizon we could not see behind the “particle
horizon”.

• homogeneity −→ we can choose r0 = 0,
• for the light signal dτ2 = 0

dτ2 = dt2 − a2(t) dr2

1 − kr2 −→ dt′

a(t′)
= ± dr√

1 − kr2

Emission at (0, rph), detection at (t, 0), hence∫ t

0

dt′

a(t′)
=

∫ rph

0

dr√
1 − kr2

⇒ rph = rph(t) (4)

Note that the signal is moving toward us, so dr
dt

< 0.
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The distance to the horizon at time t :

Dph(t) =
∫ rph (t)

0
g1/2
rr (t)dr = a(t)

∫ rph (t)

0

dr√
1 − kr2

Adopting (4) one gets

Dph(t) = a(t)
∫ t

0

dt′

a(t′)
For a ∝ tα one obtains at present

Dph(t0) = t0
1 − α

Remarks:

• Note that for a static Universe, a = const., Dph = t0 (for c = 1).
• Note that Dph(t0) is a distance now to a galaxy that emitted light at t = 0.
• As time flows Dph(t0) grows as well, i.e. so far unseen regions of the

Universe will become visible.
• For 0 < α < 1 we have (1 − α)−1 > 1 therefore the question emerges:

How could light travel in time t0 a distance greater than t0 if its velocity
is 1? Dph(t0) is the present distance to the galaxy on the horizon which
emitted light we observe now, in fact the galaxy was on top of us when
the light was emitted!
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• However a galaxy on the horizon indeed might have traveled a distance
greater than t0, so its velocity was greater than the speed of light.
Balloon analogy: two points separated by an arclength S and an angle
θ, so S = aθ, when the balloon inflates with a speed ȧ = 1/2 then
Ṡ = 1/2 × θ, so that for θ > 2 rad they recede faster than light.

• The horizon is not the boundary that is moving with the speed of light
(the Hubble sphere):

Dph(t0)
DHs (t0)

= α

1 − α

For α > 1/2 the particle horizon is farther than the Hubble sphere.
• If Dph(t0) is finite, then the particle horizon is a boundary between the

part of the Universe that we have already seen and the remaining from
where the light has not reached us yet.

• The finiteness of Dph(t0) is determined by the behavior of a(t) around
t = 0, in the standard cosmology Dph(t) is finite since limt→0 [t/a(t)] = 0
(a → 0 slower than t as t → 0).
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• The event horizon
The event horizon is a surface of the region from which a light signal emitted
at (t1, r1) may reach an observer at r0 = 0 if the observer waits long enough.∫ r1

0

dr ′

(1 − kr ′ 2)1/2
=

∫ tmax

t1

dt′

a(t′)

where tmax is the time-coordinate of the end of the universe, which would be
infinite in the case of a universe that expands forever. The above allows to
determine events (t1, r1) that are observable if we waited infinitely long (this
is applicable for universes which expands forever). If the integral on the rhs
diverges then the whole universe is observable if we wait long enough
(r1 → ∞). Then the distance at a given time t to the horizon reads

Deh(t, t1) = a(t)
∫ r1

0

dr ′

(1 − kr ′ 2)1/2
= a(t)

∫ tmax

t1

dt′

a(t′)

17



Usually the case with t1 = t is discussed, so in other words how far at the
time t is the region beyond which we will never see signals emitted at the
same time t , e.g. t could correspond to the present moment.

Deh(t) = a(t)
∫ tmax

t

dt′

a(t′)

For a ∝ tα one finds:

Deh(t) = (1 − α)−1 (
tαt1−α

max − t
)
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Cosmological Distances

♠ The Luminosity Distance
The total flux F (the energy per time per area measured by the detector) of
light received by a telescope on Earth from an object of luminosity (energy
produced per time by the source) can be calculated as follows. A "flash" of
Nemit photons is emitted isotropically at the time t = temit from a source
located at the radial coordinate r . If there was no expansion then a
telescope located at r = 0 would detect the total flux

F = L
4π[a(temit)r ]2

Note that 4π[a(temit)r ]2 is the area of the sphere containing photons emitted
at t = temit.

The two-sphere analogy could be helpful to understand the presence of
[a(temit)r ].

19



Figure 3: The two sphere.

However, because of the expansion of the sphere (the space time is
expanding while the photon is traveling), at the detection time t = tobs, the
area of the spherical shell within which the photons travel has expanded to
4π[a(tobs)r ]2, therefore the fraction should be corrected

F = L
4π[a(tobs)r ]2
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To compute properly the total flux, two other effects must be taken into
account:

• Each emitted photon has its energy redshifted by the factor νemit
νobs

= 1 + z ,
so the observed photon energy is rescaled by the factor 1

1+z .
• The observed flux is defined as energy per time, so that must be taken

into account. If the time distance between photon flashes at the source
is δtemit, then the time distance between the detection of those flashes,
δtobs, will be increased according to the relation which we have
obtained earlier:

δtemit

δtobs
= a(temit)

a(tobs)
= 1

1 + z

So, the detected flux is suppressed by the factor 1
1+z .

⇓

The total flux observed now reads

F = L
4πd2

L

for dL ≡ a(t0)r (1 + z)

where dL is called the luminosity distance and the detection time is denoted
by t0. From now on the emission time will be denoted by t .

21



Note that r is unknown radial coordinate of the source. However, if the
solution of the Friedmann equation is known then r could be related to the
redshift z as follows. Let’s recall the expansion of the scale factor around the
present time:

a(t) = a0 + a0
ȧ

a |t=t0
(t − t0) − 1

2
a0

[
− ä

a |t=t0

1
H2

0

]
︸ ︷︷ ︸

≡q0

H2
0 (t − t0)2 + · · ·

where q0 is the deceleration parameter. We can eliminate the ratio a(t)
a(t0) using

the relation a(t)
a(t0) = 1

1+z (t0 is the detection moment), so that

1
1 + z

= 1 + H0(t − t0) − 1
2
q0H

2
0 (t − t0)2 + · · ·

Inverting we get

z = −H0(t−t0)+
(
1 + q0

2

)
H2

0 (t−t0)2+· · · = H0(t0−t)
[
1 −

(
1 + q0

2

)
H0(t − t0) + · · ·

]
Therefore we can express the time difference t0 − t as a function of z :

t0 − t = zH−1
0

[
1 −

(
1 + q0

2

)
z + · · ·

]
22



Let’s now recall the relation we have obtained for a massless wave traveling
along a geodesic dτ2 = 0:

∫ t0

t

dt′

a(t′)
=

∫ r

0

dr ′

(1 − kr ′ 2)1/2
=


sin−1 r = r + r3

6 + · · · k = +1
r k = 0
sinh−1 r = r − r3

6 + · · · k = −1
(5)

Let’s use the expansion

a(t) = a0 + a0H0(t − t0) − 1
2
a0q0H

2
0 (t − t0)2 + · · ·

on the lhs of (5) and keep only ∝ r terms on the rhs, then we get

a−1(t0)
[
(t0 − t) + H0

1
2

(t0 − t)2 + · · ·
]

= r + · · ·

Substituting t0 − t = zH−1
0

[
1 −

(
1 + q0

2

)
z + · · ·

]
and keeping only terms

O(z2) we get
r = a−1

0 H−1
0

[
z − 1

2
(1 + q0)z2

]
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Now we are ready to use the above result in the expression for the
luminosity distance dL = a(t0)r (1 + z)

dL = H−1
0

[
z + 1

2
(1 − q0)z2

]
where we have kept only terms O(z2). The above result yields a version of
the Hubble law

H0dL = z + 1
2

(1 − q0)z2 + · · ·

Note that the above formula differs from the linear Hubble law for q0 ̸= 1,
even though it was obtained for small z . Since q0 depends on the
cosmological model

q0 = 4πG

3H2
0

∑
i

(ρ0
i + 3p0

i ) = 4πG

3H2
0

∑
i

(1 + 3wi )ρ0
i = 1

2

∑
i

Ω0
i (1 + 3wi )

therefore the measurement of H0dL offers a way to determine the fate of the
Universe.
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♠ The Angular Distance
Assume that there is an object of known diameter D located at the
coordinate r = r , which emitted light at t = t , that has been observed at t = t0

at r = 0. From the FLRW metric we know that the angular diameter of the
source, δ is given by

δ = D

a(t)r
The angular distance dA is defined as

dA ≡ D

δ
= a(t)r

Since the luminosity distance is given by dL = a(t0)r (1 + z) and we know the
relation between the size of the scale factor at the corresponding redshift:
1

1+z = a(t)
a(t0) therefore we can derive the relation between dL and dA:

dA = dL

(1 + z)2

25



♠ Determination of Cosmological Parameters
Here we will discuss the determination of cosmological parameters such as
H0 and Ω0

i through a measurement of the luminosity distance dL.
The luminosity distance dL is defined through the total observed power

F = L
4πd2

L

for dL ≡ a(t0)r (1 + z)

where a(t0), r and t are related by the equation of radial, null (light-like)
geodesics for the FLRW metric (dθ = dφ = 0):

dτ = 0 ⇒ dr

dt
= − (1 − kr2)1/2

a(t)

Using the relation between the scale factor a(t) and the redshift 1 + z = a0
a(t)

we get
a0

dr

(1 − kr2)1/2
= −(1 + z)dt
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The following relation (obtained earlier)

dt

dz
= H−1

0
−1

1 + z

1
[Ω0

rad(1 + z)4 + Ω0
m(1 + z)3 + Ω0

k (1 + z)2 + Ω0
Λ]1/2

could be adopted to swap dt and dz such that the integration could be
performed

a0

∫ r

0

dr ′

(1 − kr ′ 2)1/2
= H−1

0

∫ z

0

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2

The lhs could be easily integrated

a0

∫ r

0

dr ′

(1 − kr ′ 2)1/2
= a0


sin−1 r k = +1
r k = 0
sinh−1 r k = −1

Thus we are able to express r as a function of z , this is exactly what is
needed to find the luminosity distance as a function of z , that way we get
e.g. for k = +1

r (z) = sin
{

(a0H0)−1
∫ z

o

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2

}
27



Using the definition of Ω0
k = −k

(a0H0)2 we will get rid of a0H0 obtaining

• k = +1

dL = a(t0)(1 + z)r (z) = a0H0

H0
(1 + z)r (z) = H−1

0 (1 + z)
(
|Ω0

k |
)−1/2 ×

sin
{(

|Ω0
k |

)1/2
∫ z

o

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2

}
Ω0

k = 1 − Ω0
rad − Ω0

m − ΩΛ < 0

• k = 0

dL = a(t0)(1 + z)r (z) = a0H0

H0
(1 + z)r (z) =

H−1
0 (1 + z)

∫ z

o

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2

Ω0
k = 0
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• k = −1

dL = a(t0)(1 + z)r (z) = a0H0

H0
(1 + z)r (z) = H−1

0 (1 + z)
(
|Ω0

k |
)−1/2 ×

sinh
{(

|Ω0
k |

)1/2
∫ z

o

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2

}
Ω0

k = 1 − Ω0
rad − Ω0

m − ΩΛ > 0

So, a measurement of dL provides a constraint on H0 and Ω0
rad, Ω0

m and Ω0
Λ .
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♠ The General Form of the Redshift Dependence of the Distance to the
Particle Horizon
As we have shown the distance to the particle horizon is given by

Dph(t) = a(t)
∫ t

0

dt′

a(t′)
Our goal is to find the distance Dph as a function of z (earlier we obtained
dL = dL(z) for small and large z), therefore it is convenient to change
variables from t′ to z ′. For that we can adopt the relation obtained earlier

dt′

dz ′ = H−1
0

−1
1 + z ′

1
[Ω0

rad(1 + z ′)4 + Ω0
m(1 + z ′)3 + Ω0

k (1 + z ′)2 + Ω0
Λ]1/2

Then
Dph(t) = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ z

∞
a−1
0

a0

a(t′)
dt′

dz ′ dz
′

Inserting dt′

dz′ and adopting a0
a(t′) = 1 + z ′ we obtain

Dph(z) = a(t)
a0

∫ z

∞
(1+z ′)H−1

0
−1

1 + z ′
dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2

Using 1 + z = a0
a(t) we have

Dph(z) = 1
H0(1 + z)

∫ ∞

z

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ]1/2
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If we allow for an extra component of the Universe with the equation of
state p = wxρ then the above result is modified such that the horizon
distance reads

Dph(z) = 1
H0(1 + z)

×∫ ∞

z

dz ′

[Ω0
rad(1 + z ′)4 + Ω0

m(1 + z ′)3 + Ω0
k (1 + z ′)2 + Ω0

Λ + Ωx (1 + z ′)3(1+wx )]1/2

Comment:

• It is important to realize that various powers of (1 + z) present above (or
just on the rhs of the Friedmann equation, where they come from)
originate from different dependence of energy densities on a (e.g. ∝ a−3

for matter, ∝ a−4 for radiation). The dependence on a was derived from
the first law of thermodynamics separately for each kind of Universe
constituents while the first law of thermodynamics applies for the total
energy density and pressure. In general (before decoupling)
non-relativistic matter interacts with radiation and the precise picture is
more involved. So, strictly speaking what we are doing applies for the
period when the radiation and the non-relativistic matter do not
interact.
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Measurements of Distances and Observation of Standard Candles

Parallax-based methods:
The most important direct distance measurements come from the parallax.
The Earth’s motion around the sun causes small shifts in stellar positions.
These shifts are angles in a right triangle, with 1 AU making the short side of
the triangle and the distance to the star being the long side. One pc is the
distance of a star whose parallax is one arc second.

Figure 4: The parallax.
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A standard candle is a class of astrophysical objects, such as
supernovae or variable stars, which have known luminosity due to

some characteristic quality possessed by the entire class of objects.

• Cepheids (’sefieds’)
Cepheid is a variable star that has a fairly tight correlation between its
period of variability and intrinsic brightness. Because of this correlation
(discovered and stated by Henrietta Swan Leavitt in 1908 and given
precise mathematical form by her in 1912), a Cepheid can be used as a
"standard candle" to determine the distance to its host cluster or galaxy.

• The variation in luminosity is caused by a cycle of ionization of helium in
the star’s atmosphere, followed by expansion and deionization. While
ionized, the atmosphere is more opaque (’opeik’) to light.

• The luminosity of cepheid stars range from 103 to 104 times that of the Sun.
A three-day period Cepheid has a luminosity of about 800 times that of the
Sun. A thirty-day period Cepheid is 104 times as bright as the Sun. The scale
has been calibrated using nearby Cepheid stars, for which the distance was
already known (a source of some uncertainties). This high luminosity, and
the precision with which their distance can be estimated, makes Cepheid
stars the ideal standard candle to measure the distance of clusters and
external galaxies.

33



• First let’s define apparent magnitude m of a celestial body as a measure
of its brightness as seen on Earth:

m = −2.5 log10 F + const.

where F is the total flux (energy/area/time) observed on Earth while
"const." is a constant to be determined by the requirement that the star
Vega has apparent magnitude m = 0. Then the period-luminosity
relationship for Type I Cepheids could be written as follows:

M = −2.81 log10(P) − (1.43 ± 0.1)

where M is the absolute magnitude (an apparent magnitude of the
object if it was at 10 pc distance from the observer) and P is the period
measured in days. The above relation was obtained by Henrietta Leavitt.
She was working at the Harvard College Observatory, studying
photographic plates of the Large (LMC) and Small (SMC) Magellanic
Clouds, compiled a list of 1777 periodic variables. Eventually she
classified 47 of these in the two clouds as Cepheid variables and noticed
that those with longer periods were brighter than the shorter-period
ones. She correctly concluded that as the stars were in the same
distant clouds they were all at much the same relative distance from us.
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Figure 5: Period-luminosity relationship for Cepheids and RR Lyrae stars.

Any difference in apparent magnitude was therefore related to a difference
in absolute magnitude. When she plotted her results for the two clouds she
noted that they formed distinct relationships between brightness and period.
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Let us now see how this relationship can be used to determine the distance
to a Cepheid. For this procedure we will assume that we are dealing with a
Type I, Classical Cepheid but the same method applies for W Virginis and RR
Lyrae-type stars.

1. Photometric observations, by the naked-eye estimates, photographic
plates, or photoelectric CCD images provide the apparent magnitude
values for the Cepheid.

2. Plotting apparent magnitude values from observations at different times
results in a light curve such as that below for a Cepheid in the LMC.

Figure 6: The light curve for LMC Cepheid.
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3. From the light curve and the photometric data, two values can be
determined; the average apparent magnitude, m, of the star and its
period in days. In the example above the Cepheid has a mean apparent
magnitude of 15.56 and a period of 4.76 days.

4. Knowing the period of the Cepheid we can now determine its mean
absolute magnitude, M , by adopting the relation found by Henrietta
Leavitt

M = −2.81 log10(P) − (1.43 ± 0.1)

Alternatively one can put a Cepheid on the period-luminosity plot as
shown in (7). The one shown below is based on Cepheids within the
Milky Way. The vertical axis shows absolute magnitude whilst period is
displayed as a log value on the horizontal axes.
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5. Once both apparent magnitude, m, and absolute magnitude, M are
known we can simply substitute them into the distance-modulus
formula (6) and rewrite it to find a value for dL the luminosity distance
to the Cepheid.

M = −5
2

log10 F10 + const. and m = −5
2

log10 F + const.

where F10 is the total power observed at the distance of 10 pc
(according to the definition of M). Since F ∝ d−2

L we obtain

5 log10

(
dL
Mpc

)
= m − M − 25, (6)

Figure 7: The log of 4.76 days = 0.68 is shown as the vertical line. The resulting
absolute magnitude is −3.6. 38



• Type Ia Supernovas
A supernova (plural: supernovae or supernovas) is a stellar explosion
that creates an extremely luminous object. A supernova causes a burst
of radiation that may briefly outshine its entire host galaxy before
fading from view over several weeks or months. During this short
interval, a supernova can radiate as much energy as the Sun could emit
over its life span. The explosion expels much or all of a star’s material
at a velocity of up to a tenth the speed of light, driving a shock wave
into the surrounding interstellar medium.
Type Ia Supernova could be formed as follows. If a carbon-oxygen white
dwarf accreted enough matter to reach the Chandrasekhar limit (the
maximum non-rotating mass which can be supported against
gravitational collapse) of about 1.38 solar masses, (note that this is for
white dwarfs, not for any stars) it would no longer be able to support
the bulk of its plasma and would begin to collapse. Increasing
temperature and density inside the core triggers carbon fusion. Within a
few seconds, a substantial fraction of the matter in the white dwarf
undergoes nuclear fusion, releasing enough energy (1 − 2 × 1044 J) to
unbind the star in a supernova explosion.
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An outwardly expanding shock wave is generated, with matter reaching
velocities of the order of 5, 000 − 20, 000 km/s, or roughly 3% of the speed of
light. There is also a significant increase in luminosity, reaching an absolute
magnitude of −19.3 (or 5 billion times brighter than the Sun), with little
variation.
One model for the formation of a Type Ia explosion involves the merger of
two white dwarf stars, with the combined mass momentarily exceeding the
Chandrasekhar limit. A white dwarf could also accrete matter from other
types of companions (if the orbit is sufficiently close). For the list of
supernovae see http://www.cfa.harvard.edu/iau/lists/Supernovae.html.
Supernovae are very rare, one per few hundred years per galaxy, however
since there are many galaxies we can observe many supernovae
"simultaneously".
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Figure 8: A binary system before the explosion.

The supernova explosions always release roughly the same amount of
energy, and studies of relatively nearby type Ia supernovae have shown that
they reach almost the same peak brightness in every case. Therefore it can
be used as standard candle to determine their true distance. The absolute
magnitude for the Type Ia supernovae has been calibrated to be
M = −19.33 ± 0.25, therefore a measurement of the apparent luminosity m

allows us to determine the luminosity distance dL according to (6).

41



Figure 9: Hubble diagram with 42 high-redshift supernovae (log redshift scale), from
SCP. 42



The data (from the Supernova Cosmology Project shown in fig. 9 favour a flat
(k = 0) Universe (CMB) with a positive cosmological constant,
ΩΛ = 0.75 ± 0.08. The current data set of high-redshift Type Ia supernovas is
not sufficient to break the degeneracy of the density terms, see (10). The
results can be approximated by the linear combination
0.8Ωm − 0.6ΩΛ ≃ −0.2 ± 0.1.
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Figure 10: Confidence region in ΩΛ vs. Ωm plane, from SCP.

The geometry of the Universe is determined by Ω = Ωm + ΩΛ (Ωk = 1 − Ω, for
Ωk ≡ −k/(H2

0a
2
0)):

• Ω > 1 ⇒ k = +1 closed Universe
• Ω < 1 ⇒ k = −1 open Universe
• Ω = 1 ⇒ k = 0 flat Universe

ΩΛ = 1− Ωm separates regions of closed (k = +1) and open (k = −1) Universes. 44



Figure 11: The cosmic distance ladder

m = 5.08 × 1015 GeV−1

s = 1.51 × 1024 GeV−1

pc = 3.09 × 1016 m = 1.57 × 1032 GeV−1

45



Then

H0 = h × 102 km s−1 Mpc−1 = h × 2.14 × 10−42 GeV
G = 6.67 × 10−11 m3 kg−1 s−2 = 6.89 × 10−39 GeV−2

So
ρ0

crit = 3H2
0

8πG
= h2 × 7.94 × 10−47 GeV4
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Comments:

• An explanation of smallness of the cosmological constant is one of the
most outstanding problems of modern theoretical physics. In units with
h̄ = c = 1, the energy density for Ω0

Λ = ρ0
Λ/ρ0

crit ≃ 1 is ρΛ ≃ 10−46 GeV4.
Since the origin of Λ seems to be gravitational, therefore the natural
size of ρΛ should be a 4th power of the Planck mass, ∼ O(M4

Pl ),
MPl = 1.2 · 1019 GeV, that gives ρΛ ≃ 1076 GeV4, while the observed value
is smaller by 122 orders of magnitude! Theoretically, it is much easier to
explain that a quantity is zero, then to show that it is so small,
unfortunately the data require ΩΛ ≃ 1.

• There are some problems concerning the distance determination using
standard candles. The principal one is calibration, determining exactly
what the absolute magnitude of the candle is. This includes defining the
class well enough that members can be recognized, and finding enough
members with well-known distances that their true absolute magnitude
can be determined with enough accuracy. The second lies in recognizing
members of the class, and not mistakenly using the standard candle
calibration upon an object which does not belong to the class. At
extreme distances, which is where one most wishes to use a distance
indicator, this recognition problem can be quite serious.
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Non-Homogeneous Universe; the Lamaître-Tolman Cosmological Model

Consider spherically symmetric dust universe with radial inhomogeneities
observed from the origin (x i = 0). The line element takes the following form

dτ2 = dt2 − X 2(r , t)dr2 − a2(r , t)(dθ2 + sin2
θdϕ2)

The FLRW metric is a limiting case of the Lamaître-Tolman (LT):

X (r , t) → a(t)
(1 − kr2)1/2

, a(r , t) → a(t)r

The energy-momentum tensor in that case reads

Tαβ(r , t) = ρm(r , t)UαUβ

for Uα being perfect fluid 4-velocity, so U0 = 1 and Ui = 0 in the comoving
frame.
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The Einstein equations lead to the following set of differential equations:

−2
a′′

aX 2 + 2
a′X ′

aX 3 + 2
Ẋ ȧ

Xa
+ 1
a2 +

(
ȧ

a

)2

−
(

a′

aX

)2

= 8πGρm

ȧ′ = a′ Ẋ

X
(7)

2
ä

a
+ 1
a2 +

(
ȧ

a

)2

−
(

a′

aX

)2

= 0

− a′′

aX 2 + ä

a
+ Ẋ ȧ

Xa
+ a′X ′

aX 3 + Ẍ

X
= 0

where a′ ≡ ∂a/∂r and ȧ ≡ ∂a/∂t . Only three of the above four equations are
independent.

Eq.7 could be easily solved by

X (r , t) = C (r )a′(r , t)

The function C (r ) (to be determined by boundary conditions) could be
written as follows:

C (r ) ≡ 1
[1 − k(r )]1/2

,

where k(r ) < 1.
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Then the LT metric could rewritten as

dτ2 = dt2 − [a′(r , t)]2

1 − k(r )
dr2 − a2(r , t)(dθ2 + sin2

θdϕ2)

(The FLRW case could be obtained for k(r ) → kr2 and a(r , t) → a(t)r .) Then
the two independent Einstein equations read

ȧ2 + k(r )
a2 + 2ȧȧ′ + k ′(r )

aa′ = 8πGρm (8)

ȧ2 + 2aä + k(r ) = 0 (9)

It is easy to verify (apply ∂/∂t) that the first integral of (9) is

aȧ2 = F (r ) − ak(r )

for F (r ) to be determined by boundary conditions. Then we get the
generalized Friedmann equation for the local Hubble parameter
H(r , t) ≡ ȧ(r , t)/a(r , t):

H2(r , t) + k(r )
a2 = F (r )

a3 (10)

50



Instead of F (r ) and k(r ) one can define Ω0
m(r ) and Ω0

k (r )

F (r ) = H2
0 (r )Ω0

m(r )a3
0(r )

k(r ) = −H2
0 (r )Ω0

k (r )a2
0(r )

where

Ω0
m(r ) ≡ ρm(r , t0)

ρcrit(r , t0)
, Ω0

k (r ) ≡ ρk (r , t0)
ρcrit(r , t0)

, H0(r ) ≡ H(r , t0) and a0(r ) ≡ a(r , t0)

Then the generalized Friedmann equation (10) reads

H2(r , t) = H2
0 (r )

[
Ω0

k (r )
(

a0(r )
a(r , t)

)2

+ Ω0
m(r )

(
a0(r )
a(r , t)

)3
]

That should be compared with the FLRW Friedmann equation in the
presence of the cosmological constant

H2(t) = H2
0

[
Ω0

k

(
a0

a(t)

)2

+ Ω0
m

(
a0

a(t)

)3

+ ΩΛ

]
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Comments

• The "observed" acceleration of the Universe is not a direct
measurement, but a consequence of interpretation of the supernova
data within the standard (FLRW) cosmology. Within FLRW ΩΛ is a
possible explanation of the observed maximal luminosity of supernovae
(the observed luminosity is lower than one expected in FLRW model
with ΩΛ = 0). Therefore in the concordance model we found ΩΛ ≃ 0.7
and Ωm ≃ 0.3. Non-zero ΩΛ and the standard Friedmann’s equations
imply ä > 0:

q0 = 4πG

3H2
0

∑
i

(ρ0
i + 3p0

i ) = 4πG

3H2
0

∑
i

(1 + 3wi )ρ0
i = 1

2

∑
i

Ω0
i (1 + 3wi )

So, the conclusion that ä > 0 and ΩΛ ̸= 0 are consequences of the
assumed FLRW geometry.

• When light travels from a supernova toward us it "feels" H(r , t) on its
way. That is seen through the expression for luminosity distance dL. It
turns out (see e.g. H. Iguchi, T. Nakamura and K. i. Nakao, “Is dark energy
the only solution to the apparent acceleration of the present universe?”,
Prog. Theor. Phys. 108, 809 (2002) [arXiv:astro-ph/0112419]) that the
extra freedom that appears within the LT geometry (i.e. H(r , t)) allows to
fit the supernova data without invoking the cosmological constant. 52


