
Sketchy Cosmology

The Cosmological Principle

On large spatial scales (>∼ 100 Mpc), the Universe is homoge-
neous and isotropic

• If the Universe is isotropic then you will see no difference in the
structure of the Universe looking in different directions.

• Homogeneity, when viewed on the largest scales, means that the
average density of matter is about the same in all places in the
Universe and the Universe is fairly smooth on large scales.

Figure 1: Isotropy and Homogeneity
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Notice that this is clearly not true for the Universe on small scales
such as the size of the Earth, the size of the Solar System and even
the size of the Galaxy. Terms such as “look the same” and “smooth in
density” are applied only on very large scales. For cosmology, we
only consider the isotropy and homogeneity of the Universe on
scales greater than 100 Mpc.

The cosmological principle means that there is no ‘center’ to the
Universe. This is an important point when we consider the origin of
the Universe known as the Big Bang. Due to isotropy, there is no
‘place’ where the Big Bang occurred, there is no center point.

It could be formally shown that if the space is invariant under
rotations with respect to any point, it will be invariant under
translation, so homogeneous.
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Olbers’s Paradox and the Dark Night Sky

Another simple observation is that the visible night sky is dark. If the
universe is infinite, eternal, and static, then the sky should be as
bright as the surface of the Sun all of the time! Heinrich Olbers (lived
1758–1840) popularized this paradox in 1826, but he was not the first
to come up with this conclusion. Thomas Digges wrote about it in
1576, Kepler stated it in 1610, and Edmund Halley and Jean Philippe
de Cheseaux talked about it in the 1720’s, but Olbers stated it very
clearly, so he was given credit for it. This problem is called Olbers’s
Paradox.
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If the universe is uniformly filled with stars, then no matter which
direction you look, your line of sight will eventually intersect a star
(or other bright thing). Now it is known that stars are grouped into
galaxies, but the paradox remains: your line of sight will eventually
intersect a galaxy.

Φ ∝
∫

dr r2 n I (r )

where n is the number density of stars while I (r ) the energy flux
observed at the distance r from a star. Since I (r ) ∝ r−2, therefore

Φ ∝
∫

dr r2n I (r ) ∝ n

∫
dr = ∞

Figure 2: The Universe and the Olbers’s paradox

The brightnesses of stars does decrease with greater distance
(remember the inverse square law) BUT there are more stars further
out. The number of stars within a spherical shell around us will
increase by the same amount as their brightness decreases.
Therefore, each shell of stars will have the same overall luminosity
and because there are a lot of ever bigger shells in an infinite
universe, there is going to be a lot of light!
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Possible Resolutions of Olbers’s Paradox

• Obscuration by dust:
Distant stars are blocked out by dust and appear fainter. It turns
out that this won’t work because dust, if it absorbs energy, will
heat up and re-radiate the energy. This means that the Universe
will still be filled with the same amount of radiation, the dust
acts simply as a mediator.

• Expansion of the Universe:
Redshift z (1 + z ≡ λobs/λemit) of photons implies λobs is larger
than λemit −→ we observe lower energy photons than are
produced by the distant stars. Distant objects in an expanding
universe have apparent brightnesses which fall off faster than
the inverse square law. This decreases the contributions from
distant shells. The expanding universe effects partially explain
Olbers’s Paradox.
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• Finite size and age of the Universe:
A star (like the Sun) of radius R covers an area of size, A = πR2.
The fraction of the surface area of a sphere of radius r covered
by such a star is then

f = πR2

4πr2 =
(
R

2r

)2

.

The total fraction of the shell covered by all of the stars in the
shell is then the fraction due to one star × total number of stars

F =
(
R

2r

)2

× (n × 4πr2 × ∆r ) ≃ 1.7 × 10−15 × n × ∆r

where n denotes the star number density and ∆r is the shell
width. In the last step I assumed the stellar density n as the
number of stars per cubic parsec and the thickness of the shell
measured in parsecs. (R⊙ = 7 · 108 m, 1 pc ≃ 3 · 1016 m) These are
convenient units because in our Galaxy, there is roughly 1 star
per cubic parsec and the average separation between stars is of
the order of 1 pc.
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• Finite size and age of the Universe, continuation:
Since one shell of stars covers a fraction 1.7 × 10−15 × n × ∆r of
the sky, therefore to make the night sky as bright as a star, we
would like to make the stars cover most of the observable sky:

1.7 × 10−15 × n × ∆r × N ≃ 1

where N is the number of shell needed. To calculate N , we note
that there is roughly 1 star per cubic parsec in our Galaxy,
choosing the shell thickness ∆r ≃ 1 pc one finds

N ≃ 0.6 × 1015

Because each shell is ∼ 1 pc thick therefore the Universe needs
to be at least 0.6 × 1015 pc in radius. So the Universe must be at
least 1.9 × 1015 ly in size in order to make the night sky as bright
as the surface of the Sun. The current Universe is ∼ 13.7 billion
years old and has an observable size (“particle horizon”) of ∼ 45
billion light years (∼ 1.5 × 1010 pc). This is much less than
needed to produce Olbers’s Paradox. The fact that the Universe
has a finite size and age is the principal explanation of Olbers’s
Paradox.
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The Hubble’s law and the expanding Universe

The "redshift" z :
1 + z ≡ λobs

λemit

The Hubble’s law is a statement in physical cosmology which states
that the redshift in light coming from distant galaxies is proportional
to their distance (the redshift-distance relation):

z ∝ r

If the redshift is interpreted as a non-relativistic Doppler effect:

1 + v

c
= λobs

λemit
−→ v

c
= z

then the redshift-distance relation yields a straightforward
mathematical expression for the Hubble’s law as follows:
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v⃗ = H0r⃗

where v⃗ is the recessional velocity, expressed in km/s. H0 is the
Hubble constant (in (km/s)/Mpc) and corresponds to the present
(denoted by the subscript 0) value of H(t) (often termed the Hubble
parameter which is time dependent) in the Friedmann equation:

H2 + k

a2 = 8πG

3
ρ,

where H(t) is defined as

H(t) ≡ ȧ(t)
a(t)

and the scale factor a(t) is defined through the length element

dτ2 ≡ gµνdx
µdxν = dt2 − a2(t)

{
dr2

1 − kr2 + r2dθ2 + r2 sin2
θdφ2

}
where k = ±1, 0.

H0 is the same throughout the universe for a given time t , and r⃗ is
the distance (to be specified) from the galaxy to the observer,
measured in Mpc. 9



Figure 3: The Hubble diagram for the redshift interpreted as a
non-relativistic Doppler effect. The Hubble’s law works very well up to
distances of many hundred Mpc.
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Figure 4: Measured values of the Hubble constant, 2001–2020. Results in
black represent calibrated distance ladder measurements ("late time"
measurements) which tend to cluster around 73 km/ s/ Mpc; red represents
early universe CMB measurements ("early time" measurements) with ΛCDM
parameters which show good agreement on a figure near 67 km/ s/ Mpc,
while blue are other techniques, whose uncertainties are not yet small
enough to decide between the two. 11



The law was first formulated by Edwin Hubble and Milton Hu-
mason in 1929 after nearly a decade of observations. It is con-
sidered the first observational basis for the expanding space
paradigm and today serves as one of the most often cited
pieces of evidence in support of the Big Bang. The most re-
cent, "early time" measurements of the proportionality con-
stant (from CMB) are

H0 = 67.6 ×

{
+0.7
−0.6

km/ s/ Mpc,

while from the Hubble Space Telescope and Planck mission one
obtains (March 2019) so called "late time" measurements

H0 = 74.03 ± 1.42 km/ s/ Mpc.
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"Models" of the expanding Universe:

• The famous balloon analogy:
To visualize the expanding universe one can compare 3d space
with the 2d surface of an expanding balloon. This analogy was
used by Arthur Eddington as early as 1933 in his book "The
Expanding Universe".
However one must remember that:

• The 2d surface of the balloon is analogous to the 3d of space.
• The 3d space in which the balloon is embedded is not analogous

to any higher dimensional physical space.
• The center of the balloon does not correspond to anything

physical.
• The universe may be finite in size and growing like the surface of

an expanding balloon but it could also be infinite.
• Galaxies move apart like points on the expanding balloon but the

galaxies themselves do not expand because they are
gravitationally bound.
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• The raisin bread analogy:
There is a very common misconception about the expansion.
Many people envision this expansion as analogous to an
explosion. In an explosion matter flies out to fill in space that is
already there. This analogy is misleading. The raisin bread is the
better analogy. The yeast dough is analogous to the space in the
universe. The space in the universe, like the dough, is expanding
causing the galaxies, or raisins, to move farther apart. The
galaxies, or raisins, are not rushing out to fill in space, or dough,
that is already there.

Questions:

• Is the expansion of the Universe consistent with the
cosmological principle?

• Where is the center of the Universe?
• How large was the Universe at the Big Bang?
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Cosmic microwave background radiation

The cosmic microwave background radiation (most often abbreviated
CMB but occasionally CMBR, CBR or MBR, also referred to as relic
radiation) is a form of electromagnetic radiation discovered in 1965
that fills the entire Universe. It has a thermal black-body spectrum at
a temperature of 2.725 K. Thus the spectrum peaks in the microwave
range at a frequency of 160.2 GHz, corresponding to a wavelength of
1.9 mm. Most cosmologists consider this radiation to be the best
evidence for the Big Bang model of the universe.

Figure 5: The spectrum of the CMBR.
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The cosmic microwave background was predicted in 1948 by George
Gamow and Ralph Alpher, and by Alpher and Robert Herman.
Moreover, Alpher and Herman were able to estimate the temperature
of the cosmic microwave background to be 5 K, though two years
later, they re-estimated it at 28 K. In 1965, Arno Penzias and Robert
Woodrow Wilson at the Crawford Hill location of Bell Telephone
Laboratories had built a radiometer that they intended to use for
radio astronomy and satellite communication experiments. Their
instrument had an excess of radiation corresponding to a black-body
of 3.5 K temperature which they could not account for. The spectral
energy density

ε(ν,T ) = 8πh

c3
ν3

e
hν
kT − 1

which has units of energy per unit volume per unit frequency (Joule
per cubic meter per Hertz). The total energy density and the number
density

εtot(T ) =
∫ ∞

0
ε(ν,T )dν = 8π5k4

15h3c3T
4 ntot(T ) =

∫ ∞

0
n(ν)dν = 16ζ(3)πk3

c3h3 T 3

where n(ν) ≡ ε(ν)/(hν). 16



The average photon energy reads:

⟨ε⟩ = εtot(T )
ntot(T )

= π4

30ζ(3)
kT ≃ 2.7kT

The maximum of the spectral energy density:

νmax ≃ 2.8
kT

h
Emax = hνmax ≃ 2.8 kT
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Darkmatter (DM): galactic rotation curves and the Bullet Cluster

The first who suggested the existence of DM were Dutch astronomers
Jacobus Kapteyn (1922) and Jan Oort (radio astronomy pioneer) (1932).
In 1933, Swiss astrophysicist Fritz Zwicky, who studied galactic clusters
while working at the Caltech also hypothesized the presence of extra
invisible mass that he called “dunkle Materie”, i.e. “dark matter”.

Figure 6: Rotation curve of the typical spiral galaxy M 33 (yellow and blue points with error-bars) from: E. Corbelli, P. Salucci (2000).

"The extended rotation curve and the dark matter halo of M33". Monthly Notices of the Royal Astronomical Society. 311 (2): 441–447.
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For nearly 40 years after Zwicky’s initial observations, no other
observations indicated that there might be a mass deficit to explain
velocities of distant stars in galaxies. Then, in the late 1960s and
early 1970s, Vera Rubin, a young American astronomer presented
findings based on a new sensitive spectrograph that could measure
the velocity curve of edge-on spiral galaxies to a greater degree of
accuracy than had ever before been achieved. Together with Kent
Ford, Rubin announced at a 1975 meeting of the American
Astronomical Society the astonishing discovery that most stars in
spiral galaxies orbit at roughly the same speed. This result suggests
that:

• either at least 50% of the mass of galaxies is contained in the
relatively dark galactic halo,

• or Newtonian dynamics does not apply universally, see MOND.

Dark matter theories suggests that each galaxy contains a halo of yet
unidentified type of matter that provides an overall mass distribution
different from the observed distribution of visible matter. This dark
matter modifies gravity so as to cause the flat rotational curves. 19



Figure 7: The Bullet Cluster, X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/

D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;
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The Bullet Cluster (1E 0657-558) consists of two colliding clusters of
galaxies.

Upper panel: The blue color shows the distribution of dark matter,
which passed through the collision without slowing down. The
purple color shows the hot X-ray emitting gas. The stars present in
galaxies are observable in visible light.

Lower panel: The bright colours show the hot baryon gas, the green
lines are contours of constant gravitational potential.

The hot gas of the two colliding components, seen in X-rays,
represents most of the baryonic, i.e. ordinary, matter in the cluster
pair. The gases interact electromagnetically, causing the gases of
both clusters to slow. The extra component, the dark matter, was
detected indirectly by the gravitational lensing of background
objects. In theories without dark matter, such as Modified Newtonian
Dynamics (MOND), the lensing would be expected to follow the
baryonic matter; i.e. the X-ray gas. However, the lensing turns out to
be stronger in two separated regions.
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MOND (Modified Newtonian Dynamics)

MOND has been proposed by Mordehai Milgrom in 1983 as a way to
model observed flat rotational curves. Milgrom noted that Newton’s
law for gravitational force has been verified only where gravitational
acceleration is large, and suggested that for extremely low
accelerations the theory may not hold. MOND theory assumes that
acceleration is not linearly proportional to force at low values. For
centripetal acceleration one obtains

GN
Mm

r2 = ma ; GN
Mm

r2 = mµ

(
a

a0

)
a

where

µ(x) =
{

1 for x ≫ 1
x for x ≪ 1
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Then assuming a ≪ a0

GN
Mm

r2 = ma = m
v2

r
; GN

M

r2 = a

a0
a = 1

a0

(
v2

r

)2

⇓

v = 4
√
GNMa0

Typical value of a0: a0 ∼ 1.2 × 10−8cm s−2.

Tensor-Vector-Scalar gravity (TeVeS) proposed by Jacob Bekenstein in
2004 is a relativistic theory that is equivalent to MOND in the
non-relativistic limit, which explains the galaxy rotation problem
without invoking dark matter. The break-through of TeVeS over MOND
is that it can also explain the phenomenon of gravitational lensing, a
cosmic phenomenon in which nearby matter bends light, which has
been confirmed many times. However, TeVeS faces problems when
confronted with data on the anisotropy of the CMB.
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Natural units

The Planck length (quantum gravity is relevant below):

lPl ≡
(
ℏGN

c3

)1/2

≃ 1.6 × 10−35 m,

where G is the gravitational constant.

The Planck mass (quantum gravity relevant for energies above MPl ) :

MPl ≡
(
ℏc
GN

)1/2

≃ 1.2 × 1019 GeV/c2

ℏ ≡ h

2π
= 6.58 × 10−16 eV s = 1.05 × 10−34 J s

c = 2.99 × 108 m s−1

kB = 8.62 × 10−5 eV K−1 = 1.38 × 10−23 J K−1

We will be adopting the following units:

ℏ = c = kB = 1
24



⇓

[E ] = [M] = [T ] = GeV, [l] = [t] = GeV−1

s = 1.51 × 1024 GeV−1

m = 5.08 × 1015 GeV−1

kg = 5.57 × 1026 GeV
K = 8.62 × 10−14 GeV

Then

GN = 6.67 × 10−11 m3 kg−1 s−2 = 6.89 × 10−39 GeV−2
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Summary

• Cosmological Principle
• Hubble law and the expanding Universe
• Cosmic microwave background radiation
• Dark Matter
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