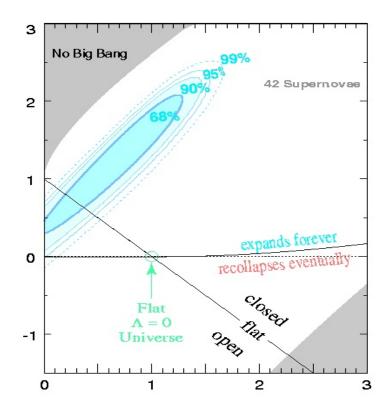
Homework problems #4

- 1. Calculate the fraction of matter-dominated universe that is visible, as a function of the redshift for k = +1 (for k < 1 the problem does not make sense), by the fraction one means $D_{ph}(z)/(2\pi a(z))$, where $2\pi a(z)$ is the circumference of the universe.
- 2. For a cosmological model $R(t) = R_0 \times (t/t_0)^{\alpha}$ (0 < α < 1), find and draw in the space (t, χ)
 - past null light cone,
 - Hubble sphere,
 - world-line (for k = 0) of an object that is at a coordinate χ_0 now,
 - particle horizon,

where the coordinate χ is defined as follows

$$\chi = \int_0^r \frac{dr'}{(1 - kr'^2)^{1/2}} = \begin{cases} \arcsin r \\ r \\ \operatorname{arcsinh} r \end{cases} \text{ for } k = \begin{cases} +1 \\ 0 \\ -1 \end{cases}$$

- 3. For a cosmological model $R(t) = R_0 \times (t/t_0)^{\alpha}$ ($0 < \alpha < 1$), find and draw in the space (η, χ)
 - past null light cone,
 - Hubble sphere,
 - world-line (for k = 0) of an object that is at a coordinate χ_0 now,
 - particle horizon


where the conformal time η , is defined as follows

$$\eta(t) = \int_0^t \frac{dt'}{R(t')}$$

- 4. Evaluate the deceleration parameter as a function of the redshift, q = q(z), neglect radiation but include a "matter" satisfying equation of state $p_X = w_X \rho_X$.
- 5. Find regions in the plane Ω_m, Ω_Λ) corresponding to accelerating and decelerating universe (now).
- 6. Assuming numbers accepted by the concordance model $\Omega_m^0 = 0.3$ and $\Omega_{\Lambda}^0 = 0.7$ find the redshift at which the observed presently acceleration began.
- 7. Explain the shape of the region "No Big Bang" in fig. 1
- 8. Calculate the fraction of matter-dominated universe that is visible, as a function of the redshift for k = +1 (for k < 1 the problem does not make sense), by the fraction one means $d_H(z)/(2\pi R(z))$, where $2\pi R(z)$ is the circumference of the universe.
- 9. Find the visible fraction of the dust universe at the moment of maximal expansion for k = +1.

Hint for the problems # 1 and 2 :

Check your results against fig.1 in T. M. Davis and Ch. H. Lineweaver, "Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe", 2004, Publications of the Astronomical Society of Australia, 21, 97-109. Note that in fig.1 a universe with $(\Omega_m^0, \Omega_{\Lambda}^0) = (0.3, 0.7)$ was adopted.

Rysunek 1: Confidence region for Ω_m vs. Ω_{Λ} plane, from SCP.