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Abstract

Today’s radiation safety norms are based on the linear no-threshold theory (LNT): extrapolation of the dose-
response relationships down to the minimal doses, where such relationships are unproven and can be inverse
due to hormesis. The most promising way to obtaining reliable data on the dose-effect relationships for low
radiation doses would be large-scale animal experiments. Outstanding published data on carcinogenic effects of
the doses e.g. below 100 mSv should be verified by experiments. Arguments against applicability of the LNT to
the doses comparable to those from the natural radiation background are discussed. Furthermore it is stressed
that medical consequences of the Chernobyl accident have been overestimated; and this theme has been
exploited to strangle development of atomic energy and to elevate prices for fossil fuels. Worldwide introduc-
tion of nuclear energy will be possible only after a concentration of authority within a powerful international
executive. It would enable the construction of nuclear reactors in optimally suitable places, considering all
sociopolitical, geographical, and geological conditions, which would contribute to the prevention of accidents
like in Japan in 201 I. A concluding point is that radiation safety norms are exceedingly restrictive and should be
revised to become more realistic and workable. Elevation of the limits must be accompanied by measures guar-
anteeing their strict observance. It is also concluded that there are no evidence-based contraindications to five-
fold elevation of the total equivalent effective doses to individual members of the public (up to 5 mSv/year), and
doubling of the limits for professional exposures.

Keywords
Radiation safety norms, ionizing radiation, hormesis, Chernobyl accident

Unrealistic laws and regulations are often violated,
which contributes to disrespect for law in general.

exposure to ionizing radiation,” which is sometimes,
in fact, just a slight elevation of the radiation back-

Today’s radiation safety norms are based on the linear
no-threshold theory (LNT): extrapolation of the dose—
response relationships down to the minimal doses,
where such relationships are unproven and can be
inverse due to the hormesis, i.e. beneficial effect of
low-level exposure.'™ According to the existing
norms, an equivalent effective dose to individual
members of the public should not exceed 1 mSv/
year.” The limits of effective dose for exposed work-
ers are 100 mSyv in a consecutive 5-year period, with a
maximum effective dose of 50 mSv in any single
year.® For comparison, worldwide annual exposures
to natural radiation sources are generally expected
to be in the range of 1-10 mSv, 2.4 mSv being a cur-
rent estimate of the global average.” In some densely
populated regions, the background radiation is consid-
erably elevated without any detected increase in
health risks.*'* Previously, we discussed some publi-
cations on the Chernobyl accident because of the
inadequate use of the term °‘long-term low-dose

ground.14 For example, in a series of studies, com-
mented in references 14,15, patients with cancer or
precancerous lesions from radiocontaminated areas
around Chernobyl were combined in one cohort with
patients from Kiev, thus creating a ground for discus-
sion of radiation-induced malignancy in the big city.
Average annual effective doses to the residents of
Kiev during the first year after the Chernobyl accident
(external irradiation about 3 mSv and internal irradia-
tion 1.1 mSv, decreasing in the following years),'¢
were comparable with average annual doses from
the natural radiation background. In residents of
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contaminated areas around Chemobyl (living in the
strictly controlled zones, surrounding the 30-km exclu-
sion zone, from where initial evacuation took place),
annual average effective doses received by the
inhabitants were around 40 mSv in the first year after
the accident but decreased to less than 10 mSv in the
following years.'” These figures approximately corre-
spond to the upper limits of doses from a single exam-
ination by computed tomography.'® For comparison,
3414 uranium miners with lung cancer, who worked
in Germany in the period 1946-1990, underwent mean
individual cumulative exposure over 800 Working
Level Month (WLM), which is equivalent to more than
48v.”

Radiation-induced cancer is the most important
stochastic effect of ionizing radiation.?’ The nonsto-
chastic (deterministic) complications develop gener-
ally after higher doses of radiation.?! In different
countries, there was classified research on biological
effects of radiation. Publications that are open to
the public sometimes contain poorly substantiated
information,?* further complicating the matter. It is
difficult to determine with certainty a level of expo-
sure below which there is no appreciable risk for
humans;? it appears to be around 200 mSv.>** For
solid cancers, a significant dose—response relationship
was found for survivors of atomic explosions receiv-
ing doses less than 500 mSv but not for doses less than
200 mSv; analogous data were also reported for leu-
kemia.>> %’ According to the UNSCEAR 2010
Report, statistically significant elevations of cancer
risk are observed in epidemiological studies at the
doses 100-200 mGy and above.'® There were also
reports on dose—response relationships for lower
doses,”®* but validity of the results was ques-
tioned.?>*® The ‘practical thresholds’'**! can be in
fact higher because of the biases in epidemiological
research on stochastic effects of low doses.**>? It was
also stated that epidemiological data fail to demon-
strate detrimental effects of ionizing radiation at
absorbed doses below 100200 mSv;>* and at single
doses of less than 100 mGy, the detrimental action of
radiation disappears and is replaced by protective
effects.>*® Benefit from a moderate exposure was
demonstrated epidemiologically among survivors of
atomic explosions,*” although these data might be not
free from confounding factors such as better medical
surveillance of the survivors. Occupational exposures
were repeatedly shown to be associated with better
health statistics,>* which, however, can at least in part
be explained by the ‘healthy worker effect.”*

Furthermore, cancer mortality was found to be lower
in the high-elevation areas, where the natural radiation
background is increased due to the higher intensity of
the cosmic rays.>~° In small animals, minimal doses
associated with tumorigenesis are comparable with and
sometimes higher than those determined in humans by
epidemiological studies, being in the range of hundreds
or thousands of mSv or mGy.**?>%37-3% The follow-
ing, for example, witnesses in favor of hormesis:
in mice irradiated with the dose rate of 70-140 mGy/
year, a significant increase in life expectancy was
observed.*” Doses up to 100 mGy reduce the incidence
of some malignancies in cancer-prone mice, while the
dose of 100 mGy increased osteosarcoma risk.*° It was
concluded that higher doses correspond to a transition
zone between reduced and increased risk, while the
level of transition varies with the tumor type.*’
Hormesis is assumed to work on molecular
(stimulating DNA repair) and cellular levels; corre-
sponding studies were reviewed in references 2, 4.
Eukaryotic cells display an adaptive response that
enhances their radioresistance after a low-dose
priming irradiation.*' So, the repair of DNA dam-
age is enhanced in cells irradiated with a priming
dose of 0.25 Gy followed by 2 Gy compared
with those irradiated only with 2 Gy.** Doses
50-75 mGy significantly enhanced the proliferation
of cultured cells via activation of a signaling path-
way.*® Furthermore, the bystander effect (a biologi-
cal response of a cell resulting from an event in a
nearby cell) may play a role in radiobiological
responses to low-dose irradiation. A review* con-
cluded that below 100 mGy, the bystander effect
reduces rather than increases the risk of radiation-
induced damage and hence of genetic instability.
Certainly, knowledge on hormesis is incomplete.
There have been, for example, no clinical reports
demonstrating that exposure to low doses has a
beneficial effect on human health during a long
period of time. However, the most promising way
to obtaining reliable data on the dose—effect rela-
tionships for low radiation doses would be large-
scale animal experiments, which would require a
high level of responsibility from researchers. Out-
standing data, e.g. that ‘above doses of 50-100 mSv
(protracted exposure) or 10-50 mSv (acute expo-
sure), direct epidemiological evidence from human
populations demonstrates that exposure to ionizing
radiation increases the risk of some cancers,*’ or a
fourfold increase in the incidence of thyroid cancer
in children linked to an estimated thyroid dose of
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90 mGy*® should be verified by experiments. It
might be useful to find an international research
center for the purpose of independent evaluation of
low-dose actions on large animal populations to
ensure reliable and statistically significant results.

The LNT provides theoretical basis for the radia-
tion safety standards. LNT is supported by the follow-
ing arguments: effects of ionizing radiation are of
stochastic nature; the more high-energy particles or
photons hit a cell nucleus, the more DNA damage will
result and the higher the risk of malignant transforma-
tions. This concept does not take into account that
DNA damage and repair are permanent processes,
normally being in dynamic equilibrium. Background
radiation has always existed, and there must be
adaptation to it.>'? So it is with other environmental
factors such as light and ultraviolet radiation, tem-
perature, atmospheric pressure, etc., where deviation
from the optimum can be harmful. The natural selec-
tion is a slow process; therefore, current adaptation
must correspond to some average level from the past.
Background radiation has probably been decreasing
during last millions of years, due to the decay of
radionuclides on the surface and oxygen accumula-
tion in the atmosphere, resulting in the formation of
ozone layer; declining volcanic activity bringing less
radionuclides to the surface; changing direction of the
Earth’s magnetic aisle with magnetic poles and, cor-
respondingly, maximum levels of cosmic radiation
located in the past farther from the geographical poles
thus affecting more living organisms, etc. It means
that ancient intracellular mechanisms such as DNA
repair had developed under the conditions of higher
radiation,* so that living organisms must have been
adapted to a higher background radiation level than
that existing today.'*

Discussing the exclusion of hormesis from the
current risk assessment, Zbigniew Jaworowski writes,
‘It seems to me that the driving force was (and still is)
... the antinuclear power lobby, concerned that demon-
stration of the beneficial effects of small radiation doses,
and thus of the existence of a threshold for harmful
effects occurring near this dose region, will destroy their
raison d’etre.’”' The ‘raison d’etre’ should probably be
replaced by ‘cui prodest’: strangulation of nuclear
energy production due to the Chernobyl accident*’ con-
tributed to higher prices for fossil fuel. The motives for
overestimation of Chernobyl consequences in the for-
mer Soviet Union were discussed in reference 48. In
many countries, among the motives were antinuclear
sentiments supported by the Green movement, well in

accordance with the interests of oil producers. For
example, in reference 22 it was noticed that in the vol-
ume,* dedicated to the Chernobyl accident, references
to nonprofessional publications (mass media, Web sites
of unclear affiliation, commercial editions, etc.) were
used to corroborate scientific views. The following
statement was made without references: ‘The calcula-
tions suggest that the Chernobyl catastrophe has
already killed several hundred thousand human beings
in a population of several hundred million that was
unfortunate enough to live in territories affected by the
fallout. The number of Chernobyl victims will continue
to grow over many future generations.”>® Then
follows an inexact citation, ‘Twenty years after the
catastrophe, the official position of the Chernobyl
Forum (2006) is that about 9000 related deaths
have occurred and some 200,000 people have ill-
nesses caused by the catastrophe.””® There are no
such statements in the Chernobyl Forum publica-
tion referred to.”' In pages 15-16 it is written ‘The
international expert group predicts that among the
600,000 persons receiving more significant expo-
sures (liquidators working in 1986-1987, evacuees,
and residents of the most ‘contaminated’ areas), the
possible increase in cancer mortality due to this
radiation exposure might be up to a few per cent.
This might eventually represent up to four thou-
sand fatal cancers in addition to the approximately
100,000 fatal cancers to be expected due to all
other causes in this population.”>' Another exam-
ple, ‘Very conservative estimate of cancer fatalities
in Europe attributable to Chernobyl—889,336 to
1,778,672.>* As discussed above, doses comparable
with those received from the natural radiation back-
ground are most probably not carcinogenic; and the
LNT-based extrapolations of this kind are misleading.

A concluding point is that radiation safety norms
are exceedingly restrictive and should be revised to
become more realistic and workable. Elevation of
the limits must be accompanied by measures guar-
anteeing their strict observance, including openness
of dosimetric data. Currently there are no evidence-
based contraindications to e.g. fivefold elevation of
the total equivalent effective doses to individual
members of the public (up to 5 mSv/year), which
would correspond approximately to 1 CT scan in
2 years.'® Note that a radiation dose delivered at
a low-dose rate produces fewer late effects than the
same dose delivered at a high-dose rate.>® Consid-
ering unavoidable global spread of nuclear energy
production, elevation of the limits for professional
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exposures (e.g. doubling) should be considered as
well, bearing in mind the main goal of the radiation
safety regulations: maximizing the ratio of benefits
to risks for the population. As discussed above, the
Chernobyl accident has been exploited to strangle
worldwide development of atomic energy,*’ but it
was necessary so: nuclear industry should have
been prevented from spreading to the densely
populated areas, where conflicts or terrorism are
not excluded. The accident in Goiania, Brazil
(1987) demonstrated what can happen as a result
of mere negligence, let alone nuclear terrorism or
international conflicts. Worldwide introduction of
nuclear energy will be possible only after a concen-
tration of authority within a powerful international
executive, leaving aside policy disputes and com-
petition. It will enable the construction of nuclear
reactors in optimally suitable places, considering
all sociopolitical, geographical, and geological con-
ditions, which would contribute to the prevention
of accidents like in Japan in 2011.
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