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We study the geometric properties of a (2m + 1)-dimensional complex manifold 
M admitting a holomorphic reduction of the frame bundle to the structure group 
P ⊂ Spin(2m + 1, C), the stabiliser of the line spanned by a pure spinor at a point. 
Geometrically, M is endowed with a holomorphic metric g, a holomorphic volume 
form, a spin structure compatible with g, and a holomorphic pure spinor field ξ up 
to scale. The defining property of ξ is that it determines an almost null structure, 
i.e. an m-plane distribution Nξ along which g is totally degenerate.
We develop a spinor calculus, by means of which we encode the geometric properties 
of Nξ and of its rank-(m + 1) orthogonal complement N⊥

ξ corresponding to the 
algebraic properties of the intrinsic torsion of the P -structure. This is the failure 
of the Levi-Civita connection ∇ of g to be compatible with the P -structure. In a 
similar way, we examine the algebraic properties of the curvature of ∇.
Applications to spinorial differential equations are given. Notably, we relate the 
integrability properties of Nξ and N⊥

ξ to the existence of solutions of odd-
dimensional versions of the zero-rest-mass field equation. We give necessary and 
sufficient conditions for the almost null structure associated to a pure conformal 
Killing spinor to be integrable. Finally, we conjecture a Goldberg–Sachs-type 
theorem on the existence of a certain class of almost null structures when (M, g)
has prescribed curvature.
We discuss applications of this work to the study of real pseudo-Riemannian 
manifolds.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The present article is the odd-dimensional counterpart of the author’s work presented in [39]. Both articles 
work share the same motivations and goals, and the reader should refer to the latter work for further details.

Let (M, g) be an n-dimensional complex Riemannian manifold, where n = 2m + 1. We shall assume 
that (M, g) is also equipped with a global holomorphic volume form and a holomorphic spin structure so 
that the structure group of the holomorphic frame bundle is reduced to G := Spin(n, C). We work in the 
holomorphic category. We shall be considering a projective pure spinor field [ξ], i.e. a spinor field up to 
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scale that annihilates a totally null m-plane, or γ-plane, distribution. This will also be referred to as its 
associated almost null structure Nξ. The structure group of the frame bundle of (M, g) is reduced to P , the 
stabiliser of [ξ] at a point. Denote by g and p the respective Lie algebras of G and P , and by V the standard 
representation of g. The main aim of the article is to examine the geometric properties of the P -structure 
on (M, g). More specifically, we will

• give a P -invariant decomposition of the space W := V ⊗ (g/p) of intrinsic torsions;
• give P -invariant decompositions of the spaces of curvature tensors, in particular, tracefree Ricci tensors, 

Cotton–York tensors and Weyl tensors;
• apply these decompositions to the study of almost null structures and pure spinor fields on complex 

Riemannian manifolds.

The methodology will be a synthesis of representation theory and a spinor calculus adapted to the 
P -structure. Before we proceed, we first highlight the crucial differences between the odd- and even-
dimensional cases:

• there is only one irreducible spinor representation of G as opposed to two chiral ones – paradoxically, 
this makes the spinor calculus more fiddly;

• the stabiliser p of [ξ] induces a |2|-grading on g, rather than a |1|-grading;
• the orthogonal complement N⊥

ξ of Nξ is (m + 1)-dimensional and contains Nξ, rather than N⊥
ξ = Nξ.

Consequently, one has to encode the properties of both Nξ and N⊥
ξ in terms of differential conditions on 

[ξ], although there is some degree of interdependency between Nξ and N⊥
ξ . Making the move from even to 

odd dimensions is therefore not always straightforward. A case in point is when Nξ is integrable. In even 
dimensions, Nξ would be automatically totally geodetic, but in odd dimensions, this condition is stronger. 
In addition, one could have the extra requirement for N⊥

ξ to be also integrable, and or even totally geodetic. 
This is particularly relevant to generalisations of the Robinson theorem, which can be strikingly different.

The present article can, if not should, be read in conjunction with [39] for comparison and ease of 
understanding of the notions introduced in the latter. Indeed, these two papers are broadly ‘mirror images’ 
of each other: the overall structure is the same in both papers as far as the numbering of the sections is 
concerned. For the sake of conciseness, we have not always deemed it necessary to re-establish notations 
and conventions.

Structure of the paper: Our spinor calculus will first be developed in section 2. New results include Propo-
sitions 2.6 and 2.9, and Corollary 2.10, which provide simpler alternatives to some of Cartan’s formulae 
on pure spinors. Proposition 3.2 in section 3 is concerned with the decomposition of the space of intrinsic 
torsions of a P -structure. In the same vein, in section 4, Propositions 4.1, 4.2 and 4.4 give P -invariant 
decompositions of the spaces of tracefree Ricci tensors, Cotton–York tensors and Weyl tensors respectively.

Section 5 focuses on the geometric applications. Proposition 5.4 is the geometric articulation of Propo-
sition 3.2. Proposition 5.7, Lemma 5.8 and Proposition 5.11 are concerned with geometric interpretations 
of Nξ in terms of ∇[ξ]. Three distinct generalisations of the Robinson theorems for three distinct types of 
zero-rest-mass fields are given in Theorems 5.19, 5.20 and 5.21. Applications to conformal Killing spinors are 
given in Propositions 5.24, 5.28 and 5.30. Conjecture 5.32 postulates a generalisation of the Goldberg–Sachs 
theorem given in [37]. Integrability conditions for solutions of the field equations involved are also given in 
Propositions 5.12, 5.13, 5.14, 5.17, 5.23 and 5.27 among others.

Appendix A contains useful formulae to characterise tracefree Ricci, Cotton–York and Weyl tensors in 
the light of the decompositions given in section 4. A brief discussion of spinor calculus in dimensions three 
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and five can be found in Appendix B. In Appendix C, we describe conformal transformations of spinor 
fields.

2. Spinor calculus

Conventions follow those of [39], based on [32,33]. Further background on spinors can be found in [8,33,
6,22,23] and on representation theory in [2,12].

2.1. Clifford algebras and spinor representations

Let V be an n-dimensional complex vector space equipped with a non-degenerate symmetric bilinear 
form gab = g(ab) ∈ �2V∗, by means of which we shall identify V with its dual V∗. We choose an orientation, 
and denote the Hodge star operator by �. Denote the Clifford algebra of (V, g) by C�(V, g) and the Clifford 
multiplication by a dot ·. We recall that C�(V, g) ∼= ∧•V as vector spaces. Henceforth, we assume n = 2m +1. 
The spin group G := Spin(2m + 1, C) has a single 2m-dimensional irreducible representation, the spinor 
space S of (V, g). We can realise S as follows. We split V as V ∼= N ⊕ N∗ ⊕ U where N and N∗ are two 
totally null m-dimensional subspaces of V, dual to each other N∗, and the one-dimensional complement 
U is non-null. Then S can be identified with ∧•N as a C�(V, g)-module: for any (v, w, u) ∈ V, the action 
of the Clifford algebra on S is given by (v, w, u) · ξ = v ∧ ξ − w�ξ + iεu ξ where i2 = −1 and ε = 1 if 
ξ ∈ ∧mN ⊕ ∧m−2N ⊕ ∧m−4N ⊕ . . ., and ε = −1 if ξ ∈ ∧m−1N ⊕ ∧m−3N ⊕ ∧m−5N ⊕ . . ..

The Clifford algebra can be shown to be isomorphic to a direct sum of two inequivalent copies of the 
algebra Mat(2m, C) of 2m × 2m-matrices over C acting on S. Elements of S will carry upstairs upper-case 
Roman indices, e.g. ξA, and similarly for elements of its dual S∗, with downstairs indices, e.g. ηA. The 
Clifford algebra C�(V, g) is generated by the γ-matrices γaAB which satisfy

γ(aA
Cγ b)C

B = −gabδ
B
A . (2.1)

Thus, only skew-symmetrised products of γ-matrices count, and we shall make use of the notational 
shorthand γa1a2...apA

B := γ[a1 A
C1γa2C1

C2 . . . γap]Cp

B for any p. These realise the linear isomorphism 
∧•V ∼= C�(V, g) ∼= Mat(2m, C) ⊕Mat(2m, C), and the two copies of Mat(2m, C) will be identified by Hodge 
duality.

The spinor space S and its dual S∗ are equipped with non-degenerate bilinear forms, denoted γAB , 
with which one can in effect raise or lower spinor indices. In particular, we have bilinear maps γa1...apAB

from S × S to ∧pV for any p. Depending on the values of m and p, these can be either symmetric or 
skewsymmetric. Our treatment will be largely dimension independent, and we will in general dispense of 
their use. Nonetheless, we shall make use of the following result:

Lemma 2.1. We have

γaA
Bγb1...bpBDγcC

D = (−1)m
(
γab1...bpcAC − (p + 1)γ[a b1...bp−1ACg bp]c

− p ga[b1 γb2... bp]cAC + p(p + 1)ga[b1 γb2...bp−1ACg bp]c
)
.

In particular, γa
A
Bγb1...bpBDγaC

D = (−1)m+p(2p − 2m − 1)γb1...bpAC .

2.2. Null structures and pure spinors

Definition 2.2. A null structure or γ-plane on V is an m-dimensional vector subspace N ⊂ V that is totally 
null, i.e. gabXaY b = 0 for all Xa, Y a ∈ N.
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Let ξA be a non-zero spinor in S, and consider the map ξAa := ξBγaB
A : V → S. By (2.1), the kernel of 

ξAa : V → S is totally null.

Definition 2.3. A non-zero spinor ξA is said to be pure if the kernel of ξAa : V → S is m-dimensional, and 
thus defines a null structure.

The projectivisation of the line 〈ξA〉 spanned by a pure spinor ξA will be referred to as a projective pure 
spinor [ξA] ∈ PS.

Proposition 2.4 ([8]). There is a one-to-one correspondence between projective pure spinors and γ-planes on 
(V, g).

Henceforth, ξA will denote a fixed pure spinor. The crucial departure from the even-dimensional case is 
that a null structure is contained in its orthogonal complement, that is, ξA induces a filtration

{0} =: V2 ⊂ V1 ⊂ V0 ⊂ V−1 , (2.2)

where V−1 := V, V1 := ker ξAa : V → S and the orthogonal complement V0 of V1 with respect to gab is 
(m + 1)-dimensional. The map ξAa allows us to identify elements of V with elements of S, notably

(
V−1/V1)⊗S

m
2 ∼= S

m−2
2 , (V0/V1) ⊗S

m
2 ∼= S

m
2 , (V−1/V0) ⊗S

m
2 ∼= S

m−2
2 /S

m
2 ,

where 〈ξA〉 =: Sm
2 ⊂ S

m−2
2 := im ξAa : V → S. Dually, we also have

V0 ∼= S
m
2 ⊗

(
S−m

2 /S−m−4
2

)
, V0/V1 ∼= S

m
2 ⊗

(
S−m

2 /S−m−2
2

)
,

V1 ∼= S
m
2 ⊗

(
S−m−2

2 /S−m−4
2

)
,

where S−m
2 := S∗, S−m−2

2 := ker ξA : C ← S∗ and S−m−4
2 := ker ξAa : V∗ ← S∗. Using (2.1), we can 

check that S−m−4
2 ⊂ S−m−2

2 ⊂ S−m
2 . More concretely, we have

Lemma 2.5. Let V a be a non-zero vector in V. Then

• V a is an element of V0 if and only if V a = ξaAvA for some non-zero vA ∈ S−m
2 /S−m−4

2 ;
• V a is an element of V1 if and only if V a = ξaAvA for some non-zero vA ∈ S−m−2

2 /S−m−4
2 .

As a direct consequence, a pure spinor ξA must satisfy ξaAξBa = λ ξAξB for some λ. Contracting each 
side by ξcCγcAD and a little algebra then leads to λ = −1.

Proposition 2.6. A non-zero spinor ξA is pure if and only if it satisfies

ξaCξDa = −ξCξD . (2.3)

By Lemma 2.1, we can express (2.3) equivalently as the following more familiar algebraic characterisation.

Proposition 2.7 ([8]). A non-zero spinor ξA is pure if and only if it satisfies

γa1...apABξ
AξB = 0 , for all p < m, p ≡ m,m + 1 (mod 4),

γABξ
AξB = 0 , when m ≡ 0, 3 (mod 4),

γa1...amABξ
AξB �= 0 .

(2.4)
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We shall refer to both equations (2.3) and (2.4) as the purity conditions of a spinor ξA. These are vacuous 
when m ≤ 2, i.e. all spinors are pure when m ≤ 2.

The only non-vanishing irreducible component of the tensor product ξAξB is thus the m-form φa1...am
:=

γa1...amABξ
AξB , which can be seen to annihilate V0. It is null (or simple or decomposable) in the sense that 

φa1...am
= ξA1

a1
. . . ξAm

am
εA1...Am

∈ ∧mV1 for some εA1...Am
∈ ∧m

(
S−m−2

2 /S−m−4
2

)
. Similarly, its Hodge dual 

(∗φ)a1...am+1 ∈ ∧m+1V0 annihilates V1 and is represented by some εA1...Am+1 ∈ ∧m+1
(
S−m

2 /S−m−4
2

)
.

Proposition 2.8 ([8]). Let αA and βA be two spinors not proportional to each other. Then the γ-planes 
associated to αA and βA intersect in a totally null (m − k)-plane if and only if

γa1...apABα
AβB = 0 , for all p < m− k,

γABα
AβB �= 0 ,

γa1...am−kABα
AβB �= 0 ,

for k = 1, . . .m.

As a consequence of Lemma 2.1, we have, in the special case when k = 1, 2, the equivalent characterisa-
tions.

Proposition 2.9. Let αA and βA be two spinors not proportional to each other. Then

• the γ-planes associated to αA and βA intersect in a totally null (m − 1)-plane if and only if

αaAβB
a = αAβB − 2βAαB = −α(AβB) + 3α[AβB] ; (2.5)

• the γ-planes associated to αA and βA intersect in a totally null (m − k)-plane where k = 1 or 2, if and 
only if

αa(AβB)
a = −α(AβB) . (2.6)

Finally, in the context of our present notation, we conclude

Corollary 2.10. Let ξA be a pure spinor in (V, g) and let Sm−2
2 := im ξAa : V → S as before. Then

• Any non-zero spinor in S
m−2

2 is pure.
• The γ-planes associated to any two pure spinors in S

m−2
2 intersect in a totally null (m −k)-plane where 

k can be either 0 or 1 or 2.

We omit the proof which is essentially the same as in the even-dimensional case and consists in checking 
the veracity of the algebraic conditions (2.3), (2.5) and (2.6).

Splitting It is convenient to choose a splitting of the filtration (2.2) as

V = V−1 ⊕V0 ⊕V1 , (2.7)

where V1 := V−1, and Vi are subspaces such that Vi = Vi ⊕Vi+1, each linearly isomorphic to Vi/Vi+1. 
Now, V−1 is a γ-plane dual to V1 to which we associate a pure spinor ηA dual to ξA, i.e. V−1 := ker ηaA :
V → S∗, where ηaA := ηBγaA

B. Conversely, any choice of spinor dual to ξA induces a splitting (2.7).
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For convenience, we choose ξA and ηA to satisfy ξAηA = −1
2 , and define

ua := 2 ηaAξA , hab := gab + uaub . (2.8)

Then, ua spans V0, and satisfies uaua = −1, uaξAa = ξA and uaηaA = ηA. Further, hab is a non-degenerate 
symmetric bilinear form on V1 ⊕V−1, i.e. habu

a = 0, ha
chc

b = ha
b, and ha

a = n − 1.
Next, define S−m−2

2
:= {im ηaA : V → S∗} ∩ {ker ξA : C ← S∗}. This is the dual of Sm−2

2
, the 

complement of Sm
2 = 〈ξA〉 in S

m−2
2 . Elements of V1 and V−1 must be of the form ξaAvA and ηaAw

A

respectively, for some vA in S−m−2
2

and wA in Sm−2
2

, i.e. vAξA = 0 and wAηA = 0.
Finally, we introduce the map

IBA := ηaAξ
aB + ηAξ

B , (2.9)

which can be seen to be the identity element on Sm−2
2

, or dually, on S−m−2
2

. In particular ξAIBA = ηBI
B
A = 0.

2.3. The stabiliser of a projective pure spinor in so(2m + 1, C) for m > 1

In what follows, the Lie algebra g := so(2m + 1, C) will be freely identified with ∧2V or ∧2V∗. At this 
stage, we also assume m > 1, the case m = 1 being treated briefly in Appendix B.1.

Filtration The filtration (2.2) induces a filtration of vector subspaces there is a filtration

{0} =: g3 ⊂ g2 ⊂ g1 ⊂ g0 ⊂ g−1 ⊂ g−2 := g , (2.10)

on g, where

g−1 := {φab ∈ g : ξa[A ξbBφabξ
C] = 0} , g0 := {φab ∈ g : ξaAξbBφab = 0} ,

g1 := {φab ∈ g : ξa[Aφabξ
B] = 0} , g2 := {φab ∈ g : ξaAφab = 0} .

The Lie bracket [·, ·] : g ×g → g on g is compatible with this filtration, i.e. [gi, gj ] ⊂ gi+j , with the convention 
that gi = {0} for i ≥ 3, and gi = g for all i ≤ −2, i.e. g is a filtered Lie algebra.

Using the useful identities

φabξ
aAξbBγc

A
CγcB

D = −φab

(
ξaCξbD + 4 ξab[C ξD]

)
, φabξ

abAγc
A
CξDc = −φab

(
ξabCξD + 4 ξaCξbD

)
,

(2.11)

or otherwise, one can show φabξ
aAξbB = 0 if and only if φabξ

ab[A ξB] = 0, and conclude:

Proposition 2.11. The Lie subalgebra p := g0 is the stabiliser of [ξA], i.e. φabξ
abA ∝ ξA.

The stabiliser p of [ξA] is a parabolic Lie subalgebra of g [14,12].

Splitting Splitting (2.10) yields a |2|-grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 with [gi, gj ] ⊂ gi+j , for all i, j, 
with the convention that gi = {0} for all |i| > 2. In relation to (2.7), we have g±2 ∼= ∧2V±1, g±1 ∼= V0⊗V±1
and g0 ∼= V−1⊗V1. The Lie subalgebra g0 is isomorphic to gl(m, C), and thus splits further as g0 = z0⊕sl0
where z0 is the centre g0 and sl0 = sl(m, C) is the simple part of g0. The centre is spanned by the grading 
element Eab := −2 ξA[a η b]A, with image in C�(V, g) given by EA

B := −1
4Eabγ

ab
A
B . For consistency with 

[39], we also set
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ωab := Eab = −2 ξA[a η b]A . (2.12)

An element φab of sl0 can then be written as φab = 2 ξA[a η b]BφA
B for some tracefree φA

B ∈ S−m−2
2

⊗Sm−2
2

in the sense that φA
BIAB = 0 where IAB is defined by (2.9).

Parabolic Lie subgroups At the group level, we denote by P the stabiliser of [ξA] in G. This is a parabolic 
Lie subgroup of G with Lie algebra p. Its Levy decomposition is given by P = G0 � P+, where the image 
G0 in G → SO(2m + 1, C) under the covering map is the complex general linear group GL(m, C), and P+
is the nilpotent Lie group generated by g1 ⊕ g2. All our p- and g0-modules will also be P - and G0-modules. 
The spinor calculus developed here is then manifestly P -invariant.

Associated graded vector space We now introduce the associated graded p-module gr(g) =
⊕2

i=−2 gri(g)
where gri(g) = gi/gi+1. Each gri(g) is linear isomorphic to the g0-module gi, and we have a direct sum 
decomposition gr0(g) = g0

0⊕g1
0, where g0

0 :=
(
g1 + z0

)
/g1 and g1

0 :=
(
g1 + sl0

)
/g1. Writing ξAab := ξBγabB

A :
∧2V → S and S

m−4
2 := im ξAab : ∧2V → S, we can define

g

ξΠ
0
0(φ) := ξabAφab ,

g

ξΠ
1
0(φ) := ξa[Aφabξ

B] + 1
n− 1ξ

acCφacγbC
[A ξB] .

Then g1 + z0 = {φab ∈ g : g

ξΠ1
0(φ) = 0} and g1 + sl0 = {φab ∈ g : g

ξΠ0
0(φ) = 0}. For convenience, we also set 

g0
i := gri(g) for i = ±1, ±2.

2.4. Generalisation

As explained in [39], the parabolic subalgebra p induces a filtration {Mi} of indecomposable p-modules on 
any finite g-module M. We can split the filtration as a direct sum of g0-modules Mi isomorphic to Mi/Mi+1, 
on which the grading element E acts diagonalisably with eigenvalue i. Each Mi/Mi+1, respectively Mi, 
splits into a direct sum of irreducible p-submodules Mj

i , respectively g0-submodules M̆j
i , with Mj

i
∼= M̆

j
i as 

vector spaces. We record the action of g1 ⊂ p on each M̆j
i by an arrow as in [39].

To deal with the spinor representation S, we define the maps ξAa1...ak
:= ξBγa1...akB

A : ∧kV → S for 
k = 1, . . . , 2m + 1. Then the spinor module S ∼= S∗ admits a P -invariant filtration

S
m
2 ⊂ S

m−2
2 ⊂ . . . ⊂ S−m−2

2 ⊂ S−m
2 := S ,

where S
m
2 = 〈ξA〉, Sm−2k

2 := im ξAa1...ak
: ∧kV → S, S−m−2

2 = ker ξA : C ← S∗ and S−m−2k−2
2 =

ker ξAa1...ak
: ∧kV∗ ← S∗ for k = 1, . . .m. Further, we can choose subspaces Si ⊂ Si such that Si =

Si ⊕Si+1 such that

S = Sm
2
⊕Sm−2

2
⊕ . . .⊕S−m−2

2
⊕S−m

2
.

The grading element Eab in z0 and the spanning element ua of V0 have eigenvalues m−2k
2 and (−1)k

respectively on Sm−2k
2

. This description is consistent with the identification of S with ∧•N.

2.5. Null Grassmanians

The space of all null structures or γ-planes in (V, g) is the null (or isotropic) Grassmanian Grm(V, g). 
Proposition 2.4 allows us to identify Grm(V, g) as the space of projective pure spinors of (V, g). This is 
a compact complex subvariety of PS defined by the purity conditions (2.4), and it is isomorphic to the 
1
2m(m + 1)-dimensional homogeneous space G/P . When m = 1, 2, this space is isomorphic to the complex 

projective space CP
1
2m(m+1).
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2.6. Real pure spinors

When V is a real (2m +1)-dimensional vector space equipped with a definite or indefinite non-degenerate 
symmetric bilinear form of signature (p, q), the spinor representation is complex and equipped with a real 
or quaternionic structure, by means of which a (complex) pure spinor ξ is sent to its complex conjugate ξ, 
and correspondingly, its associated (complex) null structure Nξ to its complex conjugate Nξ. In contrast 
to even dimensions, the real index r of ξ, being the dimension of Nξ ∩Nξ, can take any integer value from 
0 to min(p, q) – see [25]. When g is positive definite, r is always 0, and Nξ defines a metric-compatible 
CR structure, also referred to, rather inappropriately, as a contact Riemannian structure. When g is of 
Lorentzian signature, i.e. (1, 2m) or (2m, 1), r may be 0 or 1. In the latter case, one obtains a Robinson 
structure [28,41,36,38]. When g has signature (m, m + 1) or (m + 1, m), and r = m, we obtain a totally real 
analogue of the above discussion, i.e. ξ, Nξ and the stabiliser P of [ξ] in the connected identity component 
of Spin(m, m + 1) are all real.

3. Decomposition of the intrinsic torsion

Define the p-module W := V ⊗ (g/p), where as before g := so(2m + 1, C), V its standard representation, 
and p ⊂ g stabilises a projective pure spinor [ξA]. We assume m > 1, leaving the case m = 1 to Appendix B.

Remark 3.1. In what follows, � denotes the Cartan product, and g0-modules and p-modules are abbreviated 
to g0-mod and p-mod respectively.

Proposition 3.2. The p-module W admits a filtration

W0 ⊂ W−1 ⊂ W−2 ⊂ W−3 ,

where

W−3 := V−1 ⊗
(
g−2/g0) , W−2 :=

(
V−1 ⊗

(
g−1/g0))⊕ (

V0 ⊗
(
g−2/g0)) ,

W−1 :=
(
V0 ⊗

(
g−1/g0))⊕ (

V1 ⊗
(
g−2/g0)) , W0 := V1 ⊗

(
g−1/g0) .

The associated graded p-module

gr(W) = gr−3(W) ⊕ gr−2(W) ⊕ gr−1(W) ⊕ gr0(W)

decomposes into a direct sum

gr−3(W) ∼= W0
−3 ⊕W1

−3 , gr−2(W) ∼= W0
−2 ⊕W1

−2 ⊕W2
−2 ,

gr−1(W) ∼= W0
−1 ⊕W1

−1 ⊕W2
−1 , gr0(W) ∼= W0

0 ⊕W1
0 ,

of irreducible p-modules as described below

p-mod g0-mod Dimension
W0

−3 ∧3V−1
1
3!m(m− 1)(m− 2)

W1
−3 V−1 � g−2

1
3m(m2 − 1)

W0
−2 V0 ⊗ g−2

1
2m(m− 1)

W1
−2 ∧2V−1 ⊗V0

1
2m(m− 1)

W2 �2V ⊗V 1m(m + 1)

p-mod g0-mod Dimension
W0

−1 z0 ⊗V−1 m

W1
−1 sl0 � V−1

1
2m(m + 1)(m− 2)

W2
−1 V0 ⊗ g−1 m

W0
0 z0 ⊗V0 1

W1 sl ⊗V m2 − 1
−2 −1 0 2 0 0 0
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with the proviso that W1
−1, W0

−3 occur only when m > 2. Further,

W
j
i =

{
Γabcξ

bBξcC ∈ Wi : W
ξ Πk

i (Γ) = 0 , for all k �= j
}
/Wi+1 , i = −3,−2,−1, 0 ,

where

W
ξ Π0

−3(Γ) := Γabcξ
a[AξbBξcCξD] ,

W
ξ Π1

−3(Γ) := Γabcξ
[AξaB]ξb[CξD]ξc[EξF ] + Γabcξ

[CξaD]ξb[AξB]ξc[EξF ] ,

W
ξ Π0

−2(Γ) := Γabcξ
aAξb[BξcCξD] ,

W
ξ Π1

−2(Γ) := Γabcξ
a[AξbcBξC] ,

W
ξ Π2

−2(Γ) := Γabcξ
[AξaB]ξb[CξD]ξcE + Γabcξ

[CξaD]ξb[AξB]ξcE ,

W
ξ Π0

−1(Γ) := 2 γa
D

AΓabcξ
bDξc[BξC] − Γabcξ

aAξbc[BξC] ,

W
ξ Π1

−1(Γ) := Γabcξ
b[BξcCξD] + 1

2(m− 1)γaE
[B|

(
2 γd

F
EΓdbcξ

bF ξc|C − Γdbcξ
dEξbc|C

)
ξD] ,

W
ξ Π2

−1(Γ) := Γabcξ
aAξbc[BξC] ,

W
ξ Π0

0(Γ) := γa
C
AΓabcξ

bcCξB − ξaAΓabcξ
bcB ,

W
ξ Π1

0(Γ) := Γabcξ
bc[BξC] + 1

2m

(
γd

A
[B|Γdbcξ

bcAξ|C]
a − ξd[B|Γdbcξ

bcAγaA
|C]

)
,

where Γabc ∈ V ⊗g. For m = 2, we have made use of the Spin(5, C)-invariant skewsymmetric bilinear forms 
γAB and γAB.

Finally, the p-module gr(W) can be expressed by means of the directed graph

W2
−1 W2

−2

W1
0 W1

−3

W1
−1 W1

−2

W0
0 W0

−3

W0
−1 W0

−2

with the proviso that W1
−1, W0

−3 occur only when m > 2. Here, an arrow from Wj
i to Wk

i−1 for some i, j, k
implies that W̆j

i ⊂ g1 · W̆k
i−1 for any choice of irreducible g0-modules W̆j

i and W̆k
i−1 isomorphic to Wj

i and 
Wk

i−1 respectively.

Proof. The idea of the proof is to choose a splitting (2.7) for V, and thus for the filtration on W. We can 
then decompose an element Γabc ∈ V ⊗ ∧2V, in the obvious notation,
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Γabcξ
bBξcC = ξAa ΓA

BC − uaΓBC + ηaAΓABC + 2 ξAa ΓA:
[BξC] − 2uaΓ[BξC] + 2 ηaAΓA:[BξC] ,

Γabcξ
bcD =

(
ξAa ΓA

EC − uaΓEC + ηaAΓAEC
)
ηcCγ

c
E
D − 2

(
ξAa ΓA:

D − uaΓD + ηaAΓA:D)
+ 2

(
ξAa ΓAB

B − uaΓB
B + ηaAΓA

B
B
)
ξD ,

γa
D

AΓabcξ
bcD = 4 ΓC:

CξA + 4 ΓC
CA − 2 ΓA + ηaBγ

a
C
A
(
ΓBC − ΓB:C + ΓC:B) + ηbBηcCΓDBCγbc

D
A

− 2 ΓB
BξA + 2 ΓA

B
B .

(3.1)

Here, ΓABC := Γabcη
aAξbBξcC , ΓBC := Γabcu

aξbBξcC and ΓA
BC := Γabcη

a
Aξ

bBξcC are skew-symmetric in 
their last two indices, and the colon : in ΓA:

C := Γabcη
a
Au

bξcC and ΓA:C := Γabcξ
aAubξcC separates the 

1-form index from the Lie algebra indices. Then, elements of the g0-modules W̆j
i linearly isomorphic to Wj

i

are given by

Γ[ABC] ∈ W̆0
−3 , Γ(AB)C ∈ W̆1

−3 ,

ΓAB ∈ W̆0
−2 , Γ[A:B] ∈ W̆1

−2 , Γ(A:B) ∈ W̆2
−2 ,

ΓB
BA ∈ W̆0

−1 , ΓA
BC − 2

m− 1I
[B|
A ΓD

D|C] ∈ W̆1
−1 , ΓA ∈ W̆2

−1 ,

ΓA:
A ∈ W̆0

0 , ΓA:
B − 1

m
IBAΓC:

C ∈ W̆1
0 .

Details are analogous to the even-dimensional case, and are left to reader. �
4. Decomposition of the curvature

Assume m > 1, and consider the following g-modules

g-mod Dimension Description
F m(2m + 3) {Φab ∈ ⊗2V∗ : Φab = Φ(ab) ,Φc

c = 0}

A 1
3 (2m− 1)(2m + 1)(2m + 3) {Aabc ∈ ⊗3V : Aabc = Aa[bc] , A[abc] = 0 , Aa

ac = 0}

C 1
3 (m− 1)(m + 1)(2m + 1)(2m + 3) {Cabcd ∈ ⊗4V : Cabcd = C[ab][cd] , C[abc]d = 0 , Ca

bad = 0}

The tracefree Ricci tensor, Cotton–York tensor and the Weyl tensor of a Levi-Civita connection at a point 
belong to F, A and C respectively. We now give p-invariant decompositions of these modules, where p
stabilises a projective pure spinor [ξA] as described in section 2.

4.1. Decomposition of the space of tracefree Ricci tensors

Proposition 4.1. The space F of tracefree symmetric 2-tensors admits a filtration

{0} =: F3 ⊂ F2 ⊂ F1 ⊂ F0 ⊂ F−1 ⊂ F−2 := F ,

of p-modules

Fi := {Φab ∈ F : F

ξ Πk
i−1(Φ) = 0 , for all k} , i = −1, 0, 1, 2,

where the maps Fξ Πj
i are defined in Appendix A.2.

The associated graded p-module gr(F) =
⊕2 gri(F), where gri(F) := Fi/Fi+1, splits into a direct sum
i=−2
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gr±2(F) = F0
±2 , gr±1(F) = F0

±1 , gr0(F) = F0
0 ⊕ F1

0 ,

of irreducible p-modules Fj
i as described below:

p-mod g0-mod Dimension
F0
±2 V±1 � V±1

1
2m(m + 1)

F0
±1 V0 � V±1 m

p-mod g0-mod Dimension
F0

0 V0 � V0 1
F1

0 V±1 � V∓1 m2 − 1

Further,

F
j
0 := {Φab ∈ F0 : F

ξ Πk
0(Φ) = 0 , for k �= j}/F1 .

Finally, the p-module gr(F) can be expressed by means of the directed graph

F1
0

F0
2 F0

1 F0
−1 F0

−2

F0
0

where an arrow from Fj
i to Fk

i−1 for some i, j, k implies that F̆j
i ⊂ g1 · F̆k

i−1 for any choice of irreducible 
g0-modules F̆j

i and F̆k
i−1 isomorphic to Fj

i and Fk
i−1 respectively, or equivalently that ker F

ξ Πj
i ⊂ ker F

ξ Πk
i−1.

4.2. Decomposition of the space of Cotton–York tensors

Proposition 4.2. The space A of tensors with Cotton–York symmetries admits a filtration

{0} =: A4 ⊂ A3 ⊂ A2 ⊂ A1 ⊂ A0 ⊂ A−1 ⊂ A−2 ⊂ A−3 := A ,

of p-modules

Ai = {Aabc ∈ A : A
ξ Πk

i−1(A) = 0 , for all k} , i = −2,−1, 0, 1, 2, 3,

where the maps Cξ Πj
i are defined in Appendix A.2.

The associated graded p-module gr(A) =
⊕3

i=−3 gri(A), where gri(A) := Ai/Ai+1, splits into a direct sum

gr±3(A) = A0
±3 , gr±2(A) = A0

±2 ⊕ A1
±2 ,

gr±1(A) = A0
±1 ⊕ A1

±1 ⊕ A2
±1 ⊕ A3

±1 , gr0(A) = A0
0 ⊕ A1

0 ⊕ A2
0 ,

of irreducible p-modules Aj
i as described below:
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p-mod g0-mod Dimension
A0

±3 V±1 � g±2
1
3m(m + 1)(m− 1)

A0
±2 V0 � g±2

1
2m(m− 1)

A1
±2 V±1 � g±1

1
2m(m + 1)

A0
±1 V±1 � z0 m

A1
±1 V0 � g±1 m

A2
±1 V∓1 � g±2

1
2m(m− 2)(m + 1)

A3
±1 V±1 � sl0

1
2m(m + 2)(m− 1)

p-mod g0-mod Dimension
A0

0 V0 � z0 1
A1

0 V0 � sl0 (m− 1)(m + 1)
A2

0 V1 � g−1 (m− 1)(m + 1)

with the proviso that when m = 2, A2
±1 does not occur. Further,

A
j
i = {Aabc ∈ Ai : A

ξ Πk
i (A) = 0 , for all k �= j}/Ai+1 , for |i| ≤ 2.

Finally, the p-module gr(A) can be expressed by means of the directed graph

A3
1 A3

−1

A1
2 A1

0 ⊕ A2
0 A1

−2

A0
3 A2

1 A2
−1 A0

−3

A0
2 A0

0 A0
−2

A0
1 ⊕ A1

1 A0
−1 ⊕ A1

−1

where an arrow from Aj
i to Ak

i−1 for some i, j, k implies that Ăj
i ⊂ g1 · Ăk

i−1 for any choice of irreducible 
g0-modules Ăj

i and Ăk
i−1 isomorphic to Aj

i and Ak
i−1 respectively.

Remark 4.3. The presence of the isotopic pairs of p-modules {A0
±1, A

1
±1} and {A1

0, A
2
0} in the decomposition 

of gr(A) allows us to define further p-submodules whereby there are algebraic relations among them. For 
instance, one distinguish {Aabc ∈ A0

1⊕A1
1 : A

ξ Π0
2(A) = 0} and {Aabc ∈ A0

1⊕A1
1 : A

ξ Π1
2(A) = 0}. In particular, 

it is certainly not true that kerA
ξ Π1

2 ⊂ kerA
ξ Π0

1 or kerA
ξ Π1

2 ⊂ kerA
ξ Π1

1, and so on. It thus makes it difficult to 
characterise the arrows of the diagram in terms of inclusions of kernels of kerA

ξ Πi
j as we did in [39].

4.3. Decomposition of the space of Weyl tensors

Proposition 4.4. The space C of tensors with Weyl symmetries admits a filtration

{0} =: C5 ⊂ C4 ⊂ C3 ⊂ C2 ⊂ C1 ⊂ C0 ⊂ C−1 ⊂ C−2 ⊂ C−3 ⊂ C−4 := C ,

of p-modules

Ci = {Cabcd ∈ C : C
ξ Πk

i (C) = 0 , for all k} , i = −3,−2,−1, 0, 1, 2, 3, 4,

where the maps Cξ Πj
i are defined in Appendix A.2.
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The associated graded p-module gr(C) =
⊕4

i=−4 gri(C), where gri(C) := Ci/Ci+1, splits into a direct sum

gr±4(C) = C0
±4 , gr±3(C) = C0

±3 , gr±2(C) = C0
±2 ⊕ C1

±2 ⊕ C2
±2 ,

gr±1(C) = C0
±1 ⊕ C1

±1 ⊕ C2
±1 , gr0(C) = C0

0 ⊕ C1
0 ⊕ C2

0 ⊕ C3
0 ⊕ C4

0 ,

of irreducible p-modules Cj
i as described below:

p-mod g0-mod Dimension
C0
±4 g±2 � g±2

1
12m

2(m2 − 1)
C0
±3 g±1 � g±2

1
3m(m2 − 1)

C0
±2 z0 � g±2

1
2m(m− 1)

C1
±2 g±1 � g±1

1
2m(m + 1)

C2
±2 sl0 � g±2

1
3m

2(m2 − 4)
C0
±1 z0 � g±1 m

C1
±1 g∓1 � g±2

1
2m(m− 2)(m + 1)

C2
±1 sl0 � g±1

1
2m(m + 2)(m− 1)

p-mod g0-mod Dimension
C0

0 z0 � z0 1
C1

0 sl0 � z0 m2 − 1
C2

0 g1 � g−1 m2 − 1
C3

0 g2 � g−2
1
4m

2(m + 1)(m− 3)
C4

0 sl0 � sl0
1
4m

2(m− 1)(m + 3)

with the proviso that when m = 2, the modules C2
±2, C1

±1, C1
0 and C3

0 do not occur, and when m = 3, the 
module C3

0 does not occur. Further,

C
j
i = {Cabcd ∈ Ci : C

ξ Πk
i (C) = 0 , for all k �= j}/Ci+1 , for |i| ≤ 3.

Finally, the p-module gr(C) can be expressed by means of the directed graph

C4
0

C2
2 C2

1 C2
−1 C2

−2

C3
0

C0
4 C0

3 C1
2 C1

1 C1
−1 C1

−2 C0
−3 C0

−4

C1
0 ⊕ C2

0

C0
2 C0

1 C0
−1 C0

−2

C0
0

where an arrow from Cj
i to Ck

i−1 for some i, j, k implies that C̆j
i ⊂ g1 · C̆k

i−1 for any choice of irreducible 
g0-modules C̆j

i and C̆k
i−1 isomorphic to Cj

i and Ck
i−1 respectively.

Remark 4.5. Analogous to Remark 4.3, one can define additional p-submodules from the isotopic pair of 
p-modules {C1

0, C
2
0}. For instance, one has {Cabcd ∈ C1

0 ⊕ C2
0 : C

ξ Π0
1(C) = 0} and {Cabcd ∈ C1

0 ⊕ C2
0 :

C
ξ Π1

1(C) = 0}, and so on. Again, it is not true that ker C
ξ Π1

1 ⊂ ker C
ξ Π1

0 or ker C
ξ Π1

1 ⊂ ker C
ξ Π2

0. This is why we 
have not characterise the arrows of the diagram in terms of inclusions of kernels of kerC

ξ Πi
j unlike in [39]. 

Proposition 5.13 in section 5 will illustrate the issue.
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5. Differential geometry of pure spinor fields

As before, conventions are taken from [39] and references therein. Throughout, (M, g) will denote an 
n-dimensional oriented complex Riemannian manifold, where n = 2m +1, with holomorphic tangent denoted 
by TM and so on. The holomorphic Levi-Civita connection will be denoted ∇a, the Riemann tensor Rabcd, 
the Weyl tensor Cabcd, the Ricci tensor Rab, with tracefree part Φab, and the Ricci scalar R, their relation 
being given by

Rabcd = Cabcd + 4
n− 2Φ[a|[cgd]|b] + 2

n(n− 1)Rga[cgd]b . (5.1)

In dimension n = 3, the Weyl tensor vanishes identically, i.e. Rabcd = 4 Φ[a|[cgd]|b] + 1
3Rga[cgd]b.

We assume (M, g) to be spin so that the structure group of the frame bundle FM of M is Spin(2m +1, C). 
The connection on the spinor bundle S will also be denoted ∇a, and preserves the Clifford module structure 
of S, i.e. ∇aγbC

D = 0, and recall that 2 ∇[a∇ b]ξ
A = −1

4Rabcdγ
cd

B
AξB for any holomorphic spinor field ξA, 

and similarly for dual spinor fields.

Remark 5.1 (Notation). As in the previous sections, we shall make use of the shorthand notation ξAa1...ak
:=

ξBγa1...akB
A for any holomorphic spinor field ξA and any k > 0.

Assumptions 5.2. We work in the holomorphic category throughout, and Γ(·) denotes the space of holomor-
phic sections of a holomorphic fibre bundle. See section 5.3 for extensions to real manifolds.

Henceforth, we assume n > 3 for definiteness, relegating the case n = 3 to Appendix B.1. Nonetheless, 
many of the statements made in this section still apply by setting Cabcd = 0.

Finally, we stress that the results presented herein are local in nature.

5.1. Projective pure spinor fields

Definition 5.3. An almost null structure N on (M, g) is a rank-m distribution that is totally null, i.e. 
g(v, w) = 0 for all sections v, w of N .

An almost null structure N will also be referred to as a γ-plane distribution. The orthogonal complement 
N⊥ of N is a rank-(m + 1) subbundle of TM that contains N . The bundle of all almost null structures on 
(M, g) will be denoted Grm(TM, g). We can use the spin structure on (M, g) to identify an almost null 
structure as a projective pure spinor field, i.e. a spinor field defined up to scale and which is pure at every 
point.

Now, let [ξA] be a holomorphic projective pure spinor field on M, i.e. a (global) holomorphic section of 
Grm(TM, g), with associated holomorphic almost null structure Nξ and orthogonal complement N⊥

ξ . This 
geometric data is equivalent to a reduction of the structure group of FM to the stabiliser P of [ξA]. The 
representation theory of P , or of its Lie algebra p, which we have described in sections 2, 4 and 3, gives rise 
to holomorphic vector bundles in the standard way as already explicated in [39]. In particular, the pointwise 
algebraic degeneracy of the curvature tensors will be expressed in terms of the maps Fξ Πj

i , Aξ Πj
i and Cξ Πj

i

given in Appendix A.2.

5.1.1. Intrinsic torsion
For simplicity, we choose a holomorphic connection 1-form Γab

c for ∇a such that

∇aξ
A = −1

4Γabcγ
bc

B
AξB . (5.2)
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We can identify the notion of intrinsic torsion [10,4,35] of the P -structure defined by [ξA] with

Γabcξ
bBξcC ∈ V−1 ⊗ ∧2S

m−2
2 ,

which, at a point, we identify as an element of the p-module W := V ⊗ g/p defined in section 3. When the 
intrinsic torsion vanishes, the Levi-Civita connection preserves [ξA], i.e.

∇a[ξA] = 0 , i.e. ∇aξ
A = αaξ

A , (5.3)

for some 1-form αa. If the intrinsic torsion does not vanish, we can nevertheless investigate the differential 
and geometric properties of [ξA], Nξ and N⊥

ξ in terms of the decomposition of W given in Proposition 3.2.
Before we proceed, we compute, from (5.2) and (2.11), the formula

(
∇aξ

bB
)
ξCb = −

(
∇aξ

B
)
ξC + Γabcξ

bBξcC

from which we deduce(
∇aξ

b(B
)
ξ
C)
b = −

(
∇aξ

(B
)
ξC) ,

(
∇aξ

b[B
)
ξ
C]
b = −

(
∇aξ

[B
)
ξC] + Γabcξ

bBξcC ,

(
∇aξ

b[B
)
ξCb ξD] = Γabcξ

b[BξcCξD] ,
(
∇aξ

b[A
)
ξB]ξ

[C
b ξD] = Γabcξ

b[AξB]ξc[CξD] .

The first of these identities is trivially satisfied by virtue of the purity condition. These formulae together 
with Proposition 3.2 prove the following result.

Proposition 5.4. Let [ξA] be a holomorphic projective pure spinor field on (M, g), and let Γabcξ
bBξcC ∈ W

be its associated intrinsic torsion. Then, pointwise,

• W
ξ Π0

−3(Γ) = 0 if and only if (m > 2 only)
(
ξa[A∇aξ

bB
)
ξCb ξD] = 0 ; (5.4)

• W
ξ Π1

−3(Γ) = 0 if and only if

ξ[A
(
ξaB]∇aξ

b[C
)
ξD]ξ

[E
b ξF ] + ξ[C

(
ξaD]∇aξ

b[A
)
ξB]ξ

[E
b ξF ] = 0 ; (5.5)

• W
ξ Π0

−2(Γ) = 0 if and only if
(
ξaA∇aξ

b[B
)
ξCb ξD] = 0 ; (5.6)

• W
ξ Π1

−2(Γ) = 0 if and only if
(
ξa[A∇aξ

B
)
ξC] = 0 ; (5.7)

• W
ξ Π2

−2(Γ) = 0 if and only if

ξ[A
(
ξaB]∇aξ

E
b

)
ξb[CξD] + ξ[C

(
ξaD]∇aξ

E
b

)
ξb[AξB] = 0 ; (5.8)

• W
ξ Π0

−1(Γ) = 0 if and only if

(
γa

D
A∇aξ

bD
)
ξ
[B
b ξC] + 2

(
ξaA∇aξ

[B
)
ξC] = 0 ; (5.9)
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• W
ξ Π1

−1(Γ) = 0 if and only if (m > 2 only)

(
∇aξ

b[B
)
ξCb ξD] + 1

m− 1γaE
[B

((
γc

F
E∇cξ

bF
)
ξ
|C
b + 2

(
ξbE∇bξ

|C
))

ξD] = 0 ; (5.10)

• W
ξ Π2

−1(Γ) = 0 if and only if
(
ξaA∇aξ

[B
)
ξC] = 0 ; (5.11)

• W
ξ Π0

0(Γ) = 0 if and only if

(
∇aξ

aA
)
ξB − ξaA∇aξ

B = 0 ; (5.12)

• W
ξ Π1

0(Γ) = 0 if and only if

(
∇aξ

[B
)
ξC] − 2

m

((
∇bξ

b[B
)
ξC]
a − ξb[B∇bξ

C]
a

)
= 0 . (5.13)

These statements are independent of the scale of ξA.

Remark 5.5. The case m = 2, i.e. n = 5, is also dealt separately in Appendix B.2, where the spinor calculus 
simplifies the formulae above.

5.1.2. Geometric properties

Definition 5.6. An almost null structure N is said to be integrable if [Γ(N ), Γ(N )] ⊂ Γ(N ), totally geodetic
if ∇XY ∈ Γ(N ) for all X, Y ∈ Γ(N ), co-integrable if [Γ(N⊥), Γ(N⊥)] ⊂ Γ(N⊥), and totally co-geodetic if 
∇XY ∈ Γ(N⊥) for all X, Y ∈ Γ(N⊥).

The geometric properties of Nξ and N⊥
ξ can be encoded in terms of differential conditions on [ξA].

Proposition 5.7. Let Nξ be an almost null structure with associated projective pure spinor field [ξA] on 
(M, g). Then

• [Γ(Nξ), Γ(Nξ)] ⊂ Γ(N⊥
ξ ) if and only if

ξ[A
(
ξaB]∇aξ

b[C
)
ξDb ξE] = 0 ; (5.14)

• Nξ is integrable if and only if (5.7) holds, i.e.
(
ξa[A∇aξ

B
)
ξC] = 0 ;

• Nξ is totally geodetic if and only if
(
ξ[AξaB]∇aξ

[B
)
ξC] = 0 ; (5.15)

• Nξ is co-integrable if and only if
(
ξa[A∇aξ

bB]
)
ξ
[C
b ξD] = 0 ; (5.16)
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• Nξ is integrable and co-integrable if and only if

(
ξaA∇aξ

b[B
)
ξCb ξD] = 0 ; ξ[A

(
ξaB]∇aξ

[C
)
ξD] = 0 ; (5.17)

• Nξ is totally co-geodetic if and only if (5.11) holds, i.e.

(
ξaA∇aξ

[B
)
ξC] = 0 .

Proof. We compute each of the conditions in turn using (5.2) and (3.1) in terms of the connection compo-
nents. It then suffices to interpret the vanishing of these components in terms of the Lie bracket relations 
(since ∇a is torsionfree). More explicitly, these are given by

• ΓABC = 0,
• ΓABC = Γ[A:B] = 0,
• ΓABC = ΓA:B = 0,
• ΓABC = 0 and ΓA:B = ΓAB (in particular, Γ(A:B) = 0),
• ΓABC = ΓAB = ΓA:B = 0,
• ΓABC = ΓAB = ΓA:B = ΓA = 0,

respectively. �
In contrast to the even-dimensional case, a (co-)integrable almost null structure is not necessarily totally 

(co-)geodetic. However, it is straightforward to show, as a consequence of Proposition 5.7, or otherwise:

Lemma 5.8. Let [ξA] be a projective pure spinor. Then (5.11) ⇒ (5.17) ⇒ (5.15) ⇒ (5.7). Equivalently, for 
any almost null structure N ,

• if N is totally co-geodetic, then it is integrable and co-integrable;
• if N is integrable and co-integrable, then it is totally geodetic;
• if N is totally geodetic, then it is integrable.

Definition 5.9. Let [ξA] be a holomorphic projective pure spinor field on (M, g) with almost null structure 
Nξ. We say that ξA is geodetic, respectively co-geodetic, if Nξ is totally geodetic, respectively co-geodetic.

Remark 5.10. Proposition 5.4 can also be used to characterise the properties given in Proposition 5.7 in 
terms of the intrinsic torsion Γabcξ

bBξcC ∈ W of the P -structure. In particular, (5.14) holds if and only if 
Γabcξ

bBξcC ∈ W−2. Similarly, (5.17) holds if and only if Γabcξ
bBξcC ∈ W−1.

Conformal invariance With reference to Appendix C, we prove

Proposition 5.11. Conditions (5.4), (5.5), (5.6), (5.7), (5.8), (5.10) and (5.16), (and thus (5.14), (5.17)) are 
conformally invariant.

Suppose that [ξA] satisfies (5.10) and

(
γa

D
A∇aξ

bD
)
ξ
[B
b ξC] + 2

(
ξaA∇aξ

[B
)
ξC] = (n− 3) ξAξ[BξbC]∇bf ;

for some holomorphic function f . Then there exists a conformal rescaling for which [ξA] satisfies
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(
∇aξ

b[B
)
ξCb ξD] = 0 , (5.18)

i.e. ∇X ∈ Γ(N⊥
ξ ) for all X ∈ Γ(Nξ), where Nξ is the almost null structure associated to [ξA].

Curvature conditions The integrability conditions for these equations can easily be computed by differen-
tiation a second time and commuting the covariant derivatives.

Proposition 5.12. Let ξA be a geodetic spinor on (M, g), i.e. ξA satisfies (5.15). Then

C
ξ Π0

−3(C) = 0 , i.e. ξ[AξaBξbC]ξcDξdECabcd = 0 .

Suppose further that ξA is co-geodetic, i.e. ξA satisfies (5.11). Then ξaAξbBξcCξdDRabcd = 0 and

F

ξ Π0
−2(Φ) = 0 ⇐⇒ C

ξ Π1
−2(C) = 0 ,

i.e. ξ[AξaB]Φabξ
b[CξD] = 0 if and only if ξaAξbBξcCξdDCabcd = 0.

For a parallel projective pure spinor, we have the following – see also [15] in more generality.

Proposition 5.13. Let [ξA] be a parallel projective pure spinor on (M, g), i.e. ξA satisfies (5.3). Then

ξaAξbBRabcd = 0 , (5.19)

ξaAξbBRab = 0 , (5.20)

ξaAξb[B ξC]Φab = 0 , i.e. F

ξ Π0
−1(Φ) = 0 , (5.21)

ξaAξbBξc[C ξD]Cabcd = 0 i.e. C
ξ Π0

−1(C) = C
ξ Π1

−1(C) = C
ξ Π2

−1(C) = 0 , (5.22)

and in addition, when m > 2,

C
ξ Π1

1(C) = 0 . (5.23)

Further,

R = 0 ⇐⇒ F

ξ Π0
0(Φ) = 0 ⇐⇒ C

ξ Π0
0(C) = 0 , (5.24)

F

ξ Π1
0(Φ) = 0 , ⇐⇒ C

ξ Π1
0(C) = 0 ⇐⇒ C

ξ Π2
0(C) = 0 , (5.25)

F

ξ Π0
1(Φ) = 0 ⇐⇒ C

ξ Π0
1(C) = 0 . (5.26)

Proof. Equations (5.19) and (5.20) are is a direct consequence of (5.3). Equation (5.21) follows from relating 
Rab and Φab as Φabξ

aAξbB = 1
nRξAξB , from which we also conclude the first part of (5.24). Next, (5.1)

yields (5.22). To conclude the remaining conditions, we use the definitions of Fξ Πj
i and Cξ Πj

i together with 
the computations

ξcCCc[ab]dξ
dD = 2

n− 2ξ
[C
[a Φb]dξ

dD] + 1
n(n− 1)RξC[aξ

D
b] ,

Cbcadξ
bcBξdD = −2(n− 4)

n− 2 ξBξdDΦad −
2

n− 2ξ
DξdBΦad −

2(n− 2)
n(n− 1)RξDa ξB + 2

n(n− 1)(n− 2)RξBa ξD ,

Cbcadξ
bc(BξdD) = −2(n− 3)

(
ξ(BξdD)Φad + 1

Rξ(BξD)
a

)
,

n− 2 n
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Cbcadξ
adAξbcB = −2n− 3

n− 2RξAξB ,

Cabcdξ
bBξcCξdD = − 2

n− 2ξ
Bξ[CΦadξ

dD] + 2
n(n− 1)(n− 2)RξBξ[CξD]

a .

In particular, we note that the dimensions of the irreducible p-invariant parts of the Weyl tensor must match 
those of the tracefree Ricci tensor. From the invariant diagram of Proposition 4.4, one sees that condition 
(5.23) imposes algebraic conditions on elements of the isotopic modules C1

0 and C2
0, which, by dimension 

counting must match F1
0. More explicitly, on referring to the maps Cξ Πj

i , we have

C
ξ Π1

0(C)BC
aξ

A = −2n− 5
n− 3ξ

(BF

ξ Π1
0(Φ)aC)A ,

C
ξ Π2

0(C)A(BC)
d = − 1

n− 2ξ
(BF

ξ Π1
0(Φ)dC)A (mod ξBξCαD

a ) ,

where we have rewritten Fξ Π1
0(Φ) := ξAξbBΦba − 1

n−1ξ
bAξcCΦbcγbC

B (mod ξAξBαa). Condition (5.25) now 
follows. �
5.2. Spinorial differential equations

5.2.1. Scale-dependent geodetic and co-geodetic spinors
A scale-dependent variation of (5.15) is given by ξ[AξaB]∇aξ

B = 0, with integrability condition 
C
ξ Π0

−2(C) = ξ[AξaBξbC]ξcdDCabcd = 0. This is conformally invariant provided ξA has conformal weight −1.
Similarly, a scale-dependent variation of (5.11) is given by ξaA∇aξ

B = 0, with integrability condi-
tions given by ξaAξbBξcdCRabcd = 0. Further, Fξ Π0

−1(Φ) = ξ[A ξaB]Φabξ
bC = 0 if and only if Cξ Π0

−1(C) =
ξaAξbBCabcdξ

cdC = 0.

5.2.2. Parallel pure spinors
The next proposition follows from Proposition 5.13.

Proposition 5.14. Let ξA be a parallel pure spinor field on (M, g), i.e. ∇aξ
A = 0. Then Rabcdξ

cdD = 0, 
F

ξ Π0
1(Φ) = Φabξ

bB = 0, R = 0, and Cξ Π0
2(C) = Cabcdξ

cdD = 0.

5.2.3. Null zero-rest-mass fields
The smaller irreducible part of the covariant derivative of a spinor field ξA leads to the (Weyl–)Dirac 

equation

γa
A
B∇aξ

A = 0 . (5.27)

In contrast to even dimensions, this equation admits not one, but two generalisations to irreducible spinor 
fields of higher valence.

Definition 5.15. Let φA1A2...Ak = φ(A1A2...Ak) be a holomorphic spinor field on (M, g) irreducible in the 
sense that γa

A1
CγaA2

DφA1A2A3...Ak = −φCDA3...Ak . We say that φA1...Ak is a zero-rest-mass (zrm) field if 
it satisfies

γa
B

(A1 ∇aφ
A2...Ak)B = 0 , (5.28)

and a co-zero-rest-mass (co-zrm) field if it satisfies

γa
B

[A1 ∇aφ
A2]A3...AkB = 0 . (5.29)
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Remark 5.16. When k = 2, an irreducible spinor field as above is simply an m-form, or by Hodge duality, 
an (m + 1)-form. Equation (5.28), respectively (5.29), is then equivalent to this m-form to be closed, 
respectively co-closed, hence the use of terminology. This follows from the fact that matrices γa1...am+1

AB

and γa1...am−1
AB are symmetric and skewsymmetric respectively.

Equations (5.28) and (5.29) are conformally invariant provided that φA1...Ak is of conformal weight −m − k
2

and −m − k respectively. In particular, a solution of both (5.28) and (5.29), i.e.

γa
B
A1∇aφ

A2...AkB = 0 , (5.30)

is not conformally invariant. In the case k = 2, such a solution corresponds to a closed and co-closed m-form.
The integrability condition for the existence of solutions to equations (5.28) and (5.29) of valence greater 

than two is given by the following lemma.

Proposition 5.17. For k > 2, let φA1A2...Ak be a solution of (5.28) or (5.29) on (M, g). Then

γa
C1

Aγb
C2

BCabcdγ
cd

D
(C3φC4...Ck)C1C2D = 0 . (5.31)

If φA1A2...Ak is a solution of (5.30), then we have in addition

γb
C2

[A|Φbdγ
d
D

(C3φC4...Ck)C2D|B] = 0 . (5.32)

Proof. Equations (5.28), (5.29) and (5.30) can be rewritten as γa
B
A1∇aφ

A2...AkB = ψA1A2...Ak , where 
ψ(A1A2...Ak) = 0, ψ[A1A2]A3...Ak = 0, and ψA1A2...Ak = 0 respectively. Taking a second covariant derivative 
and commuting lead to

(k − 2) γa
C1

Aγb
C2

BCabcdγ
cd

D
(C3φC4...Ck)C1C2D − 4(k − 2) γb

C2
[A|Pbdγ

d
D

(C3φC4...Ck)C2D|B]

= 2 γa
D

[A∇aψ
B]C3C4...CkD .

By the conformal invariance of (5.28) and (5.29), the first term on the LHS must vanish identically, while 
the second term on the LHS cancels the RHS, hence (5.31). When (5.30) holds, conformal invariance is 
broken, and one has the additional constraint (5.32). �

A spinor field φA1A2...Ak is referred to as null if it takes the form φA1A2...Ak = eψξA1ξA2 . . . ξAk for some 
holomorphic pure spinor field ξA, and holomorphic function ψ. Specialising Proposition 5.17 yields

Corollary 5.18. For k > 2, suppose that φA1A2...Ak := eψξA1ξA2 . . . ξAk is a solution of (5.28) or (5.29) on 
(M, g). Then

C
ξ Π0

−1(C) = 0 , i.e. ξaAξaBCabcdξ
cdC = 0 . (5.33)

Further, if φA1A2...Ak is a solution of (5.30), then we have in addition

F

ξ Π0
−1(Φ) = 0 , i.e. ξaAξb[BΦabξ

C] = 0 . (5.34)

The relation between null solutions of the zrm-field equation and the existence of foliating spinors is 
known as the Robinson theorem [34] in four dimensions, and was later generalised to even dimensions in 
[18]. Here, we give odd-dimensional versions of the theorem.
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Theorem 5.19 (Robinson theorem for zrm fields). Let ξA be a holomorphic pure spinor field on (M, g) with 
almost null structure Nξ. Let ψ be a holomorphic function and suppose that φA1A2...Ak := eψξA1ξA2 . . . ξAk

satisfies the zrm field equation (5.28). Then locally, ξA satisfies

ξ[A
(
ξaB]∇aξ

[C
)
ξD] + ξ[C

(
ξaD]∇aξ

[A
)
ξB] = 0 , (5.35)

(
ξa[A∇aξ

bB]
)
ξ
[C
b ξD] − k − 2

2k

(
ξ[A

(
ξaB]∇aξ

bC
)
ξDb + ξ[A

(
ξaB]∇aξ

C
)
ξD

)
= 0 . (5.36)

In particular, [Γ(Nξ), Γ(Nξ)] ⊂ Γ(N⊥
ξ ). When k = 2, ξA locally satisfies (5.16), i.e. Nξ is co-integrable.

Suppose that ξA satisfies (5.16), i.e. Nξ is co-integrable. Then locally there exists a holomorphic function ψ
such that the spinor field φAB := eψξAξB satisfies (5.28). There is the freedom of adding to ψ a holomorphic 
function constant along the leaves of N⊥

ξ .

Proof. For any φA1A2...Ak := eψξA1ξA2 . . . ξAk , we have, in regions where φA1A2...Ak does not vanish,

γa
B
A1∇aφ

A2...AkB = eψ
(
ξA2 . . . ξAkξaA1∇aψ + (k − 1)

(
ξaA1∇aξ

(A2
)
ξA3 . . . ξAk)

+
(
∇aξ

aA1
)
ξA2 . . . ξAk

)
. (5.37)

If φA1...Ak satisfies (5.28), then we have

0 = ξ(A2ξA3 . . . ξAkξaA1)∇aψ + (k − 1)
(
ξa(A1∇aξ

A2
)
ξA3 . . . ξAk) +

(
∇aξ

a(A1
)
ξA2ξA3 . . . ξAk) . (5.38)

Tensoring with ξBξC and skewing over A1B and A2C lead to (5.35). Working in the splitting 2.7 with a 
choice of spinor ηA dual to ξA, and using (3.1), this implies Γ(B:C) = ΓABC = 0, i.e. ξA satisfies (5.14). 
Expanding (5.38) now yields

0 =
(
−1

4
(
k ΓBC − 2 ΓB:C) ηaBγa

C
(A1 + ψ(A1

)
ξA2ξA3 . . . ξAk) ,

for some ψA ∈ S
m−2

2 . Since the first term on the RHS lies in Sm−4
2

, we must have k ΓBC = 2 ΓB:C , i.e. 
(5.36) holds. When k = 2, (5.36) reduces to (5.16).

For the converse when k = 2, we follow the geometrical proof given in [13,27]. Suppose that ξA satisfies 
(5.16), i.e. Nξ is co-integrable. Then, locally, M is fibred over the leaf space L of N⊥

ξ . Choose a holomorphic 
section φ of the tautological line bundle ∧mT∗L of L. Then, φ is clearly closed. Its pull-back to M must be 
orthogonal to each leaf of the foliation, i.e. it must be of the form φAB := φa1...am

γa1...amAB = eψξAξB for 
some holomorphic function ψ. Further, since the exterior derivative commutes with the pull-back, φ is also 
closed, i.e. φAB satisfy (5.28).

Finally, in both cases, adding any holomorphic function constant along the leaves of N⊥
ξ to ψ, i.e. 

annihilated by ξaA∇a, leaves the relevant field equations unchanged. �
Theorem 5.20 (Robinson theorem for co-zrm fields). Let ξA be a holomorphic pure spinor field on (M, g) with 
almost null structure Nξ. Let ψ be a holomorphic function and suppose that φA1A2...Ak := eψξA1ξA2 . . . ξAk

satisfies the co-zrm field equation (5.29). Then locally ξA satisfies (5.7), i.e. Nξ is integrable. Further, when 
k > 2, ξA satisfies (5.15), i.e. Nξ is totally geodetic.

Suppose that ξA satisfies (5.7), i.e. Nξ is integrable. Then locally there exists a holomorphic function 
ψ such that the pure spinor field φAB = eψξAξB satisfies (5.29). Further, if ξA satisfies (5.15), i.e. Nξ is 
totally geodetic, and the curvature condition (5.33), then locally, for every k > 2, there exists a holomorphic 
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function ψ such that the spinor field φA1A2...Ak = eψξA1ξA2 . . . ξAk satisfies (5.29). In both cases, there is 
the freedom of adding to ψ a holomorphic function constant along the leaves of Nξ.

Proof. For k ≥ 2, if φA1...Ak satisfies (5.29), then equation (5.37) becomes

0 = ξA3 . . . ξAkξ[A2ξaA1]∇aψ +
(
ξa[A1∇aξ

A2]
)
ξA3 . . . ξAk

+ (k − 2)
(
ξ[A2ξaA1]∇aξ

(A3
)
ξA4 . . . ξAk) +

(
∇aξ

a[A1
)
ξA2]ξA3 . . . ξAk . (5.39)

Then, tensoring with ξB and skewing over A1A2B yield (5.7), i.e. Nξ is integrable. When k > 2, one can 
also tensor with ξB and skew over A3B, and conclude (5.15), i.e. Nξ is totally geodetic.

For the converse, the case k = 2 is similar to the proof of Theorem 5.19 except that one obtains a closed 
(m + 1)-form, which is Hodge dual to a co-closed m-form. So we focus on the case k > 2 and assume that 
condition (5.15) holds. This is equivalent to

ξaA∇aξ
B = ξAAB + ξABB + C ξAξB + DAξB , ∇aξ

aA = E ξA + FA −BA + AB + C ξA + DA ,

(5.40)

for some functions C, E, spinors BA, DA, FA in S
m−2

2 = im ξAa , and AA in S
m−4

2 im ξAab. We want to show 
that locally there exists a holomorphic function ψ such that (5.39) holds, i.e.

ξ[AξaB]∇aψ = ξa[A∇aξ
B] +

(
∇aξ

a[A
)
ξB] − (k − 2) ξ[ADB] = ξ[A

(
2BB] − kDB] − FB]

)
=: ξ[AψB] .

(5.41)

Differentiating the above equation with respect to ξ[AξaB]∇a, i.e. along Nξ, yields the integrability condition

ξ[ADBψC] = ξ[AξaB∇aψ
C] . (5.42)

We expand the RHS of (5.42) using the expression (5.41) for ψA:

ξ[AξaB∇aψ
C] = −ξa[A∇a

(
ξBψC]

)
+

(
ξa[A∇aξ

B
)
ψC]

= −ξa[A∇a

(
ξbB∇bξ

C]
)
− ξa[A∇a

((
∇bξ

bB
)
ξC]

)
+ (k − 2)ξa[A∇a

(
ξBDC]

)

+
(
ξa[A∇aξ

B
)
ψC] .

We compute each term in turn using the assumption (5.33). For the third term, we find

ξa[A∇a

(
ξBDC]

)
ξD = ξa[A∇a

(
ξBDC]ξD

)
−
(
ξa[A|∇aξ

D
)
ξ|BDC] = ξa[A∇a

(
ξBξbC]∇bξ

D
)

=
(
ξa[A∇aξ

B
)(

ξbC]∇bξ
D
)
− ξ[A

(
ξaB∇aξ

bC]
)
∇bξ

D −
����������1
8ξ

[AξaBξbC]Cabcdξ
cdD .

For the second term, we have

ξa[A∇a

((
∇bξ

bB
)
ξC]

)
=

(
ξa[A∇a∇bξ

bB
)
ξC] −

(
ξa[A∇aξ

B
)
∇bξ

bC]

=
(
ξa[A∇b∇aξ

bB
)
ξC] + 1

4ξ
a[A|Rabcdξ

cdDγb
D

|BξC] −
(
ξa[A∇aξ

B
)
∇bξ

bC]

= ∇b

(
ξa[A∇aξ

bB
)
ξC] − ��������(

∇bξ
a[A

) (
∇aξ

bB
)
ξC] − ������1

ξa[ARabξ
BξC]
�� �2



A. Taghavi-Chabert / Differential Geometry and its Applications 51 (2017) 117–152 139
−
(
ξa[A∇aξ

B
)
∇bξ

bC]

= ∇a

((
ξb[A∇bξ

aB
)
ξC]

)
−

(
ξa[A∇aξ

bB
)
∇bξ

C] −
(
ξa[A∇aξ

B
)
∇bξ

bC]

while the first term simply becomes

ξa[A∇a

(
ξbB∇bξ

C]
)

=
(
ξa[A∇aξ

bB
)
∇bξ

C] −
���������1
8ξ

a[AξbBCabcdξ
cdC] .

The last step is to use (5.40) and (5.41) to express the covariant derivative of ξA in all these expressions 
in terms of ξA, AA, BA, C, DA, E and FA. Thus, we get ξa[A∇a

(
ξBDC]) = −ξ[ADB

(
AC] + BC]) and 

similarly for the other terms. Applying (5.41) to the LHS of (5.42) reveals that (5.42) is indeed satisfied.
Finally, in both cases, adding any holomorphic function constant along the leaves of Nξ to ψ, i.e. anni-

hilated by ξ[AξaB]∇a, leaves the relevant field equations unchanged. �
We omit the proof of the following theorem, which follows roughly the one given in [18].

Theorem 5.21 (Non-conformally invariant Robinson theorem). Let ξA be a holomorphic pure spinor field 
on (M, g) with almost null structure Nξ. Let ψ be a holomorphic function and suppose that φA1A2...Ak :=
eψξA1ξA2 . . . ξAk is both a zrm field and a co-zrm field, i.e. φA1A2...Ak satisfies (5.30). Then locally ξA

satisfies (5.11), i.e. Nξ is totally co-geodetic.
Suppose that ξA satisfies (5.11), i.e. Nξ is totally co-geodetic. Then locally there exists a holomorphic 

function ψ such that φAB := eψξAξB satisfies (5.30). Suppose further that ξA satisfies the curvature 
conditions (5.33) and (5.34). Then, for every k > 2, there exists a holomorphic function ψ such that 
φA1A2...Ak := eψξA1ξA2 . . . ξAk satisfies (5.30). In both cases, there is the freedom of adding to ψ a holomor-
phic function constant along the leaves of N⊥

ξ .

Remark 5.22. In flat even-dimensional space, the Robinson theorem is often used in conjunction with the 
Kerr theorem [24,31,18], by means of which one (locally) generates null structures in terms of geometric data 
in a ‘twistor space’. It is interesting to note that one can also distinguish three odd-dimensional counterparts 
of the Kerr theorem as presented in [40] depending on the various ‘degrees’ of integrability of an almost null 
structure.

5.2.4. Conformal Killing spinor
Complementary to (5.27), one defines the twistor equation

∇aξ
A + 1√

2
γaB

AζB = 0 , (5.43)

for any holomorphic spinor field ξA. Here, (5.43) determines ζB =
√

2
n γa

A
B∇aξ

A. A solution ξA will be 
referred to as a conformal Killing spinor or twistor-spinor. The spinor field ζA can be shown to satisfy

∇aζ
B + 1√

2
Pabγ

b
A
BξA = 0 , (5.44)

where Pab := 1
2−nΦab−R 1

2n(n−1)gab is the Rho or Schouten tensor (see Appendix C). Equations (5.43) and 

(5.44) are conformally invariant provided that ξA and ζA transform as

ξA �→ ξ̂A = ξA , ζA �→ ζ̂A = Ω−1
(
ζA + 1√

2
Υaξ

aA

)
. (5.45)
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The equivalence class of pairs of spinors (ξA, ζA) ∼ (ξ̂A, ζ̂A) related by (5.45) can be thought of as a section 
(ξA, ζA) of the local twistor bundle [33,3] or spin tractor bundle [20], and we shall refer to such a section as 
a tractor-spinor. These are spinors for the group Spin(2m + 3, C). Tracing (5.44) yields

∇aζ
aB = − 1

2
√

2(n− 1)
RξB . (5.46)

The integrability condition for the existence of a conformal Killing spinor is well-known, see e.g. [5]. Here, 
we restate it in the context of pure spinor fields.

Proposition 5.23. Let ξA be a pure conformal Killing spinor on (M, g) with ζB :=
√

2
n γa

A
B∇aξ

A. Then

Cabcdξ
cdD = 0 , i.e. C

ξ Π0
2(C) = 0 ,

Cabcdζ
bcC − 2

√
2Acabξ

cE = 0 ,

Acabξ
cAξabB = 0 , i.e. A

ξ Π0
0(A) = 0 ,

(5.47)

where Aabc := 2∇[bPc]a is the Cotton–York tensor (see Appendix C).

Proposition 5.24. Let ξA be a pure conformal Killing spinor on (M, g) with almost null structure Nξ. Set 
ζB :=

√
2

n γa
A
B∇aξ

A. Then ξA satisfies (5.8), i.e.

ξ[A
(
ξaB]∇aξ

E
b

)
ξb[CξD] + ξ[C

(
ξaD]∇aξ

E
b

)
ξb[AξB] = 0 .

Further, ξA satisfies (5.17), i.e. Nξ is integrable and co-integrable, if and only if

ζaAζBa = −ζAζB , ζaAξBa = ζAξB − 2 ξAζB , (5.48)

i.e. ζA, if non-zero, is pure and its almost null structure Nζ intersects Nξ in a totally null plane of dimension 
m − 1 or m at every point.

Suppose that ξA satisfies (5.17) so that ζA satisfies (5.48). Then
(
ζa[A∇aζ

bB
)
ζCb ζD] = 0 . (5.49)

Proof. To prove that ξA satisfies (5.8), it suffices to contract equation (5.43) with ξaA and γb
D

CξAb . We 
find

(
ξaA∇aξ

bB
)
ξCb + 1√

2
(
ξaAζBabξ

bC + ζBξAξC
)

= 0 .

The second term is skew-symmetric in AC. Therefore, symmetrising over AC yields (5.8).
Next, suppose that ξA satisfies (5.17), which is equivalent to

ξaA∇aξ
B = − 1√

2
(
ξAαB + βAξB

)
∈
(
S

m
2 ⊗S

m−2
2

)
⊕

(
S

m−2
2 ⊗S

m
2

)

at every point – here S
m
2 = 〈ξA〉 and S

m−2
2 = im ξAa . By (5.43), the LHS is − 1√

2ξ
aAζBa and must lie in 

the same module as the RHS. This in particular means that ξA and ζA must satisfy (5.48) – checking 
that indeed αA = −1

2β
A = ζA can be done by applying (2.9). The converse, that (5.48) implies (5.17), is 

immediate.
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Finally, assume ξA satisfies (5.17) so that (5.48) holds. Contracting equation (5.44) with ζaA and γb
D

CζAb
leads to

(
ζaA∇aζ

bB
)
ζCb − 1√

2
ζaAPabξ

bBζC + 2
√

2 ζaAPabζ
b[BξC] = 0 ,

and the result (5.49) follows by symmetry considerations. �
Remark 5.25. Using (5.45), one checks that the statements of Proposition 5.24 are conformally invariant.

Further, the condition that the conformal Killing spinor ξA be pure and ζA satisfy (5.48) is equivalent to 
the corresponding tractor-spinor (ξA, ζA) being a pure section of the local twistor bundle, i.e. it is a pure 
spinor for Spin(2m + 3, C). See [18,40].

Example 5.26. Using the method of equivalence, Cartan [7] showed how to encode the invariance prop-
erties of certain ODEs of Monge type in terms of a (2, 3, 5)-distribution, i.e. a rank-2 distribution N on 
a five-dimensional smooth manifold, that bracket-generates the tangent bundle. This is more invariantly 
expressed as a G2-principal bundle equipped with a Cartan connection. In [30], Nurowski associates to this 
(2, 3, 5)-distribution a five-dimensional split-signature conformal structure, with respect to which N is to-
tally null, with orthogonal complement [N , N ]. The general theory, expounded in the language of parabolic 
geometries, is given in [11,19], more particularly, in [20], where it is shown how such manifolds are char-
acterised by the existence of a real conformal Killing spinor, generic in the sense that ξAζA �= 0. In five 
dimensions, this is consistent since (5.8) implies (5.14). This example works equally in the holomorphic 
category.

Killing spinors A holomorphic spinor field ξA that is both a solution to the twistor equation (5.43) and an 
eigenspinor of the Dirac operator, i.e. γa

B
C∇aξ

B = λ ξC for some holomorphic function λ on M, is known 
as a Killing spinor. Otherwise put, ξA satisfies the Killing equation

∇aξ
A + λ

1
n
ξAa = 0 . (5.50)

That this equation is not conformally invariant is reflected in the geometric properties of its solutions. In 
particular, as a special case of (5.43), (5.44), (5.46) and (5.47) with ζA = λ ξA, we prove:

Proposition 5.27. Let ξA be a pure Killing spinor on (M, g) with almost null structure Nξ. Then

C
ξ Π0

2(C) = 0 , i.e. Cabcdξ
cdD = 0 ,

A
ξ Π0

2(A) = A
ξ Π1

2(A) = 0 i.e. ξaAAabc = 0 ,
F

ξ Π1
0(Φ) = 0 .

Further, its eigenfunction λ satisfies ξaA∇aλ = − 
(
λ2 + n

4(n−1)R
)
ξA, and is thus constant along Nξ.

The following proposition is straightforward.

Proposition 5.28. Let ξA be a pure conformal Killing spinor on (M, g) with almost null structure Nξ. Set 
ζA :=

√
2

n ∇aξ
aA. Then ξA satisfies (5.11), i.e. Nξ is totally co-geodetic, if and only if ξ[AζB] = 0, i.e. ξA is 

a Killing spinor. This being the case, we have further 
(
∇aξ

b[A) ξBb ξC] = 0.

Remark 5.29. The gist of Propositions 5.24 and 5.28 is the filtration of p-modules Sm
2 ⊂ S

m−2
2 ⊂ S

m−4
2 . 

The spinor ζA belonging to one of these submodules determines the geometric property of Nξ.
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The following result is analogous to the one given in even dimensions in [21].

Proposition 5.30. Let ξA be a pure conformal Killing spinor whose associated null structure Nξ is integrable 
and co-integrable. Then, locally, there exists a conformal rescaling such that ξA is parallel, up to the freedom 
of adding to such a conformal rescaling any holomorphic function constant along the leaves of N⊥

ξ .

Proof. We assume that Nξ is integrable and co-integrable so that by Proposition 5.24, ξA and ζA :=√
2

n ∇aξ
aA satisfy (5.48). In particular, ζA ∈ im ξAa . We must apply the transformation (5.45) to find a 

holomorphic conformal factor Ω such that ζ̂A = 0. First, we show that locally one can always find a 
holomorphic function φ such that ξ[AζB] = − 1√

2ξ
[AξaB]∇aφ, which follows from the integrability of Nξ, the 

twistor equation (5.43) and its prolongation (5.44). This yields a conformal factor such that ξA is a solution 
of the Killing spinor equation (5.50). One can then find a holomorphic function ψ such that λ ξA := ξaA∇aψ, 
which yields a conformal factor that turns our Killing spinor into a parallel spinor. There is the freedom of 
adding to the scale a smooth function constant along N⊥

ξ . �
A similar result is given in [26].

5.2.5. Relation to the Goldberg–Sachs theorem
In four dimensions, the Goldberg–Sachs theorem [17] gives a relation between the existence of integrable 

null structures and degeneracy conditions on the Weyl curvature – for generalisations, see [16]. A ‘coarse’ 
higher-dimensional generalisation is given in [37], which can be formulated in the following way in odd 
dimensions.

Theorem 5.31 ([36,37]). Assume m ≥ 2. Let [ξA] be a holomorphic projective pure spinor field on a 
(2m + 1)-dimensional complex Riemannian manifold (M, g) with associated almost null structure Nξ. Sup-
pose the Weyl tensor and the Cotton–York tensor satisfies the algebraic degeneracy conditions

C
ξ Π0

−1(C) = C
ξ Π1

−1(C) = C
ξ Π2

−1(C) = 0 , i.e. ξaAξbBξc[CCabcdξ
D] = 0 ,

A
ξ Π0

−2(A) = A
ξ Π1

−2(A) = 0 , i.e. ξ[AξaB]ξbCξcDAabc = 0 .
(5.51)

Suppose further that the Weyl tensor is otherwise generic. Then [ξA] satisfies (5.17), i.e. Nξ is integrable 
and co-integrable.

In the light of Proposition 5.24 and Example 5.26, there are pure spinor fields with non-integrable 
and non-co-integrable almost null structures, whose integrability condition satisfies (5.51), but violates the 
genericity assumption by virtue of Proposition 5.23. This motivates the following conjecture improving [37]:

Conjecture 5.32. Suppose that [ξA] is a projective pure spinor field on a (2m + 1)-dimensional non-
conformally flat Einstein spin complex Riemannian manifold (M, g) such that the Weyl tensor satisfies 
ξaAξbBξc[CCabcdξ

D] = 0. Then ξA satisfies (5.8).

Weaker conditions such as (5.5) may well be possible too, but an investigation of the veracity of the 
above conjecture is beyond the scope of this article.

Remark 5.33. A non-conformally invariant Goldberg–Sachs theorem in dimension three is given in [29].

5.3. Application to real pseudo-Riemannian manifolds

Almost null structures on odd-dimensional real pseudo-Riemannian manifolds are subject to considera-
tions regarding reality conditions and analyticity similar to the even-dimensional case – see [39] for details. 
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It suffices to say here that the real index of a pure spinor – see section 2.6 – allows for a wider range 
of geometric interpretations. For positive definite metric, the intrinsic torsion of an almost contact metric 
structure, i.e. an odd-dimensional analogue of an almost Hermitian structure, was investigated in [1,9]. Fi-
nally, we emphasise that all the results obtained in the present article can be translated into the smooth 
category in the case of a spin oriented and time-oriented smooth pseudo-Riemannian manifold of signature 
(m, m + 1) equipped with a real projective pure spinor or a real almost null structure.
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Appendix A. Spinorial description of curvature tensors

We follow the notation of section 2 throughout, i.e. V is a (2m + 1)-dimensional complex vector space 
equipped with a non-degenerate symmetric bilinear form gab and a pure spinor ξA.

A.1. Elements of the g0-modules of F, A and C

We choose a pure spinor ηA such that ξAηA = −1
2 to split V as (2.7). We shall use the elements ua, hab and 

ωab given by (2.8) and (2.12). Upstairs and downstairs spinor indices will refer to Sm−2
2

= im ξAa ∩ker ηA and 

S−m−2
2

= im ηaA ∩ ker ξA respectively. A spinor will be referred to as (totally) tracefree, if the contraction 

of any pair of indices with IAB , as given by (2.9), vanishes, e.g. σA
BIAB = 0. We now describe elements of 

the g0-modules given in Propositions 4.1, 4.2 and 4.4.

The tracefree Ricci tensor Let Φab ∈ F. Then

• Φab ∈ F̆1
0 if and only if Φab = ξA(a η b)BΦA

B for some tracefree ΦA
B ;

• Φab ∈ F̆0
0 if and only if Φab = Φ 

(
uaub + 1

n−1hab

)
for some complex Φ;

• Φab ∈ F̆0
1 if and only if Φab = ξA(aΦAub) for some ΦA;

• Φab ∈ F̆0
2 if and only if Φab = ξAa ξ

B
b ΦAB for some ΦAB = Φ(AB).

Using the duality (F̆0
−i)∗ ∼= F̆0

i , spinorial decompositions of elements of F̆j
−i for i = 1, 2 can be obtained by 

interchanging ξA and ηA, and making appropriate changes of index structures.

The Cotton–York tensor Let Aabc ∈ A. Then

• Aabc ∈ Ă0
0 if and only if Aabc = a 

(
uaωbc − u[bω c]a

)
for some complex a;

• Aabc ∈ Ă1
0 if and only if Aabc = uaAbc − u[bA c]a where Aab = ξA[a η b]BAA

B for some tracefree AA
B ;

• Aabc ∈ Ă2
0 if and only if Aabc = Aa[bu c] where Aab = ξA(a η b)BAA

B for some tracefree AA
B;

• Aabc ∈ Ă0
1 if and only if Aabc = Aaωbc −A[bω c]a + 3 ha[bω c]dA

d where Ac = ξCc AC for some AA;
n−2
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• Aabc ∈ Ă1
1 if and only if Aabc = uau[bA c] + 1

n−2ha[bA c] where Aa = ξAa AA for some AA;
• Aabc ∈ Ă2

1 if and only if Aabc = ηaCξ
A
b ξ

B
c AAB

C − ξAa ξ
B
[b η c]CAAB

C for some tracefree AAB
C = A[AB]

C ;
• Aabc ∈ Ă3

1 if and only if Aabc = ξAa ξ
B
[b η c]CAAB

C for some tracefree AAB
C = A(AB)

C ;
• Aabc ∈ Ă0

2 if and only if Aabc = uaAbc − u[bA c]a where Aab = ξAa ξ
B
b AAB for some AAB = A[AB];

• Aabc ∈ Ă1
2 if and only if Aabc = Aa[bu c] where Aab = ξAa ξ

B
b AAB for some AAB = A(AB);

• Aabc ∈ Ă0
3 if and only if Aabc = ξAa ξ

B
b ξCc AABC for some AABC = AA[BC] satisfying A[ABC] = 0.

Using the duality (Ăj
−i)∗ ∼= Ă

j
i , spinorial decompositions of elements of Ăj

−i for i = 1, 2, 3 can be obtained 
by interchanging ξA and ηA, and making appropriate changes of index structures.

The Weyl tensor Let Cabcd ∈ C. Then

• Cabcd ∈ C̆0
0 if and only if Cabcd = c 

(
2ωabωcd − 2ωa[cωd]b + 6

n−2 ha[chd]b

)
for some complex c;

• Cabcd ∈ C̆1
0 if and only if

Cabcd = ωabCcd + Cabωcd − 2ω[a |[cCd]| b] −
6

n− 3
(
h[a |[cωd]

eC| b]e + h[c |[aω b]
eC|d]e

)
,

where Ccd := 2 ξC[c ηd]DCC
D for some tracefree CC

D;
• Cabcd ∈ C̆2

0 if and only if Cabcd = u[aC b][cud] − 1
n−3 h[a |[cCd]| b] where Ccd := 2 ξC(c ηd)DCC

D for some 
tracefree CC

D;
• Cabcd ∈ C̆3

0 if and only if

Cabcd = ξAa ξ
B
b ηcCηdDCAB

CD + ξAc ξ
B
d ηaCηbDCAB

CD − 2 ξA[a |ξ
C
[c ηd]|Dη b]BCAC

DB

for some tracefree CAC
DB = C[AC]

[DB];
• Cabcd ∈ C̆4

0 if and only if Cabcd = ξA[a |ξ
C
[c ηd]|Dη b]BCAC

DB for some tracefree CAC
DB = C(AC)

(DB);
• Cabcd ∈ C̆0

1 if and only if

Cabcd = ωabC[cud] + ωcdC[au b] − ω[a |[cCd]u| b] − ω[c |[aC b]u|d]

+ 3
n− 2

(
h[a |[cud]ω| b]

eCe + h[c |[au b]ω|d]
eCe

)
,

where Ca = ξAa CA for some CA;
• Cabcd ∈ C̆1

1 if and only if Cabcd = u[aC b]cd + u[cCd]ab where Ccab = ηcCξ
A
a ξ

B
b CAB

C − ξAc ξ
B
[a η b]CCAB

C

for some tracefree CAB
C = C[AB]

C ;
• Cabcd ∈ C̆2

1 if and only if Cabcd = u[aC b]cd + u[cCd]ab, where Ccab = ξAc ξ
B
[a η b]CCAB

C for some tracefree 
CAB

C = C(AB)
C ;

• Cabcd ∈ C̆0
2 if and only if Cabcd = ωabCcd + Cabωcd − 2 ω[a |[cCd]| b] where Cab := ξAa ξ

B
b CAB for some 

CAB = C[AB];
• Cabcd ∈ C̆1

2 if and only if Cabcd = u[aC b][cud] − 1
n−3h[a |[cCd]| b] where Ccd := ξCc ξDd CCD for some 

CAB = C(AB);
• Cabcd ∈ C̆2

2 if and only if Cabcd = ξAa ξ
B
b ξC[c ηd]DCABC

D + ξAc ξ
B
d ξC[a η b]DCABC

D for some CABC
D =

C[AB]C
D satisfying C[ABC]

D = 0;
• Cabcd ∈ C̆0

3 if and only if Cabcd = u[aC b]cd + u[cCd]ab, where Cabc = ξAa ξ
B
b ξCc CABC for some CABC =

C[AB]C satisfying C[ABC] = 0;
• Cabcd ∈ C̆0

4 if and only if Cabcd = ξAa ξ
B
b ξCc ξDd CABCD for some CABCD = C[AB][CD] satisfying 

C[ABC]D = 0.
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Using the duality (C̆j
−i)∗ ∼= C̆

j
i , spinorial decompositions of elements of C̆j

−i for i = 1, 2, 3 can be obtained 
by interchanging ξA and ηA, and making appropriate changes of index structures.

A.2. Maps describing elements of p-modules of F, A and C

The kernels of the following maps Fξ Πj
i , Aξ Πj

i and Cξ Πj
i are p-submodules of the spaces F, A and C, and are 

related to irreducible p-modules Fj
i , A

j
i and Cj

i as described in Propositions 4.1, 4.2 and 4.4.

The tracefree Ricci tensor For Φab ∈ F, define

F

ξ Π0
−2(Φ) := ξ[A ξaB]Φabξ

b[C ξD] , F

ξ Π0
−1(Φ) := ξ[A ξaB]Φabξ

bC ,

F

ξ Π0
0(Φ) := ξaAξbBΦab ,

F

ξ Π1
0(Φ) := ξ[A ξaB]Φab + 1

n− 1γbC
[A ξcB]ξdCΦcd ,

F

ξ Π0
1(Φ) := ξaAΦab .

The Cotton–York tensor For Aabc ∈ A, define

A
ξ Π0

−3(A) := ξ[A ξaB]ξb[C ξcDξE]Aabc ,

A
ξ Π0

−2(A) := ξ[AξaBξbC]ξcDAabc ,
A
ξ Π1

−2(A) := ξ[AξaB]ξb[CξD]ξcEAabc + ([AB] ↔ [CD]) ,

A
ξ Π0

−1(A) := ξ[A ξaB]ξbcCAabc −
1

n− 2ξ
aCξbAξcBAabc ,

A
ξ Π1

−1(A) := ξaAξbBξcCAabc ,

A
ξ Π2

−1(A) := ξ[AξaBξbC]Aabc + 1
2(n− 3)ξ

[AξaB|ξbdDAabdγcD
|C] − 1

2(n− 3)ξ
aDξb[AξdBAabdγcD

C] ,

A
ξ Π3

−1(A) := ξ[AξaB]ξb[CξD]Aabc + 3
2(n + 1)ξ

[AξaB]ξbdEAabdγcE
[CξD] + 1

2(n + 1)ξ
aEξbCξdDAabdγcE

[AξB]

+ ([AB] ↔ [CD]) ,

A
ξ Π0

0(A) := ξaAξbcBAabc ,
A
ξ Π1

0(A) := ξaAξb[BAabcξ
C] + 1

n− 1ξ
aAξbdDAabdγcD

[BξC] ,

A
ξ Π2

0(A) := ξ[AξaB]ξbCAabc −
1
2Acabξ

ab[AξB]ξC − 1
n− 1ξ

aCξbdDAabdγcD
[AξB] ,

A
ξ Π0

1(A) := ξbcCAabcξ
D + 2

n− 2ξ
bBξbCAbca ,

A
ξ Π1

1(A) := ξaAξbBAabc ,

A
ξ Π2

1(A) := A[ab]cξ
c[CξD] + 1

2(n− 3)γ[aE
[CξD]Ab]cdξ

cdE + 1
n− 3ξ

cEξd[CAcd[aγb]E
D] ,

A
ξ Π3

1(A) := A(ab)cξ
c[CξD] − 3

2(n + 1)γ(aE
[CξD]Ab)cdξ

cdE − 1
n + 1ξ

cEξd[CAcd(aγb)E
D] ,

A
ξ Π0

2(A) := ξcCA[ab]c ,
A
ξ Π1

2(A) := ξcCA(ab)c .
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The Weyl tensor For Cabcd ∈ C, define

C
ξ Π0

−4(C) := ξ[A ξaBξbC]Cabcdξ
c[D ξdEξ F ] , C

ξ Π0
−3(C) := ξ[A ξaBξbC]Cabcdξ

cDξdE ,

C
ξ Π0

−2(C) := ξ[A ξaBξbC]Cabcdξ
cdD , C

ξ Π1
−2(C) := ξaAξbBCabcdξ

cCξdD ,

C
ξ Π2

−2(C) := ξaAξbBCabcdξ
c[CξD] + 1

n + 1

(
ξaAξbBCabceξ

ceEγdE
[C − ξa[C|ξb[A|Cabceξ

ceEγdE
|B]

)
ξD]

− 1
n− 3γdE

[A|ξaEξb|B]Cabdeξ
dCξeD (mod ξ[Aαd

B][CξD]) ,

C
ξ Π0

−1(C) := ξaAξbBCabcdξ
cdC ,

C
ξ Π1

−1(C) := ξaAξbBCabcdξ
dD − ξ[AξabB]Cabcdξ

dD + 1
n− 3ξ

abDCabedξ
eEξd[AγcE

B] ,

C
ξ Π2

−1(C) := ξaAξbBCabcdξ
dD − ξabDCabcdξ

d[AξB] + ξab[ACabcdξ
dB]ξD

− 1
n + 1

(
ξabECabedξ

eAξdBγcE
D − ξab[ACabedξ

eB]ξdEγcE
D
)

− 1
n + 1

(
ξabECabdeξ

de[AγcE
B]ξD − ξabECabdeξ

deDγcE
[AξB]

)
(mod ξDξ[Aαd

B]) ,

C
ξ Π0

0(C) := ξabACabcdξ
cdB ,

C
ξ Π1

0(C) := ξab(ACabcdξ
dB)ξC − 1

n− 1ξ
abEξde(ACabdeγcE

B)ξC

− 2n− 1
n− 3ξ

aCξb(ACabcdξ
dB) (mod ξAξBαd

C) ,

C
ξ Π2

0(C) := ξaAξbBCabcdξ
cC ,

C
ξ Π3

0(C) := ξa[ACa[bc]dξ
dBξC] + 1

n− 5

(
γ[bE

[AξdBξC]Cc]daeξ
aeE + ξa[AξeB|Cae[b|fξ

fEγc]E
|C]

)

− 1
2(n− 3)(n− 5)

(
ξaeECaedfξ

df [Aγ[bE
Bξ

C]
c] − ξaeECaedfξ

df [AγbcE
BξC]

)
,

C
ξ Π4

0(C) := ξ[AξaB]Ca(bc)dξ
d[CξD] + 1

n + 3

(
ξ[Aξ

B]
(b Cc)daeξ

d[CξaeD] + ξ[Aγ(bE
B]Cc)daeξ

dEξae[CξD]

+ 2 ξ[Aγ(bE
B]Cc)daeξ

d[CξD]ξaeE − ξ[Aγ(bE
B]Cc)daeξ

dEξaCξeD
)

− 1
(n + 1)(n + 3)

(
ξ[Aγ(bE

B]γc)F
[CξD]ξaeECaedfξ

dfF + 1
2ξ

[A
b ξaeB]Caedfξ

df [CξD]

+ ξ[Aγ(bE
B]γc)F

[CξaD]ξfF ξaeECaedf − γ(bE
[AξaeB]ξ

[C
c) ξ

dD]ξfECaedf

)

+ ([AB] ↔ [CD]) ,
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C
ξ Π0

1(C) := ξabBCabcdξ
dC ,

C
ξ Π1

1(C) := ξaACa[bc]dξ
dD + 1

2(n− 3)

(
γ[b|E

[A|ξaeECae|c]dξ
d|D] + γ[b|E

[AξaeD]Cae|c]dξ
dE

)

− 1
2(n− 1)(n− 3)

(
ξaeECaefdξ

fd[AγbcE
D]
)
,

C
ξ Π2

1(C) := ξaACa(bc)dξ
dD + 3

2(n + 1)

(
γ(b|E

(A|ξaeECae|c)dξ
d|D) + γ(b|E

(AξaeD)Cae|c)dξ
dE

)

+ 3
2(n− 1)(n + 1)

(
ξaeECaefdξ

fdF γ(bE
Aγc)F

D
)

(mod ξAξDCbc) ,

C
ξ Π0

2(C) := ξabACabcd ,
C
ξ Π1

2(C) := ξaACa(bc)dξ
dB ,

C
ξ Π2

2(C) := ξ[AξaD]Cabcd −
1

n− 3

(
ξa[ACab[c|eγ|d]E

D]ξeE − ξa[ACa[c|beγ|d]E
D]ξeE

)

− 1
n + 1

(
ξaeECaecdγbE

[AξD] − ξaeECaeb[cγd]E
[AξD]

)

− 3
2(n + 1)(n− 3)

(
ξaeECaebfξ

fFγ[cE
[Aγd]F

D] − ξaeECae[c|fξ
fFγ|d]E

[AγbF
D]
)

+ 1
2(n + 1)(n− 3)

(
ξae[A|Caebfξ

fEγcdE
|D] − ξae[A|Cae[c|fξ

fEγ|d]bE
|D]

)

− 2
(n + 1)(n− 3)

(
ξaeECaebfξ

f [AγcdE
D] − ξaeECae[c|fξ

f [Aγ|d]bE
D]
)

+ 2
(n + 1)(n− 1)(n− 3)ξ

aeECaefgξ
fgF

(
γbE

[AγcdF
D] − γ[cE

[Aγd]bF
D]
)
,

C
ξ Π0

3(C) := ξaACabcd .

Appendix B. Spinor calculus in three and five dimensions

In this appendix, we give a brief description of spinor calculus in dimensions three and five.

B.1. Three dimensions

Let (M, g) be a three-dimensional complex Riemannian manifold equipped with a holomorphic volume 
form and a holomorphic spin structure. The spin group is the complex special linear group SL(2, C) acting 
on two-dimensional spinor space S and its dual S∗, which we shall identify by means of volume forms εAB

and εAB. All spinors are pure. By and large, this is analogous to the two-spinor calculus of [33], except that 
there is no ‘primed’ spinor space. We can convert tensorial quantities into spinorial ones by means of the 
normalised γ-matrices 1√

2γa
AB , which are symmetric in their spinor indices, and satisfy the identity

γaA
Bγa

C
D = −δDA δBC + εACε

BD , i.e. γaABγ
a
CD = −2 εA(C εD)B .
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The standard representation V of SO(3, C) is isomorphic to �2S, and, by Hodge duality, to ∧2V. There 
is no Weyl tensor in dimension three, while the tracefree Ricci tensor and the Cotton–York tensor are 
represented by totally symmetric spinors ΦABCD and AABCD respectively.

B.1.1. Projective spinor fields
Let [ξA] be a holomorphic projective pure spinor field. Then, unlike in higher odd dimensions, its stabiliser 

P , with Lie algebra p, at a point induces a |1|-grading on the Lie algebra g ∼= ∧2V of Spin(3, C). As in 
dimension four, the spinor ξA defines a P -invariant filtration S

k
2 ⊂ S

k
2−1 ⊂ . . . ⊂ S− k

2 +1 ⊂ S− k
2 on 

S− k
2 := �kS, where S

k−2�+2
2 :=

{
φA1...Ak

∈ S− k
2 : φA1...A�A�+1...Ak

ξA1 . . . ξA�

}
, and ξA is said to be a 

principal spinor of φA1...Ak
if it lies in S− k

2 +1.

Intrinsic torsion The projective spinor field [ξA] induces a P -invariant filtration W0 ⊂ W−1 ⊂ W−2 on 
the p-module W := V ⊗ (g/p) of intrinsic torsions. From a geometric point of view, the associated almost 
null structure Nξ of [ξA] is of rank-1 and thus always integrable. The relation between W and the geometric 
properties of Nξ and N⊥

ξ is given below.

Proposition B.1. Let [ξA] be a holomorphic projective spinor field on (M, g) with associated null structure 
Nξ. Denote by ∇AB the Levi-Civita connection of g. Then, pointwise, the intrinsic torsion of [ξA]

• lies in W−1 if and only if ξAξBξC∇ABξC = 0 if and only if Nξ is co-integrable if and only if Nξ is 
(totally) geodetic;

• lies in W0 if and only if ξBξC∇ABξC = 0 if and only if Nξ is (totally) co-geodetic;
• vanishes if and only if ξC∇ABξC = 0.

Remark B.2. The above conditions are equivalent to the null vector field kAB := ξAξB being geodetic, 
dilation free and recurrent respectively. The properties of null structures in dimension three were also 
studied in [29] in the context of a Goldberg–Sachs-type theorem.

B.2. Five dimensions

Let (M, g) be a five-dimensional complex Riemannian manifold equipped with holomorphic volume form 
and a holomorphic spin structure. We first work at a point. The spin group is isomorphic to the complex 
symplectic group Sp(4, C), so that the spinor space S is a four-dimensional complex vector space equipped 
with non-degenerate skew-symmetric bilinear form γAB with inverse γAB , i.e. γACγ

BC = δBA , by means of 
which we shall lower and raise indices. All spinors are pure. Tensor indices are converted into spinorial ones 
by means of the normalised skewsymmetric γ-matrices i

2γa
AB , tracefree with respect to γAB, which satisfy

γaA
Bγa

C
D = δBAδDC − 2 δDA δBC − 2 γACγ

BD , i.e. γaABγ
a
CD = γABγCD + 4 γA[C γD]B . (B.1)

In particular, we have V ∼= (∧2S)◦ and ∧2V ∼= �2S where V is the standard representation of SO(5, C). 
The tracefree Ricci tensor, the Weyl tensor and the Cotton tensor admit the spinorial expressions

ΦABCD = Φ[AB][CD] , CABCD = C(ABCD) , AABCD = A[AB](CD) ,

respectively, all of which are completely tracefree, and where Φ[ABC]D = 0, A[ABC]D = 0.

B.2.1. Projective spinor fields
Let [ξA] be a projective spinor field on (M, g) with stabiliser P ⊂ Spin(5, C) at a point. Following 

section 2, we have the induced P -invariant filtrations S1 ⊂ S0 ⊂ S−1 and V1 ⊂ V0 ⊂ V−1 where
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S−1 := S , S0 := {αA ∈ S : αAξ
A = 0} , S1 := 〈ξA〉 = {αA ∈ S : α[AξB] = 0} ,

V−1 := V , V0 :=
{
V AB ∈ V : ξCV C[A ξB] = 0

}
, V1 :=

{
V AB ∈ V : ξCV CA = 0

}
.

Equivalently, V1 =
{
V AB ∈ V : ξ[AVBC] = 0

}
. Similarly, we can express the various P -invariant submodules 

of g ∼= �2S in terms of the maps

g

ξΠ
0
−2(φ) := ξAξBφAB , g

ξΠ
0
−1(φ) := ξAφA

[B ξC] ,

g

ξΠ
0
0(φ) := ξAφA

B , g

ξΠ
1
0(φ) := ξ[AφB][C ξD] ,

g

ξΠ
0
1(φ) := φA[B ξC] ,

where φAB = φ(AB).
The explicit expressions for the maps Fξ Πj

i , Aξ Πj
i and Cξ Πj

i defined in section 4 can be significantly simplified. 
For ΦABCD ∈ F, we have

F

ξ Π0
−2(Φ) := ξ[F ΦA]BC[D ξBξCξE] ,

F

ξ Π0
−1(Φ) := ΦABC[D ξBξCξE] ,

F

ξ Π0
0(Φ) := ΦABCDξBξC , F

ξ Π1
0(Φ) := ξ[AΦB]ECDξE + ε[A|[CΦD]EF |B]ξ

EξF ,

F

ξ Π0
1(Φ) := ΦABCDξB .

For AABCD ∈ A, we have

A
ξ Π0

−3(A) := ξ[EAA]BCDξBξCξD ,

A
ξ Π0

−2(A) := AABCDξBξCξD , A
ξ Π1

−2(A) := ξ[AAB]EF [Cξ
EξF ξD] + ξ[CAD]EF [Aξ

EξF ξB] ,

A
ξ Π0

−1(A) := 4 ξ[AAB]DECξ
DξE −AABDEξ

DξEξC , A
ξ Π1

−1(A) := AABC[D ξBξCξE] ,

A
ξ Π3

−1(A) := ξ[AAB]G[C |[E ξGξF ]ξ|D] + ξ[C AD]G[E |[A ξGξB]ξ|F ] + ξ[EAF ]G[A |[C ξGξD]ξ|B] ,

A
ξ Π0

0(A) := AABCDξBξC , A
ξ Π1

0(A) := ξFAAF [B|[DξE]ξ|C] ,

A
ξ Π2

0(A) := ξ[Aξ
FAB]FE[CξD] + ξ[Aξ

FAB]EF [CξD] ,

A
ξ Π0

1(A) := ξ[Aξ
EAB]ECD − ξEAABE(CξD) ,

A
ξ Π1

1(A) := ξEAAEB[CξD],

A
ξ Π3

1(A) := AAB[C |[E ξF ]ξ|D] + ACD[E |[A ξB]ξ|F ] + AEF [A |[C ξD]ξ|B] ,

A
ξ Π0

2(A) := ξDAADBC , A
ξ Π1

2(A) := AABC[DξE] + ADEC[AξB] .

Finally, for CABCD ∈ C, we have

C
ξ Π0

−4(C) := CABCDξAξBξCξD , C
ξ Π0

−3(C) := CABC[D ξAξBξCξE] ,

C
ξ Π0

−2(C) := CABCDξAξBξC , C
ξ Π2

−2(C) := ξ[F CA]BC[D ξBξCξE] ,

C
ξ Π0

−1(C) := CABC[D ξBξCξE] ,
C
ξ Π1

−1(C) := ξ[F CA]B[C |[D ξBξE]ξ|F ] ,

C
ξ Π0

0(C) := CABCDξBξC , C
ξ Π2

0(C) := ξ[F CA]BC[D ξBξF ] ,

C
ξ Π4

0(C) := ξ[G ξ|[F CA]|B][C |[D ξE]ξ|F ] ,

C
ξ Π0

1(C) := ξ[F CA]BCDξB , C
ξ Π1

1(C) := ξ[F CA]B[C |[D ξE]ξ|F ] ,

C
ξ Π0

2(C) := CABCDξB , C
ξ Π2

2(C) := ξ[F CA]BC[D ξE] ,

C
ξ Π0

3(C) := CABC[D ξE] .
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Intrinsic torsion Denote by ∇AB the Levi-Civita connection of g. Then the differential characterisations 
of the intrinsic torsion of [ξA] can be re-expressed as

(5.5) ⇐⇒ ξ[A
(
ξC∇B]Cξ

D
)
ξD = 0 , (B.2)

(5.6) ⇐⇒
(
ξB∇ABξ

C
)
ξC = 0 , (B.3)

(5.7) ⇐⇒
(
ξD∇D[AξB

)
ξC] = 0 , (B.4)

(5.8) ⇐⇒ ξ[A
(
ξE∇B]Eξ[C

)
ξD] + ξ[C

(
ξE∇D]Eξ[A

)
ξB] = 0 , (B.5)

(5.9) ⇐⇒ (∇ABξ
C)ξC = 0 , (B.6)

(5.11) ⇐⇒
(
ξD∇ADξ[B

)
ξC] = 0 , (B.7)

(5.12) ⇐⇒ (∇ACξ
C)ξB − (ξC∇ACξ

B) = 0 , (B.8)

(5.13) ⇐⇒
(
∇ABξ[C

)
ξD] + ξ[CεD][A∇B]Eξ

E + ε[C|[Aξ
E∇B]Eξ|D] = 0 . (B.9)

Finally, denote by Nξ the almost null structure associated to [ξA]. Then condition (5.14) for Nξ to satisfy 
[Γ(Nξ), Γ(Nξ)] ⊂ Γ(N⊥

ξ ) reduces to (B.2). Condition (5.16) for Nξ to be co-integrable can be expressed as

ξ[A

(
ξE∇B]Eξ[C

)
ξD] + ξ[CεD][A

(
ξE∇B]EξF

)
ξF = 0 . (B.10)

Condition (5.17) for Nξ to be integrable and co-integrable can be expressed as

(
ξB∇ABξ

C
)
ξC = 0 , ξ[A

(
ξE∇B]Eξ[C

)
ξD] = 0 . (B.11)

As an example, one can check that a solution ξA of the twistor equation

∇ABξC + 1
5εABζC + 4

5ζ[A εB]C = 0 , ζA = ∇ABξB ,

satisfies equations (B.11) if and only if ξAζA = 0 as claimed in Proposition 5.24.

Appendix C. Conformal structures

Background information on (holomorphic) conformal structures is already given [39] to which the reader 
should refer. Here, we merely collect useful formulae concerning spinor transformations under a conformal 
change of holomorphic metrics ĝab = Ω2gab for some non-vanishing holomorphic function Ω on M. Corre-
spondingly, the γ-matrices can be chosen to transform as γaAB �→ γ̂aA

B = ΩγaA
B where γ̂aAB denote the 

γ-matrices for metric ĝab. In addition, we can choose the spin invariant bilinear forms γAB on S to rescale 
with a conformal weight of 1, and their dual with a conformal weight of −1. This means in particular that 
the quantities γaAB and γa

AB have conformal weight 0. Then the spin connection ∇̂a is related to ∇a by

∇̂aξ
B = ∇aξ

B − 1
2Υbγ

b
aC

BξC + 1
2Υaξ

B = ∇aξ
B − 1

2Υbγ
b
C
DγaD

BξC , (C.1)

for any holomorphic spinor field ξA
′ , and similarly for dual spinors. This connection preserves the hatted 

γ-matrices and the hatted bilinear forms on S, in agreement with the convention of [32].
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If we now assume that ξA is a pure spinor field, we then obtain from (C.1)
(
∇̂aξ̂

bB
)
ξ̂b

C =
(
∇aξ

bB
)
ξCb + 1

2Υbξ
bDγaD

BξC + 2 Υbξ
b[BξC]

a ,

(
γ̂a

B
A∇̂aξ̂

bB
)
ξ̂b

C = Ω−1
((

γa
B
A∇aξ

bB
)
ξCb + n− 2

2
(
2 Υbξ

bCξA − Υbξ
bAξC

))
,

ξ̂aA∇̂aξ
B = Ω−1

(
ξaA∇aξ

B − 1
2Υbξ

bBξA + Υbξ
bAξB

)
,

(
ξ̂aA∇̂aξ̂

bB
)
ξ̂b

C = Ω−1
((

ξaA∇aξ
bB

)
ξCb − 1

2Υbξ
bBξAξC − 2Υbξ

b[AξC]ξB
)

,

(
∇̂aξ̂

aB
)
ξC − ξ̂aB∇̂aξ

C = Ω−1
((

∇aξ
aB

)
ξC − ξaB∇aξ

C + n− 2
2 Υbξ

bBξC + 1
2Υbξ

bCξB
)

,

where we have set ξ̂aA := γ̂a
B
AξB . In particular, from the first three expressions, we get

(
∇̂aξ̂

b[B
)
ξ̂b

CξD] =
(
∇aξ

b[B
)
ξCb ξD] + 2 Υbξ

b[BξCa ξD] ,

(
γ̂a

B
A∇̂aξ̂

bB
)
ξ̂b

[CξD] = Ω−1
((

γa
B
A∇aξ

bB
)
ξ
[C
b ξD] + (n− 2) ξAΥbξ

b[CξD]
)
,

(
ξ̂aA∇̂aξ

[B
)
ξC] = Ω−1

((
ξaA∇aξ

[B
)
ξC] − 1

2ξ
AΥbξ

b[BξC]
)

,

from which the conformal invariance of (5.10) follows.
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