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We study the geometric properties of a (2m + 1)-dimensional complex manifold
M admitting a holomorphic reduction of the frame bundle to the structure group
P C Spin(2m + 1, C), the stabiliser of the line spanned by a pure spinor at a point.
Geometrically, M is endowed with a holomorphic metric g, a holomorphic volume
form, a spin structure compatible with g, and a holomorphic pure spinor field £ up
to scale. The defining property of £ is that it determines an almost null structure,
i.e. an m-plane distribution A¢ along which g is totally degenerate.
We develop a spinor calculus, by means of which we encode the geometric properties
of N¢ and of its rank-(m + 1) orthogonal complement Né corresponding to the
algebraic properties of the intrinsic torsion of the P-structure. This is the failure
of the Levi-Civita connection V of g to be compatible with the P-structure. In a
similar way, we examine the algebraic properties of the curvature of V.
Applications to spinorial differential equations are given. Notably, we relate the
integrability properties of Mg and /\/'g- to the existence of solutions of odd-
dimensional versions of the zero-rest-mass field equation. We give necessary and
sufficient conditions for the almost null structure associated to a pure conformal
Killing spinor to be integrable. Finally, we conjecture a Goldberg—Sachs-type
theorem on the existence of a certain class of almost null structures when (M, g)
has prescribed curvature.
We discuss applications of this work to the study of real pseudo-Riemannian
manifolds.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The present article is the odd-dimensional counterpart of the author’s work presented in [39]. Both articles

work share the same motivations and goals, and the reader should refer to the latter work for further details.

Let (M, g) be an n-dimensional complex Riemannian manifold, where n = 2m + 1. We shall assume

that (M, g) is also equipped with a global holomorphic volume form and a holomorphic spin structure so

that the structure group of the holomorphic frame bundle is reduced to G := Spin(n, C). We work in the

holomorphic category. We shall be considering a projective pure spinor field [£], i.e. a spinor field up to
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scale that annihilates a totally null m-plane, or v-plane, distribution. This will also be referred to as its
associated almost null structure N¢. The structure group of the frame bundle of (M, g) is reduced to P, the
stabiliser of [¢] at a point. Denote by g and p the respective Lie algebras of G and P, and by 2 the standard
representation of g. The main aim of the article is to examine the geometric properties of the P-structure
on (M, g). More specifically, we will

o give a P-invariant decomposition of the space 20 := 20 ® (g/p) of intrinsic torsions;

e give P-invariant decompositions of the spaces of curvature tensors, in particular, tracefree Ricci tensors,
Cotton—York tensors and Weyl tensors;

e apply these decompositions to the study of almost null structures and pure spinor fields on complex
Riemannian manifolds.

The methodology will be a synthesis of representation theory and a spinor calculus adapted to the
P-structure. Before we proceed, we first highlight the crucial differences between the odd- and even-
dimensional cases:

o there is only one irreducible spinor representation of G as opposed to two chiral ones — paradoxically,
this makes the spinor calculus more fiddly;

o the stabiliser p of [¢] induces a |2|-grading on g, rather than a |1|-grading;

« the orthogonal complement g‘ of N¢ is (m + 1)-dimensional and contains N, rather than ./\/g- =MNe.

Consequently, one has to encode the properties of both N¢ and J\fg‘ in terms of differential conditions on
[¢], although there is some degree of interdependency between N and N, SJ- Making the move from even to
odd dimensions is therefore not always straightforward. A case in point is when N is integrable. In even
dimensions, Vg would be automatically totally geodetic, but in odd dimensions, this condition is stronger.
In addition, one could have the extra requirement for N\, 5J' to be also integrable, and or even totally geodetic.
This is particularly relevant to generalisations of the Robinson theorem, which can be strikingly different.
The present article can, if not should, be read in conjunction with [39] for comparison and ease of
understanding of the notions introduced in the latter. Indeed, these two papers are broadly ‘mirror images’
of each other: the overall structure is the same in both papers as far as the numbering of the sections is
concerned. For the sake of conciseness, we have not always deemed it necessary to re-establish notations

and conventions.

Structure of the paper: Our spinor calculus will first be developed in section 2. New results include Propo-
sitions 2.6 and 2.9, and Corollary 2.10, which provide simpler alternatives to some of Cartan’s formulae
on pure spinors. Proposition 3.2 in section 3 is concerned with the decomposition of the space of intrinsic
torsions of a P-structure. In the same vein, in section 4, Propositions 4.1, 4.2 and 4.4 give P-invariant
decompositions of the spaces of tracefree Ricci tensors, Cotton—York tensors and Weyl tensors respectively.

Section 5 focuses on the geometric applications. Proposition 5.4 is the geometric articulation of Propo-
sition 3.2. Proposition 5.7, Lemma 5.8 and Proposition 5.11 are concerned with geometric interpretations
of Mg in terms of V[¢]. Three distinct generalisations of the Robinson theorems for three distinct types of
zero-rest-mass fields are given in Theorems 5.19, 5.20 and 5.21. Applications to conformal Killing spinors are
given in Propositions 5.24, 5.28 and 5.30. Conjecture 5.32 postulates a generalisation of the Goldberg—Sachs
theorem given in [37]. Integrability conditions for solutions of the field equations involved are also given in
Propositions 5.12, 5.13, 5.14, 5.17, 5.23 and 5.27 among others.

Appendix A contains useful formulae to characterise tracefree Ricci, Cotton—York and Weyl tensors in
the light of the decompositions given in section 4. A brief discussion of spinor calculus in dimensions three



A. Taghavi-Chabert / Differential Geometry and its Applications 51 (2017) 117-152 119

and five can be found in Appendix B. In Appendix C, we describe conformal transformations of spinor
fields.

2. Spinor calculus

Conventions follow those of [39], based on [32,33]. Further background on spinors can be found in [8,33,
6,22,23] and on representation theory in [2,12].

2.1. Clifford algebras and spinor representations

Let U be an n-dimensional complex vector space equipped with a non-degenerate symmetric bilinear
form gap = g(av) € ®29*, by means of which we shall identify 2 with its dual 2*. We choose an orientation,
and denote the Hodge star operator by *. Denote the Clifford algebra of (U, g) by C4(T, g) and the Clifford
multiplication by a dot -. We recall that C£(0, g) = A®*D as vector spaces. Henceforth, we assume n = 2m+1.
The spin group G := Spin(2m + 1,C) has a single 2™-dimensional irreducible representation, the spinor
space S of (U, g). We can realise G as follows. We split U as U = 9@ N* @ U where 9T and N* are two
totally null m-dimensional subspaces of U, dual to each other 91*, and the one-dimensional complement
il is non-null. Then & can be identified with A*Dt as a C£(U, g)-module: for any (v, w,u) € U, the action
of the Clifford algebra on & is given by (v,w,u) - & = v A € — wa€ + ieué where i2 = —1 and € = 1 if
EEN™ MNP A 2NOA ™ NG ..,and e = —1if EEANTINS AT BN A ND .. ..

The Clifford algebra can be shown to be isomorphic to a direct sum of two inequivalent copies of the
algebra Mat(2™, C) of 2™ x 2™-matrices over C acting on &. Elements of & will carry upstairs upper-case
Roman indices, e.g. €4, and similarly for elements of its dual &*, with downstairs indices, e.g. 4. The
Clifford algebra C/(0, g) is generated by the y-matrices .4 which satisfy

Yaa“Voe” = —gadl . (2.1)

Thus, only skew-symmetrised products of ~-matrices count, and we shall make use of the notational
shorthand ’Yalaz...apAB = V[alAcl’Yazclc2--~’Yap]CpB for any p. These realise the linear isomorphism
AU = CL(T, g) = Mat(2™,C) @ Mat(2™, C), and the two copies of Mat(2™, C) will be identified by Hodge
duality.

The spinor space & and its dual &* are equipped with non-degenerate bilinear forms, denoted v4p,
with which one can in effect raise or lower spinor indices. In particular, we have bilinear maps 7a,...a, 4B
from & x & to APY for any p. Depending on the values of m and p, these can be either symmetric or
skewsymmetric. Our treatment will be largely dimension independent, and we will in general dispense of
their use. Nonetheless, we shall make use of the following result:

Lemma 2.1. We have
B D __ m
Yaa?Vor.0,BDYec” = (=1)" (Yaby...bpcac — (0 + 1)Vabr...b, 1 ACTby]c
— D Galpy Vos... byJcAC + PP+ 1) Gafby Voo...by1 ACTb,)c) -
In particular, 'y“AB'ybl__,prD'yacD = (=1)"P(2p — 2m — 1)vp,..5,AC-
2.2. Null structures and pure spinors

Definition 2.2. A null structure or vy-plane on ¥ is an m-dimensional vector subspace 9t C U that is totally
null, i.e. g XY? =0 for all X%, Y € M.
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Let €4 be a non-zero spinor in &, and consider the map ¢4 := ¢8v,54 : 0 — &. By (2.1), the kernel of
€A 90 — & s totally null.

Definition 2.3. A non-zero spinor ¢ is said to be pure if the kernel of ¢ : % — & is m-dimensional, and
thus defines a null structure.

The projectivisation of the line (¢4) spanned by a pure spinor £4 will be referred to as a projective pure
spinor [£4] € PG.

Proposition 2.4 (/8]). There is a one-to-one correspondence between projective pure spinors and y-planes on

(T, 9).

Henceforth, ¢4 will denote a fixed pure spinor. The crucial departure from the even-dimensional case is
that a null structure is contained in its orthogonal complement, that is, £4 induces a filtration

{0} ==0*cycv’cu?, (2.2)

where B! := U, V! := ker f;‘ : 0 — & and the orthogonal complement 0° of U with respect to gup is
(m + 1)-dimensional. The map &2 allows us to identify elements of 2 with elements of &, notably

m—2

@/ 6% 26, (Ul o6t 26" /6%,

m—2
)

(D0 ) 067 26"

where (£4) =: 6% C S" = im ¢4 0 — &. Dually, we also have

—2

DUEECE S (6*%/6”"’2“‘) . wulzete (6*%/6*’”2 ) :

v xet (e e )

where 6% = &%, 6~ "7 = keré4 : C <+ G&* and G = ker¢2 : U «+ &*. Using (2.1), we can
m—4 _m-—2

, 6
check that =" € &~z C &~ 2. More concretely, we have

Lemma 2.5. Let V% be a non-zero vector in 0. Then

e V% is an element of B° if and only if V¢ = £%4v, for some non-zero vy € 6_%/6_m;4 ;
e V% is an element of V' if and only if V¢ = £%v, for some non-zero vy € G_mTﬂ/G_m;L.

As a direct consequence, a pure spinor ¢4 must satisfy £24¢8 = X\ ¢4¢P for some \. Contracting each
side by £°Cy.4 " and a little algebra then leads to A = —1.

Proposition 2.6. A non-zero spinor £ is pure if and only if it satisfies
£0ey = —£¢P. (2.3)
By Lemma 2.1, we can express (2.3) equivalently as the following more familiar algebraic characterisation.
Proposition 2.7 (/8]). A non-zero spinor €4 is pure if and only if it satisfies

%1“.%‘435‘453 =0, forallp<m,p=m,m+1 (mod4),
vapEleB =0, when m =0,3 (mod 4), (2.4)

’yal‘..a,,,LABgAfB 7é 0.
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We shall refer to both equations (2.3) and (2.4) as the purity conditions of a spinor €. These are vacuous
when m < 2, i.e. all spinors are pure when m < 2.
The only non-vanishing irreducible component of the tensor product £4¢2 is thus the m-form g, .

Qm

Val,,,amAnggB, which can be seen to annihilate °. It is null (or simple or decomposable) in the sense that

m

bay..a, = 5&411 .. .§£;#€Al__.,4m € A™U! for some e4, 4, € AT (6* 5 /G*MT_4>. Similarly, its Hodge dual

(%) ay...amsr € AU annihilates V' and is represented by some €4,...4 e At (G*%/G*mf).

m+1

Proposition 2.8 (/8/). Let a” and 34 be two spinors not proportional to each other. Then the vy-planes
associated to a* and B4 intersect in a totally null (m — k)-plane if and only if

'Yal...apABaABB =0, forallp <m —k,
vapatBP £0,

’Yal...am_kABaABB 7& 07
fork=1,...m.

As a consequence of Lemma 2.1, we have, in the special case when k = 1,2, the equivalent characterisa-
tions.

Proposition 2.9. Let o and B be two spinors not proportional to each other. Then
o the vy-planes associated to o and B4 intersect in a totally null (m — 1)-plane if and only if
OéaAﬂaB — OéA,BB _ Q/BAOéB — 70[(1463) + 30[[AIBB] ; (25)

o the y-planes associated to o* and B4 intersect in a totally null (m — k)-plane where k =1 or 2, if and
only if

oza(Aﬁf) = —a48B). (2.6)
Finally, in the context of our present notation, we conclude
Corollary 2.10. Let €4 be a pure spinor in (U, g) and let G" :=im ¢A 0 — & as before. Then

o Any non-zero spinor in S" is pure.
o The y-planes associated to any two pure spinors in S™z" intersect in a totally null (m —k)-plane where
k can be either 0 or 1 or 2.

We omit the proof which is essentially the same as in the even-dimensional case and consists in checking
the veracity of the algebraic conditions (2.3), (2.5) and (2.6).

Splitting It is convenient to choose a splitting of the filtration (2.2) as
B =0V_1DVy DY, (27)
where 0 := U~ and U; are subspaces such that U = U; ® Y+, each linearly isomorphic to U¢/T*+L.

Now, % _; is a y-plane dual to 2" to which we associate a pure spinor 74 dual to &4, i.e. U_1 := kernga :
U — &*, where 1g4 := 1pYaa”. Conversely, any choice of spinor dual to €4 induces a splitting (2.7).
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For convenience, we choose €4 and 74 to satisfy €44 = —%, and define
u® = 2n%64 hab = gap + uaUp - (2.8)
Then, u® spans Uy, and satisfies u®u, = —1, u“ff = §A and u®n,4 = na. Further, hy, is a non-degenerate

symmetric bilinear form on Uy @ V_1, i.e. hgpu® =0, heCheb = het, and he® =n — 1.
Next, define & m-2 = {imn,a : U — &*} N {keré? : C < &*}. This is the dual of Sz, the

2
= (¢4) in S™2". Elements of 9y and U_; must be of the form £4v, and n%4wA

respectively, for some v4 in &_m_> and w? in Gm_2, i.e. v4E4 =0 and win,y = 0.
2 2

complement of &%
Finally, we introduce the map
17 = 1aa8"" +nat”, (2.9)
which can be seen to be the identity element on & _z, or dually, on & _ 2. In particular EAIB =npl§ =0.
2.3. The stabiliser of a projective pure spinor in s6(2m + 1,C) for m > 1

In what follows, the Lie algebra g := s0(2m + 1,C) will be freely identified with A0 or A20*. At this
stage, we also assume m > 1, the case m = 1 being treated briefly in Appendix B.1.

Filtration The filtration (2.2) induces a filtration of vector subspaces there is a filtration

{0} ==g’cg’ceg'cg’cglcg?:=g, (2.10)
on g, where
0= {0a €01 6o D = 0b, g% = {gw € 91 €€ 0 = 0,
o' = {0w € 9: €M pug P = 0}, 0= {das € 0: 90 = 0}
The Lie bracket [-,] : gx g — g on g is compatible with this filtration, i.e. [g¢, g/] C g**/, with the convention

that g' = {0} for i > 3, and g’ = g for all i < —2, i.e. g is a filtered Lie algebra.
Using the useful identities

(babé-aAé-bB,ycAC,ycBD — _¢ab (é-aCé-bD + 4€ab[C§D]) , qsabé-abA,ycACé-CD _ _¢ab (é-abCé-D + 4§aC€bD) ,
(2.11)

or otherwise, one can show ¢q,&*4¢%8 = 0 if and only if ¢4 €8] = 0, and conclude:
Proposition 2.11. The Lie subalgebra p := g° is the stabiliser of [€4], i.e. pap€®®A ox €4,
The stabiliser p of [€4] is a parabolic Lie subalgebra of g [14,12].

Splitting  Splitting (2.10) yields a |2|-grading g = g—o ® g—1 ® go © g1 © g2 with [g;, 9;] C gi4;, for all ¢, j,
with the convention that g; = {0} for all |i| > 2. In relation to (2.7), we have g+o = A?U4q, g11 = VoV
and go = V_; @Y. The Lie subalgebra gq is isomorphic to gl(m, C), and thus splits further as go = 30 ®slo
where 39 is the centre gg and sly = sl(m, C) is the simple part of gg. The centre is spanned by the grading
element Eqp := —25[’3771,]A, with image in C4(, g) given by EaP := —1E.,7**45. For consistency with
[39], we also set
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Wap = Eap = —2€f277b],4- (2.12)

An element ¢, of sly can then be written as ¢q, = 25[‘2771,]B¢AB for some tracefree p P € G_msz ® 6m2—2
in the sense that 4214 = 0 where I3 is defined by (2.9).

Parabolic Lie subgroups At the group level, we denote by P the stabiliser of [¢4] in G. This is a parabolic
Lie subgroup of G with Lie algebra p. Its Levy decomposition is given by P = Gy x Py, where the image
Go in G — SO(2m + 1,C) under the covering map is the complex general linear group GL(m,C), and Py
is the nilpotent Lie group generated by g; @ go. All our p- and gp-modules will also be P- and Gg-modules.
The spinor calculus developed here is then manifestly P-invariant.

Associated graded vector space We now introduce the associated graded p-module gr(g) = @:__, gr;(g)
where gr;(g) = g°/g'™!. Each gr;(g) is linear isomorphic to the go-module g;, and we have a direct sum
decomposition gry(g) = gg@®g, where g§ := (g' +30) /9" and gf, := (g + slo) /g*. Writing €2 := EPryap
A2 — & and §7F = imffb : A2 — &, we can define

() = €6, () = € 60"+ g€

Then g' + 30 = {¢ar € 9 : gH})(qS) =0} and g' +slgp = {dap € 9 gl‘[g(qﬁ) = 0}. For convenience, we also set
oY :=gr,(g) for i = +1,+2.

2.4. Generalisation

As explained in [39], the parabolic subalgebra p induces a filtration {9} of indecomposable p-modules on
any finite g-module 9. We can split the filtration as a direct sum of go-modules 9M; isomorphic to ¢ /Mi+1,
on which the grading element E acts diagonalisably with eigenvalue i. Each 9t /9+1  respectively 9,
splits into a direct sum of irreducible p-submodules zm{ , respectively go-submodules E)jtf , with smg = 93?{ as
vector spaces. We record the action of g; C p on each 9%/ by an arrow as in [39).

To deal with the spinor representation &, we define the maps &2 = B0, B AFO = & for

aj...ap

k=1,...,2m+ 1. Then the spinor module & = G* admits a P-invariant filtration

—2

G Cc8"T C..C6 T CG T =6,
where 6% = (1), 67 = im¢&l , AP - 6,67 = k¢! i C ¢+ G and 677 =
ker¢Z . ¢ AFO* < &* for k = 1,...m. Further, we can choose subspaces &; C &' such that &' =
G&; & 6! such that

6:6% PCm—2®..06_n2d6_m.
2 2 2

The grading element FE,; in 30 and the spanning element u, of U, have eigenvalues mg% and (—1)%

respectively on & m-2x. This description is consistent with the identification of & with A*N.
2

2.5. Null Grassmanians

The space of all null structures or v-planes in (0, g) is the null (or isotropic) Grassmanian Gr,, (%, g).
Proposition 2.4 allows us to identify Gr,,(2,g) as the space of projective pure spinors of (U, g). This is

a compact complex subvariety of P& defined by the purity conditions (2.4), and it is isomorphic to the

%m(m + 1)-dimensional homogeneous space G/P. When m = 1,2, this space is isomorphic to the complex

projective space cpzm(m+1).
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2.6. Real pure spinors

When 9 is a real (2m+ 1)-dimensional vector space equipped with a definite or indefinite non-degenerate
symmetric bilinear form of signature (p, q), the spinor representation is complex and equipped with a real
or quaternionic structure, by means of which a (complex) pure spinor ¢ is sent to its complex conjugate &,
and correspondingly, its associated (complex) null structure 91 to its complex conjugate ﬁg. In contrast
to even dimensions, the real index r of , being the dimension of 91¢ N Mg, can take any integer value from
0 to min(p,q) — see [25]. When g is positive definite, 7 is always 0, and D¢ defines a metric-compatible
CR structure, also referred to, rather inappropriately, as a contact Riemannian structure. When g is of
Lorentzian signature, i.e. (1,2m) or (2m,1), » may be 0 or 1. In the latter case, one obtains a Robinson
structure [28,41,36,38]. When ¢ has signature (m, m + 1) or (m + 1, m), and r = m, we obtain a totally real
analogue of the above discussion, i.e. £, 9 and the stabiliser P of [{] in the connected identity component
of Spin(m,m + 1) are all real.

3. Decomposition of the intrinsic torsion

Define the p-module 20 := U ® (g/p), where as before g := so(2m + 1, C), U its standard representation,
and p C g stabilises a projective pure spinor [¢4]. We assume m > 1, leaving the case m = 1 to Appendix B.

Remark 3.1. In what follows, ® denotes the Cartan product, and go-modules and p-modules are abbreviated
to go-mod and p-mod respectively.

Proposition 3.2. The p-module 20 admits a filtration

W cwlcw?2cw?,

where
W3 =—ylg (9—2/90) 7 92— (;1]—1 ® (9—1/90)) ® (Q?O ® (9—2/90)) ’
W= (Ve (/) e (T e (s /"), W= (s /g") -

The associated graded p-module
gr(W) = gr (W) ® gr (W) @ gr_, (W) & gr (W)
decomposes into a direct sum

gr_4(W) =W, oW, gr_, (W) 2 WO, & W, @ w2, ,
gr_ (W) =W, oW, oW?,, gro(20) = g @ Wy,

of irreducible p-modules as described below

p-mod go-mod Dimension p-mod | go-mod Dimension

D) IS N3G gim(m —1)(m — 2) WY, | 300D m

W, | Y ,09, tm(m? — 1) W, |slh@V_y | 3m(m+1)(m—2)
W, | Vo®g o sm(m —1) W2, | Yo®g m

W, | AU @, %m(m -1 259 30 ® Yo 1

W2, | O*V_; @Y im(m+1) Wi | sl ® Vo m? —1
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with the proviso that W' |, W° 5 occur only when m > 2. Further,

= {TapeP¢C € W' : FUF() =0, for all k # j} /W, i=-3,-2,-1,0,
where

QBHO (F) _ Fab ga AbegCCgD]
Qﬂnl_?)(r) _ abcf AgaB]gb[CgD]gc Eé-F] + T abe g[CgaD]gb[Aé-B €C[E§

I°5(T) 1= Tapet*A¢MP ],

Py (T) i= T AP
”HZ(F) = Tapet A PIIOEPIE 4 Ty LIOgPIPIALBl el
PO (1) 1= 29 p T ape P ENPECT — Tgpeg AP,
1

L (1) i= DapeBeeCeP) + m%E[B‘ (2 YT gy F g1 — decdebe|C> bl

?Hgl(r) = FabcfaAgbC[Bgcq )

PTG := 70 Tapet™ P — 44T apet™”
1
%UH(l)(T) i= DypetBeC) 1 2 (W’dA[B‘decbeAQC] - fd[B‘decﬁbCA%Alc]) ,

where Tgpe € B®g. For m = 2, we have made use of the Spin(5, C)-invariant skewsymmetric bilinear forms

vap and vAB
Finally, the p-module gr(2W) can be expressed by means of the directed graph

IHQHQ

ﬂno
Qﬁl QBI
QITO QBO
D, — QHO

with the proviso that WL |, W 5 occur only when m > 2. Here, an arrow from QU{ to Qﬂi[l for some 1,5,k
implies that 207 C g1 - W¥_| for any choice of irreducible go-modules W and WE_, isomorphic to W and
2% | respectively.

Proof. The idea of the proof is to choose a splitting (2.7) for U, and thus for the filtration on 20. We can
then decompose an element I'yp € U ® A2, in the obvious notation,
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I\abcgbBé-cC — ffFABC _ uaI\BC + naAFABC 4 25‘:{:[\14:[360] o 2uaI\[B£C] + 2770,AFA:[B§C] ;
FabcbeD = (ffFAEC - uaFEC + naAFAEC) ncC’yCED -2 (ffFA:D - uaFD + naAFA:D)

+2 (5(;4FABB - uaFBB + naAFABB) ED ’

’yaDAFabcbeD — 4FCC€A + 4FCCA _ QFA _|_ ’r]aB’)/aCA (FBC _ FB:C + FCB) + anT/cCFDBC’YbCDA
—2TpBeA o458,
(3.1)
Here, TABC .= T, n?A¢PB¢cC TBC .= T ut¢PB¢cC and Ty B¢ .= Tapen4PBEC are skew-symmetric in
their last two indices, and the colon : in T'4.¢ := Tupendube® and T4C = T £34ubEeC separates the

1-form index from the Lie algebra indices. Then, elements of the gp-modules Quﬂf linearly isomorphic to QI]Z
are given by

riABel e gpt AR e gty
48 cap, riABl e apt, B e 9p?, |
u 2 9 .
Lpfhe®,,  I4B¢-— mﬂBlr pIc] ¢ gpt | reaw?,,
9 1 9
4 e 2, TaB — —I57c.9 e} .
m

Details are analogous to the even-dimensional case, and are left to reader. O
4. Decomposition of the curvature

Assume m > 1, and consider the following g-modules

g-mod Dimension Description
8" m(?m —+ 3) {(I)ab S ®2m* : ¢ab - (I)(ab) ,QCC = 0}
A %(27’)7, — 1)(2m + 1)(2m + 3) {Aabc € RV : Agpe = Aa[bc] 7A[abc] =0,A%. = 0}
¢ %(m —D(m+1)2m+1)(2m +3) | {Cupea € @Y : Cupea = Clab)led) » Clabejd = 0, C%ad = 0}

The tracefree Ricci tensor, Cotton—York tensor and the Weyl tensor of a Levi-Civita connection at a point
belong to §, A and € respectively. We now give p-invariant decompositions of these modules, where p
stabilises a projective pure spinor [¢4] as described in section 2.

4.1. Decomposition of the space of tracefree Ricci tensors
Proposition 4.1. The space § of tracefree symmetric 2-tensors admits a filtration
=FcFcFcFcg'lcs?=53,
of p-modules
F={P,cF: gnffl(q)) =0, forall k}, i=-1,0,1,2,

where the maps gﬂf are defined in Appendix A.2.
The associated graded p-module gr(F) = @?:72 gr;(T), where gr;(F) = F/FHL, splits into a direct sum
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gris(F) = o, gre i (3) = 3%, gro(3) =30 3o

of irreducible p-modules Sf as described below:

p-mod go-mod Dimension p-mod go-mod Dimension
L | Vi1 © Yy | gm(m+1) 3 o © W 1
5L | Voo Vi m Fo V@V | m?-1

Further,
J = {Pa € 3°: FIG(®) =0, for k # 5}/
Finally, the p-module gr(F) can be expressed by means of the directed graph
N

3 — 3 o, —3%

N

where an arrow from SZ to F¥ | for some i,j,k implies that @Z C o -%f,l for any choice of irreducible
go-modules %f and §§71 isomorphic to § and Tk | respectively, or equivalently that ker gHZ C ker ngﬁl.

4.2. Decomposition of the space of Cotton—York tensors
Proposition 4.2. The space 2 of tensors with Cotton—York symmetries admits a filtration
= cWcHcA cAcAcA?cAd =2,
of p-modules
A = {Agpe € A: T} (A) =0, for all k}, i=-2,-1,0,1,2,3,

where the maps gHg are defined in Appendiz A.2.
The associated graded p-module gr(A) = @?:73 gr; (A), where gr;(A) := A1 /AFL splits into a direct sum

gris(2A) = Ads, grio(A) = ALy AL, ,

gril(m) = Q‘E_Ll D Qllil D m?tl D m?l:l ) grO(Ql) = ng D Ql(1) S ng )

of irreducible p-modules Qlf as described below:
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p-mod |  go-mod Dimension

Ay | Vi1 @ gaa | 3m(m+1)(m — 1)

2%, | Vo © gao im(m —1) p-mod | go-mod Dimension
Ay | Vi1 @ guas sm(m+1) 29 By @ 30 1

A%, | Vi1 @30 m AW | Byosly | (m—1)(m+1)
ALy | Vo © g4 m W [ Vyogy | (m—1)(m+1)

AL, | V51 ©@ga2 | gm(m—2)(m+1)

with the proviso that when m = 2, A3, does not occur. Further,
A/ = {Aape € A FTIF(A) = 0, for all k # j}/AFT, for i| < 2.

Finally, the p-module gr(2) can be expressed by means of the directed graph

/
\
/
\

A0 @ Al A%, AL,

where an arrow from le to A¥ | for some i,j, k implies that Qv[f C g1 ~Qvli-21 for any choice of irreducible
go-modules A and AF_| isomorphic to A and AF_| respectively.

Remark 4.3. The presence of the isotopic pairs of p-modules {219,201} and {2}, A2} in the decomposition
of gr(2) allows us to define further p-submodules whereby there are algebraic relations among them. For
instance, one distinguish {A4p. € A DA : ?HQ(A) =0} and {Aupe € A9 02 : ?H% (A) = 0}. In particular,
it is certainly not true that ker?H% C ker?H? or ker ?H% - ker?H%, and so on. It thus makes it difficult to
characterise the arrows of the diagram in terms of inclusions of kernels of ker?l’[é- as we did in [39].

4.3. Decomposition of the space of Weyl tensors

Proposition 4.4. The space € of tensors with Weyl symmetries admits a filtration
== celcce?cecelcelce?ce?ce? =¢,
of p-modules
€' = {Capea € € : {IIF(C) =0, for all k}, i=-3,-2,-1,0,1,2,3,4,

where the maps gﬂf are defined in Appendix A.2.
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The associated graded p-module gr(€) = @?:74 gr,(€), where gr;(€) := €' /EHL splits into a direct sum

gri,(€) =¢4,, gris(€) = ¢4, gri,(€) = €h, ® e, e,
gry (@) =€, e, ol gro(€) = O € & € B €5,

of irreducible p-modules @{ as described below:

p-mod | go-mod Dimension
(o © Lm2(m? -1
Q:;‘HL iiz - Eﬂ 1? m(7(712 1)) p-mod | go-mod Dimension
43 +1 © g42 3 - o
¢ 30 © 30 1
€y | 30 @042 sm(m —1) (1) 2
1 i & sly © 30 m*—1
Ciy | 9+1 @041 sm(m +1) o2 S
€2, | sl ® gus Lm2(m? — 4) g g1 @91 . m2 —
0 > . & | 92@g2 | gm (m+1)(m —3)
=1 | 0B84 ¢4 | slo@sly | m?(m — 1)(m + 3)
¢l 071 @ g42 %m(m —2)(m+1)
¢i; | sl@ger | gm(m+2)(m—1)

with the proviso that when m = 2, the modules €%,, €1, €} and €3 do not occur, and when m = 3, the
module € does not occur. Further,

€] = {Capea € € £IIF(C) =0, for all k # j}/€F . for i <3.

Finally, the p-module gr(€) can be expressed by means of the directed graph

Ci%
¢ ——~ et? — 2,
¢ — & —— ¢2>< X %@1 ><¢1 ¢, ¢,
¢l ez
egﬁeg)/ \QLH@EQ
\
ey /

where an arrow from @z to €F | for some i, j, k implies that é{ C g - éf_l for any choice of irreducible
go-modules éﬁ and € | isomorphic to ¢’ and €F_, respectively.

Remark 4.5. Analogous to Remark 4.3, one can define additional p-submodules from the isotopic pair of
p-modules {€f,€7}. For instance, one has {Cupea € €4 @ €§ : ¢IY(C) = 0} and {Copea € € © €F :
ng( ) = 0}, and so on. Again, it is not true that kerfﬂ1 C ker ¢ H1 or kerEH1 C ker¢ ¢T12. This is why we
have not characterise the arrows of the diagram in terms of 1nclu51ons of kernels of ker cHz unlike in [39].

Proposition 5.13 in section 5 will illustrate the issue.
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5. Differential geometry of pure spinor fields

As before, conventions are taken from [39] and references therein. Throughout, (M, g) will denote an
n-dimensional oriented complex Riemannian manifold, where n = 2m+1, with holomorphic tangent denoted
by TM and so on. The holomorphic Levi-Civita connection will be denoted V,, the Riemann tensor Rgpcq,
the Weyl tensor Cypeq, the Ricci tensor Ry, with tracefree part ®,p, and the Ricci scalar R, their relation
being given by

4 2
Rac :Cac —(Pac — R ale . 5.1
bed bd+n_2 [ \[‘gd]|b]+n(n_l) Ya[cGd]b (5.1)

In dimension n = 3, the Weyl tensor vanishes identically, i.e. Ropea = 4 P(q)cga)pp) + %Rga[cgd]b.

We assume (M, g) to be spin so that the structure group of the frame bundle F M of M is Spin(2m+1, C).
The connection on the spinor bundle S will also be denoted V,, and preserves the Clifford module structure
of S, i.e. Voype® = 0, and recall that 2 Via Vb]«fA = —%Rabaw“lBA B for any holomorphic spinor field £4,

and similarly for dual spinor fields.

Remark 5.1 (Notation). As in the previous sections, we shall make use of the shorthand notation 5&41 an =
¢854, .05 for any holomorphic spinor field ¢4 and any k > 0.

Assumptions 5.2. We work in the holomorphic category throughout, and I'(-) denotes the space of holomor-
phic sections of a holomorphic fibre bundle. See section 5.3 for extensions to real manifolds.

Henceforth, we assume n > 3 for definiteness, relegating the case n = 3 to Appendix B.1. Nonetheless,
many of the statements made in this section still apply by setting Cypeq = 0.

Finally, we stress that the results presented herein are local in nature.

5.1. Projective pure spinor fields

Definition 5.3. An almost null structure N on (M,g) is a rank-m distribution that is totally null, i.e.
g(v,w) = 0 for all sections v, w of N.

An almost null structure A will also be referred to as a «-plane distribution. The orthogonal complement
N+ of N is a rank-(m + 1) subbundle of TM that contains A'. The bundle of all almost null structures on
(M, g) will be denoted Gr,,(TM,g). We can use the spin structure on (M, g) to identify an almost null
structure as a projective pure spinor field, i.e. a spinor field defined up to scale and which is pure at every
point.

Now, let [€“] be a holomorphic projective pure spinor field on M, i.e. a (global) holomorphic section of
Gr,,, (T M, g), with associated holomorphic almost null structure M and orthogonal complement ./\/2-. This
geometric data is equivalent to a reduction of the structure group of FM to the stabiliser P of [¢4]. The
representation theory of P, or of its Lie algebra p, which we have described in sections 2, 4 and 3, gives rise
to holomorphic vector bundles in the standard way as already explicated in [39]. In particular, the pointwise
algebraic degeneracy of the curvature tensors will be expressed in terms of the maps EH{, ?Hf and ng
given in Appendix A.2.

5.1.1. Intrinsic torsion
For simplicity, we choose a holomorphic connection 1-form I',;¢ for V, such that

1
vagA = _Zrabc’ybCBAfB . (52)
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We can identify the notion of intrinsic torsion [10,4,35] of the P-structure defined by [¢4] with

m—2
b

Dapc£?BeeC € Pl @ A2G ™2

which, at a point, we identify as an element of the p-module 20 := U ® g/p defined in section 3. When the
intrinsic torsion vanishes, the Levi-Civita connection preserves [£4], i.e.

V.4 =0, ie. Vo4 = e, (5.3)

for some 1-form «,. If the intrinsic torsion does not vanish, we can nevertheless investigate the differential
and geometric properties of [¢4], Ne and WV, gJ' in terms of the decomposition of 2J given in Proposition 3.2.
Before we proceed, we compute, from (5.2) and (2.11), the formula

(Va€*?) & = = (Va&”) €7 + Tapet P
from which we deduce
(Vo) 67 = — (Vae®) €2, (Vae") €7 = — (Vael®) €9 4 DanePe
(Va€lP) €5€P) = Tane€PeCeP) (Vae4) ePg0EP) = Ty lAgPlgelCeP].

The first of these identities is trivially satisfied by virtue of the purity condition. These formulae together
with Proposition 3.2 prove the following result.

Proposition 5.4. Let [{A] be a holomorphic projective pure spinor field on (M, g), and let T 4 £2BEC € 0
be its associated intrinsic torsion. Then, pointwise,

o P ,(T) =0 if and only if (m > 2 only)

("14Vag") 7€) = 05 (54)

o TIL,(T) = 0 if and only if
€14 (£B1V,€1C) P14 € (¢oPIv,e4) eP1elPer] = o, (5.5)

o F2,(T) =0 if and only if
(64va'") gfe” =0 (5.6)

« TIL,(T) =0 if and only if
(¢°1vag7) €7 =0 (57)

o F2,(T) =0 if and only if
A (£P1,8] ) 1067 + 619 (PIv o6 ) €146 = 0 (5.8)

. ?HQI(F) =0 if and only if

(ryaDAvafbD) 51[2850] +92 (gaAvag[B) ¢l=o; (5.9)
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?Hl,l(F) =0 if and only if (m > 2 only)

(7a£") €767 4 —Lrunl® (2707 €l + 2 (259,61 ) €7 =

m—1

£112,(T) = 0 if and only if
(¢ vagl?) € = 0;
FIH(T) = 0 if and only if
(vaé-aA) é—B _ é-aAvaé-B _ 0,
?H(l)(I‘) =0 if and only if

(Vag[B) €<l % ((vbgb[B) €Sl — fb[Bvbgg]) _o0.

These statements are independent of the scale of €.

; (5.10)

(5.11)

(5.12)

(5.13)

Remark 5.5. The case m = 2, i.e. n = 5, is also dealt separately in Appendix B.2, where the spinor calculus

simplifies the formulae above.

5.1.2. Geometric properties

Definition 5.6. An almost null structure A is said to be integrable if [T'(N),T'(N)] € T'(N), totally geodetic
if VxY € T(W) for all X,Y € T'(N), co-integrable if [[(N1),T(N1)] € T(N?), and totally co-geodetic if
VxY € DV for all X,Y € T(VL).

The geometric properties of N and V- can be encoded in terms of differential conditions on [£4].

Proposition 5.7. Let N¢ be an almost null structure with associated projective pure spinor field [€4] on

(M,g). Then

[T(Ne), D(Ne)] € D(Ng") if and only if
¢lA <§aB]va§b[C) ePeBl =
N is integrable if and only if (5.7) holds, i.e.
(€147,€”) € = 0;
Ne is totally geodetic if and only if

(g6 mIv,gl#) ¢ = 0;

Ne is co-integrable if and only if

(£14vag") €leP = 0;

(5.14)

(5.15)

(5.16)
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o N is integrable and co-integrable if and only if
(€4vaeB) 7P =05 el (eBIv,el7) e = 0; (5.17)
o N is totally co-geodetic if and only if (5.11) holds, i.e.
(¢24va€l7) € = 0.

Proof. We compute each of the conditions in turn using (5.2) and (3.1) in terms of the connection compo-
nents. It then suffices to interpret the vanishing of these components in terms of the Lie bracket relations
(since V, is torsionfree). More explicitly, these are given by

]_'\ABC — 07

FABC — F[A:B] — 0,

FABC — I\A:B — 0,

o TABC =0 and "B =T4P (in particular, I'4:5) = (),
FABC — FAB — I‘\A:B — O7

FABC — FAB — FA:B — FA — 07

respectively. 0O

In contrast to the even-dimensional case, a (co-)integrable almost null structure is not necessarily totally
(co-)geodetic. However, it is straightforward to show, as a consequence of Proposition 5.7, or otherwise:

Lemma 5.8. Let [¢4] be a projective pure spinor. Then (5.11) = (5.17) = (5.15) = (5.7). Equivalently, for
any almost null structure N,

o if N is totally co-geodetic, then it is integrable and co-integrable;
o if N is integrable and co-integrable, then it is totally geodetic;
o if N is totally geodetic, then it is integrable.

Definition 5.9. Let [¢4] be a holomorphic projective pure spinor field on (M, g) with almost null structure
Ne. We say that &4 is geodetic, respectively co-geodetic, if N is totally geodetic, respectively co-geodetic.

Remark 5.10. Proposition 5.4 can also be used to characterise the properties given in Proposition 5.7 in
terms of the intrinsic torsion T'gp.£22¢°C € 2 of the P-structure. In particular, (5.14) holds if and only if

Lape?BECC € 9072, Similarly, (5.17) holds if and only if I £2B€°C € 90~

Conformal invariance With reference to Appendix C, we prove

ot

Proposition 5.11. Conditions (5.4), (
conformally invariant.
Suppose that [€4] satisfies (5.10) and

.5), (5.6), (5.7), (5.8), (5.10) and (5.16), (and thus (5.14), (5.17)) are

("0 Vag"?) 676 + 2 (£4V,817 ) € = (n = 3) 4¢PV, £

for some holomorphic function f. Then there exists a conformal rescaling for which [¢4] satisfies
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(Vag"®) 5™ =0, (5.18)
i.e. VX € D(Ng") for all X € T(Ng), where N is the almost null structure associated to [€4].

Curvature conditions The integrability conditions for these equations can easily be computed by differen-
tiation a second time and commuting the covariant derivatives.

Proposition 5.12. Let £4 be a geodetic spinor on (M, g), i.e. €4 satisfies (5.15). Then
f%5(C) =0, ie.  EAgBeCleePedBo 1 =0.
Suppose further that €2 is co-geodetic, i.e. €4 satisfies (5.11). Then £*A¢PBECEIPR g =0 and
S0,(®) =0 — fIl,(C) =0,
iie. PR EMOEPT = 0 4f and only if §*46*PECEIP Capea = 0.
g

For a parallel projective pure spinor, we have the following — see also [15] in more generality.

Proposition 5.13. Let [£4] be a parallel projective pure spinor on (M, g), i.e. €4 satisfies (5.3). Then

gaAgbBRabcd = 07 (519)
§ AP Ray =0, (5.20)
gAeBeClo,, =0, i.e. o, (@) =o, (5.21)
gAB e P10 ea = 0 ie. f1I°,(C) =gt | (C) = §112,(C) =0, (5.22)

and in addition, when m > 2,
fI1(C) =0. (5.23)

Further,

R=0 — SIIH(®) =0 — fIp(C) =0, (5.24)
ST5(®) =0, — §II(C) =0 — SI3(C) =0, (5.25)
Snf(e) =0 — () =0 (5.26)

Proof. Equations (5.19) and (5.20) are is a direct consequence of (5.3). Equation (5.21) follows from relating
Rap and @y as $gp2AEE = %R§A§B, from which we also conclude the first part of (5.24). Next, (5.1)
yields (5.22). To conclude the remaining conditions, we use the definitions of ng and gHg together with
the computations

2
£CC anab P = —Z= €10 By 6P + ReCER
n [ n

1
-2 (n—1)
2(n —4) 2(n
—9 n(n

Cheqal® PP = — B¢,y — %g%d%ad - :?;R@?gf‘ + REBEP

-2
n(n—1)(n—2)

X 2(n—3 1
Cbcadgbc(Bng) = _% (f(deD)q)ad + 535(8550 )



A. Taghavi-Chabert / Differential Geometry and its Applications 51 (2017) 117-152 135

a . n—3
Cbcadf dAgb B = _QERgAgB ’

2

Be[CeD]
n(n—l)(n—?)R5 &8

2
Capea"ETEW = — - £PelC@e ™) +
In particular, we note that the dimensions of the irreducible p-invariant parts of the Weyl tensor must match
those of the tracefree Ricci tensor. From the invariant diagram of Proposition 4.4, one sees that condition
(5.23) imposes algebraic conditions on elements of the isotopic modules €} and €2, which, by dimension
counting must match F3. More explicitly, on referring to the maps gﬂf , we have

n—>5
$IH(C)PC 6" = —2" 2P FITl(2),94
1
SI(C)AE), = LI (@), (mod €7¢CaP).

where we have rewritten gl’[é(@) = A8y, — L P4eCDy 0P (mod £4¢Pa,). Condition (5.25) now

follows. O
5.2. Spinorial differential equations

5.2.1. Scale-dependent geodetic and co-geodetic spinors
A scale-dependent variation of (5.15) is given by ¢[A¢*BIV, 6B = 0, with integrability condition
EHQQ(C) = ¢lAgaBebClecdD oy = 0. This is conformally invariant provided £# has conformal weight —1.
Similarly, a scale-dependent variation of (5.11) is given by £%4V,(8 = 0, with integrability condi-
tions given by £*A4¢bBecdCR . = 0. Further, gHQI(CI)) = ¢lAgaBlp ¢ = 0 if and only if §H91(0) =
€aA£bBCabcd§ch = 0.

5.2.2. Parallel pure spinors

The next proposition follows from Proposition 5.13

Proposition 5.14. Let €4 be a parallel pure spinor field on (M, g), i.e. V&4 = 0. Then Rapea®P = 0,
SI9(@) = "8 = 0, R =0, and {TI3(C) = Capeat®P = 0.

5.2.8. Null zero-rest-mass fields
The smaller irreducible part of the covariant derivative of a spinor field ¢4 leads to the (Weyl-)Dirac
equation

74PV =0. (5.27)

In contrast to even dimensions, this equation admits not one, but two generalisations to irreducible spinor
fields of higher valence.

Definition 5.15. Let ¢A142-Ar = ¢(A142.-4k) he 5 holomorphic spinor field on (M, g) irreducible in the
sense that 794, “y,a,PpAr1A24s Ak = _gCDAsAr We say that ¢pA14* is a zero-rest-mass (zrm) field if

it satisfies
7B Vaghe 4B =0, (5.28)
and a co-zero-rest-mass (co-zrm) field if it satisfies

,yaB[Al va¢A2]A3-~~AkB =0. (529)
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Remark 5.16. When k£ = 2, an irreducible spinor field as above is simply an m-form, or by Hodge duality,

an (m + 1)-form. Equation (5.28), respectively (5.29), is then equivalent to this m-form to be closed,

AB

respectively co-closed, hence the use of terminology. This follows from the fact that matrices va,...a,,,,

and 'yal_“amflAB are symmetric and skewsymmetric respectively.

Equations (5.28) and (5.29) are conformally invariant provided that ¢41-4* is of conformal weight —m—&
and —m — k respectively. In particular, a solution of both (5.28) and (5.29), i.e.
Y gVt B =0, (5.30)

is not conformally invariant. In the case k = 2, such a solution corresponds to a closed and co-closed m-form.
The integrability condition for the existence of solutions to equations (5.28) and (5.29) of valence greater
than two is given by the following lemma.

Proposition 5.17. For k > 2, let ¢ 142:+4% be a solution of (5.28) or (5.29) on (M, g). Then
’yaC1A’yb02BCabcd’YCdD(CB¢C4“.Ck)0102D =0. (531)
If A1 42- 4k s g solution of (5.30), then we have in addition
’YbCQ [A\(I)bd,ydD(C3¢C4-~Ck)CzD\B] =0. (5.32)

Proof. Equations (5.28), (5.29) and (5.30) can be rewritten as y*pA1V ¢4z AkB = ¢pArdzAr  where
PplArAzAx) — 0 gplArA2lds.Ae — (0 and ¢pA142 Ak = ( respectively. Taking a second covariant derivative
and commuting lead to

(k —2) ,yaclA,ybCQBcabcd,ycdD(Cg¢C4...Ck)01C2D — Ak —2) 4P, [P,y (Ca 4Ca--Cr)C2 DI B]
— QVGD[AVQ'(/JB]C?)C4C}9D .

By the conformal invariance of (5.28) and (5.29), the first term on the LHS must vanish identically, while
the second term on the LHS cancels the RHS, hence (5.31). When (5.30) holds, conformal invariance is

broken, and one has the additional constraint (5.32). O

A spinor field ¢pA142- Ak is referred to as null if it takes the form ¢A142:-Ar = e¥¢Ar1e42 €4k for some

holomorphic pure spinor field €4, and holomorphic function . Specialising Proposition 5.17 yields

Corollary 5.18. For k > 2, suppose that ¢pA142Ar .= e¥¢Ar1eAz - €Ar s g solution of (5.28) or (5.29) on
(M,g). Then

fI0,(C)=0,  de P Capat™C =0, (5.33)

Further, if ¢A142:-4% s a solution of (5.30), then we have in addition
S, (@) =0, ie. cHABY eCl = 0. (5.34)
The relation between null solutions of the zrm-field equation and the existence of foliating spinors is

known as the Robinson theorem [34] in four dimensions, and was later generalised to even dimensions in
[18]. Here, we give odd-dimensional versions of the theorem.
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Theorem 5.19 (Robinson theorem for zrm fields). Let €4 be a holomorphic pure spinor field on (M, g) with
almost null structure Ne. Let 1 be a holomorphic function and suppose that pAr Az Ak = eV eAigAs Ak
satisfies the zrm field equation (5.28). Then locally, €4 satisfies

gla <£aB]va£[c) Pl 4 ¢le (gaD]vag[A) ¢Bl ), (5.35)

alag ¢bB) (CeD] _ =2 (A (caBlg C\ D | ¢lA (caBlg (C\ DY _
(€19 gl = = (A (e719,67) € 4+ (6719,6) €7) 0. (5.36)
In particular, [T(Ng),T(Ne)] € D(Ng"). When k = 2, €4 locally satisfies (5.16), i.e. Ne is co-integrable.

Suppose that €4 satisfies (5.16), i.e. N is co-integrable. Then locally there exists a holomorphic function v
such that the spinor field pA8 = eV ¢A¢PB satisfies (5.28). There is the freedom of adding to 1) a holomorphic
function constant along the leaves of ./\fgL

Proof. For any qﬁAlA?“'Ak = ewalfAz .. .fAk, we have, in regions where (;SAlA?“'A’“ does not vanish,
RVt E = o (g2 M T4 (k- 1) (€4 7,7 ) gt g
+(Vagth) et gh) (5.37)
If pA1Ar satisfies (5.28), then we have
0= eMeghs | cArgad)y o (k- 1) (§a<A1va§A2) gAs | gAr) 4 (vaga“‘l) ghaghs  cA)  (5.38)

Tensoring with ¢8¢¢ and skewing over A;B and AyC lead to (5.35). Working in the splitting 2.7 with a
choice of spinor 14 dual to &4, and using (3.1), this implies I(F:¢) = TABC = ( je. ¢4 satisfies (5.14).
Expanding (5.38) now yields

1
0= (_Z (kFBC _ 2FB:C) ,',}aB,yaC(Al + w(Al) §A2£A3 B é—Ak) ,

for some ¢4 € G&™2". Since the first term on the RHS lies in S m_s, we must have kB¢ = 2T'B:C je.
(5.36) holds. When k = 2, (5.36) reduces to (5.16). ’

For the converse when k = 2, we follow the geometrical proof given in [13,27]. Suppose that ¢4 satisfies
(5.16), i.e. Ng is co-integrable. Then, locally, M is fibred over the leaf space L of N, EJ- Choose a holomorphic
section ¢ of the tautological line bundle A™T*L of L. Then, ¢ is clearly closed. Its pull-back to M must be
orthogonal to each leaf of the foliation, i.e. it must be of the form ¢A8 := ¢, o, ¥ 9mAB = ¥¢A¢B for
some holomorphic function 1. Further, since the exterior derivative commutes with the pull-back, ¢ is also
closed, i.e. 4P satisfy (5.28).

Finally, in both cases, adding any holomorphic function constant along the leaves of Ng‘ to 1, i.e.
annihilated by £%4V,, leaves the relevant field equations unchanged. O

Theorem 5.20 (Robinson theorem for co-zrm fields). Let €4 be a holomorphic pure spinor field on (M, g) with
almost null structure Ne. Let 1 be a holomorphic function and suppose that pArAz Ak = eV eAigAs Ak
satisfies the co-zrm field equation (5.29). Then locally £ satisfies (5.7), i.e. N¢ is integrable. Further, when
k> 2, 4 satisfies (5.15), i.e. N¢ is totally geodetic.

Suppose that ¢4 satisfies (5.7), i.e. N is integrable. Then locally there exists a holomorphic function
Y such that the pure spinor field pAB = eV€ACE satisfies (5.29). Further, if €4 satisfies (5.15), i.e. N¢ is
totally geodetic, and the curvature condition (5.33), then locally, for every k > 2, there exists a holomorphic
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function 1 such that the spinor field ¢A142+Ax = e¥eAreAz | Ak satisfies (5.29). In both cases, there is
the freedom of adding to v a holomorphic function constant along the leaves of N¢.

Proof. For k > 2, if ¢p414% satisfies (5.29), then equation (5.37) becomes

T e S 2 R (G A T N

+ (k-2 (g[A2gaAllvag<A3) gha | gAn) (vaga[f‘l) ghalgds | cAe(5.30)

Then, tensoring with £ and skewing over A;AsB yield (5.7), i.e. Nt is integrable. When k > 2, one can
also tensor with ¢ and skew over A3B, and conclude (5.15), i.e. N is totally geodetic.

For the converse, the case k = 2 is similar to the proof of Theorem 5.19 except that one obtains a closed
(m + 1)-form, which is Hodge dual to a co-closed m-form. So we focus on the case k > 2 and assume that
condition (5.15) holds. This is equivalent to

EAVEB = ¢AAB L ¢ABB ¢ + DB, VA =Fer + FA - BA+ APy Ce¢t + DA,
(5.40)

m—4

. . . m-z . .
for some functions C, E, spinors B4, DA, FA4in 6™ =im ¢, and A4 in 6™

that locally there exists a holomorphic function v such that (5.39) holds, i.e.

im ¢/}, We want to show

é—[Aé-aB]vaw _ fa[Avaé-B] + <va£a[A> gB] o (k o 2) é—[ADB] — é—[A (2 BB] o kDB] o FB]) = é—[AwB] )
(5.41)

Differentiating the above equation with respect to £(4£4B1V, i.e. along N, yields the integrability condition
(ADB YOl — ¢lAgaBy €l (5.42)
We expand the RHS of (5.42) using the expression (5.41) for )%:
ggeP T, = 47, (€84 + (€147 ) 4
=~ 1V, (79,6 — 49, ((T0e"?) €9) + (k - 2)¢°14 7, (¢7 D)
+ (€14v,67) 1.
We compute each term in turn using the assumption (5.33). For the third term, we find

¢aldy, (fBDC]> ¢ — galAy, (SBDC]SD) -~ (EG[AIVGED) ¢lBpCl = galdy, <§B§bC]vb§D>

= (149,67 (VP ) — el (€257, Y) WP — W :

For the second term, we have
§a[Ava ((ngbB) §C]> _ (ga[AvavbgbB) 60] o (é-a[AvagB) Vbébc]

1
— (€149, 7a8"7) €1 + 26 Rapea€ P2 p P — (€147 45 ) W,
=V

b (£119.,677) € — (Do) e PTET - e R PES)
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~ (£714v,¢7) wig!
-V, ((fb[AvbfaB) 50]) . (éa[AvagbB> V€l (ga[AvagB) V%€

while the first term simply becomes

£V, (£7967) = (14V.67) Ve - LegBeraE .

The last step is to use (5.40) and (5.41) to express the covariant derivative of ¢4 in all these expressions
in terms of ¢4, A4, BA, C, DA, E and F4. Thus, we get 4V, (¢8DC) = —¢MADE (49 + BY) and
similarly for the other terms. Applying (5.41) to the LHS of (5.42) reveals that (5.42) is indeed satisfied.

Finally, in both cases, adding any holomorphic function constant along the leaves of N¢ to 9, i.e. anni-
hilated by ¢[4£4B1V, | leaves the relevant field equations unchanged. 0O

We omit the proof of the following theorem, which follows roughly the one given in [18].

Theorem 5.21 (Non-conformally invariant Robinson theorem). Let €4 be a holomorphic pure spinor field
on (M, g) with almost null structure Ne. Let ¢ be a holomorphic function and suppose that Pz Ak =
eV A% s both a zrm field and a co-zrm field, i.e. ¢pA142A% satisfies (5.30). Then locally €4
satisfies (5.11), i.e. N¢ is totally co-geodetic.

Suppose that &4 satisfies (5.11), i.e. Ne is totally co-geodetic. Then locally there exists a holomorphic
function 1) such that ¢AB = eVEAEP satisfies (5.30). Suppose further that €4 satisfies the curvature
conditions (5.33) and (5.34). Then, for every k > 2, there exists a holomorphic function ¥ such that
pArAzAr = oV eA1eA | €Ar satisfies (5.30). In both cases, there is the freedom of adding to 1 a holomor-

phic function constant along the leaves of./\/g‘.

Remark 5.22. In flat even-dimensional space, the Robinson theorem is often used in conjunction with the
Kerr theorem [24,31,18], by means of which one (locally) generates null structures in terms of geometric data
in a ‘twistor space’. It is interesting to note that one can also distinguish three odd-dimensional counterparts
of the Kerr theorem as presented in [40] depending on the various ‘degrees’ of integrability of an almost null
structure.

5.2.4. Conformal Killing spinor
Complementary to (5.27), one defines the twistor equation

1
Vaf" + —Z=78"¢" = 0, (5.43)

7%

for any holomorphic spinor field £€4. Here, (5.43) determines ¢(Z = ?’YGABVQEA. A solution ¢4 will be
referred to as a conformal Killing spinor or twistor-spinor. The spinor field ¢ can be shown to satisfy

1
vaCB + ﬁPab’YbABgA =0, (544)

where P, := ﬁ@ab — Rt 3 Jab is the Rho or Schouten tensor (see Appendix C). Equations (5.43) and

2n(n—1
(5.44) are conformally invariant provided that ¢4 and ¢4 transform as

A FA _ A A A —1 A L aA
AL ghiogh (AL iig (c + st ) (5.45)
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The equivalence class of pairs of spinors (£4,(4) ~ (fA, (fA) related by (5.45) can be thought of as a section
(€4, ¢4) of the local twistor bundle [33,3] or spin tractor bundle [20], and we shall refer to such a section as
a tractor-spinor. These are spinors for the group Spin(2m + 3, C). Tracing (5.44) yields

1

aB _
Val™" = 2v2(n —1)

R (5.46)

The integrability condition for the existence of a conformal Killing spinor is well-known, see e.g. [5]. Here,
we restate it in the context of pure spinor fields.

Proposition 5.23. Let £ be a pure conformal Killing spinor on (M, g) with (B .= ?’YGABV(L&A. Then

Coapeat®P =0, ie.  £I(C) =0,
CabchbCC - 2\/§Acab€CE = Oa (547>
Aep€1¢®P =0, de  FIH(A) =0,

where Agpe := 2V P, is the Cotton—York tensor (see Appendir C).

Proposition 5.24. Let £ be a pure conformal Killing spinor on (M, g) with almost null structure Ne. Set
(B .= %'yaABVafA, Then €4 satisfies (5.8), i.e.

€ (£ BIV ) €1O€P) 1 €10 (£P)v,6F ) 4¢P — 0.

Further, €4 satisfies (5.17), i.e. Ne is integrable and co-integrable, if and only if
AT = —¢¢P, (Al =P —264¢P, (5.48)
i.e. (2, if non-zero, is pure and its almost null structure N intersects N¢ in a totally null plane of dimension

m — 1 or m at every point.
Suppose that €4 satisfies (5.17) so that (* satisfies (5.48). Then

(¢1vac"®) 7P = 0. (5.49)

Proof. To prove that 4 satisfies (5.8), it suffices to contract equation (5.43) with €24 and 1*p¢t. We
find

1
V2

The second term is skew-symmetric in AC. Therefore, symmetrising over AC yields (5.8).

(gaAvagbB) gbc + (é-aAcﬁgbC + €B§A§C) =0.

Next, suppose that ¢4 satisfies (5.17), which is equivalent to

1 m m— m— m

VP = - (¢haP + pieP) € (6% 06" ) o (677 0 &%)
V2

at every point — here &% = (¢4) and 6" = im &2, By (5.43), the LHS is —%5“‘(}? and must lie in

the same module as the RHS. This in particular means that ¢4 and ¢4 must satisfy (5.48) — checking

that indeed o = —134 = (4 can be done by applying (2.9). The converse, that (5.48) implies (5.17), is

immediate.
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Finally, assume ¢4 satisfies (5.17) so that (5.48) holds. Contracting equation (5.44) with (24 and 7*p¢ ¢
leads to

1
NG

and the result (5.49) follows by symmetry considerations. 0O

(CaAvaé-bB) Cbc o CaAPabé-bBCc + 2\/5 CaAPabe[ch] =0 ,

Remark 5.25. Using (5.45), one checks that the statements of Proposition 5.24 are conformally invariant.

Further, the condition that the conformal Killing spinor £4 be pure and ¢4 satisfy (5.48) is equivalent to
the corresponding tractor-spinor (£4,¢4) being a pure section of the local twistor bundle, i.e. it is a pure
spinor for Spin(2m + 3,C). See [18,40].

Example 5.26. Using the method of equivalence, Cartan [7] showed how to encode the invariance prop-
erties of certain ODEs of Monge type in terms of a (2,3,5)-distribution, i.e. a rank-2 distribution N on
a five-dimensional smooth manifold, that bracket-generates the tangent bundle. This is more invariantly
expressed as a Go-principal bundle equipped with a Cartan connection. In [30], Nurowski associates to this
(2, 3,5)-distribution a five-dimensional split-signature conformal structure, with respect to which N is to-
tally null, with orthogonal complement [N, N]. The general theory, expounded in the language of parabolic
geometries, is given in [11,19], more particularly, in [20], where it is shown how such manifolds are char-
acterised by the existence of a real conformal Killing spinor, generic in the sense that £é4¢4 # 0. In five
dimensions, this is consistent since (5.8) implies (5.14). This example works equally in the holomorphic
category.

Killing spinors A holomorphic spinor field €4 that is both a solution to the twistor equation (5.43) and an
eigenspinor of the Dirac operator, i.e. 793¢ V&8 = X €€ for some holomorphic function A on M, is known
as a Killing spinor. Otherwise put, ¢4 satisfies the Killing equation

1
V&t + Aﬁff =0. (5.50)

That this equation is not conformally invariant is reflected in the geometric properties of its solutions. In
particular, as a special case of (5.43), (5.44), (5.46) and (5.47) with ¢4 = X\ €4, we prove:

Proposition 5.27. Let ¢4 be a pure Killing spinor on (M, g) with almost null structure Ne. Then

§1I(C) =0, i.e. Capeal®? =0,
§TM5(A) = FT5(A) = 0 iie. €9 Agbe = 0,
STI5(®) =0

Further, its eigenfunction X satisfies E*4V A = — (/\2 + ﬁR) €4, and is thus constant along Ne.
The following proposition is straightforward.

Proposition 5.28. Let ¢4 be a pure conformal Killing spinor on (M, g) with almost null structure Ne. Set
A= ?Vaf‘”‘. Then &4 satisfies (5.11), i.e. N is totally co-geodetic, if and only if ACBl =0, de. €4 s
a Killing spinor. This being the case, we have further (vagb[A) 5;3{0] =0.

Remark 5.29. The gist of Propositions 5.24 and 5.28 is the filtration of p-modules &% C 6" Cc &M
The spinor ¢ belonging to one of these submodules determines the geometric property of Ne.
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The following result is analogous to the one given in even dimensions in [21].

Proposition 5.30. Let €4 be a pure conformal Killing spinor whose associated null structure N is integrable
and co-integrable. Then, locally, there exists a conformal rescaling such that €4 is parallel, up to the freedom
of adding to such a conformal rescaling any holomorphic function constant along the leaves of./\/'El.

Proof. We assume that N is integrable and co-integrable so that by Proposition 5.24, &4 and ¢4 =
%Vafa“‘ satisfy (5.48). In particular, (4 € im¢&2. We must apply the transformation (5.45) to find a

holomorphic conformal factor €2 such that 5‘4 = 0. First, we show that locally one can always find a
holomorphic function ¢ such that ¢MA¢E! = —%{ [AgaBly ¢, which follows from the integrability of Ne, the

twistor equation (5.43) and its prolongation (5.44). This yields a conformal factor such that £ is a solution
of the Killing spinor equation (5.50). One can then find a holomorphic function 1 such that A ¢4 := €24V 41,
which yields a conformal factor that turns our Killing spinor into a parallel spinor. There is the freedom of
adding to the scale a smooth function constant along N, g |

A similar result is given in [26].

5.2.5. Relation to the Goldberg—Sachs theorem

In four dimensions, the Goldberg—Sachs theorem [17] gives a relation between the existence of integrable
null structures and degeneracy conditions on the Weyl curvature — for generalisations, see [16]. A ‘coarse’
higher-dimensional generalisation is given in [37], which can be formulated in the following way in odd
dimensions.

Theorem 5.31 (/36,37]). Assume m > 2. Let [€4] be a holomorphic projective pure spinor field on a
(2m + 1)-dimensional complex Riemannian manifold (M, g) with associated almost null structure N¢. Sup-
pose the Weyl tensor and the Cotton—York tensor satisfies the algebraic degeneracy conditions

EN°,(0) = §ML,(C) =§T2,(C) =0,  de. P00 =0, 551)
M0,(4) = 2Ly(A) =0, de e PIEOEP Ay = 0. '

Suppose further that the Weyl tensor is otherwise generic. Then [€4] satisfies (5.17), i.e. N¢ is integrable
and co-integrable.

In the light of Proposition 5.24 and Example 5.26, there are pure spinor fields with non-integrable
and non-co-integrable almost null structures, whose integrability condition satisfies (5.51), but violates the
genericity assumption by virtue of Proposition 5.23. This motivates the following conjecture improving [37]:

Conjecture 5.32. Suppose that [€4] is a projective pure spinor field on a (2m + 1)-dimensional non-
conformally flat Einstein spin complex Riemannian manifold (M,g) such that the Weyl tensor satisfies
£oAEdBeclC O, 1€P1 = 0. Then €4 satisfies (5.8).

Weaker conditions such as (5.5) may well be possible too, but an investigation of the veracity of the
above conjecture is beyond the scope of this article.

Remark 5.33. A non-conformally invariant Goldberg—Sachs theorem in dimension three is given in [29].
5.8. Application to real pseudo-Riemannian manifolds

Almost null structures on odd-dimensional real pseudo-Riemannian manifolds are subject to considera-
tions regarding reality conditions and analyticity similar to the even-dimensional case — see [39] for details.
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It suffices to say here that the real index of a pure spinor — see section 2.6 — allows for a wider range
of geometric interpretations. For positive definite metric, the intrinsic torsion of an almost contact metric
structure, i.e. an odd-dimensional analogue of an almost Hermitian structure, was investigated in [1,9]. Fi-
nally, we emphasise that all the results obtained in the present article can be translated into the smooth
category in the case of a spin oriented and time-oriented smooth pseudo-Riemannian manifold of signature
(m,m + 1) equipped with a real projective pure spinor or a real almost null structure.
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Appendix A. Spinorial description of curvature tensors

We follow the notation of section 2 throughout, i.e. U is a (2m + 1)-dimensional complex vector space
equipped with a non-degenerate symmetric bilinear form g,; and a pure spinor £4.

A.1. Elements of the go-modules of §, 2 and €

We choose a pure spinor 774 such that £4n, = —% to split U as (2.7). We shall use the elements u,, hqp and
wab given by (2.8) and (2.12). Upstairs and downstairs spinor indices will refer to Sm> =im €ANkerny and
G} mo2 = im 7,4 N ker €4 respectively. A spinor will be referred to as (totally) tracefree, if the contraction

of any pair of indices with Ié, as given by (2.9), vanishes, e.g. UABIS = 0. We now describe elements of
the go-modules given in Propositions 4.1, 4.2 and 4.4.

The tracefree Ricci tensor Let @y € §. Then

o« $,y € @6 if and only if @, = 5{}17)1,)3(1),43 for some tracefree ® 4 5;

o By € FYif and only if B, = @ (uaub + ﬁhab) for some complex ®;
o« O, € §(1) if and only if @, = §E‘Z<I)Aub) for some ® 4;

o &y € §8 if and only if ¢, = §f§f@A3 for some ® 45 = ®(4p).

Using the duality (é‘iz)* = &Q, spinorial decompositions of elements of < ;, for i = 1,2 can be obtained by
interchanging ¢4 and 74, and making appropriate changes of index structures.

The Cotton—York tensor Let Agpe € A. Then

o A € 2“18 if and only if Ay = a (uawbc - u[bwc]a) for some complex a;
o Agpe € Qvl(l) if and only if Agpe = UaAbe — up A gq Where Agp = f[‘inb]BAAB for some tracefree A45:
o Ay € ﬁ(g if and only if Aspe = Aqppu ) Where Ay = fénb)BAAB for some tracefree A P;

o A € Qvl(l) if and only if Agpe = Aawbe — Apwea + ha[bwc]dAd where A, = §CCAC for some Ay;

3
n—2
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o Aupe € qu if and only if Agpe = uqup A + ﬁha[bAC] where A, = ffAA for some Ayu;

o Agpe € Qvl% if and only if Agpe = Uacff,qchAABC - 5;45[12770]CAABC for some tracefree A ¢ = A[AB]C;
o Agpe € 23 if and only if Agpe = f;‘gﬁ;nchABc for some tracefree Ay = A(ap)“;

o Ay € Qvlg if and only if Agpe = uaAbe — up A gq Where Agp = ffffAAB for some Aap = A[api;
o Ay € Qvlé if and only if Aspe = Aqppu o where Ay = 5(‘1455314,43 for some Aap = A(apy;

o Agpe € Qvlg if and only if Agpe = fffffCCAABc for some Aapc = Aupey) satisfying Ajapc) = 0.

Using the duality (QVlﬂ = ﬁf , spinorial decompositions of elements of A ;, for i =1,2,3 can be obtained
by interchanging ¢4 and 74, and making appropriate changes of index structures.

The Weyl tensor Let Cypeq € €. Then

o Cuped € ég if and only if Cypeq = ¢ (2 WabWed — 2 WaleW qpp + % ha[chd]b) for some complex c;

o Cuped € étl) if and only if

6

Cabed = WapCed + Capwed — 2Wia | Ca)|p) — 3 (Pla)ewa“Cloje + Mellaw “Clage)
where Cq := 25[6;77(1] pCcP for some tracefree Co?;
o Cuped € 5:(2) if and only if Copea = up Cojjetva) — ﬁ hia|c C q)p) Where Ceq 1= 2§(C;nd)DCcD for some

tracefree CoP;
o Cuped € Cg if and only if

Cabea = £,65 necanCas ™" + €2 MacmpCas®’ — 2 EEna 10 5Cac””?

DB _ (4P,
o Cuapeq € €4 if and only if Cppeq = §ﬁ|§[€7]d]|D77b]BCACDB for some tracefree Cac?? = Ciac) PP,

for some tracefree Cx¢
o Cuped € é(l) if and only if

Cabed = WapCle U g) + WedCla U] — Wa |[c C gty p) — Wic|ja Cy)U) g

+

— (o jeuawy)“Ce + pejaupwiaCe)
where C, = §;4CA for some C4;

o Caped € é% if and only if Cupeq = Ulq Cb]cd + U Cd]ab where Cqp = nccffféBCABc — fff[ﬁnb]CCABC
for some tracefree C45¢ = C[AB]C;

o Cuped € é? if and only if Cuped = ufq Cvjea + Uje C gjap, Where Ceqp = fffﬁnb]CCABC for some tracefree
Cag® = VC(AB)C§

o Cupea € €5 if and only if Cupeq = WapCed + CapWed — 2wWiq)cC gy where Cyp 1= 5{;‘550,43 for some
Cap = Clapy;

o Cupeq € €L if and only if Cupeq = Ul Cyea) — nL—sh[al[c Cq)p where Ceq = gfgl?ccp for some
Cap = Can);

o Cupea € €3 if and only if Cupeq = ffﬁfﬁgnd]DCABcD +§f§f [C;nb]DCABcD for some Cupc? =
C[AB]CD satisfying C[ABC]D = 0;

e Cuped € ég if and only if Cypeq = Ulq Ob}cd + U Cd]ab7 where Cype = ffgfchCABc for some Capco =
O[AB]C satvisfying C[ABC] = 0;

o Cuped € 0:91 if and only if Cypeq = fffffccﬁt?c,qBCD for some Cupep = C[AB][CD] satisfying
ClaBcip = 0.
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Using the duality (Qvi )= 5:3, spinorial decompositions of elements of ¢l ;, for i =1,2,3 can be obtained
by interchanging ¢4 and 74, and making appropriate changes of index structures.

A.2. Maps describing elements of p-modules of F, A and €

The kernels of the following maps gHZ , ?Hz and gHZ are p-submodules of the spaces §, 2 and €, and are

related to irreducible p-modules §/ Qlf and €7 as described in Propositions 4.1, 4.2 and 4.4.

i
The tracefree Ricci tensor For @,y € §, define

S0, (@) =g g Pla,,fCePl 0 (@) = ¢ e Pl

gHg(@) = AB,, 551‘[(1)((1)) — ¢AgaBlg 4 oA eeBledCy,

n—1

SIY(®) := £ P
The Cotton—York tensor For Agp. € A, define

S0 (A) =gl BIO¢ele Bl g,

S0 5(A) = Mg P e Ay AL, (A) = e PIMOEPIeF Ay + ([AB) « [CD])
1
?Ho_l(A) = E[A ga B]fbccAabc _ — 2§aC§bA§CBAabC7 ?Hl—l(A) — §aA€bB§CCAabc,
1 1
QlHQ A) = [A¢raB bC]Aa . [A¢taB| bdDAa . |c] aD ¢b[A dBAa . C]
¢ 7, (A) == ¢7¢"7¢ b +—2(n—3)€ £71¢ bdYeD —Q(n—?))f ¢ bdYeD

A1 (A) = A BINOePI A, 4 €EECEID A iy AEP)

+ ([AB] < [CD]) ,

A BB A iy 5 1CEP) 4

2(n+1) 2(n+1)

1
ETI(A) = £ F Agye, ETIG(A) = 646" At D + —— €4 46MP Agparyen €,

n —

1 1
ETIR(A) 1= e PIEC Ay — S Acapg ™ MEIET — ——£2¢M P Agyayep e,
2
STIY(A) = £°C Aupet” + mgbebCAbcaa ST (A) = 4¢P Agye

1
?H%(A) = A[ab]cﬁc[ch] + W[aE[CﬁD]Ab]cd§CdE + m§CE§d[CAcd[a7b]ED] ,

2(n — 3)
3

A773 — c[CeD] 2

1
Yar CEP Ay at?® — n—_|_1€CE§d[CAcd(a%)ED] ;

STI9(A) = £ AL, S (A) == £C Aapye -
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The Weyl tensor For Cypeq € €, define

112,4(C) = €M P NP €M, 12 4(0) = €€ P I Cupeas P
gHO,Q(C’) = ¢lAgaBgbClo, eedD gﬂlﬂ(c) .= geAgbBo, 1 gcCedD
1
§H2—2(C) = gaAgbBCabcd€C[C§D] + TL—H (é-aAgbBCabcegceE’ydE[c - ga[c‘éb[/“CabcegceEfydE|B]) gD]

—5 st FENP Copae O (mod ¢HagPlCEP),
E2,(C) 1= €45 Capeat ™,

1
ETL1(C) = £ Capeat ™ — €€ P Cpat ™ + —— 6P Capeat P M yep ™,

§11% 1 (C) = €*E"P Capea™ — £%P Capea M EP) + £2MACpea PIEP

1
- n+1 (fabECabedgeAgdB'YcED - gab[ACabedéeB]édE’YcED)
1 a € a €
- (§ bE G el elAny, pBIED _ gabB  cd D,ch[AgB]) (mod £PeMayP)y

gng(c) = gabACabcdé.CdB )
. 1
éQ]:[(l)(cv) = é-ab(ACabcdgdB)é-C o mgabEgde(ACfabde,chB)é—C
n—1
o 2n — 3£aC§b(ACabcd§dB) (mod é-AgBadC) ,

§II5(C) = €4 EPP Cpeal™®

a 1 ae a €
SI3(C) == €O, pgat B + p— (7[bE[A§dB§C]Cc]dae§ B4 galag B‘Cae[b|f£fE'Yc]E‘C])

1

T —3)n—5) (§aeECaedf€df[A7[bEB§§] - faeECaedf§df[A7bcEB§C]) ;

1
STIH(C) = €47 Cooa 6™ + —— (661 Coraac ™6™ + €057 Copaact P60

+ 249,57 Coptao1CEPIEE — €18y, 5P C g 6156 °C P

1
 (n+1)(n+3)

+ f[A’Y(bEB]’)’c)F[CfaD]ffFEGEECaedf - ’Y(bE[Aﬁaemf£)c§dD]§fECaedf>

1
<5[A7(bEB]%)F[CfD]§aeEC'aedf€dfF + 551[;45“63] Clcqr TP

+([AB] < [CD])
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?H(l)(c) = fabBCabcdgdc ;

. 1
E11(C) = " Coppega™ + =3 (W[b|E[A‘EMECadc]dfd‘D] + ’V[b\E[AiaeD]Cae\c]dﬁdE)

. 1 aeE fd[A D]
2(7’1, — 1>(TL — 3) (f Caefdg VocE ) )

EI(C) = € Cyut™ +

—_— (AlgaeE d|D) (A aeD) dE)
(n+1) (WE £ Claele)a€™ ™ + Y01 7€ Caeleya§

3

EETECESIA

€FCucraé’ T vpp?ver”)  (mod £46PCh),

gHg(C) = gabACabcd 3 SH%(C> = €aACa(bc)d£dB )

1
gCH%(C) = E[ASGD] Cabed — ﬁ (fa[ACab[c\e’YId]ED]£EE - ga[ACa[c|b67|d]ED]56E)

3
- ni 1 (€GEECaecd7bE [4gPl — SGEECaeb[CVd]E[A§D])
- m (gaeECaebfngV[cE[A%I]FD] — P Cepe s’ ’V\d]E[A%FD])
+ m (gae[A\Caebfng,chElD] , gae[AlCae[clfng7|d]bE|D])
- m <§aeECaebf€f[A%dED] - §aeECae[c|fff[A7\d]bED])

2
T D= =3)

§“eECaefg€ng (’)’bE[A%dFD] - W[CE[AWd]bFDQ )

gng(c) = gaACabcd .

Appendix B. Spinor calculus in three and five dimensions

In this appendix, we give a brief description of spinor calculus in dimensions three and five.
B.1. Three dimensions

Let (M, g) be a three-dimensional complex Riemannian manifold equipped with a holomorphic volume
form and a holomorphic spin structure. The spin group is the complex special linear group SL(2, C) acting
on two-dimensional spinor space & and its dual G*, which we shall identify by means of volume forms €45
and 48, All spinors are pure. By and large, this is analogous to the two-spinor calculus of [33], except that
there is no ‘primed’ spinor space. We can convert tensorial quantities into spinorial ones by means of the

normalised y-matrices %%AB, which are symmetric in their spinor indices, and satisfy the identity

B.a D DB BD :
Yar" Y cT = —6400 +Eace” T, ie. YaABY'CD = —2€A(CED)B -
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The standard representation U of SO(3,C) is isomorphic to ®?&, and, by Hodge duality, to A?U. There
is no Weyl tensor in dimension three, while the tracefree Ricci tensor and the Cotton—York tensor are
represented by totally symmetric spinors ® 4pcp and Aapcop respectively.

B.1.1. Projective spinor fields

Let [¢4] be a holomorphic projective pure spinor field. Then, unlike in higher odd dimensions, its stabiliser
P, with Lie algebra p, at a point induces a |1|-grading on the Lie algebra g = A%% of Spin(3,C). As in
dimension four, the spinor ¢4 defines a P-invariant filtration G: C G lc...c6 il c &% on

G5 = ®F&, where s = {¢A1-.~Ak €65 :¢A1...A2Ag+1...Ak5A1 ...fA‘*}, and ¢4 is said to be a

principal spinor of ¢4, . 4, if it lies in SRt RS

Intrinsic torsion The projective spinor field [€4] induces a P-invariant filtration 20° C 207! ¢ 2072 on
the p-module 20 := U ® (g/p) of intrinsic torsions. From a geometric point of view, the associated almost
null structure NV of [€4] is of rank-1 and thus always integrable. The relation between 2 and the geometric
properties of V¢ and NVg- is given below.

Proposition B.1. Let [€4] be a holomorphic projective spinor field on (M, g) with associated null structure
Ne. Denote by V ap the Levi-Civita connection of g. Then, pointwise, the intrinsic torsion of [€4]

o lies in WL if and only if §A§B§CVAB§C = 0 if and only if N¢ is co-integrable if and only if N¢ is
(totally) geodetic;

o lies in 2° if and only if EPECV ap€e = 0 if and only if N¢ is (totally) co-geodetic;

o wvanishes if and only if €9V 4p&o = 0.

Remark B.2. The above conditions are equivalent to the null vector field k48 = £4¢B being geodetic,
dilation free and recurrent respectively. The properties of null structures in dimension three were also
studied in [29] in the context of a Goldberg—Sachs-type theorem.

B.2. Five dimensions

Let (M, g) be a five-dimensional complex Riemannian manifold equipped with holomorphic volume form
and a holomorphic spin structure. We first work at a point. The spin group is isomorphic to the complex
symplectic group Sp(4, C), so that the spinor space & is a four-dimensional complex vector space equipped
with non-degenerate skew-symmetric bilinear form y4p5 with inverse v42, i.e. y4c7P¢ = 55, by means of
which we shall lower and raise indices. All spinors are pure. Tensor indices are converted into spinorial ones
by means of the normalised skewsymmetric ~-matrices %’yaAB , tracefree with respect to v4p, which satisfy

YanaPytc? = 6508 — 26568 — 2v4c"P, Le. YaABY D = YABYCD +474[cYD)B - (B.1)

In particular, we have U = (A%S), and AU = ©2S where U is the standard representation of SO(5, C).
The tracefree Ricci tensor, the Weyl tensor and the Cotton tensor admit the spinorial expressions

b4pcp = Pamjcn) Cascp = CaBcpy Aapcep = AjaB)(cD)

respectively, all of which are completely tracefree, and where ®4pc1p =0, Ajapcip = 0.

B.2.1. Projective spinor fields
Let [¢€4] be a projective spinor field on (M, g) with stabiliser P C Spin(5,C) at a point. Following
section 2, we have the induced P-invariant filtrations &' ¢ &Y ¢ &~ and U ¢ B ¢ B~ where
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6 l.=6, &0 .=

x-l.=9, 50 .=

Equivalently, 0! =
of g = ®%G in terms of the

I 5 (¢) =€ pan,
I (¢) = E"pa”,

where ¢pap = ¢(aB)-

{a? €& a6t =0},

{VAB €Y oVCeAeE = 0} ,

maps

M2 (¢) = *palP ¢,

&= (¢

5(6) == EadBcén

9(¢) == dapécy

>={ozA€6:oz[A§B]:0},

L={vAB ey &vet =0} .
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{VAB €Y : &aVBe) = O}. Similarly, we can express the various P-invariant submodules

The explicit expressions for the maps gﬂg, ?HZ and gﬂf defined in section 4 can be significantly simplified.

For ®apcp € §, we have

S12,(®) == r P Ao §7¢ ¢ py
SH(®) := PapepE”E”,

S9(®) := ®aponc”

For Aapcp € 2, we have

?H(il(@) = O upcp &Py,

?Hé@) = f[A‘I)B]ECDfE + epac®pipr B ETET,

AaBcp focfE] )

§T5(A) == &5 Aupap€R & »

SI(A) == " Auppicép),

?HQ(A) = Aupcipép + Apeciap -

= Capcp §2¢PE%¢ g,

=&rC Ao EP€%¢E gy
=&rCasiepEPEmné
=¢rCapopPen,

f1(C) = &r CapiepEmE F) »
f5(C) == &r C e €n »

?Hg:s(A) &p A apopéPEler,
E11%5(A) := AupepePECEn
210 (A) =44 ApprctPE? — AapppePEPes
ST (A) = uABicioEEYEmé o + S ApiciEaéCEmé m + B AR mé B
$15(A) := Aapcpte”,
?H?J(A) §A§ ApFEcép +§[A§ Apercép)
?H?(A) 5,45 Apjpep — & Aaprcp)
S (A) == AupicpEmé p) + Acpie 4 $ 16 F) + Aprac E D) B) »
SI9(A) == ¢” Auppce
Finally, for Cagcp € €, we have
§1I°,(C) = Capep€ePece? f5(C
€11%,(C) := Capep€€PeC, 12,(0) -
?H‘ll(C) Capcp€PECen, €Hl,l(C
?HS(C) := CapopéPeC, 3(0
§I5(C) == &a &ir Cay Biic |0 EBIE F) »
fI0(C) == &p C ajpept”
£15(C) := Capepé?,
§113(C) == Capcp € p

mle(A) = f[AAB]EF[CﬁEfFfp] + §[CAD]EF[A€E§F§B} ;
?Hl_l(A) =
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Intrinsic torsion Denote by V 2p the Levi-Civita connection of g. Then the differential characterisations
of the intrinsic torsion of [¢4] can be re-expressed as

(5.5) = §a (€9V pe€?) ép =0, (B.2)
(5.6) = (PVaBe©) éc =0, (B.3)
(5.7) = (€PVprakp) écy =0, (B.4)
(5.8) = a (Y préc) Ep) + o (€°V pipéa) €51 =0, (B.5)
(5.9) — (Vape©)éc =0, (B.6)
(5.11) <= (€PVanés) & =0, (B.7)
(5.12) = (Vact9)E? = (€9Vact®) =0, (B.8)
(5.13) = (Vagéie) €y + &een)aVapé® +ec)aé"Vpipéip) = 0. (B.9)

Finally, denote by N¢ the almost null structure associated to [€4]. Then condition (5.14) for Ne to satisfy
[T(Ne), D(Ne)] € T(Ng") reduces to (B.2). Condition (5.16) for ¢ to be co-integrable can be expressed as

& (€°V mpptic) ) + Eemniia (€7 V mppts) €7 = 0. (B.10)

Condition (5.17) for Ne to be integrable and co-integrable can be expressed as

(6PV AR éc =0, a (PV ppéc) € =0. (B.11)

As an example, one can check that a solution ¢4 of the twistor equation

1 4
Vagéc + gﬁABCC + SC[AEB]C =0, ¢4 =P,

satisfies equations (B.11) if and only if £4¢4 = 0 as claimed in Proposition 5.24.
Appendix C. Conformal structures

Background information on (holomorphic) conformal structures is already given [39] to which the reader
should refer. Here, we merely collect useful formulae concerning spinor transformations under a conformal
change of holomorphic metrics G, = Q22¢qs for some non-vanishing holomorphic function € on M. Corre-
spondingly, the y-matrices can be chosen to transform as v,4 7 — 4,47 = Qyaa? where 9,47 denote the
~v-matrices for metric gup. In addition, we can choose the spin invariant bilinear forms y45 on S to rescale
with a conformal weight of 1, and their dual with a conformal weight of —1. This means in particular that
the quantities ,4” and y% 45 have conformal weight 0. Then the spin connection V., is related to V, by

. 1 1 1
VafB = VafB - §Tb7baCB£C + §Ta§B = VaéB - §Tb7bCD7aDBgcv (Cl)

for any holomorphic spinor field fA/, and similarly for dual spinors. This connection preserves the hatted
~-matrices and the hatted bilinear forms on S, in agreement with the convention of [32].
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If we now assume that &4 is a pure spinor field, we then obtain from (C.1)
A o 1
(Va2) &° = (Vat?®) & + 518 PrunBeC + 2Ty,

(35 Va"?) &€ = 7! <(7aBAVa§bB) 6 + 22 (2% - m"*‘gc)) :

§VaE7 =0 (S“AvasB - TP+ TbgbAfB) :
(£49,8"7) 6 = 0! <(€a“‘va£"3) & - %nsws%c - 2rbsb[AfC1sB) :
(9,6 € = 09,6 =07 (V%) €€ ~ 79, + 2P0 4 11" )
where we have set é"A = 49 pA¢B . In particular, from the first three expressions, we get
(VaflP) 6067 = (VagP) €56 + 2 TPl
(3952 Vuf?P) &6 = 71 (1 54 Va"P) 1067 + (n — 2) €470 ) |
(£49,6l#) ¢ = 7! ((s‘“‘vas[B) £ - %fATbs”[Bs“) :
from which the conformal invariance of (5.10) follows.
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